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ABSTRACT
Anonymized smartphone-based mobility data has been widely
adopted in devising and evaluating COVID-19 response strategies
such as the targeting of public health resources. Yet little attention
has been paid to measurement validity and demographic bias, due
in part to the lack of documentation about which users are repre-
sented as well as the challenge of obtaining ground truth data on
unique visits and demographics. We illustrate how linking large-
scale administrative data can enable auditing mobility data for bias
in the absence of demographic information and ground truth labels.
More precisely, we show that linking voter roll data—containing
individual-level voter turnout for speci�c voting locations along
with race and age—can facilitate the construction of rigorous bias
and reliability tests. Using data from North Carolina’s 2018 general
election, these tests illuminate a sampling bias that is particularly
noteworthy in the pandemic context: older and non-white voters
are less likely to be captured by mobility data. We show that allo-
cating public health resources based on such mobility data could
disproportionately harm high-risk elderly and minority groups.
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1 INTRODUCTION
Mobility data has played a central role in the response to COVID-
19. Describing the movement of millions of people, smartphone-
based mobility data has been used to analyze the e�ectiveness
of social distancing polices (non-pharmaceutical interventions),
illustrate how movement impacts the transmission of COVID-19,
and probe how di�erent sectors of the economy have been a�ected
by social distancing policies [1, 6, 9, 12, 22, 24, 35, 50]. Despite the
high-stakes settings in which this data is deployed, there has been
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no independent assessment of the reliability of this data. In this
paper we show how administrative data (i.e., data from government
agencies kept for administrative purposes) can be used to perform
such an assessment.

Data reliability should be a foremost concern in all policy-making
and policy evaluation settings, and is especially important for
mobility data due to the lack of transparency surrounding data
provenance. Mobility data providers obtain their data from opt-in
location-sharing mobile apps, such as navigation, weather, or social
media apps, but do not disclose which speci�c apps feed into their
data [33]. This opacity prevents data consumers such as policymak-
ers and researchers from understanding who is represented in the
mobility data, a key question for enabling e�ective and equitable
policies in high-stakes settings such as the COVID-19 pandemic.
Grantz et al. describe “a critical need to understand where and to
what extent these biases may exist” in their discussion on the use
of mobility data for COVID-19 response.

Of particular interest is potential sampling bias with respect to
important demographic variables in the context of the pandemic:
age and race. Older age has been established as an increased risk fac-
tor for COVID-19-related mortality [56]. African-American, Native-
American and Latinx communities have seen disproportionately
high case and death counts from COVID-19 [49] and the pandemic
has reinforced existing health inequities that a�ect vulnerable com-
munities [26]. If certain races or age groups are not well-represented
in data used to inform policy-making, we risk enacting policies that
fail to help those at greatest risk and serve to further exacerbate
disparities.

In this paperwe assess SafeGraph, awidely-used point-of-interest
(POI)-based mobility dataset1 for disparate coverage by age and
race. We de�ne coveragewith respect to a POI: coverage is the pro-
portion of tra�c at a POI that is recorded in the mobility data. For
privacy reasons, many mobility datasets are aggregated up from the
individual level to the physical POI level. Due to this aggregation,
we lack the resolution to assess individual-level coverage quantities
like the fraction of members of a demographic subgroup of interest
who are represented in the data. Nonetheless, our POI-based notion
of coverage is relevant for many COVID-19 policies that are made
based on tra�c to POIs, such as deciding to close certain business
sectors, allocating resources like pop-up testing sites to high-risk ar-
eas, and determining where to target investigations of public health

1POIs refer to anywhere people spend money or time, including schools, brick-and-
mortar stores, parks, places of worship, and airports. See https://www.safegraph.com/.
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order violations. We use di�erences in the distributions of age and
race across POIs to assess demographic disparities in coverage.

While we focus here on a speci�c dataset and implications for
COVID-19 policy, the question of how one can assess disparate
coverage is a more general one in algorithmic governance. Ground
truth is often lacking, which is precisely why policymakers and
academics have �ocked toward big data, on the implicit assumption
that scale can overcome more conventional questions of data relia-
bility, sampling bias, and the like [2, 37]. Government agencies may
not always have access to protected attributes, making fairness and
bias assessments challenging [34].

The main contributions of our paper are as follows:

(1) We show how administrative data can enable audits for bias
and reliability (§ 4)

(2) We characterize the measurement validity of a smartphone-
based mobility dataset that is widely used for COVID-19
research, SafeGraph (§ 4.2, 5.1)

(3) We illuminate signi�cant demographic disparities in the
coverage of SafeGraph (§ 5.2)

(4) We illustrate how this disparate coverage may distort policy
decisions to the detriment of vulnerable populations (§ 5.3)

Our paper proceeds as follows. Sections 2 and 3 discuss related
work and background on the uses of mobility data in the pandemic.
Section 4 provides an overview of our auditing framework, for-
malizes the assumptions to construct bias and reliability tests, and
discusses the estimation approach using voter roll data from North
Carolina’s 2018 general election. Section 5 presents results that
while SafeGraph can be used to estimate voter turnout, the mobility
data systematically undersamples older individuals and minorities.
Section 6 discusses interpretation and limitations.

