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ABSTRACT
The challenges of food waste and insecurity arise in wealthy and

developing nations alike, impacting millions of livelihoods. The

ongoing pandemic only exacerbates the problem. A major force to

combat food waste and insecurity, food rescue (FR) organizations

match food donations to the non-profits that serve low-resource

communities. Since they rely on external volunteers to pick up and

deliver the food, some FRs use web-based mobile applications to

reach the right set of volunteers. In this paper, we propose the first

machine learning based model to improve volunteer engagement in

the food waste and security domain. We (1) develop a recommender

system to send push notifications to the most likely volunteers

for each given rescue, (2) leverage a mathematical programming

based approach to diversify our recommendations, and (3) propose

an online algorithm to dynamically select the volunteers to notify

without the knowledge of future rescues. Our recommendation

system improves the hit ratio from 44% achieved by the previous

method to 73%. A pilot study of our method is scheduled to take

place in the near future.

CCS CONCEPTS
• Information systems → Recommender systems; Computa-

tional advertising; • Applied computing→ Economics.
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1 INTRODUCTION
Recall the last time you saw several full shelves of bread with an

expiry date in two days at a grocery store, or the last time you saw a

homeless person downtown asking for ameal. It is not a coincidence

if both scenarios seem familiar to you. The simultaneous food waste

and food insecurity are a serious problem shared by many parts of

the world [11, 19]. Unfortunately, the ongoing COVID-19 pandemic
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is only making things worse [22]. Even after the pandemic hits

its peak, the increased struggle with basic food security will not

subside quickly on our long way back to normal. Thus, now more

than ever, there is an urgent call for action to address the food

security and food waste problem. In this paper, we leverage our AI

expertise to answer this call with our collaborators.

Food rescue organizations (FR) are a major non-profit force in

fighting food waste and insecurity. They match fresh, unexpired

food from donors to organizations serving low-resource communi-

ties, thereby facilitating food redistribution.
1
FRs rely on volunteers

to transport the food. To engage with the volunteers, FRs use a web-

based application on cell phones to post information of upcoming

rescues. Please refer to Section 3 for a detailed description of the

food rescue operation. This “crowdsourcing” paradigm has proved

to be successful in engaging with the general public to address food

waste and insecurity [41].

However, relying on external volunteers to deliver the food

comes with inherent uncertainty. What if no volunteer will claim

the rescue? This uncertainty is prevalent in FR operations and it

has serious consequences such as lost faith in the program from the

donor and recipient organizations. Since the primary way in which

FRs contact volunteers is through push notifications, to improve

the claim rate one would certainly want to send push notifications

to volunteers who are likely to claim the given rescue. Currently,

when a rescue is published, the mobile app sends notifications to

volunteers who are within a certain radius of the donor. Although

being close to the donor is clearly a positive factor, this is far from

a perfect solution as its hit ratio is only 44%, which means it misses

the “correct” volunteer more than half of the time. On the other

hand, we also want to avoid sending push notifications to every vol-

unteer all the time, because that would easily drive them away from

the platform or prompt them to disable notifications altogether [14].

A customized push notifications, with good justifications, would

better engage the user. Thus, it is crucial to send the push notifi-

cations to a selected set of volunteers who are likely to claim the

rescue.

In this paper, we propose the first machine learning based model

to select the right set of volunteers to notify in the food waste and

security domain. By treating each rescue trip as a “user” and each

volunteer as an “item”, we study this problem from a recommender

system perspective. Recommender systems have received a lot of

interest from theWWWcommunity in the past years [12, 21, 26, 45].

Our task is relevant to this literature but also brings several new

challenges. We state these challenges and our approaches to address

them as follows.

1
We would like to emphasize that only fresh and unexpired food can be donated

through FRs.
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• First, since each rescue only happens once, we stay in the

“cold start” phase of the recommender system forever, ren-

dering collaborative filtering-based methods unsuitable. We

leverage a sophisticated set of contextual features, an adap-

tive under-sampling technique, and a neural architecture to

develop a content-based recommender system.We show that

our model outperforms a number of baselines, and improves

the hit ratio of recommending the correct volunteer to 73%.

This is a 66% improvement from the current practice which

has a 44% hit ratio.

• Second, not being able to recommend diverse items is a seri-

ous issue in the recommender systems literature. It is partic-

ularly concerning in our application because the “items” are

human volunteers who contribute their time to the cause.

