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ABSTRACT
In this paper, we introduce a general framework for fine-grained

reductions of approximate counting problems to their decision ver-

sions. (Thus we use an oracle that decides whether any witness

exists to multiplicatively approximate the number of witnesses with

minimal overhead.) This mirrors a foundational result of Sipser

(STOC 1983) and Stockmeyer (SICOMP 1985) in the polynomial-

time setting, and a similar result of Müller (IWPEC 2006) in the

FPT setting. Using our framework, we obtain such reductions for

some of the most important problems in fine-grained complex-

ity: the Orthogonal Vectors problem, 3SUM, and the Negative-

Weight Triangle problem (which is closely related to All-Pairs Short-

est Path). While all these problems have simple algorithms over

which it is conjectured that no polynomial improvement is possible,

our reductions would remain interesting even if these conjectures

were proved; they have only polylogarithmic overhead, and can

therefore be applied to subpolynomial improvements such as the

n3/exp(Θ(
√
logn))-time algorithm for the Negative-Weight Trian-

gle problem due to Williams (STOC 2014). Our framework is also

general enough to apply to versions of the problems for which

more efficient algorithms are known. For example, the Orthogonal

Vectors problem over GF(m)d for constantm can be solved in time

n · poly(d) by a result of Williams and Yu (SODA 2014); our result

implies that we can approximately count the number of orthogonal

pairs with essentially the same running time.

We also provide a fine-grained reduction from approximate #SAT

to SAT. Suppose the Strong Exponential Time Hypothesis (SETH)

is false, so that for some 1 < c < 2 and all k there is an O(cn )-
time algorithm for k-SAT. Then we prove that for all k , there is an
O((c+o(1))n )-time algorithm for approximate #k-SAT. In particular,

our result implies that the Exponential Time Hypothesis (ETH) is

equivalent to the seemingly-weaker statement that there is no

algorithm to approximate #3-SAT to within a factor of 1 + ε in time

2
o(n)/ε2 (taking ε > 0 as part of the input). A full version of this

paper containing detailed proofs is available at https://arxiv.org/

abs/1707.04609.
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1 INTRODUCTION
1.1 Overview
It is clearly at least as hard to count objects as it is to decide their

existence, and very often it is harder. For example, Valiant [24] de-

fined the class #P as the natural counting variant of NP. Toda [22]

proved that P
#P

contains the entire polynomial hierarchy (includ-

ing P
NP

), so a #P-oracle is more powerful than an NP-oracle unless

the polynomial hierarchy collapses. The decision counterparts of

many #P-complete problems are in P; for example, counting perfect

matchings is #P-complete and detecting one is in P.

However, the situation changes substantially if we consider ap-

proximate rather than exact counting. For all real ε with 0 < ε < 1,

we say that x ∈ R is an ε-approximation to N ∈ R if |x − N | ≤ εN
holds. Clearly, computing an ε-approximation to N (taking ε as part
of the input) is at least as hard as deciding whether N > 0 holds,

but surprisingly, in many settings it is no harder. Indeed, Sipser [19]

and Stockmeyer [20] proved implicitly that every problem in #P has

a polynomial-time randomised ε-approximation algorithm using

an NP-oracle; the result is later proved explicitly in Valiant and

Vazirani [25]. This is a foundational result in the wider complex-

ity theory of polynomial approximate counting initiated by Dyer,

Goldberg, Greenhill and Jerrum [7].

Another example arises in parameterised complexity. Here, the

usual goal is to determine whether an instance of size n with param-

eterk can be solved in “FPT time” f (k)·poly(n) for some computable

function f : N→ N. Hardness results are normally presented using

theW -hierarchy (see for example [8]). Müller [16] has proved that

for any problem in #W[1], there is a randomised ε-approximation

algorithm using aW[1]-oracle which runs on size-n parameter-k in-

stances in time f (k) · poly(n, ε−1) for some computable f : N→ N.
He also proved analogous results for the rest of the hierarchy.

https://arxiv.org/abs/1707.04609
https://arxiv.org/abs/1707.04609
https://doi.org/10.1145/3188745.3188920
https://doi.org/10.1145/3188745.3188920
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In fine-grained complexity, we are concerned not merely with

the classification of algorithms into broad categories such as poly-

nomial, FPT, or subexponential, but with their more precise running

times. Alongside SAT, perhaps the most important problems in the

field are 3SUM, Orthogonal Vectors (OV), and All-Pairs Shortest

Paths (APSP). All three problems admit well-studied notions of

hardness, in the sense that many problems reduce to them or are

equivalent to them under fine-grained reductions, and they are

not known to reduce to one another. See Williams [29] for a re-

cent survey. It is not clear what a “canonical” counting version of

APSP should be, so we instead consider the Negative-Weight Trian-

gle problem (NWT), which is equivalent to APSP under subcubic

reductions [30].

All known reductions from approximate counting to decision in

this setting suffer from a common issue. As a concrete example, we

consider a result of Thurley [21]: If there is an O(2(1−δ )n )-time al-

gorithm for k-SAT for some δ > 0, then there is an ε-approximation

algorithm for #k-SAT that runs in time ε−2 · O∗(2(1−δ/2)n ). This

implies an analogue of the results above; if the Strong Exponen-

tial Time Hypothesis (SETH) of Impagliazzo, Paturi and Zane [13]

is false, then algorithms not only for k-SAT but also for approxi-

mate #k-SAT outperform exhaustive search by an exponential factor

as k → ∞. However, the exponential savings go down from δ for

decision to δ/2 for counting. From a fine-grained perspective, Thur-

ley’s algorithm would be far more interesting if its running time

was ε−2 · 2(1−δ+o(1))n , thus guaranteeing that k-SAT and approxi-

mate #k-SAT have essentially the same time complexity as k → ∞.