2 RELATEDWORK
Our assessment of disparate coverage is related to several strands
in the literature. First, the most closely related work to ours is Safe-
Graph’s own analysis of sampling bias discussed below (§ 3.3). Safe-
Graph’s analysis examines demographic bias only at the national
aggregated level and does not address the question of demographic
bias for POI-speci�c inferences. Ours is the �rst independent as-
sessment of demographic bias to the extent we are aware.

Second, our work relates to existing work on demographic bias
in smartphone-based estimates [55]. A notable line of survey re-
search has examined the distinct demographics of smartphone
users [20, 38]. [53] and [54] document signi�cant concerns about
mobility-based estimates from mobile phone data, including par-
ticularly low coverage for elderly. The literature further �nds that
smartphone ownership in the United States varies signi�cantly
with demographic attributes [8]. In 2019 an estimated 81% of Amer-
icans owned smartphones with ownership rates of 96% for those
aged 18-29 and ownership rates of 53% for those aged over 65 [44].
Racial disparities in smartphone ownership are less pronounced,
with an ownership rate of 82%, 80%, and 79% for White, Latinx, and
African-American individuals, respectively. Even conditional on
mobile phone ownership, however, demographic disparities may
still exist. App usage may di�er by demographic group. According
to one report, 69% of U.S. teenagers, for instance, use Snapchat,

compared to 24% of U.S. adults [4]. Of particular relevance to mo-
bility datasets, the rate at which users opt in to location sharing
may vary by demographic subgroup. Hoy and Milne, for instance,
reported that college-aged women exhibit greater concerns with
third party data usage. And even among users who who opt in to a
speci�c app, usage behavior may di�er according to demographics.
Older users, for instance, may be more likely to use a smartphone
as a “classic phone” [3].

Our work responds to a recent call to characterize the biases
in mobility data used for COVID-19 policies [25]. Grantz et al.
highlight the potential for demographic bias, citing “clear sociode-
mographic and age biases of mobile phone ownership.” They note,
“Identifying and quantifying these biases is particularly challeng-
ing, though, when there is no clear gold standard against which to
validate mobile phone data.” We provide the �rst rigorous test for
demographic bias using auxiliary estimates of ground truth.

Third, our work bears similarity to the literature on demographic
bias in medical data and decision-making. A long line of research
has demonstrated that medical research is disproportionately con-
ducted on white males [19, 40, 43]. This literature has cataloged
the harmful e�ects of making treatment decisions for subgroups
that were underrepresented in the data [7, 51, 52]. In much the
same vein, our work calls into question research conclusions based
on SafeGraph data that may not be relevant for older or minority
subgroups.

Last, our work relates more broadly to the sustained e�orts
within machine learning to understand sources of demographic bias
in algorithmic decision making [14, 15, 23, 27, 36]. Important work
has audited demographic bias of facial recognition technology [10],
child welfare screening tools [13], criminal risk assessment scores
[45], and health care allocation tools [2, 41]. Often the underlying
data is identi�ed as a major source of bias that propagates through
the algorithm and leads to disparate impacts in the decision-making
stage. Similarly, our study illustrates how disparate coverage in
smartphone-based data can misallocate COVID-19 resources.

3 BACKGROUND ON SAFEGRAPH MOBILITY
DATA

We now discuss the SafeGraph mobility dataset, illustrate how
this data has been widely deployed to study and provide policy
recommendations for the public health response to COVID-19, and
discuss SafeGraph’s own assessment of sampling bias.

3.1 SafeGraph Mobility Data
SafeGraph contains mobility data from roughly 47M mobile devices
in the United States. The company sources this data from mobile
applications, such as navigation, weather, or social media apps,
where users have opted in to location tracking. It aggregates this in-
formation by points-of-interest (POIs) such as schools, restaurants,
parks, airports, and brick-and-mortar stores. Hourly visit counts
are available for each of over 6M POIs in their database.2 Individual
device pattern data is not distributed for researchers due to privacy
concerns. Our analysis relies on SafeGraph’s ‘research release’ data
which aggregates visits at the POI level.

2See https://docs.safegraph.com/docs/places-summary-statistics.
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3.2 Use of SafeGraph Data in COVID-19
Response

When the pandemic hit, SafeGraph released much of its data for free
as part of the “COVID-19 Data Consortium” to enable researchers,
non-pro�ts, and governments to leverage insights from mobility
data. As a result, SafeGraph’s mobility data has become the dataset
de rigueur in pandemic research. The Centers for Disease Control
and Prevention (CDC) employs SafeGraph data to examine the e�ec-
tiveness of social distancing measures [39]. According to SafeGraph,
the CDC also uses SafeGraph to identify healthcare sites that are
reaching capacity limits and to tailor health communications. The
California Governor’s O�ce, and the cities of Los Angeles [21],
San Francisco, San Jose, San Antonio, Memphis, and Louisville,
have each relied on SafeGraph data to formulate COVID-19 policy,
including evaluation of transmission risk in speci�c areas and facili-
ties and enforcement of social distancing measures. Academics, too,
have employed the data widely to understand the pandemic: [12]
used SafeGraph data to examine how social distancing compliance
varied by demographic group and recommend occupancy limits
for business types; [17, 18] used SafeGraph to infer the e�ect of
“superspreader” events such as the Sturgis Motorcycle Rally and
campaign events; [42] examined whether social distancing was
more prevalent in in areas with higher xenophobia; and [1] exam-
ined whether social distancing compliance was driven by political
partisanship, to name a few. What is common across all of these
works is that they assume that SafeGraph data is representative of
the target population.