We leverage a mathematical programming based approach

by imposing diversity constraints on the output of the rec-

ommender system. This ensures that each volunteer receives

only a limited number of push notifications every day.

• Third, most literature on recommender systems assumes

an offline environment that has a static dataset. However,

food donations arrive sequentially and thus the FR must

accordingly make decisions without the knowledge of future

rescues. We identify an important arrival pattern of the food

rescue trips based on our experience in the domain. Relying

on this insight, we develop an online planning algorithm

which sequentially selects the volunteers to notify, while

still satisfying the diversity constraint we imposed earlier.

We show that our online algorithm achieves a hit ratio that

is only 10% worse than the hypothetical offline mode where

we assume knowledge of all the rescues at the beginning of

the day.

Food rescue organizations have made their presence in most

major cities in the US and beyond. In the US alone, there are al-

ready over 50 cities where FRs are providing basic necessities to

the communities, affecting over a million people. We are working

with 412 Food Rescue (412FR), a large food rescue organization

in Pittsburgh.
2
Since its incorporation in 2015, 412FR has served

over 1,000 nonprofit partners and has grown a network of over

15,000 volunteers in the Greater Pittsburgh Region. The models we

describe in this paper are in the process of being deployed at 412FR.

Furthermore, we believe that the problem we tackle is not limited

to this particular application: it can be adapted to many domains

with a crowdsourcing type of operation that relies on volunteers to

perform the task.

2 RELATEDWORK
There is a growing literature on using AI or related tools to study

the food rescue operation. Some formulate a vehicle routing prob-

lem to match the donation with recipients [20, 31], while others

tackle the problem from a fair allocation and market design perspec-

tive [5, 27, 35]. Because the demand and supply or food are external

to the FR, some works are focused on forecasting the future food

supply [32, 34]. While all these works provide useful insights into

the FR operation, the existing literature largely misses the volunteer

side of the process. Among the few pieces of work that explicitly

2
https://412foodrescue.org/

consider the volunteer crowdsourcing aspect of food rescue, Lee

et al. developed a participatory democracy framework to allow

volunteers and other stakeholders to decide on the matching of

donations and recipients, which is orthogonal to our work [24]. Shi

et al. developed a machine learning model to predict whether a res-

cue trip will be claimed and an optimization model to find the best

intervention scheme [38]. Our work complements theirs and both

can be used simultaneously by FRs. Yet we advance from them in

two aspects. First, compared to their predictive model as a decision

aid for downstream human interventions, our recommender system

directly improves the upstream notification process which can re-

duce the need for the costly human intervention. Second, compared

to their prescriptive model which sets system-level notification

parameters, our recommender system is rescue-specific, thereby

leveraging more information to make better decisions. Finally, Man-

shadi and Rodilitz design online volunteer notification algorithms

in a similar setting [28]. Compared to their work, we take a pure

data-centric approach and make few modeling assumptions about

the volunteer and rescue patterns, with the sole purpose of finding

the most likely volunteers in the real-world use case of this system.

The literature on recommender systems is vast and we will only

discuss two topics relevant to our work – cold start and diversity.

Cold start refers to the scenario where there is no previous label on

a new user or new item [37]. An active approach to deal with cold

start would be to interact with the user to request labels, which

is often framed as a bandit problem [10, 18, 25, 36, 39, 44]. This is

clearly not applicable to our setting, since each rescue is a one-shot

business and the stake is too high for real-world trials. Thus, we

turn to passive approaches which make do with the data we have.

Content-based approaches are a natural candidate for this challenge.

Collaborative filtering is not designed to perfectly handle cold start,

though there have beenmethods to enhance it with side information

towards addressing this problem [8, 9, 16]. In this paper, we propose

a content-based model for the following reasons. First, in our food

rescue setting, cold start is not just a short unpleasant period at

the beginning which might imply secondary concern. Instead, we

stay in the cold start phase forever because every rescue (user)

is new. Thus, handling it perfectly with content-based models is

of utmost consideration. Second, we have identified a good set of

interaction features based on our experience in the food rescue

operation. Third, there is no collaborative filtering-based system

currently in place that holds us back from using a content-based

approach. Recent advances in leveraging neural architecture in

recommender systems serve as a starting point for us to build our

model [21].