Likewise, no reductions from approximate #OV, #3SUM or #NWT

to their decision counterparts with subpolynomial overhead are

known.

The most important contribution of our paper is a framework

for reductions from approximate counting problems to decision

problems with an overhead that is only polylogarithmic in the input

size. In particular, our framework is sufficiently general to yield

such reductions from approximate #OV, #3SUM and #NWT to their

decision counterparts without much effort. As an example, con-

sider an n-element instance of #3SUM, in which we are given three

lists A, B and C of integers and must output the number of tuples

(a,b, c) ∈ A × B ×C with a + b = c . Assuming for simplicity that

the entries of the lists are polynomially bounded in n, a decision al-

gorithm for 3SUM with running timeO(n2−δ (n)) for some δ (n) > 0

would yield an ε-approximation algorithm for #3SUM with running

time ε−4 · Õ(n2−δ (n)) under our reduction. Thus the algorithm re-

mains better than brute force even for small values of ε ; in fact, the

running time improves to ε−2 · Õ(n2−δ (n)) if δ (n) < 1/2.

OV, 3SUM and NWT all have simple algorithms, which gener-

alise to exact counting and over which it is conjectured that no

polynomial improvement is possible. However, we consider it very

unlikely that these conjectures will be proved in the near future,

and our results are unconditional. Moreover, these conjectures do

not rule out superpolylogarithmic improvements to the naive al-

gorithms, and such improvements are already known for OV [1]

and NWT [27]. Our results imply that all such improvements imme-

diately translate into approximate counting algorithms with very

similar running times; in particular, the algorithm of [27] currently

has no counterpart for #NWT, so we already obtain a concrete

algorithmic result. Our framework is also general enough to eas-

ily accommodate several variants and special cases of OV, 3SUM

and NWT for which even polynomial improvements are known,

again leading to improved approximate counting algorithms. Thus

our results would remain of interest even if the conjectures were

proved.

Independently of our framework, we also prove a fine-grained

version of Thurley’s result ask → ∞: If (randomised)
1
SETH is false

and k-SAT may be solved in time O(2(1−δ )n ) for all k , then there is

an ε−2 · 2(1−δ+o(1))n -time ε-approximation algorithm for #k-SAT. In
particular, by the sparsification lemma this implies that the widely-

believed Exponential Time Hypothesis (ETH, see [12]) is equivalent

to the seemingly-weaker statement that there is no algorithm to

ε-approximate #3-SAT in time ε−2 · 2o(n). The question of whether

there is a fine-grained reduction from approximate #k-SAT tok-SAT
for fixed k remains open.

The remainder of Section 1 consists of a detailed statement of

our results and comparison to past work.

1.2 The General Framework
We will use OV as a motivating example to explain our general

framework. In this problem, we are given two lists A and B of

zero-one vectors over Rd , and must determine whether there ex-

ists an orthogonal pair (a,b) ∈ A × B. In #OV, we must instead

determine the number of such pairs. Writing n = |A| + |B |, it is
easy to see that OV and #OV can both be solved in O(n2d) oper-
ations by iterating over all pairs, and it is conjectured [26] that

for all δ > 0, when d = ω(logn), OV admits no O(n2−δ )-time ran-

domised algorithm. This conjecture is implied by SETH [26], and

Abboud, Williams and Yu [1] proved that it fails when d = O(logn).
Normally, it is assumed that d is polylogarithmic in n.

We reduce OV to the problem of approximately counting edges

in an arbitraryn-vertex bipartite graphG to whichwe have only lim-

ited oracle access. Our two oracles are an adjacency oracle, which

decides whether a given vertex pair is adjacent, and an indepen-

dence oracle, which decides whether a given vertex set contains

any edges. A somewhat informal statement of our main result is as

follows.

Theorem 1. There is a randomised algorithm A which, given
a rational 0 < ε < 1 and an n-vertex bipartite graph G, outputs
an ε-approximation of |E(G)| with probability at least 2/3. More-
over, A runs in time ε−4 · Õ(n) and makes ε−2 ·O((logn)6) calls to
the independence oracle.

We prove this result (and state it in more detail) as Theorem 10

in Section 3. Note that oracle calls are usually modelled as taking

constant time, so the adjacency oracle is called at most ε−4 · Õ(n)
times. In the case of OV, the reduction is very simply described; the

vertex classes are A and B, and a pair of vertices are adjacent if and

only if they are orthogonal. We can simulate an adjacency query

naively in time O(d) = Õ(1), and we can simulate an independence

query on a set X by applying a decision algorithm to the sub-

instance (X ∩ A,X ∩ B) of OV. Theorem 1 therefore implies the

following result.

1
To streamline our discussion, we ignore the detail that some papers only allow for

deterministic algorithms. Throughout the paper, we require randomised algorithms to

have success probability at least 2/3 unless otherwise specified.
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Theorem 2. IfOVwithn vectors ind dimensions has a randomised
algorithm that runs in time T (n,d), then there is a randomised ε-
approximation algorithm for #OV that runs in time

ε−2T (n,d) ·O((logn)6) + ε−4d · Õ(n) .

It is easy to see that there is no o(n)-time algorithm for OV, so

T (n,d) = Ω(n). Thus Theorem 2 implies that regardless of the time

complexity of OV, when ε > 0 is constant, we can ε-approximate

#OV with only polylogarithmic overhead over decision. Moreover,

the ε−4d · Õ(n) term can be dropped unless the Orthogonal Vector

Conjecture is very badly wrong and T (n,d) = O(n3/2). Indeed, if

T (n,d) = ω(n3/2) and ε = Ω(n−1/4), then the first term dominates

the second term. If instead ε = O(n−1/4), then ε−2T (n,d) = Ω(n2)
and we can solve #OV exactly by brute force to obtain the required

running time.