3.3 SafeGraph Analysis of Sampling Bias
SafeGraph has issued a public report about the representativeness of
its data [46, 47]. While SafeGraph does not have individual user at-
tributes (e.g., race, education, income), it merged census data based
on census block group (CBG) to assess bias along demographic char-
acteristics.3 SafeGraph assigns each device an estimated home CBG
based on where the device spends most of its nights and uses the
demographics of the estimated home CBG for the bias assessment.
The racial breakdown of device holders, for instance, was allocated
proportionally based on the racial breakdown of the devices’ esti-
mated home CBGs. SafeGraph then compared the total SafeGraph
imputed demographics against census population demographics at
the national level. According to SafeGraph, the results suggest that
their data is “well-sampled across demographic categories” [46].

SafeGraph’s examination for sampling bias should be applauded.
Companies may not always have the incentive to address these
questions directly, and SafeGraph’s analysis is transparent, with
data and replication code provided. As far as we are aware, it re-
mains the only analysis of SafeGraph sampling bias.

Nevertheless, their analysis su�ers from several key limitations.
Most notably, this analysis does not use ground-truth demographic
information and instead relies on imputed demographics using a
method which su�ers systematic biases. For instance, home CBG
estimation is inaccurate for certain segments of the population,
such as nighttime workers. Even when the estimated home CBG
itself is correct, their imputation of demographics from the CBG

3CBGs are geographic regions that contain typically between 600 and 3000 residents.
CBGs are the smallest geographic unit for which the census publishes data.

imposes a strong homogeneity assumption: The mere fact that 52%
of Atlanta’s population is African American does not guarantee
that �ve out of ten SafeGraph devices in Atlanta belong to African-
Americans.

Additionally, the analysis uses an aggregation scheme which in-
troduces two methodological limitations. First, because their analy-
sis aggregates CBGs nationally, the results are susceptible to undue
in�uence from outliers, such as those resulting from errors in home
CBG estimation. We anticipate these errors to be substantial since
SafeGraph reports highly unrepresentative sampling rates at the
CBG level, including CBGs with four times as many devices as
residents.4 Second, the results may also miss signi�cant di�erences
in the joint distribution of features because the analysis aggregates
CBGs for a single attribute at a time. For example, if coverage is
better for younger populations and for whiter populations, but
whiter populations are on average older than non-white popula-
tions, then evaluating coverage marginally against either race or
age will underestimate disparities. Indeed we present evidence for
such an e�ect in § 5.

Lastly, this analysis uses CBGs as the unit of analysis which
may miss disparities that exist at �ner geographic units, such as
POIs. This distinction is noteworthy since many of the COVID-19
analyses referenced above leverage SafeGraph data at �ner geo-
graphic units than CBGs (e.g. POIs). This risks drawing conclusions
from data at a level of resolution that SafeGraph has not estab-
lished to be free from coverage disparities. SafeGraph warns that
“local analyses examining only a few CBGs” should proceed with
caution. Because SafeGraph’s analysis examines demographic bias
only at census aggregated levels and does not address the question
of demographic bias for POI-speci�c inferences, an independent
coverage audit remains critical. We provide such an audit using a
method that uses POIs as the unit of analysis and avoids the noted
methodological limitations.

4 AUDITING FRAMEWORK
In this section we outline our proposed auditing methodology and
state the conditions under which the proposed method allows us
to detect demographic disparities in coverage. We motivate our
approach by �rst describing the idealized audit we would perform
if we had access to ground truth data. We then introduce our admin-
istrative data and subsequently modify this framework to account
for the limitations of the available data.

4.1 Notation
Let I = {1, ...,=} denote a set of SafeGraph POIs. Let ( 9 2 R=
denote a vector of the SafeGraph tra�c count (i.e. number of visits)
for day 9 2 J where each element ( 98 indicates the tra�c to POI 8 on
day 9 . Similarly let) 9

8 denote the ground truth tra�c (visits) to POI
8 during day 9 . When the context is clear, we omit the superscript 9
when referring to vectors ( 2 R= and ) 2 R= . We use ↵ to denote
Hadamard division (the element-wise division of two matrices).
With this, we de�ne our coverage function ⇠ ((,) ).

4See Fig. 3 of [48].
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D��������� 1 (C������� ��������). Let ⇠ ((,) ) : R= ⇥ R= 7!
R= denote the following coverage function:

⇠ ((,) ) = ( ↵ )

The coverage function yields a vector where the ith element equals (8
)8

and describes the coverage of POI i.

Let⇡ 9
8 denote a numeric measure of the demographics of visitors

to POI 8 on day 9 ; for instance ⇡ 9
8 may be the percentage of visitors

to a location on a speci�c day that are over the age of 65. Let
cor(- ,. ) = cov(- ,. )p

var(- )var(~)
denote the Pearson correlation between

vectors - and . and let A (- ) be the rank function that returns the
rank of vector - .5 Our audit will consider the (Spearman) rank
correlation cor(A (- ), A (. )), which provides a more �exible and
robust measure of association than the Pearson correlation.

4.2 Idealized Audit
Our audit assesses how well SafeGraph measures ground truth
visits and whether this coverage varies with demographics. We
operationalize these two targets as follows:

D��������� 2 (M���������� ������ ��� ��������). De�ne the
strength of measurement signal as

cor(A ((), A () )) .

A positive signal indicates facial measurement validity, and a
signal close to one indicates high measurement validity.