Our problem is also related to the diversity of recommender

systems, which concerns both individual diversity and aggregate

diversity. Individual diversity refers to recommending diverse items

within the recommended list for each user [43, 45]. Aggregate di-

versity refers to recommending diverse items between the recom-

mended lists for different users [1, 7, 15, 30, 33]. In our problem,

we hope to avoid sending push notifications to a small subset of

volunteers (items) all the time. Thus, our problems concerns the

aggregate diversity. At the technical level, our method of diver-

sifying the recommendations can be considered as a variant of

the integer programming approach by Adomavicius and Kwon [1].
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However, our problem has an additional subtlety that makes it more

challenging, as we discuss below.

In food rescue, each rescue trip arrives sequentially and thus

we need to make the recommendation decision in an online fash-

ion. This brings additional challenge to our effort to diversify the

recommendations. This problem resembles the well-studied online

adwords matching problem [3, 17, 29], and could fit under the more

general online linear programming framework [4]. However, these

works typically only guarantee asymptotic results or require prior

knowledge of the number of rescues on any given day, which makes

them impractical in our setting. There is also a literature on budget

pacing in online advertisement [2, 23, 42]. Our application domain

and the central problem are different from online advertisement, but

our online planning for push notification budget can be considered

as a novel way of pacing.

3 ANATOMY OF FOOD RESCUE OPERATIONS
Food rescue organizations serve as an intermediary between the

food donors and recipient organizations. Donors, typically grocery

stores and restaurants, would call the FR when they have food items

that they want to donate. After receiving the call, the FR dispatcher

matches this donation with some recipient organization, typically

some non-profit organization that serves a low-resource community.

Once this matching is done, the dispatcher posts this matching on

the FR’s mobile app. Hereafter, the food rescue process becomes

visible to the volunteers. As shown in Figure 1, a volunteer, who

has the FR’s mobile app installed on the phone, will then receive

a push notification about the rescue. If they choose to claim it on

the app, the app would provide them with the detailed information

instructing themwhere to pick up the donation andwhere to deliver.

The volunteer then goes out to complete the rescue trip.

Of course, the workflow described above is an ideal scenario. In

reality, occasionally, some rescue trip stays unclaimed on the mobile

app for a long time. FR dispatchers want to prevent this situation as

much as possible, since each rescue comes with a deadline which

is bounded by the nature of the food and the operation hours of

the donor and recipient. Unclaimed rescues discourage the donors

and recipients from participating in the program in the future.

FRs have two ways to address this problem. First, it sends push

notifications to possible volunteers to advertise the rescue. Second,

the dispatchers might individually call some regular volunteers

to ask for help. In a previous work, Shi et al. focus on the latter

approach in order to help the dispatcher’s decision-making [38].

We focus on the former by directly finding the best set of volunteers

to send push notifications to.

4 DATA
To develop a recommender system, we need both positive and neg-

ative labeled examples. A positive example means that a particular

volunteer (item) claims a particular rescue (user); a negative exam-

ple means otherwise. In this section, we detail our data acquisition,

labeling, and feature engineering process.

4.1 Positive Labels
We obtained the rescue database from 412FR, covering the period

from March 2018 to March 2020. The database keeps the log of each

rescue. For most rescues, the database logs its timestamps from

being drafted by the dispatcher, to being published on the mobile

app, to being claimed and completed by a volunteer. For these

rescues, we simply take the rescue plus the volunteer who claimed

it as a positive data point. However, the food rescue operation is not

always so neat. Occasionally, the dispatcher knows ahead of time

that some volunteer would do the job, so they directly assign the

volunteer for a particular rescue and bypass the app notification

stage. In this case, we take this direct assignment as a positive

example as well. Sometimes a volunteer might claim a rescue and

then drop it, causing some rescue to have multiple volunteers in the

log. In this case, we create our labels based on the last volunteer.

4.2 Negative Labels
A negative example means that a particular volunteer did not claim

a particular rescue. Since almost all rescues have only one volun-

teer who claimed the rescue, obviously most of our data points

will have negative labels. However, not all of these negative data

points are necessarily true, because perhaps a volunteer would have

claimed some rescue if someone else had not claimed it 10 minutes

in advance. Thus, we use the following ways to construct a selected

negative dataset. First, in the time period covered by our database,

412 Food Rescue used a mobile app push notification scheme which

notifies volunteers within 5 miles when the rescue is first available

and then notifies all volunteers 15 minutes later if the rescue has

not been claimed. Thus, if a rescue is claimed within 15 minutes,

we only treat the volunteers who were within 5 miles and did not

opt out of push notifications as negative examples.

