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ABSTRACT

We study the problem of learning fair prediction models for unseen

test sets distributed differently from the train set. Stability against

changes in data distribution is an important mandate for responsible

deployment of models. The domain adaptation literature addresses

this concern, albeit with the notion of stability limited to that of

prediction accuracy. We identify sufficient conditions under which

stable models, both in terms of prediction accuracy and fairness,

can be learned. Using the causal graph describing the data and

the anticipated shifts, we specify an approach based on feature

selection that exploits conditional independencies in the data to

estimate accuracy and fairness metrics for the test set. We show

that for specific fairness definitions, the resulting model satisfies a

form of worst-case optimality. In context of a healthcare task, we

illustrate the advantages of the approach in making more equitable

decisions.
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1 INTRODUCTION

Deployment of machine learning algorithms to aid consequential

decisions, such as in medicine, criminal justice, and employment,

require revisiting the dominant paradigms of training and testing

such algorithms. Particularly, the assumption that the data distri-

bution in training and deployment will be the same is not always

warranted. Examples of the impact of distribution shift can be found

in medical imaging tasks [57, 75], where the algorithms trained on

one chest radiography dataset performed poorly on other datasets.

Similarly, Nestor et al. [46] find that models for critical care tasks

degraded in performance over time resulting from changes in the

instrumentation of the electronic health records. Given the safety-

critical nature of the decisions, the decision-making process should

account for these shifts in distributions to ensure high predictive

accuracy of the algorithms.

Manymethods exist to learn under distribution shifts [58], includ-

ing recent work from a causal inference perspective [2, 51, 61, 68].

Such methods have significant appeal since they allow learning

accurate models for arbitrary shifts, including those in unseen fu-

ture data. This is achieved by exploiting causally-relevant factors

in data that are generalizable to unseen test sets, as opposed to

fitting to the factors specific to the training sets. However, the focus

of the methods has been on average case prediction performance

alone. In certain circumstances, while high predictive accuracy

is a necessary requirement, decisions made using the algorithms

should also not lead to or perpetuate past disparities among groups
in the data. Without any design changes, algorithmic solutions for

mitigating distribution shifts that do not account for disparities in

training data can result in disparate impact while predicting under

distribution shifts. We discuss a concrete example later.

At the same time, most work in algorithmic fairness addresses

the setting with a single learning task (or domain) under the as-

sumption that the data distribution does not change between train

and test settings [1, 23]. Under this assumption, minimizing classifi-

cation risk along with constraints on the fairness metric in training

data is likely to generalize to identically distributed test data. Think-

ing about shifts in fair machine learning is also important though,

since deployment of a (fair) decision-making tool might affect what

data is collected in future (e.g. selectively policing locations with
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high predicted risk [36]), or might incentivize individuals to strate-

gically adapt their features for favourable outcomes [22, 35], thus,

causing distribution shift. In addition, due to data-scarcity, such

as in medical decision-making [73], the models may be applied to

newer settings (such as hospitals) than the ones seen during train-

ing. The issue of ensuring fairness when deployment environment

differs from the training one has received little attention [63]. Due

to the variety of train-test shifts that can occur, conceptualizing

and addressing the problem has been challenging.

Our contributions. We address the problem of learning fair

models under mismatch in train-test distributions when either lim-

ited or no data is available from the test distribution. We consider

the setup of causal domain adaptation where possible shifts are

expressed using causal graphs with the goal of learning models

with stable performance under the specified shifts. Our main con-

tribution is to formulate the fair learning problem in this setup

and provide sufficient conditions that enable estimation of model

accuracy and fairness metrics in the test domain. For a subset of

covariate shifts and for several well-known group-fairness metrics,

we show that the resulting solution is worst-case optimal. We op-

erationalize the sufficient conditions in an algorithm based on a

reduction to the standard fair learning problem. Finally, we present

a case study on a medical decision-making task which demonstrates

applicability of the approach.

2 RELATEDWORK

Domain adaptation and fair machine learning are both widely stud-

ied problems. Thus, we primarily focus the discussion on literature

at their intersection.

Fairness. A number of fairness metrics have been proposed

that make different normative statements on the machine learning

models’ output (see [42] for a review). Depending on the application

context, different metrics might be appropriate or mandatory by

law [45]. Consequently, fairness methods have been developed to

build/modify models that satisfy different fairness criteria. We focus

on a class of methods that pose the problem as that of constrained

optimization [1, 15].

Domain adaptation. The seminal work of Ben-David et al. [3]

relates the target domain error to the source domain error and

the distance between the distributions. This inspired many domain

adaptationmethods based on adversarial training of representations

to align the distributions [19]. One drawback is that the methods re-

quire some data from test distribution while training. When causal

structure of the domains is known, recent work on causal domain
adaptation [38, 61, 66, 68] identify predictors with stable accuracy

under unseen changes in distribution. To accomplish this, the meth-

ods exploit the principle of invariance of causal mechanisms [50,

Sec. 1.3] that says – interventions (or shifts) in certain mechanisms

in the graph keep the other mechanisms unchanged. The invari-

ant mechanisms can be used to build stable predictors. Similar to

[51, 68], we adopt a setting where a causal graph specifies antici-

pated distribution shifts and no target domain data is given (but

can be used if available). The goal is to construct predictors that

are invariant to all anticipated shifts, without necessarily observ-

ing the corresponding data. The setting is particularly well-suited

for consequential decision-making where we want to proactively

guard against shifts that may result in harm, before deploying the

model and collecting target data. However, none of these methods

consider the possibility of unfair outcomes after adaptation.

Fairness and domain adaptation. On multiple benchmark

datasets, Friedler et al. [18] found that fair machine learning meth-

ods showed high variance in achieved accuracy and fairness on

randomly split train-test sets. To mitigate this, Huang and Vishnoi

[27] propose adding a regularization term to the constrained ERM

problem that guarantees stability. However, the term stability is

used for changes in the fairness metric as a training data sample is

removed/added, as opposed to changes under different distributions.

In [13], authors propose algorithms for generalisation of fairness

constraints but to an i.i.d. test set. In [37], the authors propose

learning feature representations, using adversarial training, which

result in fair classifiers when trained on the representations. They

do not address changes in distribution of the features (and their

representations) across domains.

In the same setup as ours under the assumption of covariate

shift but with the availability of unlabelled target data, [12] give

weighting-based estimators and [59] take a robust optimization

approach. Other works that assume some labelled data from the

target domain include [49, 63, 65]. For instance, [49] learns a repre-

sentation from multiple domains with guarantees on generalization

to the target domain, but requires labelled target data to fine-tune

classifiers and a low-rank assumption that constrains dis-similarity

between the domains. In [65], authors restrict to shifts in feature

means and propose ways to flag a potentially unfair model under

such shifts. Further, concurrent work [39] posits a set of test distri-

butions defined as weighted combinations of the training data, and

find a fair classifier minimizing the worst loss across such distri-

butions. Instead, we rely on distributional assumptions expressed

using a causal graph. Considering the causal structure of the prob-

lem allows the modeller to express plausible distribution shifts more

intuitively by denoting the mechanisms, instead of the statistical

properties, that can change. It also guides the construction of esti-

mators that are robust against shifts of arbitrary magnitude rather

than only the shifts in the observed datasets.

Our work is related in spirit to [6, 29] who consider building

fair models from ‘biased’ training data. Here, we provide a com-

plementary set of results on fairness under train-test distribution

mismatch, avoiding assumptions on specific generative processes

for the shift. Instead we use causal graphs to make weaker assump-

tions on where the mismatch is. This allows us to give a general

characterization of the addressable mismatch settings. Moreover,

at a conceptual level, our focus is on addressing mismatch with

multiple future test sets rather than a biased training set.

3 PROBLEM SETUP

Let us denote all the variables associated with the system being

modelled as V := (X, 𝐴,𝑌 ), where 𝐴 is the sensitive attribute, X is

a non-empty set of covariates other than 𝐴, and 𝑌 is an outcome of

interest. We will consider a binary sensitive attribute,𝐴 ∈ {a, d} (i.e.
advantaged and disadvantaged group), and the binary classification

case, thus, 𝑌 ∈ {0, 1}. For simplicity of exposition, consider the

case with only two domains – a source and a target – with joint

probability distributions 𝑃source and 𝑃target, respectively. Crucially,
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the two distributions may be different (e.g. data from two hospitals

with different care practices). Bold letters are used for vectors,

uppercase for random variables, and lowercase for instantiations.

3.1 Fair classifier

Consider that the classifier is built from the feature (sub)set S ⊆ {X, 𝐴}
and outputs the binary prediction 𝑓 (S) ∈ {0, 1}.1 Wewill operate in

the empirical risk minimization framework for learning classifiers

and introduce additional fairness constraints in the objective to con-

trol the inter-group disparity, a commonly-used approach [1, 15, 74].

Each constraint is given by some function 𝐺 of the prediction, out-

come, and features. Denote the constraint by 𝐺 (𝑓 (S), (𝑌, S)) ≤ 𝜖
with (𝑌, S) ∼ 𝑃target (𝑌, S) and some hyperparameter 𝜖 ≥ 0 allow-

ing for approximate fairness. If there are multiple constraints, we

write the set of constraints succinctly as G(𝑓 , 𝑃target) ≤ 𝝐 . Note
that the desired fairness constraint G is assumed to be the same

in both the domains. The classification error i.e. probability of a

misclassification is written as 𝑃 (𝑓 (S) ≠ 𝑌 ). Then, the fair domain

adaptation (DA) problem amounts to finding a minimizer

[Fair DA] 𝑓 ∗
target

:= argmin

𝑓 ∈F(S)
{𝑃target (𝑓 (S) ≠ 𝑌 ) : G(𝑓 , 𝑃target) ≤ 𝝐}

(1)

i.e. a function 𝑓 ∗
target

in the set of learnable functions F (S) of fea-
tures S that minimizes classification error as well as satisfies fairness

constraints.

Fairness metrics.We will focus on group-fairness metrics de-

fined based on some notion of parity across groups. These have

received much attention in the fair machine learning literature

[1, 15, 23] due to the relative ease of communicating their implica-

tions to stakeholders and the ease of computing them from obser-

vational data.

Definition 3.1. (DP) [7] A classifier 𝑓 is said to satisfy demo-
graphic parity for some distribution 𝑃 if 𝑃 (𝑓 (S) |𝐴) = 𝑃 (𝑓 (S)). Thus,
the constraint 𝐺 is |𝑃 (𝑓 (S) |𝐴 = a) − 𝑃 (𝑓 (S) |𝐴 = d) | ≤ 𝜖 .