D��������� 3 (D�������� ��������). We will say that dis-
parate coverage exists when the rank correlation between coverage
and the demographic measure is statistically di�erent from zero:

cor
�
A (⇠ ((,) ), A (⇡)

�
< 0.

We are interested in identifying an association of any kind; we
are not concerned with identifying a causal e�ect per se. Age might
have a causal e�ect on smartphone usage, setting aside the question
ofmanipulability [30], as depicted in the top panel (a) of Fig. 1. But as
the bottom panel (b) depicts, age may not directly a�ect SafeGraph
coverage but be directly correlated with a factor like urban/rural
residence, which in turn does a�ect SafeGraph coverage. For either
mechanism, the policy-relevant conclusion remains that SafeGraph
is underrepresenting certain age groups.

In reality, there is no ground truth source of information about
foot tra�c and the corresponding demographics for all 6 million
POIs. Instead, we must make do with estimates of ) and ⇡ based
on auxiliary data sources about some subset of visits to a subset
of POIs. In order to identify the relationship of interest (Def. 3)
between coverage and demographics, we need the following to
hold:6

D��������� 4 (N� ������� �����������). The estimation pro-
cedure does not induce a confounding factor that a�ects both the
estimate of demographics and the estimate of coverage.
5The rank assigns each element of the vector the value of its rank in an increasing
ranking of all elements in the vector. For example the rank of vector "(5, 1, 3)" would
be "(3, 1, 2)".
6Appendix C discusses the analogous assumptions required to identify the target for
measurement validity (Def. 2).

064 B<0AC?⌘>=4 DB4 2>E4A064

(a) Causal association

064 ADA0; A468>= 2>E4A064

(b) Non-causal association

Figure 1: Possible mechanisms under which disparate cov-
erage arises. Disparate coverage may be a result of a causal
associations such as (a) whereby older people are less likely
to own or use smartphones and therefore places frequented
by older people have lower coverage. Disparate coverage
may also arise due to a non-causal associations such as (b)
whereby rural regions have higher percentages of older resi-
dents andworse cell receptionwhich reduces coverage. Both
types of associations are policy-relevant because in both
cases, certain age groups are underrepresented.

D��������� 5 (N� ��������� ����). The selection is not based on
an interaction between factors that a�ect coverage and demographics.

We emphasize the di�culty in obtaining this information. It is
challenging to obtain estimates of foot tra�c to POIs. In fact, re-
searchers typically treat smartphone-based mobility data as if it
were ground truth (e.g. [5]). It is even more challenging to identify
data sources for ground truth visits to POIs with corresponding
demographic information [25]. Consider for instance large sport-
ing events where stadium attendance is closely tracked. Can we
leverage di�erences in audience demographics based on the event
(e.g., international soccer game between two countries) in order
to assess disparate coverage? Two major impediments are lack of
access to precise demographic estimates as well as confounding
factors such as tailgating that may vary with demographics.

4.3 Administrative data on voter turnout
We propose a solution using large-scale administrative data that
records individual-level visits along with demographic information:
voter turnout data in North Carolina’s 2018 general election from
L2, a private voter �le vendor which aggregates publicly available
voter records from jurisdictions nationwide.7 Our analysis relies
primarily on four �elds in the L2 voter �les: age, race, precinct, and
turnout. The L2 data is missing one key piece of information: the
poll location. We use a crosswalk of voting precinct to poll location
obtained from the North Carolina Secretary of State to map each
voter via their voting precinct to a SafeGraph POI. Overall, our data
includes 539K voters who turned out to vote at 558 voting locations
that could bematched. Table 1 presents summary statistics on voters
associated with polling locations that could be matched, showing
that our data is highly representative of all voting locations. (Details
on the data and preprocessing are provided in Appendices A and B.)

Derived from o�cial certi�ed records by election authorities,
voter turnout information is of uniquely high �delity. In an analysis
of �ve voter �le vendors, Pew Research, for instance, found that the
vendors had 85% agreement about turnout in the 2018 election [32].
7See https://l2political.com/.
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Matched Voters All Voters
Voters 539,607 1,581,937
Mean Age 52.57 52.78
Std Age 16.67 16.59
Proportion over 65 0.25 0.26
Proportion Hispanic 0.04 0.04
Proportion Black 0.20 0.19
Proportion White 0.70 0.71

Table 1: Demographics of all voters in North Carolina’s 2018
general election compared to voters included in our analysis
("matched voters"). The matched voters are representative
of the full voting population. Details of the matching proce-
dure are given in Appendix B.

Voter registration forms typically include �elds for date of birth,
gender, and often race.8 When race is not provided, data vendors
estimate race. The Pew study found race to be 79% accurate across
the �ve vendors, with accuracies varying from 67% for African-
Americans to 72% for Hispanics to 93% for non-Hispanics.9 We can
identify individuals visiting a speci�c voting location on election
day because North Carolina di�erentiates in person, election day
voters from absentee, mail, and early voters. We note that poll loca-
tions are often schools, community centers, religious institutions,
and �re stations. These POIs may hence also have non-voter tra�c
on election day. We address this possible source of confounding
by adjusting the SafeGraph tra�c using an estimate of non-voter
tra�c.