We also incorporate another data source to strengthen our nega-

tive sampling. In addition to mobile app notifications, the dispatcher

at 412FR also manually call some regular volunteers to ask for help

with a specific rescue. This usually happens when some rescue

has been available for over an hour yet nobody has claimed it. We

obtained the call history from 412FR, from which we identify the

volunteers they reached out to within the time frame of each rescue.

If these volunteers did not claim the rescues in the end, we treat

them as negative examples. Compared to the negative examples

derived from push notifications, we have more confidence in this set

of negative examples, since declining on a phone call is a stronger

indicator than ignoring a push notification.

4.3 Feature Engineering
Based on our extended collaboration with 412FR, we carefully iden-

tify a selected set of useful features that are relevant in the food

rescue operation.

First, the experience of food rescue dispatcher indicates that if a

volunteer has completed a rescue at or near a donor or recipient,

they are more likely to do a rescue trip again in the neighborhood.

As shown in Figure 2, we divide the Greater Pittsburgh Region into

16 cells. We evenly divide a central rectangular region into a 3 × 5

grid, and label them grid cells 0 through 14. Then, we label the

entire map outside the rectangular region cell 15. The rationale is

that in the outer suburbs there are fewer donors, recipients, and

volunteers, and furthermore volunteers who in suburbs are more

willing to do long-distance, i.e. inter-cell, rescue than volunteers in

downtown. For each rescue trip and each volunteer, we calculate
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(2)	Claim	on	mobile	app (4)	Deliver	to	recipient (5)	Success!(1)	Receive	push	notification (3)	Pick	up	from	donor

Figure 1: The workflow of a food rescue operation from the volunteer’s perspective.
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6 7 8

10 119
12 13 14

15

(a) Distribution of donor organi-
zations. Darker colors mean more
frequent donations. We plot the
donor locations with random pertur-
bations.

0 1 2
3 4 5
6 7 8

10 119
12 13 14

15

(b) Density of recipient organiza-
tions. Darker colors mean more re-
cipient organizations in the grid.

Figure 2: We divide the Pittsburgh area into 16 grid cells,
with cells 0–14 covering downtown Pittsburgh and its neigh-
borhoods, and cell 15 containing the rest of the region.

the number of rescues the volunteer has done in the rescue donor’s

cell, in the rescue recipient’s cell, and across all cells. These counts

are only up to the date of the given rescue, so that we could prevent

data leakage. We also tried to include as features the volunteer’s

historical rescues in each cell, not just the donor’s and recipient’s

cell. However, they did not contribute any predictive power and

thus we leave them out of the final model.

Closely related to this is the distance between the volunteer and

the donor. It is unlikely that a volunteer would drive 30 miles to pick

up a donation, as we show in Figure 3a. We measure the distance

using the straight line distance based on geographic coordinates.

Although the actual traveling distance might be a better indica-

tor, we observe that the straight line distance already serves our

purpose.

Aside from the geographical information, the length of time be-

tween volunteer’s registration on the platform and the rescue is

also an important factor, as suggested by our collaborators at 412FR.

We plot the histogram of this variable in Figure 3b. Immediately

after registration, the volunteer is eager to claim a rescue to get a

feel of the food rescue experience. If a volunteer has stuck with the

program for an extended period and remains active, it is likely that

they are a regular and dependable one as well, which is substanti-

ated with the upward trend and plateau in Figure 3b around days

300–600. Thus, we include this feature in our prediction model.

Weather information is also an important factor in the prediction.

Presumably rainy and snowy days would see a lower volunteer ac-

tivity in general. However, the impact of inclement weather would

fall disproportionately on volunteers who do not have a car or live

in suburban areas. We use the Climate Data Online (CDO) service

provided by the National Oceanic and Atmospheric Administra-

tion to access the weather information.
3
The CDO dataset contains

weather information at the discretization level of days and weather

station. There are multiple weather stations in the Pittsburgh area

and for each rescue we select the data for the date of rescue and

the station that is closest to the donor organization. As shown in

Figure 3c, on wet days, relatively more volunteers who claim the

rescue reside in downtown Pittsburgh (cell 4 and 7). Whereas on

dry days, a lot more volunteers who live in the outer suburbs of

Pittsburgh (cell 15) are active. In fact, we also saw a significant

difference in the average distance between volunteer and donor

for dry days (5.94 miles) and rainy days (5.22 miles), with a t-test

p-value 3 × 10
−8
.