Definition 3.2. (EO) [23] A classifier 𝑓 is said to satisfy equal-
ized odds for some distribution 𝑃 if 𝑃 (𝑓 (S) |𝑌 = 𝑦,𝐴) = 𝑃 (𝑓 (S) |𝑌 =

𝑦) for 𝑦 ∈ {0, 1}. Thus, the constraints G are |𝑃 (𝑓 (S) |𝑌 = 𝑦,𝐴 =

a) − 𝑃 (𝑓 (S) |𝑌 = 𝑦,𝐴 = d) | ≤ 𝜖 for 𝑦 ∈ {0, 1}.

We define two more metrics derived from EO. If we condition

only on 𝑌 = 1, the resulting metric is known as true positive rate
equality (TPR), or more commonly equality of opportunity [23].

Similarly, for 𝑌 = 0, the metric is known as true negative rate
equality (TNR).

Solving (1) requires estimating the error 𝑃target (𝑓 (S) ≠ 𝑌 ) and
the fairness constraint G(𝑓 , 𝑃target). Given enough samples from

𝑃target, standard fair learning methods e.g. [1] return a solution. But,

this is not possible in the Fair DA setting, as we do not have access

to the complete target data. Thus, the central question we ask is:

Underwhat assumptions canwe still find 𝑓 ∗
target

? For arbitrary

distribution shifts, it is not possible to answer this question in

affirmative. With background knowledge of how the distributions

differ, past work provides methods to bound the target domain

1
Note that S can contain 𝐴 as we assume that disparate treatment is allowed in the

problems of our interest.

error. Crucially, such methods still do not guarantee target domain

fairness and using fairness constraints from the source domain,

naturally, does not solve (1). Through the following example, we

illustrate that these design choices can significantly affect accuracy

and fairness of the models. It also shows how the causal inference

framework for domain adaptation allows for the specification of

shifts and design of predictors.

3.2 An illustrative example.

Consider a simplified version of the flu diagnosis task from [41]. The

associated data generating process is shown in Figure 1a. Flu status

𝑌 of a person is to be predicted from three measurements {𝑇, 𝑅,𝐴}.
The disease has two known causes 𝑅 and𝐴, say virus-exposure risk

and age group (indicating adult or child) respectively. In addition,

a noisy yet predictive symptom of flu is observed as 𝑇 , say body

temperature, which is expressed differently depending on the age

group. A categorical variable 𝐶 indicates different data collection

sites (the domains) which differ on (i) how well the temperature

is measured, e.g. self-reported vs. clinician-tested (𝐶 → 𝑇 ), and

(ii) the proportion of demographics across sites (𝐶 → 𝐴). Suppose,

a classifier 𝑌 is to be built using data from a single site (source

domain) and used in multiple sites (target domains) to allocate

scarce healthcare resources (testing kits, medical consultation) to

individuals. The model designer would like to mitigate differential

error rates across age groups and chooses to use EO as the fairness

constraint while learning 𝑌 .

We compare three ways of designing the model that account

differently for the possibility of shift and unfairness. Figures 1b,

1c show results from a simulation, discussed in detail in Section

6.2. As we vary the magnitude of distribution shift between the

sites, the Standard classifier, built by regressing𝑌 on {𝑇, 𝑅,𝐴} from
source data degrades in accuracy (blue curve) on target data. By

accounting for the shift, CausalDA, a domain adaptation approach

[61] that only uses the features {𝑅,𝐴}, remains stable (orange curve).

Surprisingly, domain adaptation leads to higher levels of fairness

violations, as shown in Figure 1c. To mitigate this we would want

to learn CausalDA with fairness constraints which is complicated,

as discussed earlier, since we cannot evaluate the constraints for

unseen target domains. However, following the method proposed

in Section 5, learning CausalDA with fairness constraints on the

source domain (red curve) retains both the desired properties –

consistently high accuracy and low unfairness. Thus, the example

illustrates the need to consider fairness constraints while adapting

for the shifts.

Next, we describe the joint causal graphs in more detail that

allow us to represent the potential shifts, followed by our main

results on learning fair and stable predictors under specific shifts.

4 JOINT CAUSAL INFERENCE AND DOMAIN

ADAPTATION

Following recent work [38, 43, 61], we consider a joint causal graph

which represents the data distribution for all domains. This allows

us to reason about the invariant distributions under shifts, which
is key to addressing the fair domain adaptation problem.

Assume that all the source and the target domains are charac-

terized by a set of variables V, which are observed under different
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(a) Example causal graph annotated to show

anticipated shifts in the distributions 𝑃 (𝐴)
and/or 𝑃 (𝑇 |𝐴,𝑌 ) .
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(c) Fairness Violation vs. Shift.

Figure 1: Flu diagnosis example. (a) Data generating process for source and target domains represented as a causal graphwhere

domains are indicated by the context variable 𝐶. Edges from 𝐶 represent shifts between the domains. {𝑇, 𝑅,𝐴} are features,

with sensitive attribute𝐴, and outcome 𝑌 . (b,c) Classification accuracy and fairness violation with varyingmagnitude of shifts

for synthetic data (Section 6.2) for the example. Fairness violation is computed as the maximum violation of equalized odds

constraint across 𝑌 and 𝐴. Median values are plotted over 50 runs and error bars show first and third quartiles. Proposed

approach (CausalDA+FairLearn) achieves both stable accuracy and fairness in the shifted target domains.

contexts (e.g. experimental settings) particular to each domain. Joint

Causal Inference [43, Sec. 3] framework provides a way of rep-

resenting the data generating process for all domains as a single

causal graph representing an underlying causal model. In addition

to the system variables V, the framework introduces an additional

set of exogenous variables, named context variables C , that rep-

resent the modeler’s knowledge of how the domains differ from

one another (given by the causal relations among the system and

context variables).
2
We include the formal definition of JCI frame-

work in Appendix D along with the necessary assumptions on

faithfulness, and Markov property. For the example in Figure 1a,

system variables are {𝑇, 𝑅,𝐴,𝑌 }. With a binary context variable

𝐶 , 𝑃 (𝑇, 𝑅,𝐴,𝑌 | 𝐶 = 0) and 𝑃 (𝑇, 𝑅,𝐴,𝑌 | 𝐶 = 1) correspond to joint
distributions for the two domains, source and target. More gener-

ally, setting context variable to a particular value, say C = c, can

be seen as an intervention that results in the data distribution for a

domain 𝑃 (V | C = c).3
A class of causal domain adaptation problems is to learn a pre-

dictor that generalizes to different target data distributions which

correspond to different settings of the context variables in the causal

graph. In [38], authors propose learning a predictor using only a

subset of the features that guarantee invariance of the outcome

distribution conditional on the chosen feature subset. More specifi-

cally, if V = (X, 𝐴,𝑌 ) and C are the context variables, the desired

subset of features S ⊆ {X, 𝐴} satisfies 𝑌 ⊥⊥ C | S, implying that

the conditional distribution of outcome 𝑌 given the features S is
invariant to the effect of domain changes. The set S is referred to as
a separating set as it d-separates 𝑌 and C in the joint causal graph.

This criterion generalizes the covariate shift criterion [69], which

assumes independence between 𝑌 and𝐶 conditioned on all the fea-

tures. Note that the separating set criterion excludes graphs where

2
In a related concept, selection diagrams also add auxiliary variables to a causal graph

to represent the distributions that can change across different domains [51]. More

discussion on the relationship between the two can be found in [43].

3
Under the assumptions of JCI framework, discussed in Appendix D, this is the same

as 𝑃 (V𝑑𝑜 (C=c) ) where 𝑑𝑜 (C = c) denotes an intervention on𝐶 .

C directly causes 𝑌 , known as label shift. The predictor using the
separating set satisfies a desirable optimality property. As shown in

[61], it has the lowest mean squared loss against any distribution

having the same outcome distribution 𝑌 | S as in the source.

However, using a separable set in itself does not guarantee fair-

ness. For example, separating sets for Figure 1a are S ∈ {{𝐴}, {𝐴, 𝑅}}.
But neither satisfies the condition required for EO, in general, i.e.

𝑓 (S) ⊥⊥ 𝐴 | 𝑌 . Thus, to ensure both invariance and fairness, we

restrict our search space in Fair DA (1) to F (S), i.e. the set of

predictors built using the separating set S. Next, we describe the
assumptions that allow us to solve this problem. All proofs are

included in Appendices A−C in the supplemental material.

5 FAIR DOMAIN ADAPTATION

Now, we return to our problem of finding fair classifiers for the

target domain and describe how the joint causal graph helps in

solving (1). In the context variable notation, we are interested in

finding

argmin

𝑓 ∈F(S)
{𝑃 (𝑓 (S) ≠ 𝑌 |𝐶 = 1) : G(𝑓 , 𝑃 (𝑌, S|𝐶 = 1)) ≤ 𝝐}

where 𝐶 = 1 represents the target domain. We start by noting the

need for further assumptions.

Proposition 1. Fair DA problem (1) is not solvable in general
without further assumptions.

Proposition (1) follows by the impossibility results on domain

adaptation [4]. Even when domain adaptation is possible, i.e. target

domain error is identifiable (uniquely estimable in terms of source

domain distribution), the fairness constraint is not guaranteed to be

identifiable. We make this point by constructing an example with

group-specific measurement error in features.

Thus, the natural question is under what conditions on distribu-

tions and assumptions on data availability can we identify the error

𝑃 (𝑓 (S) ≠ 𝑌 |𝐶 = 1) and the fairness constraint G(𝑓 , 𝑃 (𝑌, S|𝐶 = 1)).
We make the following two assumptions for the selected features

S ⊆ {X, 𝐴} for the classifier.
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Assumption 1 (Invariance of classification error). Fea-
tures S form a separating set, i.e. 𝐶 ⊥⊥ 𝑌 | S.

Assumption 2 (Invariance of fairness constraint). De-
pending on the fairness metric, assume that

• For demographic parity (DP), S satisfies 𝐶 ⊥⊥ S | 𝐴,
• For equalized odds (EO), S satisfies 𝐶 ⊥⊥ S | 𝑌,𝐴,
• For true positive rate equality (TPR), S satisfies 𝐶 ⊥⊥ S | 𝑌 =

1, 𝐴,
• For true negative rate equality (TNR), S satisfies 𝐶 ⊥⊥ S | 𝑌 =

0, 𝐴.

For example, the condition for DP asserts that the characteristics

(in terms of features S) of the sensitive groups are invariant across
domains. Similarly, the condition for EO says that feature distribu-

tion for groups defined by the label and the sensitive attribute is

invariant across domains. This ensures that we can evaluate (and

hence balance) the corresponding fairness constraint irrespective

of the domain.