4.4 Adjustment for non-voter tra�c
Non-voter tra�c may be incorporated into SafeGraphmeasures and
may confound our analysis if the magnitude of that non-voter tra�c
varies with the demographic attributes of the voters. For instance,
if younger voting populations are more likely to vote at community
centers which have large non-voter tra�c and older voting pop-
ulations are more likely to vote at �re stations which have small
non-voter tra�c, then even if SafeGraph has no disparate coverage,
we would observe a negative relationship between coverage and
age.10 We control for this confounding by estimating non-voter
tra�c using mean imputation. In Appendix D, we provide similar
results using a linear regression imputation procedure.

4.4.1 Additional notation. Letting 9⇤ denote election day, we esti-
mate the non-voter tra�c at poll location 8 on election day, / 9⇤

8 , by

8North Carolina, for instance requests both race and ethnicity (https://s3.amazonaws.
com/dl.ncsbe.gov/Voter_Registration/NCVoterRegForm_06W.pdf).
9The study did not name which voter �le vendors were analyzed.
10Non-voter tra�c may be a�ected by device attribution errors, in which device GPS
locations are incorrectly assigned to one of two adjacent POIs. SafeGraph reports
in its user documentation that "[it] is more di�cult to measure visits to a midtown
Manhattan Starbucks than a visit to a suburban standalone Starbucks." If younger
voting populations are more likely to vote in dense urban polling locations, then even if
there isn’t large non-voter tra�c in the same facility, large tra�c in an adjacent facility
could still be incorrectly attributed to the polling location with greater likelihood than
to a suburban polling location. However, this source of confounding can be controlled
for using the same technique described.

averaging SafeGraph tra�c to 8 on adjacent days:

/ 9⇤

8 =
( 9

⇤�1
8 + ( 9

⇤+1
8

2
This adjustment enables us to compute the marginal tra�c over the
estimated baseline, which we term SafeGraph marginal tra�c.11

D��������� 6 (M������� �������). SafeGraph marginal tra�c
denotes device counts above estimated baseline: ( 9

⇤

8 � / 9⇤

8 .

Let+ 9⇤
8 denote the number of voters at poll location 8 as recorded

by L2. With this, we re�ne our de�nition of coverage using the
coverage function from Def. 1:

D��������� 7 (S���G���� ��������). SafeGraph coverage is
⇠ (( 9⇤ � / 9⇤ ,+ 9⇤ ). Each element 8 of this vector refers to the ratio of
marginal tra�c at POI 8 to voter turnout at 8 .

4.5 Audit via voter turnout
The disparate impact question in this setting is does SafeGraph cover-
age of voters at di�erent poll locations vary with voter demographics?
We focus on two key demographic risk factors for COVID-19: age
and race. We summarize the age distribution at a polling location
8 by computing the proportion of voters over age 65. For race, we
consider the proportion of voters who are an ethnic group besides
white.12

Def. 3 formalizes this question as testing whether there is a rank
correlation between ⇠ (( 9⇤ � / 9⇤,+ 9⇤) and demographic measure
⇡ . However such a test may be misleading if we have induced con-
founding by our estimation procedure (Def. 4). We can incorporate
a test of confounding into our audit. Speci�cally, we can test for
time-invariant confounding.

D��������� 8 (�������������� �����������). A time-invariant
confounder a�ects our demographic estimate as well as tra�c on elec-
tion day and on non-election days.

This contrasts to a time-varying confounding:

D��������� 9 (������������ �����������). A time-varying
confounder a�ects our demographic estimate and tra�c on election
day only. It does not a�ect tra�c on non-election days.

Examples of time-invariant and time-varying confounding are
given in Figure 2. The assumption of no time-varying confounding
is untestable but it is reasonable to believe this holds in our setting.
Most voting places, for instance, are public places making it un-
likely that the non-voter tra�c is a�ected di�erentially on election
and non-election days. Another possible time-varying confounder
would be if voting locations with older (or largely non-white) voters
are more likely to be placed outside of the SafeGraph geometry
for device attribution (e.g., parking lot). We do not believe this is
likely because voting locations are typically indoors for security
and climate reasons during a November election. We can accom-
modate time-invariant confounding in our audit by modifying the
de�nition of disparate coverage.
11The adjustment resulted in negative estimates of voter tra�c for poll locations at
schools. In the Appendix B, we show that baseline tra�c estimation is generally much
worse for school, due in part to school holidays or large-scale events such as sports
games. As a result, we exclude schools from our analysis.
12In what follows we use the generic variable ⇡ to indicate either measure of
demographics.
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Time-invariant confounding

Example: Younger voting populations vote at places like
community centers with large non-voter tra�c whereas
older populations vote at places like �re stations with little
non-voter tra�c.

Testable (see § 4.5)

Time-varying confounding

Example: Younger voting populations vote at places that
are open to non-voter tra�c on election day whereas older
populations vote at places that are closed to non-voter
tra�c on election day

Untestable assumption

Figure 2: We distinguish between two types of confounding: time-invariant versus time-varying confounding. We test for
time-invariant confounding (§ 4.5) but we cannot test for time-varying confounding. Our results assume no time-varying
confounding.