There is currently no significant gap between the best-known

algorithms for OV [1] and #OV (due to Chan and Williams [5]), as

both have running time n2−1/O (log(d/logn))
. However, Theorem 2

does imply that any improvement on [1] will immediately translate

into an improved approximate counting algorithm. Moreover, a

version of OV in which the real zero-one vectors are replaced by ar-

bitrary vectors over finite fields or rings is studied by Williams and

Yu [28], who obtain efficient randomised algorithms for this prob-

lem. Even though their paper did not consider the counting version

and their algorithms do not immediately generalise to counting,

we can nevertheless use their decision algorithm as a black box

and apply our general framework in Theorem 1 to obtain efficient

approximate counting algorithms for this problem.

Theorem 3. Letm = pk be a constant prime power. Then there
is a randomised ε-approximation algorithm for n-vector instances of
#OV over GF(m)d (resp. (Z/mZ)d ) in time ε−4d(p−1)k · Õ(n) (resp.
ε−4dm−1 · Õ(n)).

The dependence on d may be close to best possible; under SETH,

for all δ > 0 and f : N → N with f (x) = o(x/logx), OV over

GF(m)d (resp. (Z/mZ)d ) cannot be solved in time n2−δdf ((p−1)k )

(resp. n2−δdf (m)
) for all but finitely many values ofm = pk [28].

1.3 3SUM and NWT
We now give additional applications of Theorem 1 to 3SUM and

NWT. The proofs of these results are simple, and we defer them

to the full version [6]. Recall that 3SUM asks, given three integer

lists A, B and C of total length n, whether there exists a tuple

(a,b, c) ∈ A×B×C witha+b = c . (Frequently the input is taken to be
a single list rather than three; it is well-known that the two versions

are equivalent.) One popular extension of this problem is 3SUM+,

due toWilliams andWilliams [30], which asks for 3SUM to be solved

for all inputs (A,B, c) with c ∈ C . However, as we are specifically
concernedwith counting problems, we instead consider the problem

#3SUM defined in the previous section. It is easy to see that 3SUM

and #3SUM can be solved in Õ(n2) operations by sorting C and

iterating over all pairs in A × B, and it is conjectured [9, 18] that

for all δ > 0, 3SUM admits no O(n2−δ )-time randomised algorithm.

Using Theorem 1, we obtain the following analogue of Theorem 2.

Theorem 4. If 3SUM with n integers from [−N ,N ] has a ran-
domised algorithm that runs in time T (n,N ), then there is a ran-
domised ε-approximation algorithm for #3SUM that runs in time

ε−2T (n,N ) ·O((logn)6) + ε−4 logN · Õ(n) .

There is an easy FFT-based algorithm for both 3SUM and #3SUM

with running time Õ(N +n), so N is normally assumed to be Ω(n2).
It is also easy to show that T (n,N ) = Ω(n). Thus assuming N
is bounded above by a polynomial in n, as is usual, Theorem 4

implies that our algorithm has only polylogarithmic overhead over

decision. Independently of whether or not the 3SUM conjecture

is true, we conclude that 3SUM and, say,
1

2
-approximating #3SUM

have essentially the same time complexity.

The best-known algorithm for 3SUM, due to Baran, Demaine

and Pǎtraşcu [2], has running time O(n2(log logn/logn)2). Thus
Theorem 4 does not currently yield improved algorithms for #3SUM.

However, Chan and Lewenstein [4] have proved that the 3SUM

conjecture fails when the problem is restricted to instances in which

elements of one list are somewhat clustered, in a sense made explicit

below. (In fact, their algorithm also works for 3SUM+.) This is an

interesting special case with several applications, including mono-

tone multi-dimensional 3SUM with linearly-bounded coordinates

— see the introduction of [4] for an overview. By combining this

algorithm with an analogue of Theorem 4, we obtain the following

result.

Theorem 5. For all δ > 0, there is a randomised ε-approximation
algorithm with running time ε−4 · Õ(n2−δ/7) for instances of #3SUM

with n polynomially bounded integers such that at least one of A, B,
or C may be covered by n1−δ intervals of length n.

Finally, we study NWT, the problem of deciding whether an

edge-weighted tripartite graph contains a triangle of negative to-

tal weight. Williams and Williams [30] have shown that NWT is

equivalent to APSP under subcubic reductions. It is easy to see that

NWT can be solved in Õ(n3) operations by checking every possible
triangle, and it is conjectured [30] that for all δ > 0, NWT admits

no O(n3−δ )-time randomised algorithm. Using our framework in

Theorem 1, we obtain the following result for the natural counting

version #NWT of NWT, in which we approximate the number of

negative-weight triangles.

Theorem 6. IfNWT for n-vertex graphs with weights in [−W ,W ]

has a randomised algorithm that runs in timeT (n,W ), then there is a
randomised ε-approximation algorithm for #NWT that runs in time

ε−2T (n,W ) ·O((logn)6) + ε−4 logW · Õ(n2) .

Note that it is impossible to decideNWT in timeo(n2), sowhenW
is polynomially bounded, our algorithm has only polylogarithmic

overhead over decision. Note also that it is known [30] that a truly

subcubic algorithm for NWT would imply a truly subcubic listing

algorithm. While a listing algorithm is obviously stronger than an

approximate counting algorithm, this reduction has polynomial

overhead and so does not imply Theorem 6. Together with an

algorithm of Williams [27], Theorem 6 implies the following.