Next, we consider two scenarios to state the quality of the so-

lution that can be found under the two assumptions – (i) when

labelled source and unlabelled target domain data is available, alter-

natively, (ii) when only the labelled source domain data is available.

5.1 Fair domain adaptation with limited target

domain data

Proposition 2. Given Assumptions 1 and 2 hold, then using
only labelled source and unlabelled target data, the Fair DA problem
(1) can be solved exactly by a data re-weighting method.

Proof sketch. This follows since the error is invariant, i.e.

𝑃 (𝑓 (S) ≠ 𝑌 |S,𝐶 = 1) = 𝑃 (𝑓 (S) ≠ 𝑌 |S,𝐶 = 0), due to Assumption 1.

This implies that

E𝑌,S (𝑃 (𝑓 (S) ≠ 𝑌 |S,𝐶 = 1)) = E𝑌,S (𝑤 (S) × 𝑃 (𝑓 (S) ≠ 𝑌 |S,𝐶 = 0))

where weights, 𝑤 (S) = 𝑃 (S|𝐶 = 1)/𝑃 (S|𝐶 = 0), are the ratio of

feature densities. Under Assumption 2, the fairness constraint is

invariant, i.e. G(𝑓 , 𝑃 (𝑌, S|𝐶 = 1)) = G(𝑓 , 𝑃 (𝑌, S|𝐶 = 0)). To solve

(1), we find

argmin

𝑓 ∈F(S)
{𝑤 (S)𝑃 (𝑓 (S) ≠ 𝑌 |𝐶 = 0) : G(𝑓 , 𝑃 (𝑌, S|𝐶 = 0)) ≤ 𝝐} .

Both the error and the constraint are estimable as we have labelled

source data sampled from 𝑃 (𝑌, S|𝐶 = 0). The remaining term is

the density ratio𝑤 (S) used to re-weight the error. Since we have

features from both source and target in this scenario,𝑤 (S) can be

computed, for instance, using a probabilistic classifier for discrimi-

nating between the domains [5]. □

This solution strategy is akin to the importance-weighting ap-

proach of addressing covariate shift [64, 69], with the distinction

being the use of the separating feature set instead of all the features.

5.2 Fair domain adaptation with no target

domain data

In the scenario when only the labelled source data is available, we

cannot use Proposition (2) since we cannot estimate the weights.

𝐴

𝑅

𝑌

𝐿𝑇𝐶2

𝐶1

A

Demography

(sensitive attribute)

Y Disease status

R Risk factors

L Lab tests

T Treatment

(a)

𝐴 𝑆

𝐿

𝑌

𝑅

𝐶

A Gender (sensitive attribute)

L Age

Y Credit risk level

R

Repayment duration,

Credit amount

S Savings, Housing

(b)

Figure 2: Examples of addressable causal graphs. (a) Disease

risk scoring under population shift and treatment policy

shift [66] (b) Credit scoring under population shift [10]. Fol-

lowing Assumptions 1 and 2, including 𝐴 in the feature set

blocks the effect of population shift (e.g. the paths in ma-

genta) and excluding 𝐿 from the feature set blocks the effect

of treatment policy shift (e.g. the path in green).

Instead, we use the source data with the selected features,

˜𝑓 ∗ ∈ argmin

𝑓 ∈F(S)
{𝑃 (𝑓 (S) ≠ 𝑌 |𝐶 = 0) : G(𝑓 , 𝑃 (𝑌, S|𝐶 = 0)) ≤ 𝝐} ,

with S satisfying Assumptions 1 and 2

(2)

Next, we show that this solution minimizes the worst-case error

under fairness constraints among target distributions satisfying the

two assumptions with respect to the feature subset S. Such a prop-

erty might be desirable for models aiding consequential decision-

making as it guarantees good performance under the worst possible

target distribution. In other words, the solution to (2) will perform

well for any target distribution we may encounter, as long as the

distribution adheres to the stated assumptions.

Denote the set of continuous functions which satisfy the fairness

constraints G with respect to the distribution 𝑃 by

F (G, 𝑃) := {𝑓 ∈ C0 : G(𝑓 , 𝑃) ≤ 𝝐},
where C0 denotes the set of all continuous functions. Let P denote

the distributions over (X, 𝐴,𝑌 ) that satisfy Assumptions 1 and 2

for some features S. Then, the set F (G, 𝑃) is the same for any

distribution 𝑃 ∈ P.

Lemma 1. F (𝐺, 𝑃) = F (𝐺,𝑄), ∀ 𝑃,𝑄 ∈ P

By Assumption 2, if G(𝑓 ,𝑄) holds then G(𝑓 , 𝑃) also holds. Thus,
the two sets are the same. Therefore, we can denote the set of fair

functions by F (G,P).
For the next result, we will restrict to three fairness definitions

(DP, TPR, or TNR) and assume that the conditional outcome, i.e. the

random variable 𝑃 (𝑌 = 1|X, 𝐴,𝐶 = 1), has strictly positive density

on [0, 1]. This technical condition allows us to characterize the

optimal predictors in F (G,P), following Corbett-Davies et al. [11].

Theorem 1 (Worst-case optimality). Consider the set of dis-
tributions P satisfying Assumptions 1 and 2 which are absolutely
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Algorithm 1 Fair domain adaptation via reduction to standard fair

learning

Input Joint causal graph G, source dataDsource, fairness metric

Output Classifier 𝑓 ∗
target

(S) or No_solution
Initialize 𝑅

val
← {}.

for S ⊆ {X, 𝐴} do
Solve min𝑓 ∈F(S)𝑃source (𝑓 (S) ≠ 𝑌 ) and compute error 𝑅

val(S)
on validation set

𝑅
val
← {𝑅

val
, 𝑅

val(S) }
end for

Sort 𝑅
val

in increasing order

Traverse 𝑅
val

and select S satisfying Assumptions 1 and 2, say

S∗, by checking for d-separation in graph G
if S∗ exists then

Solve Fair DA problem (2) with features S∗ and return output

else

return No_solution
end if

continuous with respect to the same product measure, and a set of
fair functions F (G,P) satisfying either DP, TPR, or TNR. Assume
that the conditional outcome has strictly positive density. Then, the
proposed classifier ˜𝑓 ∗ satisfies

˜𝑓 ∗ ∈ argmin

𝑓 ∈F(G,P)
sup

𝑃 ∈P
𝑃 (𝑓 (X, 𝐴) ≠ 𝑌 ) (3)

That is, the proposed approach achieves minimum worst-case

error amongst the fair predictors with respect to the distributions

satisfying the two assumptions. We note that the assumption of

absolute continuity in Theorem 1 is made to avoid cases where

source and target distributions have disjoint support, which would

make generalization challenging if some parts of the feature space

are not observed at all in the source domain.

5.3 Practicality of assumptions

Assumptions 1 and 2 together describe the types of shifts that our ap-

proach can address. Graphically, these are characterized as (a) shifts

with causal paths to 𝑌 which all include 𝐴 (i.e. 𝐶 · · · →𝐴→ · · ·𝑌
with all arrows toward 𝑌 ), and (b) shifts with non-causal paths

to 𝑌 (i.e. 𝐶 · · · →𝑀← · · ·𝑌 for some feature 𝑀 ∈ S). This means

that any shift causing change in the distribution of the sensitive

attribute as well as any shift in variables with a non-causal path

to 𝑌 can be addressed. Figure 2 gives an example of both the cases

(described in more detail in Appendix F). Shifts in distribution of

sensitive attribute are common when there is sample selection bias

e.g. patient demographics being different between rural and urban

hospitals. In Section 6.4, we demonstrate a general class of shifts in

medical diagnosis tasks where both the assumptions are satisfied.

Finally, we note that the assumptions (barring those for DP) are

untestable without access to labelled target data. The reason for

untestability is the same as that for no unmeasured confounding –

we do not observe the (counterfactual) target data, and hence cannot

test for conditional independence. Thus, background knowledge of

plausible shifts are critical.

5.4 Proposed algorithm

The approach described in (2) suggests a simple algorithm based

on feature selection followed by solving the standard fair learn-

ing problem. We assume that the following are given – a causal

graph for the system of interest G and data from a source domain

Dsource = {(X𝑖 , 𝐴𝑖 , 𝑌𝑖 )}𝑛𝑖=1. The steps, outlined in Algorithm 1, are

as follows. (a) Iterate over all feature subsets to rank them in in-

creasing order of their empirical error on the source domain. (b)

Starting from the feature set with the least error, check for As-

sumptions 1 and 2 using 𝑑-separation [50] in G. (c) Solve the fair
learning problem with Dsource limited to model class F (S). This
can be achieved by a fair learning algorithm, such as [1], chosen

based on the model class and the fairness definition. If there is no S
satisfying the assumptions, we do not return a solution.

The time complexity is dominated by the search over feature

subsets in (a) which is exponential in number of features. To reduce

the combinatorial search, we can run a feature selection procedure,

e.g. the lasso in case of linear models [24, Chapter 3], to prune

non-predictive features. Another heuristic is to start with the set of

causal parents of Y (which satisfy Assumption 1) and prune it to

get a subset satisfying Assumption 2.

5.5 Extension to Counterfactual Fairness

Another set of fairness definitions based on the causal effect of the

sensitive attribute on the prediction have been proposed [31, 32, 44].

We consider one version of these counterfactual fairness definitions.

Definition 5.1. (Ctf) [32] A classifier 𝑌 = 𝑓 (X, 𝐴) is said to
be counterfactually fair if the counterfactual distribution of 𝑌 con-
ditioned on all observed values is the same under 𝑑𝑜 (𝐴 = a) and
𝑑𝑜 (𝐴 = d), i.e. 𝑃 (𝑌𝑑𝑜 (𝐴=a) = 𝑦 |X = x, 𝐴 = 𝑖) = 𝑃 (𝑌𝑑𝑜 (𝐴=d) = 𝑦 |X =

x, 𝐴 = 𝑖), for 𝑦 ∈ {0, 1} and 𝑖 ∈ {a, d}.

One method to build a classifier 𝑓 (S) satisfying Ctf is to only

use feature set S ∈ {X, 𝐴} that does not contain any descendant of

𝐴 in the causal graph [32, Lemma 1].

Thus, the counterpart of Assumption 2 for solving Fair DA under

Ctf is that the selected feature set contains the non-descendants of

𝐴. Combined with Assumption 1, we select non-descendants of 𝐴

which form a separating set in order to solve Fair DA. Since, Ctf

only requires change in feature subset and does not include any

fairness constraints in the fair learning problem, we can show the

worst-case optimality result as well (described in Appendix E).