D��������� 10 (D�������� ��������). We will say that dis-
parate coverage exists when the rank correlation between coverage
on election day and voter demographics is statistically di�erent from
the rank correlation between coverage on non-election day and voter
demographics: For 9 < 9⇤,

cor
�
A (⇠ (( 9⇤ � / 9⇤,+ 9⇤), A (⇡ 9⇤)

�
<

cor
�
A (⇠ (( 9 � / 9 ,+ 9⇤), A (⇡ 9⇤)

�
We evaluate this more robust notion of disparate coverage using

40weekdays in October and November of 2018 to generate a placebo
distribution of the estimated correlation coe�cients against which
we compare the election-day estimate.13 Algorithm 1 provides de-
tails (note that I denotes the indicator function). This procedure
is similar to methods of randomization inference in the literature
on treatment e�ects [29]. If the election-day correlation is unlikely
under placebo distribution (i.e. small ?-value), and we additionally
believe there is no time-varying confounding, then we can conclude
that SafeGraph has disparate coverage of voters on election day.

Algorithm 1: Assessing Disparate Coverage (Def. 10)

Input: Voter data (+ 9⇤,⇡ 9⇤) SafeGraph data {(( 9 ,/ 9 )}=9=1
Result: ?-value for the election-day correlation under the

placebo distribution
for 9 = 1, 2, . . .= do

Compute d 9 = cor(A (⇠ (( 9 � / 9 ,+ 9⇤)), A (⇡ 9⇤)).
end

return ? = 1
=

=’
9=1
I{(d 9  d 9⇤ )}

In order to generalize these �ndings to the broader population on
non-election day, the selection cannot be based on factors that a�ect
both coverage and demographics (See Def. 5). Example violations
might include: (i) The older (or non-white) population that doesn’t
vote is more likely to use smartphones than the older (or non-white)
population that does vote; and (ii) Older (or non-white) voters leave
13We use weekdays in October and November except October 1 and November 5, 7,
and 30. November 5 and 7 are adjacent to election day, so the baseline adjustment
(§ 4.4) would be biased. Out of convenience, we drop October 1 and November 30
to avoid having to pull September and December data to respectively compute their
baseline adjustments.

their smartphones at home when they go vote but always carry
their smartphones otherwise, whereas younger (or white) voters
bring their smartphones to the polls and elsewhere. We believe such
mechanisms are unlikely. Testing this assumption would require the
use of an additional auxiliary dataset which is outside the scope of
this paper. We emphasize that this assumption of no selection bias
can still hold even though the voting population is not a random
sample of the populationwith respect to demographics. In fact, since
the voting population is older and more white than the general
population [32], the association between coverage and age/race
among voters could very well underestimate the magnitude of the
population association.

We should also consider the association between demographics
age and race. It is well known that younger populations have a larger
proportion non-white relative to older populations, and this holds
in our sample. Polling locations with younger voters are also more
likely to have higher proportions of minority voters (Appendix A).
Additionally, there are widespread concerns that disparate impact
can be more pronounced at the “intersection” of protected groups
[10, 11, 16]. We can jointly test for disparate coverage by modifying
Alg. 1 for the multiple regression setting. We perform = = 41 linear
regressions to model coverage as a function of the percentage over
65 and the percentage non-white for each weekday 9 in October
and November 2018. We test whether the election-day coe�cients
on age/race are di�erent from the 40 non-election day coe�cients
on age/race. Alg. 2 provides details using the notation that � 9⇤

denotes the proportion of voters over age 65 and ' 9⇤ denotes the
proportion of voters who are non-white.

5 RESULTS
5.1 Measurement Validity
Election day brings a dramatic increase in tra�c to polling loca-
tions relative to non-election days, and any valid measure of visits
should detect this outlier. Figure 3 shows the daily aggregate tra�c
across poll locations for October and November of 2018, and as ex-
pected, we see a signi�cant increase in both total tra�c (top panel)
and marginal tra�c (bottom panel) on election day. To assess the
strength of this signal using the framework described above (Def. 2),
we present the correlation between marginal SafeGraph tra�c on
election day and actual voter turnout. The rank correlation test
yields a positive correlation: cor

�
A (( 9⇤ �/ 9⇤), A (+ 9⇤)

�
= 0.383with
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Algorithm 2: Assessing Joint Disparate Coverage

Input: Voter data (+ 9⇤,⇡ 9⇤) SafeGraph data {(( 9 ,/ 9 )}=9=1
Result: ?-values for the election-day coe�cients on race

and age under the placebo distribution
for 9 = 1, 2, . . .= do

Fit a linear regression:
⇠ (( 9 � / 9 ,+ 9⇤) = U 9� 9⇤, +V 9' 9⇤ + W 9

end

return ?� = 1
=

=’
9=1
I{(U 9  U 9⇤ )} and

?' = 1
=

=’
9=1
I{(V 9  V 9⇤ )}

?-value < 0.001.14 Figure 4 displays this relationship by comparing
the marginal election tra�c ( 9

⇤

8 � / 9⇤

8 on the G-axis against actual
voter counts ) 9⇤

8 on the ~-axis for each polling location.
This corroborates that SafeGraph data is able to detect broad

patterns in movement and visits. That said, the estimates at the
individual polling place location level are quite noisy: root mean-
squared error is 1375 voters. For instance, amongst polling places
that registered 20 marginal devices, roughly 300 to 2300 actual
voters turned out. This signi�cant noise is likely due to a combina-
tion of factors. First, SafeGraph may incorrectly attribute voters to
nearby POIs because of incorrect building geometries. Second, we
may not be able to perfectly adjust for non-election tra�c. Third,
SafeGraph may have disparate coverage of voters by demographic
attributes. This last factor is the focus of our analysis.