Theorem 7. There is a randomised ε-approximation which runs
on n-vertex instances of #NWT with polynomially bounded weights

in time ε−4n3/eΩ(
√
logn).
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1.4 SAT
Recall that SETH fails if and only if there exists δ > 0 such that

for all k , there is a k-SAT algorithm with running time O(2(1−δ )n ),
where n is the number of variables in the input formula. An imme-

diate corollary of Thurley’s reduction [21] is that in this case, for

all k ≥ 1, there is also an ε−2 ·O∗(2(1−δ/2)n )-time ε-approximation

algorithm for k-SAT. However, this reduction has exponential over-

head and so is not fine-grained. Traxler [23] provides a reduction

with subexponential overhead for a related problem, in which k =
Ω(logn) holds. We provide a reduction from approximate #k-SAT

to k-SAT for constant k , with overhead roughly 2((logk )
2/k )n

, which

we formally state as Theorem 11 in Section 4. (We also sketch the

proof.) In particular, letting k → ∞ yields the following easy corol-

lary.

Theorem 8. Let δ > 0. Suppose that for all k ∈ N, there is a
randomised algorithm which runs on n-variable instances of k-SAT
in time O(2(1−δ )n ). Then for all δ ′ > 0 and all k ∈ N, there is a
randomised ε-approximation algorithm which runs on n-variable
instances of #k-SAT in time ε−2 ·O(2(1−δ+δ

′)n ).

Thus if SETH is false for some δ > 0, then for all k ∈ N
we obtain an ε−2 · 2(1−δ+o(1))n-time ε-approximation algorithm

for #k-SAT. There is no particular reason to believe that an effi-

cient decision algorithm would yield an efficient counting algo-

rithm directly. Indeed, when k = 3, the most efficient known algo-

rithms run in time O(1.308n ) for decision (due to Hertli [10]), in

time O(1.537n ) for 1

2
-approximate counting (due to Thurley [21]),

and in time O(1.642n ) for exact counting (due to Kutzkov [14]).

Recall that ETH holds if and only if there is no subexponential-

time algorithm for 3-SAT. By the sparsification lemma of Impagli-

azzo, Paturi, and Zane [13], a subexponential-time algorithm for

3-SAT would imply subexponential-time algorithms for k-SAT for

allk . Thus by letting δ increase to 1 in Theorem 8, we see that ETH is

implied by a seemingly-weaker approximate counting formulation.

Theorem 9. ETH is true if and only if there exists δ > 0 such
that no randomised ε-approximation algorithm can run on n-variable
instances of #3-SAT in time ε−2 ·O(2δn ).

It remains an open and interesting question whether a result

analogous to Theorem 8 holds for fixed k , that is, whether deciding
k-SAT and approximating #k-SAT have the same time complexity

up to a subexponential factor. For (large) fixed k , the best-known
decision,

1

2
-approximate counting, and exact counting algorithms

(due to Paturi, Pudlák, Saks, and Zane [17], Thurley [21], and Im-

pagliazzo, Matthews, and Paturi [11], respectively) all have running

time 2
(1−Θ(1/k ))n

, but with progressively worse constants in the

exponent. Thus if the overhead of our reduction could be reduced

even to 2
o(1/k )·n

, we would obtain improved approximate counting

algorithms for fixed k .

2 NOTATION
WewriteN for the set of all positive integers. For a positive integern,
we use [n] to denote the set {1, . . . ,n}. We use log to denote the

base-e logarithm, and lg to denote the base-2 logarithm.We consider

graphsG to be undirected, andwrite e(G) = |E(G)|. For allv ∈ V (G),

we use N (v) to denote the neighbourhood of v , that is,

N (v) = {w ∈ V (G) : {v,w} ∈ E(G)} .

For convenience, we shall generally present bipartite graphsG as a

triple (U ,V ,E) in which (U ,V ) is a partition ofV (G) and E ⊆ U ×V .

When stating quantitative bounds on running times of algo-

rithms, we assume the standard word-RAM machine model with

logarithmic-sized words. We assume that lists and functions in the

problem input are presented in the natural way, that is, as an array

using at least one word per entry.

In general, we shall not be overly concerned with optimising

logarithmic factors in running times. We shall write f (x) = Õ(д(x))
when for some constant c ∈ R, we have f (x) = O((logx)cд(x))
as x → ∞. Similarly, we write f (x) = O∗(д(x)) when for some

constant c ∈ R, we have f (x) = O(xcд(x)) as x → ∞.

3 APPROXIMATE COUNTING TO DECISION:
A GENERAL FINE-GRAINED REDUCTION

Our main reduction can be viewed as an efficient algorithm in a

model of computation where the algorithm observes the graph

using query access. We formalize the setting as follows.

Definition 1. LetG = (U ,V ,E) be a bipartite graph. We define
the independence oracle of G to be the function

indG : 2
U∪V → {0, 1} ,

such that indG (S) = 1 if and only if S is an independent set in G . We
define the adjacency oracle of G to be the function

adjG : U ×V → {0, 1} ,

such that adjG (u,v) = 1 if and only if (u,v) ∈ E.

In our applications, the edges of G correspond to witnesses of

a decision problem. For example, in OV, they correspond to pairs

of orthogonal vectors. Thus calling adjG corresponds to verifying

a potential witness, and calling indG corresponds to solving the

decision problem on a sub-instance. Our main result is the following

formal version of Theorem 1.