However, we note that there are multiple ways of defining coun-

terfactual fairness. For instance, [44] require that causal effects of

𝐴 on 𝑌 through particular paths should be zero or small. Further

work should explore approaches to solve Fair DA under broader

definitions of counterfactual fairness.

6 EXPERIMENTS

The experiment settings explained next are designed to evaluate per-

formance (accuracy and fairness) of the proposed classifier, trained

using a source dataset, on unseen target datasets. The constrained

learning problem in (2) is solved using the algorithm by [1], re-

ferred henceforth as FairLearn, which converts the problem into a

sequence of weighted cost-sensitive classification problems. Predic-

tive performance is measured using accuracy (percentage correct),
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𝐴 ∼ Bernoulli (𝜎 (𝛾 · 𝜆1 ·𝐶 + 𝑢1))
𝑅 ∼ N(0, 1) + 𝜆2 · 𝐴 + 𝑢2
𝑌 ∼ Bernoulli (𝜎 (𝜆3 · 𝐴 + 𝜆4 · 𝑅 + 𝑢3))
𝑇 = 𝜆5 · 𝑌 + 𝜆6 · 𝑅 + 𝜆7 · 𝐴 + N(0, 𝛾 · 𝜆8 ·𝐶) + 𝑢4
𝑢1, 𝑢2, 𝑢3 ∼ N(0, 0.82), 𝑢4 ∼ N(0, 1.0)
(𝜆1, 𝜆2, 𝜆3, 𝜆4) = (0.2,−0.1,−0.8, 0.8)
(𝜆5, 𝜆6, 𝜆7, 𝜆8) = (0.8, 0.1,−0.8, 0.2)
𝛾 ∈ [0, 15]
𝜎 (𝑥) = 1/(1 + exp(−𝑥))

(a) Data generating process.
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(b) High shift magnitude, 𝛾 = 15.
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(c) Low shift magnitude, 𝛾 = 1.67.

Figure 3: (a) Data for the domains with shift governed by 𝛾 , highlighted in red. (b,c) Accuracy and fairness metrics on synthetic

data example with different magnitude of shifts. Median values are reported over 50 runs and error bars show first and third

quartiles. Proposed approach CausalDA+FairLearn is both accurate and fair under large shifts.

area under ROC and precision-recall curves (AUPRC). For the exper-

iments presented here, we use EO as the desired fairness constraint.

To evaluate (un)fairness, we report themaximumviolation of the EO

constraint, i.e. max𝑌 ∈{0,1},𝐴∈{a,d}
��𝑃 (𝑓 (S) | 𝑌,𝐴) − 𝑃 (𝑓 (S) | 𝑌 )��.

6.1 Baselines.

We consider five baselines which account for either distribution

shift, unfairness, both, or none of these.

• Standard is the optimal un-constrained classifier with all
available features, i.e. 𝑓 (V \ 𝑌 ).
• CausalDA is the classifier with the separating set, i.e. 𝑓 (S)
s.t. 𝐶 ⊥⊥ 𝑌 | S.
• OTDA is an optimal transport-based method for unsupervised

domain adaptation [14].

• Standard+FairLearn is 𝑓 (V \ 𝑌 ) trained with FairLearn.
• Finally, CausalDA+FairLearn is the proposed method i.e.

𝑓 (S) trained with FairLearn where S satisfies Assumptions

1 and 2.

Results on another method, anchor regression [62], are included in

Appendix H. Since this method requires data from multiple sources,

we evaluate it against the above methods in a separate experiment

setting. Hyperparameters used for the methods are reported in

Appendix I.4. Code for reproducing results on synthetic data is at

https://github.com/ChunaraLab/fair_domain_adaptation.

6.2 Synthetic data example

Setup. For the flu example in Figure 1a, we generate data from a

structural equation model described in Figure 3a with linear rela-

tionships and logit link function for binary variables. To generate

target domains, we perform soft interventions [40] to shift distribu-

tions of 𝐴 and 𝑇 . The shift magnitude is governed by a multiplier

𝛾 in the linear equations. In total, 50 pairs of source and target

datasets are simulated with 𝑁 = 2000 samples in each dataset. The

proportion of disadvantaged group in source is kept at roughly

0.5. In target domains with an extreme value for 𝛾 = 15, the ratio

shifts to roughly 0.94. Class ratio is varied from 0.5 to 0.36 with

increase in 𝛾 . From Figure 1a, we observe that S={𝐴, 𝑅} satisfies
the two assumptions. Adding𝑇 (a collider) to Smakes the predictor

dependent on𝐶 and, thus, unstable. We use logistic regression mod-

els in all experiments. In Figure 3b, the goal is to find a classifier

performing well on both accuracy and fairness, i.e. one close to the

right-hand bottom corner.

Results. For a high magnitude of shift, Figure 3b, domain adap-

tation (CausalDA) leads to considerably higher accuracy than using

all features (Standard), but results in high unfairness. Learning

with fairness constraints (CausalDA+FairLearn) which results in

low unfairness with a minimal loss in accuracy even when the do-

mains differ significantly. As seen in Figure 3c, for low magnitudes

of shift, CausalDA+FairLearn still has low unfairness but results

in a pessimistic accuracy estimate as it accounts for larger shifts

than are seen in the target domain. Thus, in practice, the choice of

method will depend on the expected magnitude of shift.

6.3 Synthetic data example: additional results

Varying magnitude of shift. To check robustness of different

models to distribution shift, we generate target datasets with dif-

ferent values of 𝛾 in the linear structural equations in Section 6.1.

Figure 5 (a,b,c), included at the end, shows two predictive perfor-

mance metrics – Accuracy (percentage correct), AUROC – and one

fairness metric – maximum fairness violation – for different mag-

nitudes of shift. We observe the same trends as reported in Section

6.1, i.e. CausalDA (orange curve) achieves stable predictive perfor-

mance but leads to high unfairness, whereas CausalDA+FairLearn
(red curve) achieves both stable predictive performance and low

unfairness.

Results with demographic parity. Figure 5 (d,e,f) report re-

sults on the synthetic example with demographic parity (DP) as

the fairness constraint instead of EO. In case of DP, the fairness

violation is quantified as |𝑃 (𝑓 (S) | 𝐴 = 𝑎) − 𝑃 (𝑓 (S) | 𝐴 = 𝑑)
��
. We

observe similar trends as compared to the plots for EO.

https://github.com/ChunaraLab/fair_domain_adaptation
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Figure 4: (a) Postulated causal graph for AKI. Bi-directed edge denotes unmeasured confounding between disease outcome and

lab test values due to unobserved common causes. (b) Legend for variables in the graph. (c) Accuracy and fairness metrics for

AKI data. Median values are reported over 50 runs and error bars show first and third quartiles. Proposed approach improves

fairness with small loss in accuracy, even on shifted target data.

6.4 Case study: diagnosing Acute Kidney Injury

Acute Kidney Injury (AKI) is a condition characterized by an acute

decline in renal function, affecting 7-18% of hospitalized patients

and more than 50% of patients in the intensive care unit (ICU) [8].

The condition can develop over a few hours to days and early predic-

tion can greatly reduce the fatalities associated with the condition.

Hence, building models for predicting AKI risk from clinical data is

an active area of research. Such models can be used to risk-stratify

patients to screen them for close monitoring or to perform further

diagnostics to guide course of treatment [26]. Importantly, AKI in-

cidence has well-documented disparities across groups defined by

race and sex [20, 21]. Thus, introduction of risk prediction tools for

guiding clinical care has a potential to perpetuate such disparities,

or alternatively, to address them through a more deliberate design

of the prediction tools. A recent study [70] showed good predictive

performance for AKI based on patient data provided by the U.S.

Department of Veteran Affairs. However, the female population

was severely underrepresented in the data, which raises concern

over differential error rates when deployed in a different popu-

lation. Therefore, to analyze the fairness across sensitive groups,

we conduct experiments on MIMIC III, a publicly-available critical

care dataset [28]. We extract variable types, mentioned in caption

of Figure 3, for around 24𝐾 patients. Pre-processing steps are de-

scribed in Appendix I.2. We use a simplified causal graph for the

AKI diagnosis task, Figure 4a, based on the one used by [66] for a

sepsis diagnosis task. The group sex=female is taken as the sensitive

attribute to assess fairness of the predictions. In this case study,

the AKI risk score is not intended to prescribe treatment, but to

flag a patient for extra care resources e.g. by alerting clinical staff.

Thus, the potential harm that we want to avoid is groups having

unequal opportunity to such care resulting from group differences

in prediction errors.

Setup. Patient encounters are randomly split (2:1) into source

and target data. We artificially introduce two types of shifts – (a)

change in female proportion, and (b) change in measurement pol-

icy, where a lab test is prescribed less often – some of the factors

affecting model performance across clinical settings [60]. We ran-

domly downsample female population by rejecting each row in the

source data from that group with probability 50%. This shifts the

proportion of females from 40% to 25%. Also, we randomly choose

50% encounters in the target data and add missing values for the

Blood Urea Nitrogen (BUN) test, a biomarker of AKI [16]. Results

with other missingness proportions are included in Appendix I.3.

From Figure 4a, we note that S={D,M,X\BUN} satisfies the two
assumptions. We report AUPRC in Figure 4c, instead of accuracy, as

it is less sensitive to class imbalance (class ratio is 0.21). All results

are reported for classifiers trained with gradient boosting trees.

We drop OTDA from comparison due to its low accuracy and high

running time for this dataset.

Results. We find that classifiers with separating feature set per-

form significantly better in AUPRC compared to those with all

features (exact numbers are reported in Appendix I.3). Further,

CausalDA+FairLearn improves fairness in target domain, reduc-

ing fairness violation by 47% with 0.8% decrease in AUPRC. Thus,

the experiments provide preliminary evidence that our method

can learn stable classifiers while being fair for a class of shifts in

diagnosis tasks denoted by Figure 4a. Note that the setup has some

limitations, namely, adding missing values to perturb target data

conflates the effectiveness of the procedure for handling missing

data (mean value imputation in our case) with the procedure for

domain adaptation. We plan to validate the approach on datasets

across multiple hospitals or time points to address these limitations.