We also explored a number of other features but did not incorpo-

rate them into our final model. These features include the rescue’s

time of day and day of week, the volunteer’s availability, whether

the volunteer uploaded an avatar to their profile or not, whether

the volunteer is located in the same grid as the donor or recipient,

and so on. Although these are intuitive factors, we did not find

them improve the predictive power of our model and hence left

them out.

5 RECOMMENDER SYSTEM
We build a neural network-based recommender system. We first

detail our network architecture, and then discuss our approaches

to address the unique challenges in the food rescue domain.

We show the neural network architecture in Table 1. The input

to the neural network is the feature vector of a rescue-volunteer

pair. The feature vector passes through four dense layers. Each

layer is followed by a ReLU activation function, except for the last

layer where we output a single number which is then converted

3
https://www.ncdc.noaa.gov/cdo-web/
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(a) Histogram of rescues, based on the distance be-
tween the donor and the volunteer who claimed
the rescue.
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(b) Histogram of rescues, based on the length of
time between the rescue and the registration of the
volunteer who claimed the rescue.
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(c) Histograms of rescues under wet and dry
weather, based on the location of the volunteerwho
claimed the rescue.

Figure 3: Data analysis results.

Layer Operation Hidden Units

1 Dense (ReLU) 384

2 Dense (ReLU) 2048

3 Dense (ReLU) 512

4 Dense (Logistic) 16

Table 1: Neural network architecture

to a number between 0 and 1 by the logistic function. This output

represents the likelihood that this volunteer will claim this rescue

trip. We use the cross entropy loss to train the neural network. To

output a list of k volunteers to whom we send push notifications for

a particular rescue at prediction time, we pass the feature vectors

of the rescue-volunteer pairs for all volunteers on a fixed rescue

through the network and rank the output to take the top k of them.

5.1 Negative Sampling
As mentioned earlier, there is an extremely high label imbalance

in our dataset. From March 2018 to March 2020, there are 6757

rescues available for the training. Each rescue typically has only

one volunteer who claimed it, and there are 9212 registered active

volunteers in the Pittsburgh area. Thismeans, theoretically, the ratio

between negative and positive examples is over 9000 : 1. Using

the method introduced in Section 4.2, we can obtain a selected

set of negative examples Dn derived from push notifications and

another set of negative examples Dc derived from dispatcher calls.

The set Dc is slightly smaller than the positive examples Dp , while

|Dn | : |Dp | ≈ 700 : 1. When training the neural network, we always

use all the examples fromDp andDc . However, we randomly sample

a subset of examples from Dn at each episode of the training. By

doing this, we ensure that the negative examples from Dn do not

dominate the training set, and at the same time the “more certain”

negative examples from Dc gets emphasized more than Dn . This

whole procedure leads to an overall ratio between negative and

positive samples around 3 : 1 in each single batch.

5.2 Diversity and Online Planning
Recommender systems in general suffer from the diversity issue,

where “hot” items get recommended to all the users. In commercial

applications, this might lead to the “rich gets richer” phenomenon

on superstar items and the missed revenue opportunity on the less

popular items. All these are valid. However, as we have emphasized

several times in this paper, the “items” on the other side of our rec-

ommender system are humans. The aforementioned consequences

of the lack of diversity is only going to be more problematic in our

case. If a popular volunteer received push notifications for every

single rescue throughout the day, they would possibly get annoyed

and mute the notifications. On the other hand, for volunteers who

are already not very active, if our system never sent them push

notifications, they would probably just forget about the platform

and would be unlikely to return. Therefore, it is crucial that we

properly handle the diversity issue.

We distinguish between two notions of diversity: individual di-

versity and aggregate diversity. The former means that each user

(rescue) gets recommended a diverse set of items (volunteers). The

latter means that the recommended items (volunteers) across dif-

ferent users (rescues) combined cover a large portion of the item

space. Our human-centric approach determines that we focus on

aggregate diversity here. In fact, we focus on a slightly different

metric: how many times each volunteer gets recommended for a

rescue every day. We wish to put a cap on this metric, which is

directly linked to the user experience of each volunteer.

To this end, we can formulate the following mathematical pro-

gram for a given day of food rescue operation.