5.2 Demographic Bias
We assess whether the demographic composition of voters who
actually turned out to vote in person is correlated with coverage.
We begin with preliminary results and then proceed to our main
disparate coverage results (as de�ned in Def. 10).

5.2.1 Preliminary results. Polling locations with older votes have
lower coverage rates. The top panel of Figure 5 shows how Safe-
Graph coverage⇠ (( �/ ,+ ) varies with �, the proportion of voters
over age 65. The rank correlation test yields cor

�
A (⇠ ((�/ ,+ ), A (�)

�
=

�0.14 with ?-value < 0.001. We also show how coverage decreases
as the proportion of non-white voters increases (bottom panel). The
rank correlation of race and coverage is cor

�
A (⇠ (( � / ,+ ), A (')

�
=

�0.11 with ?-value = 0.0067. The top panel of Figure 6 presents
a heat map of coverage with age bins (quartiles) on the G-axis
and race bins (quartiles) on the ~-axis. This bottom left cell, for
instance, shows that precincts that are the most white and young
have highest coverage rates. The lowest coverage is for older minor-
ity precincts. The lower panel of Figure 6 similarly plots race on the
G-axis against coverage on the ~-axis, separating older precincts
(yellow) and younger precincts (blue). Older precincts on average
have lower coverage rates than younger precincts, and coverage
declines as the minority population increases.

14The correlation is similar but slightly lower for unadjusted SafeGraph tra�c:
cor

�
A (( 9⇤), A (+ 9⇤)

�
= 0.373 with ?-value < 0.001.
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Figure 3: SafeGraph tra�c by weekday over October and No-
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Figure 4: Election day tra�c as observed by SafeGraph (G-
axis) and actual voter turnout across polling locations (~-
axis). Each dot represents a polling location in North Car-
olina in the 2018 general election.

5.2.2 Main results. Figure 7 shows that the negative election-day
rank correlation between coverage and voter demographics is sig-
ni�cantly outside the placebo distribution for non-election days
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Figure 5: Estimated SafeGraph coverage rates against age
and race for North Carolina 2018 general election. Each
point displays a ventile of poll location by age (top) and race
(bottom). The blue lines depict LOESS smoothing on the in-
dividual poll locations.

(empirical one-sided ?-values are ⇡0.024 for both age and race, re-
spectively). For our joint analysis of disparate coverage (Alg. 2), we
�nd that the negative coe�cients for age and race are statistically
outside the placebo distribution (See Fig. 8; empirical one-sided
?-values are ⇡0.024 and 0.049 for age and race respectively).15 Our
�ndings are robust to time-invariant confounding. Assuming no
selection bias (Def. 5) or time-varying confounding (Def. 9), we can

15In Appendix C, we present similar placebo results for measurement validity.
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Figure 6: Intersectional coverage e�ects by race and age. The
top panel presents the coverage rate by quartiles of age on
the G-axis and race on the ~-axis. The bottom panel plots
the coverage rate on the ~-axis against percentage of non-
white voters at the polling location on the G-axis for older
polling locations (yellow) versus younger polling locations
(blue) for ventiles of poll location by race. (Lines display
linear smoothing of the individual poll locations.) Cover-
age is lowest among olderminority populations and highest
among younger whiter populations.

conclude that SafeGraph has disparate coverage by age and race,
two demographic risk factors for COVID-19.
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Figure 7: Distribution of placebo rank correlations between
election-day demographics and marginal SafeGraph tra�c
on non-election days. Under the empirical placebo distribu-
tion, the election-day coverage’s negative correlations with
age (top panel) and race (bottom panel) are very unlikely (?-
value < 0.05). Placebo correlations computed for 40 week-
days in October and November 2018.
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Figure 8: Placebo distribution of coe�cients of the linear
regression of marginal SafeGraph coverage on election-day
age and race demographics. Under the empirical placebo
distribution, the election-day’s negative coe�cients for age
and (top panel) and race (bottom panel) are very unlikely
(?-value < 0.05). This suggests that SafeGraph data has dis-
parate coverage by age and race. Regressions computed for
40 weekdays of October and November 2018.

5.3 Policy implications
We now examine the policy implications of disparate coverage in
light of the widespread adoption of SafeGraph data in COVID-19
response. In particular, we show how disparate coverage may lead
to under-allocation of important health resources to vulnerable
populations. For instance, suppose the policy decision at hand is
where to locate mobile pop-up COVID-19 testing sites, and suppose

the aim is to place these sites in the most tra�cked areas to encour-
age asymptomatic individuals to get tested. One approach could
use SafeGraph tra�c estimates to rank order POIs. How would this
ordering compare to the optimal ordering by ground truth tra�c?
Using voter turnout as an approximation to ground truth tra�c,
we perform linear regression of the rank of voter turnout against
rank according to SafeGraph marginal tra�c as well as age and
race: A (+ ) ⇠ A (( � / ) +� + '. Table 2 presents results of this rank
regression (where rank is in descending order), con�rming that
the SafeGraph rank is signi�cantly correlated with ground truth
rank. But the large coe�cient on age indicates that each percentage
point increase in voters over 65 is associated with a 4 point drop
in rank relative to the optimal ranking. Similarly, the coe�cient
on race indicates that a 1.5 point increase in percent non-white is
associated with a one point drop in rank relative to the optimal
ranking. This demonstrates that ranking by SafeGraph tra�c may
disproportionately harm older and minority populations by, for
instance, failing to locate pop-up testing sites where needed the
most.