7 LIMITATIONS AND DISCUSSION

Knowledge of causal graph. Our approach requires the causal

graph for the system being studied to check whether the two as-

sumptions are satisfied for any given subset. While this is a require-

ment made by multiple domain adaptation methods [66, 68], this

can be relaxed when data from multiple domains are available. In

such settings, causal discovery methods [53] can be used to posit

a graph and validate with domain experts. Such a procedure is

demonstrated in [67]. An important direction for future work in-

cludes identifying the desired feature subsets with causal discovery

algorithms. We recommend that the causal graph be postulated

conservatively, i.e. only adding conditional independencies that

are well-substantiated by domain knowledge. In this case, if the
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separating features are not found, our method will output that a fair

predictor is not possible instead of incorrectly returning a model

that will not be fair.

Addressable shifts. In Section 5.3, we described shifts that our

approach can address and presented examples. However, these are

only a part of the possible shifts that a modeller may worry about.

For example, shifts in direct causes of the outcome are excluded

due to Assumption 2. Such shifts can result in arbitrary changes to

the outcome within each group, making it impossible to balance

group-specific statistics in the fairness constraint (see Appendix

A for an example). These are difficult to address without making

strict assumptions on magnitude of the shift or assuming access to

target data. Thus, for some joint causal graphs, Algorithm 1 might

not yield any feature set. In such cases, an alternative is to return

the set with the least source domain risk but such a set has no

generalization guarantee.

Algorithmic fairness in healthcare to promote health eq-

uity. Disparities in health outcomes and healthcare access across

different groups (e.g. based on race and gender) arise from multiple

reasons such as socio-economic inequities (e.g. due to structural

racism) [56] and clinician bias [48]. Such disparities can result in

differential model performance across groups as Obermeyer et al.

[47] finds in context of a model for identifying patients who need

extra care resources. Left unaddressed, allocating resources using

‘biased’ models may worsen health disparities. As a consequence, a

growing body of work aims to develop algorithms embodying fair-

ness principles specific to healthcare [9]. This includes constraining

prediction errors across groups for the tasks of predicting risk of

cardiovascular events [54] or predicting healthcare costs [78]. How-

ever, such group-level fairness constraints, including the ones we

consider, may not match ethical desiderata in all possible health-

care settings. Some alternative constraints have been defined, for

example, using counterfactuals [55] or preference between group

or aggregate-level models [71]. We plan to investigate fair domain

adaptation under broader notions of fairness. We have motivated

the approach on healthcare tasks due to the importance of ensur-

ing reliable model performance under distribution shifts in this

domain. We note that the approach is more broadly applicable to

other domains involving high-stakes decisions.

8 CONCLUSION AND FUTUREWORK

In absence of data from new environments in which a machine

learning model will be deployed, giving performance guarantees

regarding predictive performance and fairness is challenging. We

find that methods to address distribution shift, while controlling for

decay in accuracy, can result in fairness violations. As a counter-

measure, we show that it is possible to obtain accurate and fair

predictors for widely-studied fairness definitions and under a large

class of shifts particularly prevalent in healthcare tasks. Future

work includes studying fair domain adaptation under parametric

assumptions on shifts, adaptation for counterfactual definitions of

fairness, and finite sample properties of the estimators. We hope

that the problem setup presented here will enable further work at

the intersection of fairness and causal inference.
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(f) Fairness Violation vs Shift.

Figure 5: Accuracy, AUROC, and Fairness violation with varying magnitude of shifts for synthetic data. (a,b,c) With equalized

odds (EO) as the fairness constraint. (d,e,f)With demographic parity (DP) as the fairness constraint.Median values are reported

over 50 runs and error bars showfirst and third quartiles. Performance of the proposed approach is stable across different shifts

and for the two fairness metrics.
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A PROPOSITION 1: EXAMPLE WITH

GROUP-SPECIFIC MEASUREMENT ERROR

Proof of Proposition 1. Through a simple example, we show

that fair domain adaptation (DA) is not possible without making

assumptions, even in cases where domain adaptation is possible.

Consider the data generating process, represented by Figure 6,

with two sensitive groups𝐴 ∈ {0, 1}, a covariate𝑋 , and an outcome

𝑌 ∈ R.

𝐴 ∼ Bernoulli(0.5),
𝑋 = 𝐴 + 𝛾𝐶 ×𝐴 + 𝜖𝑋 ,
𝑌 = 𝑋 +𝐴 + 𝜖𝑌 ,

𝜖𝑋 , 𝜖𝑌 ∼ N(0, 1) .

(a) Data generating process

𝐶

𝑋 𝑌

𝐴

(b) Causal graph

Figure 6: Example with group-specific measurement error.

The group-specific errors, governed by 𝑃 (𝑋 | 𝐴,𝐶) in case of

DP, can change arbitrarily between the domains depending

on themechanism for𝐶 → 𝑋 . Thus, we cannot constrain the

difference in group-specific errors to satisfyDP in target. For

this example, the proposedmethod fails to find a feature set

satisfying Assumptions 1 and 2.

That is, the feature 𝑋 for the subgroup 𝐴 = 1 is corrupted in the

target domain𝐶 = 1. The magnitude of corruption is governed by a

constant 𝛾 that depends on the particular target domain of interest.

Suppose, we want to build a predictor, 𝑌 = 𝑓 (𝑋,𝐴), satisfy-
ing demographic parity (DP) as the fairness definition. DP requires

𝑓 (𝑋,𝐴) ⊥⊥ 𝐴. Thus, the fairness constraint is𝐺𝐶=1 (𝑓 ) = |E(𝑓 (𝑋,𝐴) |
𝐴 = 1,𝐶 = 1)−E(𝑓 (𝑋,𝐴) | 𝐴 = 0,𝐶 = 1) |. Define the mean squared

error in target domain as 𝐿𝐶=1 (𝑓 ) = E𝑃 (𝑋,𝐴,𝑌 |𝐶=1) ((𝑓 (𝑋,𝐴)−𝑌 )2).
Then, the fair DA problem requires finding a predictor for the

target domain 𝐶 = 1, given data from the source domain 𝐶 = 0, s.t.

𝑓 ∗ = argmin

𝑓 ∈F
{𝐿𝐶=1 (𝑓 ) : 𝐺𝐶=1 (𝑓 ) ≤ 𝜖}. (4)

We will restrict to linear models as the true distribution lies in

the class of linear models. Let, 𝑓 (𝑋,𝐴; 𝛽) = 𝛽0 + 𝛽1𝑋 + 𝛽2𝐴, for
some unknown vector 𝛽 .

Then, the fairness constraint is given by 𝐺𝐶=1 (𝑓 ) = |𝛽1 + 𝛽1𝛾 +
𝛽2 |.
Note that𝐺𝐶=1 (𝑓 ) depends on the domain𝐶 = 1 through 𝛾 . That is,

the fairness constraint 𝐺𝐶=1 (𝑓 ) can change arbitrarily depending

on the value of 𝛾 for the particular target domain, while the source

data distribution 𝐶 = 0 available to us is fixed. In other words, the

fairness constraint (thought of a function of the target distribution

𝑃 (𝑋,𝐴,𝑌 |𝐶 = 1)) is not identifiable by the observed distribution

𝑃 (𝑋,𝐴,𝑌 |𝐶 = 0) alone. Thus, we cannot solve (4) without further
assumptions or without data from the target domain. □

We constructed the example with a regression task but the same

can be shown for a classification task e.g. a logistic function for

𝑓 (𝑋,𝐴). The DP constraint will again depend on 𝛾 , in general.

The example also motivates the Assumption 2 for DP which

requires identifying a feature set S s.t. 𝐶 ⊥⊥ S | 𝐴 as it guarantees

𝐺𝐶=1 (𝑓 ) = 𝐺𝐶=0 (𝑓 ). With this assumption along with the separat-

ing set assumption, we can find favourable solutions for Fair DA as

shown in Section 5.

B PROPOSITION 2: SOLUTION USING DATA

RE-WEIGHTING

Proof of Proposition 2. To show this, we consider the terms

involved in Fair DA (5), namely classification error and fairness

constraint, separately.

argmin

𝑓 ∈F(S)
{𝑃 (𝑓 (S) ≠ 𝑌 |𝐶 = 1) : G(𝑓 , 𝑃 (𝑌, S|𝐶 = 1)) ≤ 𝝐} (5)

We will show that the two terms can be computed by labelled

source data, sampled from 𝑃 (S, 𝐴,𝑌 |𝐶 = 0), and unlabelled target

data, sampled from 𝑃 (S, 𝐴|𝐶 = 1). Thus, showing that (5) can be

indirectly solved.

The classification error can be written as,

𝑃 (𝑓 (S) ≠ 𝑌 |𝐶 = 1) = E
Pr(V |𝐶=1) (1(𝑓 (S) ≠ 𝑌 ))

= E
Pr(𝑌,S |𝐶=1) (1(𝑓 (S) ≠ 𝑌 )) (6)

= E
Pr(S |𝐶=1)

(
E
Pr(𝑌 |S,𝐶=1) (1(𝑓 (S) ≠ 𝑌 ))

)
(7)

= E
Pr(S |𝐶=1)

(
E
Pr(𝑌 |S,𝐶=0) (1(𝑓 (S) ≠ 𝑌 ))

)
(8)

= E
Pr(S |𝐶=1) (𝑃 (𝑓 (S) ≠ 𝑌 |S,𝐶 = 0))

= E
Pr(S |𝐶=0)

(
Pr(S|𝐶 = 1)
Pr(S|𝐶 = 0) 𝑃 (𝑓 (S) ≠ 𝑌 |S,𝐶 = 0)

)
(9)

Here, (6) marginalizes out featuresV\{S, 𝑌 } from the target data dis-

tribution as they do not change the error. Step (7) follows from the

law of iterated expectations, (8) uses the conditional independence

for the separating set (Assumption 1), and (9) uses the importance-

weighting identity. We observe that the expectation in (9) can be

estimated just from the available data consisting of 𝑌 in the source

and S in both the domains. We can re-weight the per-sample source

error by the density ratio, Pr(S|𝐶=1)/Pr(S|𝐶=0), and take the sam-

ple average. The density ratio can be computed, for example, using

a probabilistic classifier to discriminate between the domains [5].

Next, consider the fairness constraint. We show the following for

EO and the corresponding Assumption 2. The argument is similar

for the other definitions i.e. DP, TPR, and TNR.