Theorem 10. There is a randomised algorithm A satisfying the
following. Suppose that A is given access to the independence and
adjacency oracles of some bipartite graph G = (U ,V ,E), together
withU , V and some rational ε with 0 < ε < 1. Then with probability
at least 2

3
, algorithmA returns an ε-approximation to e(G). Moreover,

writing n = |U ∪V |, algorithm A runs in time ε−4 · Õ(n) and calls
indG at most ε−2 ·O((logn)6) times.

Throughout the rest of the section, we take G = (U ,V ,E) to
be the bipartite graph of the theorem statement and n = |U ∪V |.

Moreover, for all X ⊆ V , we define ∂(X ) = |E ∩ (U × X )| and

UX = {u ∈ U : (u,v) ∈ E for some v ∈ X }.

We briefly compare the performance of the algorithm of Theo-

rem 10 with that of the standard approach of sampling to deal with

dense instances combined with brute force counting to deal with

sparse instances (as used in Thurley [21]). Suppose ε is constant,
that we can evaluate indG in timeO(n2−α ) for some α > 0, that we

can evaluate adjG in timeO(1), and that the input graph containsnβ

edges for some β > 0. Then sampling requires Ω(n2−β ) time, and

brute force enumeration of the sort used in [21] requires Ω(n2−α+β )
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time. The worst case arises when β = α/2, in which case the al-

gorithm requires Ω(n2−α/2) time. However, the algorithm of The-

orem 10 requires only Õ(n2−α ) time in all cases. Thus it has only

polylogarithmic overhead over decidingwhether the graph contains

edges at all.

We now sketch the proof of Theorem 10. For all X ⊆ V , we may

halve ∂(X ) in expectation simply by removing half the vertices inX
chosen binomially at random. Moreover, if ∂(X ) is sufficiently small,

we may use binary search to efficiently determine ∂(X ) exactly.

Thus we might hope to implement the classical approach of Valiant

and Vazirani [25]; start withX = V (so that ∂(X ) = e(G)), repeatedly
approximately halve ∂(X ) until it is small enough to determine

exactly, then multiply by the appropriate power of 2 and output

the result. Unfortunately, this approach fails. Indeed, we say X is

balanced if no single vertex in X is incident to a large proportion of

the edges in G[U ∪ X ] (see Definition 2). If X is not balanced, then

after removing half the vertices in X , the new value of ∂(X ) will

not be concentrated around its expectation. Thus the output of the

naive algorithm above will not be concentrated around e(G).
In Lemma 3, we show using martingale inequalities that unbal-

ancedness is the only thing that can go wrong; if X is balanced,

then with high probability we can approximately halve ∂(X ) by

randomly deleting half of X . We therefore proceed by finding a

small set of vertices which “unbalances” X , counting the edges

incident to them with brute force, removing them from X to make

it balanced, then deleting half of what remains. At the end, we

approximate e(G) by taking an appropriate linear combination of

our edge counts at each stage. However, since our access to the

graph is limited, it is non-trivial to find the “unbalancing” vertices.

We must also show that we do not remove too many vertices in this

way, as finding edges by brute force is computationally expensive.

In Lemma 5, we describe an efficient randomised algorithm

(FindCore) which, if ∂(X ) is too large to determine exactly, finds

an approximation to the set of vertices in X whose neighbours are

dense in UX ; we call this approximation a core (see Definition 4).

If the core is empty or large (a witness), we show in Lemma 6(i)

that X is balanced and we can proceed with halving. If the core is

non-empty but small (an unbalancer), we will enumerate the edges

incident to it by brute force and remove it from X . In Lemma 6(ii),

we show that having done so, either X is balanced (with slightly

worse parameters) or we have halved |UX |. Thus by repeating this

procedure at most lgn times, we can either make X balanced or

make ∂(X ) sufficiently small to determine exactly by binary search.

(Actually, we are a little more careful than this in order to optimise

the running time.) A formal statement of our algorithm is given as

EdgeCount on p. 6, followed by a correctness proof.

We expand the above sketch into a formal proof of Theorem 10.

Definition 2. Given 0 < ξ < 1, we say a non-empty set X ⊆ V
is ξ -balanced if every vertex in X has degree at most ξ∂(X ).

Lemma 3. Let 0 < ξ < 1, suppose X ⊆ V is ξ -balanced, and
suppose |X | ≥ 24 logn. Let X ′ ⊆ X be a random subset formed by
including each vertex of X independently with probability 1

2
. Then

with probability at least 1 − 4/n, we have

|X ′ | ≤ 3|X |/4 and |∂(X ′) − ∂(X )/2| ≤
√
ξ logn · ∂(X ) .

Proof. First note that since E(|X ′ |) = |X |/2, by a standard Cher-

noff bound we have

P

(
|X ′ | ≥

3|X |

4

)
≤ P

(����|X ′ | −
|X |

2

���� ≥ |X |

4

)
≤ 2e−|X |/24 ≤

2

n
. (1)

Now let R =
√
ξ logn. For each vertexv ∈ X , let iv be the indica-

tor random variable of the event that v ∈ X ′
. Note that ∂(X ′) is a

function of {iv : v ∈ X }, and that changing a single indicator vari-

able iv alters ∂(X ′) by exactly d(v). Moreover, E(∂(X ′)) = ∂(X )/2.

Hence by McDiarmid’s inequality [15],

P

(����∂(X ′) −
∂(X )

2

���� ≥ R∂(X )

)
≤ 2 exp

(
−2R2∂(X )2∑
v ∈X d(v)2

)
. (2)

Let t = |X |, and define a function f : Rt → R by

f (x1, . . . ,xt ) =
t∑
i=1

x2i .