Table 2: To evaluate a potential rank-based policy allocation,
we compare the rank of voter turnout against rank by Safe-
Graph tra�c, controlling for age and race in a linear regres-
sion. Although SafeGraph rank is correlated with the opti-
mal rank by voter turnout, the coe�cients on age and race
indicate that each demographic percentage point increase is
associated with a 4-point and 1-point drop in rank for age
and race, respectively. This indicates that signi�cant adjust-
ments based on demographic composition should be made
to a SafeGraph ranking. Failure to do somaydirect resources
away from older and more minority populations.

Dependent variable:

Voter turnout rank

SafeGraph rank 0.317⇤⇤⇤
(0.040)

% over 65 4.716⇤⇤⇤
(0.748)

% non-white 0.681⇤⇤
(0.295)

Constant 40.278
(24.830)

Observations 558
R2 0.203
Adjusted R2 0.199
Residual Std. Error 144.264 (df = 554)
F Statistic 47.027⇤⇤⇤ (df = 3; 554)

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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We also consider the implications of using SafeGraph to inform
proportional resource allocation decisions, such as the provision
of masks. We compare the allocation based on SafeGraph tra�c
to the allocation based on voter turnout data. Table 3 presents
results for polling locations binned into four age-race groups by
partitioning at the median proportion over 65 and median propor-
tion non-white. Each cell presents the proportion of resources that
would be allocated to that age-race bin, demonstrating that strict
reliance on SafeGraph would under-allocate resources by 37% to the
oldest/most non-white category (?-value < 0.05) and over-allocate
resources by 33% to the youngest/whitest category (?-value < 0.05).

SafeGraph Optimal Percent
allocation allocation di�erence

young white 0.33 0.25 +33%
(0.03) (0.02)

young non-white 0.33 0.35 -5%
(0.03) (0.03)

older white 0.19 0.18 +9%
(0.02) (0.01)

older non-white 0.13 0.21 -37%
(0.02) (0.02)

Table 3: Allocation of resources for age-race groups by Safe-
Graph versus by true voter counts, with standard errors in
parentheses. The SafeGraph allocation redirects over one-
third of the optimal allocation from the oldest, most non-
white group to the youngest, whitest group (?-value < 0.05).

The clear policy implication here is that while SafeGraph in-
formation may aid in a policy decision, auxiliary information (in-
cluding prior knowledge) should likely be combined to make �nal
resource allocation decisions.

6 DISCUSSION
We have provided the �rst independent audit of demographic bias
of a smartphone-based mobility dataset that has been widely used
in the policy response to COVID-19. Our audit indicates that the
data underrepresents two high risk groups: older and more non-
white populations. Our results suggest that policies made without
adjustment for this sampling bias may disproportionately harm
these high risk groups. However, we note a limitation to our analysis.
Because SafeGraph information is aggregated for privacy reasons,
we are not able to test coverage at the individual level. To avoid
a potential ecological fallacy, our results should be interpreted
as a statement about POIs rather than individuals. That is, POIs
frequented by older (or minority) visitors have lower coverage than
POIs frequented by younger (or whiter) populations. Of course,
policy decisions are typically made at some level of aggregation, so
the demographic bias we document at this level remains relevant
for those decisions.

A key future research question is how to use the results of this
audit to improve policy decisions. We suggest a few possible future
directions. A bias correction approach would construct weights to
adjust estimates based on race and age. Such an approach crucially
requires knowledge about demographic composition. In policy set-
tings where such information is not readily available, it may be

fruitful to investigate whether mobility data companies like Safe-
Graph can provide normalized visit counts based on the estimated
demographic pro�le of the smartphone user. This could o�er a
signi�cant improvement over current normalization approaches
which, per SafeGraph’s recommendation, use census block group
(CBG)-based normalization factors [47]. While this bias correction
might help to estimate population parameters (e.g., percentage of
CBG population not abiding by social distancing), it is unlikely to
capture the kind of demographic interaction e�ects we document
here. Much more work should be done to study disparate cover-
age and ideally provide, for instance, a weighing correction to the
normalization factors that properly accounts for the demographic
disparities documented in this audit.

Another possible solution is increased transparency. Researchers
do not know details about the source of SafeGraph’s mobility data,
namely which mobile apps feed into the SafeGraph ecosystem.
Access to such information may make the bias correction approach
more tractable. If, for instance, researchers could identify that a
data point emanates from Snapchat, then they could use what is
known about the Snapchat user base to make adjustments. Given
its increasing importance for policy, SafeGraph should consider
disclosing more details about which apps feed into their ecosystem.

7 CONCLUSION
Mobility data based on smartphones has been rapidly adopted in
the COVID-19 response. As [25] note, one of the most profound
challenges arising with such rapid adoption has been the need to
assess the potential for demographic bias “when there is no clear
gold standard against which to validate mobile phone data.” Our
paper illustrates one potential path forward, by linking smartphone-
based data to high-�delity ground truth administrative data. Voter
turnout records, which record at the individual level whether a
registered voter traveled to a polling location on a speci�c day and
describe the voter’s demographic information, enable us to develop
a straightforward audit test for disparate coverage. We �nd that
coverage is notably skewed along race and age demographics, both
of which are signi�cant risk factors for COVID-19 related mortality.
Failure to address such disparities risks policy distortions based on
mobility data that could exacerbate serious existing inequities in
the health care response to the pandemic.
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