Assumption 2 for EO, i.e.𝐶 ⊥⊥ S|𝑌,𝐴, implies that𝐶 ⊥⊥ 𝑓 (S) |𝑌,𝐴,
assuming that classifier 𝑓 is a measurable function (which is the case

for most classification functions and feature spaces used in machine

learning). Thus, for 𝑦 ∈ {0, 1}, we can write the EO constraints as,

𝐺 (𝑓 , 𝑃 (𝑌, S|𝐶 = 1))
= |𝑃 (𝑓 (S) ≠ 𝑦 |𝑌 = 𝑦,𝐴 = 𝑎,𝐶 = 1) − 𝑃 (𝑓 (S) ≠ 𝑦 |𝑌 = 𝑦,𝐴 = 𝑑,𝐶 = 1) |
= |𝑃 (𝑓 (S) ≠ 𝑦 |𝑌 = 𝑦,𝐴 = 𝑎,𝐶 = 0) − 𝑃 (𝑓 (S) ≠ 𝑦 |𝑌 = 𝑦,𝐴 = 𝑑,𝐶 = 0) |
= 𝐺 (𝑓 , 𝑃 (𝑌, S|𝐶 = 0))
Therefore, Assumption 2 guarantees that the evaluation of the fair-

ness constraint does not change with the domain. The same is true
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for the other three fairness constraints. For DP, the conditioning

on 𝑌 is dropped in Assumption 2. Similarly, TPR and TNR fix 𝑌 = 1

and 𝑌 = 0 respectively.

Since both the error and the constraint are estimable, we can

minimize (5) without access to labelled target domain data, if we

can find a feature subset satisfying the two assumptions. □

C THEOREM 5.2: WORST-CASE OPTIMALITY

Now, we show that the fair classifier learned in our setting is worst-

case optimal. We will restrict to one of the following fairness con-

straints – demographic parity (DP), true positive rate equality (i.e.

equality of opportunity or TPR), or true negative rate equality

(TNR). This restriction enables us to characterize the Bayes optimal

classifier under fairness constraints based on results from [11].

For brevity, we change the notation to represent sensitive at-

tribute 𝐴 as one of the features in X, i.e. system variables are

V := {X, 𝑌 }. In addition, lowercase letters denote observations of

random variables which are denoted by the corresponding upper-

case letters. For example, 𝑎 is used to represent the observed value

of 𝐴 (which can be either disadvantaged or advantaged group).

C.1 Existing result on optimal fair classifier

The optimal classifier minimizing classification error under either

of the fairness constraints (DP, TPR, or TNR) is a threshold function

on the conditional outcome probability. In [11], authors use the term

statistical parity for DP and predictive equality for false positive

rate equality (or false negative rate equality) which is the same as

ensuring TNR (or TPR). Formally, they prove the following.

Lemma 2 (Theorem 3.2 by Corbett-Davies et al. [11]). Sup-
pose we want to find a classifier 𝑓 that maximizes immediate utility,
defined as 𝑈 (𝑓 , 𝑐) = E(𝑦𝑓 (x) − 𝑐 𝑓 (x)) for a constant 𝑐 ∈ (0, 1),
and satisfies the fairness constraint (either DP, TPR, or TNR). Let,
𝑝𝑦 |x (x) = Pr(𝑌 = 1|X = x). Assume that the distribution of the ran-
dom variable 𝑝𝑦 |x (X) has positive density on [0, 1]. Then, the optimal
classifier 𝑓 ∗ under the fairness constraint is a threshold function i.e.
𝑓 ∗ (x) = 1[𝑝𝑦 |x (x) ≥ 𝑡𝑎] for some constant thresholds 𝑡𝑎 ∈ [0, 1]
that can optionally depend on the sensitive attribute 𝐴 = 𝑎.

The result also holds when the fairness constraints are required

to be only approximately satisfied.

To relate this lemma to our problem, note that our objective of

minimizing classification error is same as maximizing immediate

utility for 𝑐 = 0.5, as observed by Lipton et al. [34, Lemma 1]. To see

this, rewrite the error as 𝑃 (𝑓 (x) ≠ 𝑦) = E(1(𝑓 (x) ≠ 𝑦)) = E(1 −
𝑦𝑓 (x) − (1−𝑦) (1− 𝑓 (x))) for binary labels 𝑦 ∈ {0, 1}. Rearranging
terms, we get

𝑃 (𝑓 (x) ≠ 𝑦) = E(1 − 𝑦𝑓 (x) − (1 − 𝑦) (1 − 𝑓 (x)))
= E(−2𝑦𝑓 (x) + 𝑓 (x)) + E(𝑦)
= −2𝑈 (𝑓 , 0.5) + E(𝑦)

where E(𝑦) is a constant. Thus, we can use Lemma 2 to character-

ize the optimal classifier under classification error and the three

fairness definitions.

C.2 New result on optimal fair classifier under

distribution shift

Now we describe the setting in which the new result is established.

Let P be the set of distributions over (X, 𝑌 ) that satisfy Assump-

tions 1 and 2. That is, for all distributions in P, there exists a feature
subset S s.t. 𝑃 (𝑌 |S) and 𝑃 (S|𝐴) (for DP, as an example) are invari-

ant. Let the source distribution be denoted by Q ∈ P. In addition,

assume that the distributions in P are absolutely continuous with

respect to the same product measure.

The proposed classifier is
˜𝑓 ∗ that satisfies

˜𝑓 ∗ ∈ argmin

𝑓

𝐸Q (1[𝑦 ≠ 𝑓 (s)]),

s.t. G(𝑓 ,Q) ≤ 𝝐,

Denote the set of continuous functions which satisfy the fairness

constraint G w.r.t. the source distribution Q by F (G,Q) := {𝑓 ∈
C0 |G(𝑓 ,Q) holds}. Then, we show that the set is the same for all

distributions in P.

Lemma 3. F (G,Q) = F (G, P), ∀ P ∈ P

Proof. Under Assumption 2, the fairness constraints are invari-

ant. Thus, if G(𝑓 ,Q) holds then G(𝑓 , P) also holds for any distribu-

tion P ∈ P and vice versa. □

Thus, we will denote the set of fair functions by F (G,P). The
proposed estimator can be written as

˜𝑓 ∗ ∈ argmin

𝑓 ∈F(G,P)
𝐸Q (1[𝑦 ≠ 𝑓 (s)])

We will show that the proposed predictor
˜𝑓 ∗ is optimal over the

set of fair functions w.r.t. plausible target distributions in P and

fairness constraint G in an adversarial setting.

Theorem 2. Consider the set of distributions P satisfying As-
sumptions 1 and 2 which are absolutely continuous with respect to the
same product measure, and a set of fair functions F (G,P) satisfying
either DP, TPR, or TNR. Assume that the conditional outcome has
strictly positive density. Then, the proposed classifier ˜𝑓 ∗ satisfies

˜𝑓 ∗ ∈ argmin

𝑓 ∈F(G,P)
sup
P∈P
EP (1[𝑦 ≠ 𝑓 (x)]) (10)

i.e. the proposed predictor achieves minimum worst-case loss amongst
the fair predictors w.r.t. distributions satisfying the two assumptions.

Proof. The proof follows the arguments made in [61, Theorem

4] that proves worst-case optimality of using invariant predictors

without considering fairness. For a given source distribution, we

will construct an adversarial target distribution which incurs more

error for a fair predictor than that of the proposed predictor on the

source distribution. This will prove the minmax property from (10).

Suppose the density of the source distribution Q is 𝑞(x, 𝑦). Con-
struct a distribution P with density 𝑝 (x, 𝑦) = 𝑞(s, 𝑦)𝑞(z) where
Z := {X \ S}. From the construction of the density, it follows that

P satisfies Assumptions 1 and 2. Thus, P ∈ P. To see this, observe

that 𝑝 (𝑦 |s) = 𝑞(𝑦 |s) and 𝑝 (s|𝑎) = 𝑞(s|𝑎) (for DP, as an example),

and we know that 𝑞(𝑦 |s), 𝑞(s|𝑎) are invariant since Q ∈ P. Also,
by construction, Z ⊥⊥ (S, 𝑌 ) in P.
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Consider a function 𝑓 ∈ F (G,P). Then,
EP (1[𝑦 ≠ 𝑓 (x)]) ≥ min

𝑓 ∈F(G,P)
EP (1[𝑦 ≠ 𝑓 (x)]) (11)

Using Lemma 2, the error minimizer in F (G,P) w.r.t. P is a thresh-
old rule, i.e.

˜𝑓 ∗ (x) = 1[𝑝𝑦 |x (x) ≥ 𝑡𝑎] for a constant 𝑡𝑎 ∈ [0, 1].
Thus, we can write

min

𝑓 ∈F(G,P)
EP (1[𝑦 ≠ 𝑓 (x)]) = EP (1[𝑦 ≠ ˜𝑓 ∗ (x)]) (12)

= EP (1[𝑦 ≠ ˜𝑓 ∗ (s, z)])

= EP (1[𝑦 ≠ ˜𝑓 ∗ (s)]) (13)

where (13) follows from the construction of Z which satisfies Z ⊥⊥
(S, 𝑌 ). Since 𝑝𝑦 |s,z = 𝑝𝑦 |s, this implies

˜𝑓 ∗ (s, z) = ˜𝑓 ∗ (s). Plugging
back in (11), we get

EP (1[𝑦 ≠ 𝑓 (x)]) ≥ EP (1[𝑦 ≠ ˜𝑓 ∗ (s)])
By construction, 𝑝 (x, 𝑦)=𝑞(s, 𝑦)𝑞(z). Thus,EP (𝑔(s, 𝑦))=EQ (𝑔(s, 𝑦))

for any function 𝑔. With this,

EP (1[𝑦 ≠ 𝑓 (x)]) ≥ EQ (1[𝑦 ≠ ˜𝑓 ∗ (s)])
= argmin

𝑓 ∈F(G,P)
𝐸Q (1[𝑦 ≠ 𝑓 (s)])

Thus, for the proposed predictor trained on the source distribu-

tion with fairness constraints, there always exists a distribution

P ∈ P with larger error for a fair predictor 𝑓 ∈ F (G,P). In other

words, the proposed predictor is worst-case optimal against distri-

butions satisfying the two assumptions. □

D JOINT CAUSAL INFERENCE (JCI)

FRAMEWORK

JCI framework [43] has been proposed, primarily, for causal discov-

ery from multiple datasets, and for causal modelling of a system

observed in different domains (or contexts). Following [38], we

focus on the latter and use the framework for domain adaptation.

A joint causal model is used to model the data generated under

different domains by introducing context variables to the standard

structural causal model, defined as follows.

Definition D.1 (Joint Causal Model). A joint causal model
M is a tuple ⟨I,J ,K,H , F , 𝑃 (K)⟩ where

(1) {𝐶𝑖 }𝑖∈I denote a set of context variables, assumed to be ex-
ogenous to the system of interest.

(2) {𝑋 𝑗 } 𝑗 ∈J denote a set of system variables, assumed to be en-
dogenous.

(3) {𝑈𝑘 }𝑘∈K denote a set of independent exogenous variables,
assumed to be unobserved.