Suppose that (x1, . . . ,xt ) maximises f subject to the constraints

0 ≤ x1, . . . ,xt ≤ ξ∂(X ) and
∑t
i=1 xi = ∂(X ). For all 0 < c ≤ x ≤ y,

we have ((x − c)2 + (y + c)2) − (x2 + y2) = 2c(−x + y + c) > 0,

so we must have xi ∈ {0, ξ∂(X )} for all but at most one value

of i ∈ [t]. (Otherwise, we could increase the value of f by perturbing
x1, . . . ,xt .) Thus up to reordering, we have

◦ x1 = · · · = x ⌊1/ξ ⌋ = ξ∂(X ),

◦ x ⌊1/ξ ⌋+1 = (1 − ξ ⌊1/ξ ⌋)∂(X ), and

◦ x ⌊1/ξ ⌋+2, . . . ,xt = 0.

Since X is ξ -balanced, it follows that∑
v ∈X

d(v)2 ≤

⌊
1

ξ

⌋
ξ 2∂(X )2 +

(
1 − ξ

⌊
1

ξ

⌋)
2

∂(X )2

≤ (ξ + ξ 2)∂(X )2 ≤ 2ξ∂(X )2.

By (2), it follows that

P

(����∂(X ′) −
∂(X )

2

���� ≥ R∂(X )

)
≤ 2e−R

2/ξ =
2

n
. (3)

The result therefore follows from (1), (3), and a union bound. �

Definition 4. Given 0 < ξ < 1 and ∅ ( X ⊆ V , we say S ⊆ X is
a ξ -core of X if it satisfies the following properties:
(W1) every vertex in X with degree at least ξ |UX | is contained in S ;
(W2) every vertex in S has degree at least ξ |UX |/24.

If 1 ≤ |S | < 24/ξ 2, then we call S a ξ -unbalancer; on the other hand,
if S = ∅ or |S | ≥ 24/ξ 2, we call S a ξ -witness.

To find a ξ -core of X , we use the following procedure. Note

that if there are few non-isolated vertices remaining, it will instead

return ∂(X ) exactly.

Algorithm FindCore(X , ξ ). The input is a set ∅ ( X ⊆ V and
a rational 0 < ξ < 1. If |X | < 24 logn or |UX | < 24 logn/ξ , it
returns ∂(X ). Otherwise, it returns a set S which with probability at
least 1 − 3/n is a ξ -core of X .

(C1) If |X | < 24 logn, then use adjG to enumerate the edges inci-

dent to X and return the total.

(C2) Let u1, . . . ,ut be a uniformly random ordering ofU , and

let x = ⌈24 logn/ξ ⌉.



STOC’18, June 25–29, 2018, Los Angeles, CA, USA Holger Dell and John Lapinskas

(C3) Recursively define a sequence k1, . . . ,kx by letting ki be the
maximum number k ∈ {1, . . . , t} that satisfies

indG (X ∪ {u1, . . . ,uk } \ {uk1+1, . . . ,uki−1+1}) = 1 .

Use binary search to compute k1, . . . ,kx . Let Y be the set with

Y = {uki+1 : i ∈ [x], ki < t} .

(C4) If kx = t , then use adjG to enumerate the edges incident to Y
and return the total.

(C5) Otherwise, use adjG to find the set S ⊆ X of vertices which

are adjacent to at least ξx/2 vertices in Y . Return S .

Lemma 5. When n ≥ 2, FindCore is correct. Moreover, it runs
in ξ−1 · Õ(n) time and makes at most ξ−1 · O((logn)2) calls to the
independence oracle.

Proof. Let x = ⌈24 logn/ξ ⌉. We start by analysing the run-

ning time: (C1) requires O(n logn) time and at most 24n logn calls

to adjG ; (C2) requires O(n logn) time; (C3) requires x · O(logn)
time and at most x lgn calls to indG ; (C4) and (C5) together require

x ·O(n) time and at most xn calls to adjG . Thus the running time

guarantees in the statement are correct. It is also immediate that

the algorithm behaves correctly if |X | < 24 logn.
Note that when ki < t , we have

ki + 1

= min{k : indG (X ∪ {u1, . . . ,uk } \ {uk1+1, . . . ,uki−1+1}) = 0}

= min{k ∈ [t] \ {k1 + 1, . . . ,ki−1 + 1} : uk ∈ UX } .

ThusY consists of the least x elements ofUX in the random ordering

u1, . . . ,ut , or all ofUX if |UX | < x . Thus if |UX | < x then FindCore
behaves correctly, and if |UX | ≥ x then Y is a uniformly random

size-x subset of UX . Suppose |UX | ≥ x . Then we must prove that S
is a ξ -core with probability at least 1 − 3/n.

Let Z = {v ∈ X | d(v) ≥ ξ |UX |}. If v ∈ Z , then |N (v) ∩ Y |
follows a hypergeometric distribution with mean (d(v)/|UX |) · x ≥

ξx ≥ 24 logn. By a standard Chernoff bound, all v ∈ Z satisfy

P(v < S) = P(|N (v) ∩ Y | < ξx/2) ≤ 2e−ξ x/12 ≤ 2/n2. (4)

Conversely, let Z ′ = {v ∈ X | d(v) < ξ |UX |/24}. For allv ∈ Z ′
, the

random variable |N (v) ∩ Y | follows a hypergeometric distribution

with mean (d(v)/|UX |) · x < ξx/24. Again by a standard Chernoff

bound, all v ∈ Z ′
satisfy

P(v ∈ S) = P
(
|N (v)∩Y | ≥ ξx/2

)
≤ e−ξ x/2 ≤ e−12 logn <

1

n2
. (5)

We obtain the required upper bound on the failure probability of

the algorithm by (4), (5), and a union bound over allv ∈ Z ∪Z ′
. �

The following lemma implies that finding a ξ -core S of X ⊆ V
with ξ small will allow us to either apply Lemma 3 to halve ∂(X )

(possibly after removing S) or halve the size of |UX | by removing S .