(Π) max

x

∑
i ∈R

∑
j ∈V

pi jxi j

s .t .
∑
j ∈V

xi j ≤ k, ∀i ∈ R∑
i ∈R

xi j ≤ b, ∀j ∈ V

xi j ∈ {0, 1}, ∀i ∈ R,∀j ∈ V

Let V denote the set of volunteers. On a particular day, we have

a set of rescues R. The binary decision variable xi j is equal to one

if we decide to send push notification to volunteer j about rescue
i . The first constraint indicates that for each rescue we will notify

the top k volunteers, as introduced at the beginning of Section 5.
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Algorithm 1: Online Planning for Optimizing Push

Notifications

input :A trained neural network predictor

1 while a new rescue i arrives do
2 Flush Xi
3 for dayToSample = 1, 2, . . .H do
4 Sample the set of rescues R on the dayToSample that

occured from the time of the current rescue i till
the end of the day.

5 Compute predicted claim probabilities pi j and pi′j
for all i ∈ R, for all j ∈ V .

6 Solve the following optimization problem:

(Πi ) max

x

∑
j ∈V

(
pi jxi j +

∑
i′∈R

pi′jxi′j

)
s .t .

∑
j ∈V

xi′j ≤ k, ∀i ′ ∈ R∑
j ∈V

xi j ≤ k

xi j +
∑
i′∈R

xi′j ≤ bj , ∀j ∈ V

xi j ∈ {0, 1}, ∀i ∈ R,∀j ∈ V

7 Keep in Xi the optimal solution x∗i j for the current

rescue only.

8 Sum Xi over the sampled histories, find the top k
volunteers.

9 Send push notifications to them. Update the remaining

budget bj for each volunteer j.

The second constraint is our diversity constraint, which makes sure

that each volunteer receives at most b push notifications a day. The

pi j in the objective is the output from our trained neural network,

representing the predicted likelihood that volunteer j is going to
claim rescue i .

While this optimization problem Π is a valid method to improve

diversity in generic recommender systems, it does not solve the

problem in our setting. The reason is that donations, and hence

food rescue trips, arrive in our system sequentially throughout the

day, and the dispatcher must also act in real-time. It is unacceptable

to wait till the end of the day, run the optimization problem above,

and then send the push notifications. Therefore, we need an online

algorithm.

An intuitive approach is to resort to the literature on online

linear programming [1]. Indeed, we could imaging solving π where

at each time step, a new rescue is revealed with a new column in the

x matrix andp matrix. However, we do not know howmany rescues

there will be at the beginning of the day. This is a major obstacle

in applying the established algorithms with theoretical guarantees.

Instead, the daily rescue pattern is hardly adversarial in nature and

thus we propose a simple heuristic, as shown in Algorithm 1.

In Algorithm 1, when a food rescue arrives in the system, we sam-

ple the historical rescue data for trajectories. Typically, we would

sample the rescues on the same weekday a week ago, two weeks

ago, and so on. The underlying idea is that the same weekdays

might have similar rescue patterns. This is because most dona-

tions that come to 412FR come from grocery stores or large compa-

nies/universities. Grocery stores often perform inventory counts

on a weekly basis. Companies and universities often hold weekly

events, with catered food. For each sampled day, we only take the

trajectory from the time of the current rescue to the end of the

day. Then, for each trajectory along with the current rescue, we

obtain the neural network’s predicted claim probabilities and solve

the optimization problem Πi . Πi is similar to Π except that each

volunteer now has their own remaining budget of push notification.

Note that now everything in Πi is observed and known, whereas

in Π the future rescues are unknown at the decision-making time.

We keep only the part of the optimal solution that concerns the

current rescue and discard the rest. Later, on Line 8 in Algorithm 1,

for each volunteer, we sum over its value in the optimal solution

across all the sampled trajectories. We take the top k volunteers as

voted by these solutions, who become the ones we will send push

notifications to for this current rescue.

We note that the optimization problem Π and Algorithm 1 are

extremely flexible to account for many additional considerations.

For example, we could use personal budget bj in Π and add addi-

tional constraints to represent the volunteer’s push notification

preferences. We could also add weights to the objective function to

emphasize the importance of a particular rescue.

6 EXPERIMENTS
6.1 Recommender System
Weuse a training set containing rescues fromMarch 2018 to October

2019, which is 80% of the entire dataset. We use the remaining 1373

rescues from November 2019 to March 2020 as the test set. We

conducted all of our experiments on an Intel i7-7700K 4.20GHz

CPU with 64GB RAM.