(4) {ℎ𝑖 }𝑖∈H denote a set of functions that give functional depen-
dence of context variables. Each variable 𝐶𝑖 is assigned its
value as 𝐶𝑖 ← ℎ𝑖 (Upa(𝐶𝑖 )∩K ).

(5) {𝑓𝑗 } 𝑗 ∈J denote a set of functions that give functional depen-
dence of system variables. Each variable 𝑋 𝑗 is assigned its
value as 𝑋 𝑗 ← 𝑓𝑗 (Cpa(𝑋 𝑗 )∩I ,Xpa(𝑋 𝑗 )∩J ,Upa(𝑋 𝑗 )∩K ).

(6) 𝑃 (K) denotes a probability distribution over unobserved ex-
ogenous variables, 𝑃 (U) = Π𝑘∈K𝑃 (𝑈𝑘 ).

Here, pa(·) is a set of variables, referred to as parents of the

variable.

A joint causal graph G(M) refers to the causal graph represent-

ingM. The graph only contains nodes from I ∪J , a directed edge

𝑎 → 𝑏 for nodes 𝑎, 𝑏 iff 𝑎 ∈ pa(𝑏), and a bidirected edge 𝑎 ↔ 𝑏 iff

the set pa(𝑎) ∩ pa(𝑏) ∩K is non-empty. That is, directed edges rep-

resent direct functional dependence and bidirected edges represent

presence of unobserved common causes.

The functional dependencies along with distribution over the un-

observed variables induces a distribution over context and system

variables. Importantly, intervening on the context variables give dis-

tributions for different domains.
4
Thus, JCI provides a framework

to reason about the distributions of data from multiple domains. To

read the conditional independencies in the domain distributions

using the graph, we need two assumptions. Causal Markov assump-
tion requires that any d-separation of sets of nodes in G(M) imply

the corresponding conditional independencies in the distribution.

Conversely, faithfulness means that there are no other conditional

independencies than the ones implied by d-separation. Please refer
to [38, Section 2.2] for details.

Thus, given any G(M) proposed using domain knowledge or

discovered from data, we can check the conditional independence

assumptions posited by Assumptions 1 and 2.

Remark 1. In case of TPR and TNR, which require 𝐶 ⊥⊥ 𝑆 |𝑌 = 1, 𝐴

and 𝐶 ⊥⊥ 𝑆 |𝑌 = 0, 𝐴, we need to consider causal graphs drawn

for sub-populations (𝑌 = 1 or 𝑌 = 0). The conditional indepen-

dence can then be checked in such a graph using d-separation.

This requires stronger assumptions that the modeler can express

causal knowledge at the sub-population level and the distribution

is faithful to such a graph.

E RESULTS AND DISCUSSION ON

COUNTERFACTUAL FAIRNESS

Another set of fairness definitions have been proposed based on

the causal effect of the protected attribute on the prediction [31, 32,

44]. We consider one strict version of these counterfactual fairness
definitions.

Definition E.1. (Ctf) [32] A classifier 𝑌 = 𝑓 (X, 𝐴) is said to be
counterfactually fair if the interventional distribution of𝑌 conditioned
on all observed values is the same under 𝑑𝑜 (𝐴 = 𝑎) and 𝑑𝑜 (𝐴 = 𝑑),
i.e. 𝑃 (𝑌𝑑𝑜 (𝐴=𝑎) = 𝑦 |X = x, 𝐴 = 𝑖) = 𝑃 (𝑌𝑑𝑜 (𝐴=𝑑) = 𝑦 |X = x, 𝐴 = 𝑖),
for 𝑦 ∈ {0, 1} and 𝑖 ∈ {𝑎, 𝑑}.

One method to build a classifier 𝑓 (S) satisfying Ctf is to only

use feature set S ∈ {X, 𝐴} that does not contain any descendant of

𝐴 in the causal graph [32, Lemma 1].

Thus, the counterpart of Assumption 2 for solving Fair DA under

Ctf is that the selected feature set contains the non-descendants of

𝐴. Combined with Assumption 1, we select non-descendants of 𝐴

which form a separating set in order to solve Fair DA.

Since, Ctf only requires change in feature subset and does not

include any fairness constraints in the fair learning problem, we

can show the worst-case optimality result as well. The arguments

in the proof of Theorem 2 still hold. The only difference is that

instead of using Lemma 2 at Step (12), we use the fact that Bayes

4
Since the context variables C are assumed to be exogenous, intervening on them,

𝑑𝑜 (C) , is same as conditioning on their value, C = c. This follows by Rule 2 of

do-calculus.
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classifier (without fairness constraints) is also a threshold function

that depends on conditional outcome distribution.

However, we note that there are multiple ways of defining coun-

terfactual fairness. For instance, [44] require that causal effects of

𝐴 on 𝑌 through particular paths should be zero or small. Further

work should explore approaches to solve Fair DA under broader

definitions of counterfactual fairness.

F EXAMPLES OF ADDRESSABLE SHIFTS

As remarked in Section 5.3, we can find at least one feature set

satisfying Assumptions 1 and 2 in case of the following shifts –

shifts with causal paths to 𝑌 which all include 𝐴 (i.e.𝐶 ·· →𝐴→ ··𝑌
with all arrows toward 𝑌 ) and shifts with non-causal paths to 𝑌

(i.e. 𝐶 ·· →𝑀← ··𝑌 for some feature 𝑀 ∈ S). This means that any

shift causing change in distribution of the sensitive attribute as well

as any measurement error in variables with a non-causal path to

𝑌 can be addressed. We present two examples of real-world tasks

with such shifts.

Medical diagnosis. Figure 7a represents an example of sepsis pre-

diction based on the causal graph presented in [66]; 𝑌 : outcome

(prevalence of sepsis condition), 𝐴: age (sensitive attribute), 𝑅 rep-

resents a pre-existing condition like chronic liver condition. An

indicator like the international normalized ratio (INR) which is a

measure of blood clotting tendency is denoted by 𝑋 . 𝑇 represents

treatment prescribed to the patient. The graph represents a case

of population shift represented by 𝐶1 and treatment prescription

policy shift denoted by 𝐶2.

Credit scoring. Figure 7b represents a causal graph posited in

[10] for the credit scoring task. The task is to predict 𝑌 : credit risk

i.e. whether an applicant will repay the loan or not from features 𝑅:

credit amount and repayment duration, 𝐴: sex (sensitive attribute),

𝐿: age, and 𝑆 : savings and housing status. The context variable

𝐶 denotes an anticipated shift which changes the distribution of

females, for instance, in the target domain.

Recidivism risk assessment. Another example of risk assessment

tools used to inform pre-trial bail decisions in the criminal justice

system is presented in Figure 7c. In the causal graph for this task,

presented in [76], 𝐴 denotes the sensitive attribute, here race, 𝑍

represents other demographic information (e.g., age, gender) of the

defendant which can be confounded by race. Prior convictions are

denoted by𝑊 and recidivism outcome (0 for no, 1 otherwise) is

represented by 𝑌 . 𝐶 represents population shift where the distribu-

tion of the defendant’s race changes across jurisdictions i.e. target

domains.

𝐴

𝑅

𝑌

𝐿𝑇𝐶2

𝐶1

(a) Disease risk scoring under population shift and treat-

ment policy shift

𝐴 𝑆

𝐿

𝑌

𝑅

𝐶

(b) Credit scoring under population shift

𝐴

𝑊

𝑍

𝑌𝐶

(c) Recidivism risk assessment under population shift

Figure 7: Examples of addressable causal graphs. Following

Assumptions 1 and 2, including 𝐴 in the feature set blocks

the effect of population shift (e.g. the paths in magenta) and

excluding 𝐿 from the feature set blocks the effect of treat-

ment policy shift (e.g. the path in green).

G EXPERIMENT SETUP

Data generating process for synthetic example. We generate

data using the following structural equation model.

𝐴 ∼ Bernoulli (𝜎 (𝛾 · 𝜆1 ·𝐶 + 𝑢1))
𝑅 ∼ N(0, 1) + 𝜆2 · 𝐴 + 𝑢2
𝑌 ∼ Bernoulli (𝜎 (𝜆3 · 𝐴 + 𝜆4 · 𝑅 + 𝑢3))

𝑇 = 𝜆5·𝑌 + 𝜆6 · 𝑅 + 𝜆7 · 𝐴 + N(0, 𝛾 · 𝜆8 ·𝐶) + 𝑢4
𝑢1, 𝑢2, 𝑢3 ∼ N(0, 0.82), 𝑢4 ∼ N(0, 1.0)

𝜆1 = 0.2, 𝜆2 = −0.1, 𝜆3 = −0.8, 𝜆4 = 0.8

𝜆5 = 0.8, 𝜆6 = 0.1, 𝜆7 = −0.8, 𝜆8 = 0.2

𝛾 ∈ [0, 15]

Variables 𝐴 and 𝑌 are binary, taking values in {0, 1} and are

sampled from a Bernoulli distribution with respective means as per

equations, where 𝜎 (𝑥) = 1

1+exp(−𝑥) . For source domain, 𝐶 = 0 and

for target domain, 𝐶 = 1. Setting 𝐶 = 1 amounts to performing a
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soft intervention [40] on 𝐴 and 𝑇 , whose distributions change as

a result in the target domain. The magnitude of the effect of 𝐶 on

𝐴 and 𝑇 is scaled by a constant 𝛾 , which is varied from 0 to 15 for

simulating distribution shifts of increasing magnitude.

More details on OTDA baseline. OTDA is an optimal transport-

based method for unsupervised domain adaptation [14]. Instead of

making assumptions on covariate shift, it posits that some (non-

linear) transformation exists between source and target features. It

finds the minimal-cost transformations for a given cost function.

A classifier is trained on the transformed source data and applied

directly to the target data. We use the squared 𝑙2 cost and 𝑙𝑝 −
𝑙1 regularization-based transport method [14].

5
Note that we use

target features as an input during training for only this baseline.
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Figure 8: Accuracy and Fairness violation with varying mag-

nitude of shifts in the new setting for synthetic data.Median

values are reported over 50 runs and error bars showfirst and

third quartiles.

We compare with another causal domain adaptation method

called anchor regression [62] in a separate experiment setting

where we assume access to data from multiple source domains.

This method has been shown to be competitive among state-of-

the-art methods for multi-source domain adaptation which do not

require target domain data [68].