Lemma 6. Let ξ ∈ (0, 1), let X be a set with ∅ ( X ⊆ V , and let S
be a ξ -core of X .

(i) If S is a ξ -witness of X , then X is ξ -balanced.
(ii) If S is a ξ -unbalancer of X , then either X \ S contains no

48ξ -unbalancer or |UX \S | ≤ |UX |/2.

Proof. Suppose S is a ξ -witness of X , so that either S = ∅

or |S | ≥ 24/ξ 2. If S = ∅, then by (W1) every vertex in X has

degree at most ξ |UX |. Since every vertex in UX is incident to an

edge to X , we have |UX | ≤ ∂(X ) and so X is ξ -balanced. Suppose
instead |S | ≥ 24/ξ 2. Then by (W2), at least 24/ξ 2 vertices in X have

degree at least ξ |UX |/24. Hence ∂(X ) ≥ |UX |/ξ . Since every vertex

v ∈ X satisfies d(v) ≤ |UX |, it follows that d(v) ≤ ξ∂(X ) and so X
is ξ -balanced. Thus (i) holds.

Now suppose S is a ξ -unbalancer of X , suppose S ′ is a 48ξ -
unbalancer of X \ S , and let v ∈ S ′ be arbitrary. By (W2), we

have d(v) ≥ 2ξ |UX \S |. Moreover, since v < S , by (W1) we have

d(v) ≤ ξ |UX |. It follows that |UX | ≥ 2|UX \S |, so (ii) holds. �

We now sketch the proof of the main result. (A full proof is

included in [6].)

Algorithm EdgeCount. Given sets U and V with |U ∪V | = n and
a rational 0 < ε < 1, return a rational number x such that

(1 − ε) · e(G) ≤ x ≤ (1 + ε) · e(G)

holds with probability at least 2

3
.

(E1) Let ζ = ε2/362(logn)3, let X = V , and let t = N = 0.

If n < 3000, then count e(G) exactly using adjG and output it.

(E2) Apply FindCore to X and ζ /48. If FindCore returns ∂(X ),

then output 2
t ∂(X ) + N . Otherwise, it returns a subset S of X .

(E3) If S = ∅ or |S | > 24 · (48/ζ )2, then remove each element of X
independently with probability 1/2, increment t , and go back

to (E2).

(E4) Using adjG , find ∂(S).
(E5) Apply FindCore to X \ S with argument ζ . If FindCore re-

turns ∂(X \S), then output 2t ∂(X )+N = 2
t (∂(S)+∂(X \S))+N .

Otherwise, it returns a subset S ′ of X \ S .
(E6) If S ′ = ∅ or |S ′ | > 24/ζ 2, then remove S from X , remove each

element of X independently with probability 1/2, add 2
t ∂(S)

to N , increment t , and go to (E2).

(E7) Otherwise, remove S from X , add 2
t ∂(S) to N , and go to (E2).

Theorem 10. There is a randomised algorithm A satisfying the
following. Suppose that A is given access to the independence and
adjacency oracles of some bipartite graph G = (U ,V ,E), together
withU , V and some rational ε with 0 < ε < 1. Then with probability
at least 2

3
, algorithmA returns an ε-approximation to e(G). Moreover,

writing n = |U ∪V |, algorithm A runs in time ε−4 · Õ(n) and calls
indG at most ε−2 ·O((logn)6) times.

Proof sketch. We takeA to beEdgeCount, modified to return

an arbitrary value if the running time or oracle access exceeds that

allowed by Theorem 10.

Suppose without loss of generality that n ≥ 3000. For all inte-

gers i ≥ 1, let Xi be the value of X at the start of the ith iteration

of (E2)–(E7), or Xi = Xi−1 if the algorithm terminates before this

point. Define ti and Ni in the same fashion. Let Si be the output of
FindCore at the ith iteration of (E2), or ∅ if the algorithm termi-

nates before this point.

We say that the ith iteration of (E2)–(E7) is good if one of the

following two events occurs:

(i) during the ith iteration, EdgeCount halts and outputs

2
ti ∂(Xi ) + Ni ,
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(ii) EdgeCount does not halt during the ith iteration, and we

have |Xi+1 | · |UXi+1 | ≤ (3/4)i−1n2 and(
1 − 2

√
ζ logn

)ti
e(G) ≤ 2

ti ∂(Xi ) + Ni ≤
(
1 + 2

√
ζ logn

)ti
e(G).

(6)

Let Ei be the event that either the ith iteration is good or Edge-
Count terminates in fewer than i iterations. We will prove that for

all i ≥ 1, we have P(Ei | E1 ∩ · · · ∩ Ei−1) ≥ 1 − 14/n.
Suppose E1 ∩ · · · ∩ Ei−1 occurs, and that EdgeCount does not

terminate in the first i−1 iterations (or the claim is trivial). Suppose

also that every invocation of FindCore in the ith iteration succeeds;
by Lemma 5, this holds with probability at least 1−6/n. In particular,
this implies that if EdgeCount terminates at (E2) or (E5), then Ei
occurs.

Next, suppose the algorithm loops at (E3). Then Si is a (ζ /48)-
witness for Xi , and so Xi is (ζ /48)-balanced by Lemma 6(i). More-

over, |Xi | ≥ 24 logn, or FindCore would have returned ∂(Xi )
at (E2). It follows by Lemma 3 that with probability at least 1 − 4/n,

we have |Xi+1 | ≤ 3|Xi |/4 and |∂(Xi+1)−∂(Xi )/2| ≤
√
ζ logn ·∂(Xi ).