First, we only consider the prediction part of our algorithm. We

compare our neural network recommender system with several

competitive baselines that are commonly used, including random

forest (RF), gradient boosted decision trees (GBDT), and stacking

model (SM). To determine the hyper-parameters of the baseline

models and the neural network model, we separate a validation set

which consists of the last 1/8 of our training set and then run a

grid search according to the performance on the validation set. For

experiments on the baselines, we use the same negative sampling

method on Dc and Dp as described in Section 5.1. As for negative

examples from the app notifications Dn , since the baselines are not

gradient descent-based methods, we sample them in two schemes

such that the ratio between the positive and negative examples is

roughly 1 : 1 and 1 : 20, respectively. We consider the latter because

that is roughly the number of negative examples that the neural

network approach has seen throughout the training, in order to

ensure a fair comparison.

We show the results of all these algorithms on the test set, aver-

aged over 5 runs, in Table 2. We consider the hit ratio at k (HR@k)

and the normalized discounted cumulative gain at k (NDCG@k) in

Table 2. However, we note that our main metric of interest is the

hit ratio, because when sending push notifications, we do not care

about the particular order in which each volunteer ranks on the
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Model HR@k (SD) NDCG@k (SD)

NN 0.7269 (0.0310) 0.1898 (0.0147)
RF(1:1) 0.5989 (0.0395) 0.1319 (0.0303)

RF(1:20) 0.6035 (0.0511) 0.127 (0.0053)

GBDT(1:1) 0.6235 (0.0549) 0.1613 (0.0098)

GBDT(1:20) 0.5394 (0.0152) 0.1023 (0.0086)

SM(1:1) 0.4996 (0.0005) 0.1332 (0.0002)

SM(1:20) 0.5219 (0.0125) 0.0948 (0.0030)

Default 0.4392 (N/A) N/A (N/A)

Table 2: The performance of the neural network based rec-
ommender system and several baselines. All experiments
are repeated five times with the mean and standard devia-
tion shown in the table.

list. Also because of this, HR@k is our primary metric during the

grid search on hyper-parameters for all the predictive models. We

choose the value of k to be 964, since this is the average number

of push notifications sent per rescue under the current notification

scheme. The current distance-based notification scheme has a hit

ratio of 0.4392. All baselines show better performance than the

current method, with random forest and GBDT being better than

the stacking model. However, the neural network based prediction

model outperforms all the baselines.

The hit ratio of the neural network model is a 66% improvement

over that of the current distance-based method. This means that we

would be able to reach the would-be volunteer in approximately

900 more rescues every year. Each of these rescues has a donor

and a recipient organization that serves tens or hundreds of people

behind it. A smooth food rescue experience would not only provide

basic food necessities to these people, but also encourage these

organizations to keep up the engagement in a sustainable way.

6.2 Diversity and Online Planning
As mentioned in Section 5.2, recommender systems, in general, suf-

fer from the diversity issue. This problem also exists in our model.

In Figure 4, we plot the histogram of the number of push notifica-

tions received by each volunteer for the test set rescues. The neural

network based recommender system, shown in yellow in Figure 4,

exhibits an alarming bimodal distribution: most volunteers either

receive almost no push notifications, or receive push notifications

for almost every single rescue. We remark that although the num-

ber of volunteers in the rightmost bin (446 out of 9312) is much

smaller than that in the leftmost bin (7458 out of 9312), the former

is much more concerning. This is because they are typically the

most “active” volunteers who have contributed the most to the food

rescue program. In fact, these 446 volunteers contain 39 of the top

50 most frequent volunteers, and 51 of the top 100. If they left the

platform due to too many notifications, which is likely to happen

should the proposed recommender system get deployed, the loss to

412FR would be disproportionately high. On the other hand, the

default distance-based notification scheme does not suffer from

this issue, as shown in red in Figure 4. Although the majority of

the volunteers still receive few push notifications, the notification

frequency for each volunteer is capped at roughly once every two

rescues.
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Figure 4: Histograms of the number of push notifications
received by each volunteer over all the 1373 rescues in the
test set. The online planning algorithm has a budget of 6
notifications per day.

Figure 4 serves as a stern warning against the premature de-

ployment of machine learning algorithms in the real world. That

a certain model outperforms the current practice by 66% in some

important metric (here, the hit ratio) does not mean it would not

cause other problems.

We use our Algorithm 1 to improve the diversity of volunteer

recommendations. As a preliminary and straightforward compar-

ison, we ran our online planning Algorithm 1 with budget b = 6

push notifications per day using the rescues seven days ago as

the sampled history. We plot its notification histogram in yellow

in Figure 4. It is easy to see that the online planning algorithm

achieves a push notification distribution much more similar to the

default scheme, than the recommender system alone. It completely

avoids sending push notifications about every single rescue to any

particular volunteer.