Anchor regression requires specifying an anchor variable which
indicates (in case of discrete anchors) homogeneous subsets of

data. An example is the context variable 𝐶 which separates the

two homogeneous datasets — source and target — based on their

magnitude of shift. Anchors are exogenous sources of variation

which can be exploited to regularize the predictor. Intuitively, the

method avoids overfitting the predictor to the source dataset by de-

correlating the residuals from the anchor. In addition, the method

assumes that the anchor causes mean-shifts in a subset of variables,

i.e. the linear structural equations for the variables have an added

intercept term that is constant for a given homogeneous subset.

The data generating process described in Section 6.1 does not have

5
Implemented in POT library https://github.com/rflamary/POT

an anchor that follows this assumption. The shift in feature 𝑇 is

caused by a shift in the variance of 𝑇 , instead of being a constant

mean-shift. Thus, we change the data generating process for the

experiments reported here by changing the equation for𝑇 (marked

in red below).

𝐴 ∼ Bernoulli (𝜎 (𝛾 · 𝜆1 ·𝐶 + 𝑢1))
𝑅 ∼ N(0, 1) + 𝜆2 · 𝐴 + 𝑢2
𝑌 ∼ Bernoulli (𝜎 (𝜆3 · 𝐴 + 𝜆4 · 𝑅 + 𝑢3))

𝑇 = 𝜆5·𝑌 + 𝜆6 · 𝑅 + 𝜆7 · 𝐴 + 𝛾 · 𝜆8 ·𝐶 + 𝑢4
𝑢1, 𝑢2, 𝑢3 ∼ N(0, 0.82), 𝑢4 ∼ N(0, 1.0)

𝜆1 = 0.2, 𝜆2 = −0.1, 𝜆3 = −0.8, 𝜆4 = 0.8

𝜆5 = 0.8, 𝜆6 = 0.1, 𝜆7 = −0.8, 𝜆8 = 0.2

𝛾 ∈ [0, 9]

Setup We generate multiple datasets by varying the magnitude

of shift, specifically 𝛾 = {0, 2, 4}, and combine them into a single

source dataset. In case of anchor regression, dummy variables are

added to encode the samples corresponding to the three different

shift magnitudes. The dummy variables are the anchors. For rest of

the methods, we simply concatenate the datasets without adding

any dummy variables. All variables in source and features in tar-

get are mean centered using the corresponding datasets. We use

square loss as the loss function for the classification problem with

an additional regularization term which is minimized following a

two-stage least squares procedure [62]. We evaluate the resulting

predictor on five target datasets 𝛾 = {1, 3, 5, 7, 9}.
Results. Figure 8 shows fairness violation and accuracy for an-

chor regression along with other methods. We observe that anchor

regression (labelled as AnchorReg) is robust to distribution shift

as it has high accuracy even in case of large shifts (green curve

in Figure 8a). But it has higher unfairness than the proposed ap-

proach CausalDA+FairLearn, which is the case for other domain

adaptation methods CausalDA and OTDA as well (Figure 8b). Thus,
this experiment also demonstrates the importance of constraining

the fairness violations of the predictors while performing domain

adaptation.

I ACUTE KIDNEY INJURY: DATA

DESCRIPTION, PRE-PROCESSING, AND

ADDITIONAL RESULTS

I.1 Dataset

The dataset is constructed from a large de-identified electronic

healthcare record database, called MIMIC-III, for adult inpatients

(Age > 18 years) at a critical care unit of a tertiary care hospital,

ranging from years 2001 to 2012 [28]. The total number of encoun-

ters (admissions) in the dataset is 58, 976, with some patients having

multiple encounters. In order to have a complete view of a patient’s

hospital stay from admission until discharge, we removed any pa-

tient who died during their hospital stay regardless of the cause.

We have also excluded patients that were admitted with evidence

of moderate or severe kidney dysfunction, as done by He et al.

[25]. Patients with estimated glomerular filtration rate (eGFR) less

than 60 mL/min/1.73𝑚2
(calculated using the revised MDRD study

https://github.com/rflamary/POT
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equation [33]) or Serum Creatinine (SCr) level more than 1.3 mg/dL

within the first 24 hours of hospital admission are excluded. Patients

admitted with null eGFR or null SCr (i.e., no SCr reading) within

first 24 hours were also removed. The final analysis consisted of

24, 852 encounters.

According to KidneyDisease ImprovingGlobal Outcomes (KDIGO) [30],

AKI was defined as either of the following two criteria being met:

1) greater than or equal to 50% increase from the baseline SCr value

or 2) greater than or equal to 0.3 mg/dL change in SCr from the

baseline creatinine. Baseline SCr level was defined as the first SCr

measured after hospital admission. Out of a total of 24, 852 encoun-

ters in the final analysis, AKI events occurred in 5, 137 encounters

and 19, 715 encounters had no AKI events. We consider a prediction

window which ends 1 day before the onset of AKI. A summary of

features used to train the prediction models can be found in Table 3,

included at the end. Some of these are also used by [25]. However,

unlike this study, we exclude medications and medical history fea-

tures as they are high-dimensional (around 1,000). Only patients

who did not have AKI at the time of admission are included since

we are interested in diagnosing AKI for in-hospital patients. Data

for variables mentioned in Table 3 is extracted for each encounter

from time before the prediction window. Since the features are

measured at multiple timepoints, we consider the last observed

value of a feature until the end of the prediction window.

I.2 Data pre-processing

In-hospital encounters which met the two KDIGO criteria were

labeled as the positive class, while encounters in which the patient

did not meet the above criteria was labeled as the negative class.

Feature vectors were created for each encounter. Demographic

information (age, gender, and race) were included in the feature

vectors; age in years, and dummy variables for gender categories

(female, male) and race categories (American Indian or Alaska Na-

tive, Asian, Black or African American, Native Hawaiian or Other

Pacific Islander, White, multiple race, refuse to answer, no infor-

mation, unknown, and other). A patient’s vitals (BMI, diastolic BP,

systolic BP, height, weight) were included as numerical features,

where the most recent value associated with any vital was used

in cases where multiple measurements were taken during an en-

counter. Any missing values were imputed using the mean value

(calculated on the training data) for the given feature. Lab tests

and comorbidities were included in the form of boolean features

indicating whether the lab test/comorbidity was present. While

only lab tests performed during a given in-hospital encounter were

used, comorbidities up to one year prior to the hospital stay were

included. Comorbidities included in the AKI predictive model by

[70] were used as a guide for selecting the nine comorbidities in

Table 3. After adding dummy variables and missing value indicators,

we obtained a dataset containing 24, 852 examples, each with 51

features (13 demographic, 5 vitals, 9 comorbidities, 12 lab tests, and

12 lab test missing value indicators). We removed features that had

more than 90% values as missing, namely the lab tests for Troponin,

Albumin, and WBC. Since the BUN lab test was one of the most

predictive features, it was chosen for creating shifted datasets. We

discarded both the BUN variable and missing value indicator when

creating the invariant predictor.

Remark 2. We include race categories, constructed from race and

ethnicity codes in the raw data, as a feature in the model following

past work on AKI risk assessment [25, 77]. However, we emphasize

that race is an ill-defined and ill-measured feature and including it

might cause discrimination in allocating healthcare resources based

on the model predictions [17, 72]. Thus, more careful examination

of the decision to include race in the models is required.

I.3 Different proportions of missingness

To evaluate robustness of models, distributional shifts are simu-

lated in target data following the setup outlined in Section 6.2.

Firstly, we add missing values in the BUN feature values for a

proportion of the rows. Secondly, we downsample the female pop-

ulation by randomly keeping only 50% of the rows from the female

group in the source data. Figure 9 shows two predictive perfor-

mance metrics, namely AUPRC, AUROC, and one fairness met-

ric, namely maximum fairness violation, for different proportions

of missingness, ranging from 0.1 to 0.5. As mentioned in Section

6.2, the methods which use the invariant features (CausalDA and
CausalDA+FairLearn) have stable accuracy as the distribution

shifts. Moreover, CausalDA+FairLearn reduces unfairness consis-

tently in the shifted data. Table 1 reports the numerical values for

evaluation metrics with missingness proportion set to 0.5. These

are reported visually as well in Figure 9 here and Figure 4c in the

main text.

Table 1: Fairness Violation, AUPRC and AUROC (median

across 50 runs) for AKI task, with missigness proportion set

to 0.5

Model Fairness Viol. AUPRC AUROC

Standard 0.0404 0.626 0.7906

CausalDA 0.037 0.6507 0.8104

Standard+FairLearn 0.0193 0.6197 0.7863

CausalDA+FairLearn 0.0193 0.6454 0.8075

Table 2: Hyperparameter settings used in synthetic and AKI

experiments

Method Hyperparameter Value

FairLearn -
Exponentiated

Gradient

Allowed fairness constraint violation (eps) 10
−2

Maximum number of iterations (T) 50

Convergence threshold (nu) 10
−6

OTDA
Entropic regularization (reg_e) 10

Class regularization (reg_cl) 10
−2

AnchorReg Regularization coefficient (gamma) 1.5

I.4 Implementation details

Hyperparameters used in solving the Fair DA problem are listed in

Table 2. Rest of the hyperparameters are kept as defaults chosen

in the packages cited. Classifiers (logistic regression and gradient

boosting trees) are implemented using the package scikit-learn
(v0.22.1) [52] in Python. All experiments were ran on a single node

of a compute cluster with a 3.0 GHz Intel processor and 8 GB

memory.
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(c) Fairness Violation vs Shift.

Figure 9: Accuracy, AUROC, and Fairness violation with varying magnitude of shifts for the AKI task. Median values are

reported over 50 runs and error bars show first and third quartiles.

Table 3: Covariates for Training AKI Model on MIMIC-III Data.

Feature

Category

Number

of Variables

Details

Demographics 3 • Age

• Gender

• Race

Vitals 5 • BMI

• Diastolic BP

• Systolic BP

• Height

• Weight

Lab tests 12 • Albumin, Body Fluid

• Alanine Aminotransferase (ALT)

• Asparate Aminotransferase (AST)

• Bilirubin, Total

• Blood Urea Nitrogen (BUN)

• Free Calcium

• Creatine Kinase (CK)

• Glucose

• Lipase

• Platelets

• Troponin I

• WBC, CSF

Comorbidities 9 • Diabetes Mellitus w/ Complications

• Diabetes Mellitus w/o Complication

• Gout & Other Crystal Arthropathies

• Hypertension w/ Complications & Secondary Hypertension

• Chronic Obstructive Pulmonary Disease & Bronchiectasis

• Chronic Kidney Disease

• Hypertension Complicating Pregnancy; Childbirth & the Puerperium

• Diabetes or Abnormal Glucose Tolerance Complicating Pregnancy; Childbirth; or the Puerperium

• Chronic Ulcer of Skin
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