It can easily be shown that this, together with (6) and Ni+1 = Ni ,

implies that the (i +1)st iteration is good. Similarly, if the algorithm

loops at (E6), thenX \Si is ζ -balanced andNi+1 = Ni +2
ti ∂(Si ), and

so the (i+1)st iteration is again good with probability at least 1−4/n.
Finally, suppose the algorithm loops at (E7). Then Si is a (ζ /48)-

unbalancer of Xi , and the output S ′i of FindCore at (E5) is a ζ -
unbalancer of Xi \ Si . It follows by Lemma 6(ii) that |UXi+1 | =

|UXi \Si | ≤ |UXi |/2. We have 2
ti+1∂(Xi+1) + Ni+1 = 2

ti ∂(Xi ) + Ni ,

so it once again follows that the (i + 1)st iteration is good. Thus

by a union bound, we have Pr(Ei | E1 ∩ · · · ∩ Ei−1) ≥ 1 − 14/n as

claimed.

Let m = ⌈7 logn⌉ + 1. By a union bound, since n ≥ 3000, we

have Pr(E1 ∩ · · · ∩ Em ) ≥ 2/3. Suppose E1 ∩ · · · ∩ Em occurs. This

implies that EdgeCount terminates withinm iterations; indeed, if

it has not terminated at the start of themth, then we must have

|Xm | |UXm | ≤ (3/4)m−1n2 < 1. Thus Xm = ∅ orUXm = ∅; in either

case, ∂(X ) = 0 and so EdgeCount will terminate at (E2).

It can easily be verified that since EdgeCount terminates within

m iterations of (E2)–(E7), the running time and oracle access do

not exceed that allowed by Theorem 10, and so EdgeCount runs
to completion. Moreover, by the definition of ζ we have(

1 − 2

√
ζ logn

)m
≥ 1 − ε and

(
1 + 2

√
ζ logn

)m
≤ 1 + ε ,

so the output is an ε-approximation of e(G) by (6). �

4 REDUCING APPROXIMATE #k-SAT TO
k-SAT

Our result is formally stated as follows. Let Πk,s be the satisfi-

ability problem for conjunctions of width-k CNF formulae and

width-s XOR clauses, and note that instances of Πk,s may be ex-

pressed as instances of max{k, s}-SAT with the same number of

variables. Let πk,s be the infimum over all β > 0 such that Πk,s has

a randomised algorithm with running time O∗(2βn ) and success

probability at least 2/3.

Theorem 11. Let k ∈ N with k ≥ 2, let 0 < δ < 1, and suppose
s ≥ 120 lg(6/δ )2/δ . Then there is a randomised ε-approximation
algorithm for #k-SAT with running time ε−2 ·O

(
2
(πk,s+δ )n

)
.

We defer a full proof to [6], and instead provide a sketch. For any

formula F , let SAT(F ) be the number of satisfying assignments of F .
It is relatively easy to show that if F is a k-CNF formula and F ′ is
a collection ofm uniformly random XOR clauses on the variables

of F , then SAT(F ∧ F ′) is concentrated around 2
−m · SAT(F ) with

high probability. Moreover, by a standard self-reducibility argu-

ment, the satisfying assignments of F ∧ F ′ may be counted exactly

with O(SAT(F ∧ F ′)) invocations of an appropriate decision oracle.

Thus by finding an appropriate value of m, one may efficiently

obtain a good estimate of SAT(F ). This is the classical argument of

Valiant and Vazirani [25].

However, this proof requires modification to work in the expo-

nential setting. If F has n variables, then each uniformly random

XOR clause has widthΘ(n)with high probability, and therefore can-
not be expressed as a width-k CNF without introducing Ω(n) new
variables. Thus F ∧ F ′ may contain Θ(n2) variables. This blowup is

acceptable in a polynomial setting, but not an exponential one — for

example, given a Θ(2n
2/3

)-time algorithm for k-SAT, it would yield

a uselessΘ(2n
4/3

)-time approximate counting algorithm for #k-SAT.
In fact, we can afford to add only constant-width XORs, which do

not in general result in concentration in SAT(F ∧ F ′).
We therefore make use of a hashing scheme developed by Cal-

abro, Impagliazzo, Kabanets, and Paturi [3] for a related problem,

that of reducing k-SAT to Unique-k-SAT. In our terminology, an

(s,m,n)-hash is a random m × n matrix A over GF(2) defined as

follows. For each row i ∈ [m], let Ri be a uniformly random size-s
subset of [n]. Then for all i ∈ [m] and all j ∈ Ri , we choose values
Ai, j ∈ GF(2) independently and uniformly at random, and set all

other entries of A to zero. Taking x to be the length-n vector of

variables appearing in F , we then choose b ∈ GF(2)m uniformly at

random and take F ′ to be (Ax = b). This still does not yield concen-
tration in SAT(F ∧ F ′) when s = O(1), but it turns out the variance
is sufficiently low that we can obtain concentration by summing

over many slightly stronger independently-chosen hashes. The key

lemma (which we prove in [6]) is the following.

Lemma 7. Let 0 < δ < 1/6 and let s,m,n ∈ N. Supposem ≤ n and
s ≥ 20 lg(1/δ )2/δ . Let S ⊆ GF(2)n and suppose |S | ≥ 2

m+δn . Let A
be an (s,m,n)-hash, and let b ∈ GF(2)m be uniformly random and
independent of A. Let S ′ = {x ∈ S : Ax = b}. Then E(|S ′ |) = 2

−m |S |

and Var(|S ′ |) ≤ |S |22δn/16−2m .

The remainder of the proof proceeds as in [25].
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