Indeed, the effect of Algorithm 1 on recommendation diversity

depends on the budget parameter b. In Figure 5, we plot the notifi-

cation distributions for different choices of the budget value, and

compare them against those of the recommender system and the

default notification scheme. As the budget increases, the distribu-

tion of push notifications from Algorithm 1 approaches that of the

recommender system. We note that the position of the rightmost

peak of each histogram should not be interpreted as an indicator

of the total number of push notifications sent. In all of these ex-

periments, we limit the number of notifications for each rescue

at k = 964. Except for when the budget is extremely small, the

algorithm always notify exactly 964 volunteers for each rescue. The

diversity goal here is to make the histogram occupy as little space

as possible on the right side of the figure.

Much as we demonstrate the improvement of recommendation

diversity, we would also like to ensure that the recommendation

accuracy of our algorithm does not drop too much. The budget

parameter b captures the inherent trade-off between diversity and
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Figure 5: Histograms of the number of push notifications
received by each volunteer over all the 1373 rescues in the
test set, compared across different budget values.
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Figure 6: Hit ratio of the online planing algorithm. Price of
online planning, computed as 1 − HRonline

HRoffline
, is shown on the

right axis.

accuracy. As we show in Figure 6, the yellow curve represents

the hit ratio of Algorithm 1. Algorithm 1 outperforms the existing

notification scheme when the budget is more than four notifications

per day, which is a relatively trivial amount. When the budget rises

to 10 notifications per day or more, the hit ratio is very close to the

bare bone recommender system.

In order to further evaluate the quality of online planning in

Algorithm 1, we also solve an offline version of the problem, where

we solve the mathematical program Π separately for each day, as-

suming full information about the rescues on that day. We show the

hit ratio of the recommendation decision from this offline version

in blue in Figure 6. Since having full information is always better,

the blue curve always lies above the yellow curve representing the

online planning. However, the difference is not big. We term the

difference as the “price of online planning”, which is computed as

1 −
HRonline

HRoffline

. In fact, Figure 6 shows that the price of online plan-

ning is decreasing as the budget grows, and is consistently smaller

than 0.1 when the algorithm is of potential deployment interest

(performing better than the current practice). This validates our

earlier claim in Section 5.2 that the rescues on the same weekday

of the previous week are a reasonably good indicator of the rescues

on the present day.

7 CONCLUSION AND FUTURE DIRECTIONS
A critical goal in the food rescue operation is to be able to reach

the “right” volunteers in time. Working with 412 Food Rescue, we

developed a machine learning model to recommend the most prob-

able volunteers to send push notifications to for each given rescue.

Our machine learning model improved the hit ratio of the current

notification scheme by 66%. The food rescue operation features

two main challenges: the recommendation diversity is of utmost

importance to ensure volunteer experience, and the recommen-

dation must be made in an online fashion. We proposed a novel

algorithm to dynamically recommend volunteers for rescues in real

time, while diversifying the recommendations and still managing

to keep the hit ratio well above the current practice.

The problem of low hit ratio is a real problem that needs to be

addressed. This is also a problem natural for a data-driven approach,

and we do have the relevant data available. There is an existing

approach to this problem (distance-based notification), so our tech-

nological intervention does not introduce new initiatives. Instead,

we amplify the existing initiative. Lots of previous endeavors have

shown that this amplification approach is more likely to achieve

deployment and sustainable impact [40]. In fact, our technological

intervention does not replace, reduce, or attempt to dictate any

human employee’s job at the FR.

There are two immediate future directions that are useful in the

food rescue operation. First, our Algorithm 1 features a classical

predict-then-optimize framework where the learning objective and

the optimization objective are not perfectly aligned. It would be

interesting to consider the recent literature on data-driven opti-

mization [6, 13] to further improve the results shown in Figure 6.

Of course, the online nature of our problem brings an additional in-

teresting challenge that has never been addressed in that literature.

Second, recommendation is necessarily limited by the counterfac-

tuals. In Section 4.2, we proposed several approaches to select the

most credible negative examples. It would be interesting to iden-

tify credible positive examples beyond the explicitly labeled ones,

which are rather scarce in the dataset.

A pilot study of the model and algorithm described in this paper

is scheduled to take place in the near future.
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