skip to main content
10.1145/3442381.3449798acmconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
research-article

High-Dimensional Sparse Cross-Modal Hashing with Fine-Grained Similarity Embedding

Published:03 June 2021Publication History

ABSTRACT

Recently, with the discoveries in neurobiology, high-dimensional sparse hashing has attracted increasing attention. In contrast with general hashing that generates low-dimensional hash codes, the high-dimensional sparse hashing maps inputs into a higher dimensional space and generates sparse hash codes, achieving superior performance. However, the sparse hashing has not been fully studied in hashing literature yet. For example, how to fully explore the power of sparse coding in cross-modal retrieval tasks; how to discretely solve the binary and sparse constraints so as to avoid the quantization error problem. Motivated by these issues, in this paper, we present an efficient sparse hashing method, i.e., High-dimensional Sparse Cross-modal Hashing, HSCH for short. It not only takes the high-level semantic similarity of data into consideration, but also properly exploits the low-level feature similarity. In specific, we theoretically design a fine-grained similarity with two critical fusion rules. Then we take advantage of sparse codes to embed the fine-grained similarity into the to-be-learnt hash codes. Moreover, an efficient discrete optimization algorithm is proposed to solve the binary and sparse constraints, reducing the quantization error. In light of this, it becomes much more trainable, and the learnt hash codes are more discriminative. More importantly, the retrieval complexity of HSCH is as efficient as general hash methods. Extensive experiments on three widely-used datasets demonstrate the superior performance of HSCH compared with several state-of-the-art cross-modal hashing approaches.

References

  1. Cong Bai, Chao Zeng, Qing Ma, Jinglin Zhang, and Shengyong Chen. 2020. Deep adversarial discrete hashing for cross-modal retrieval. In Proc. ACM Int. Conf. Multimedia Retr.525–531.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Moses S. Charikar. 2002. Similarity estimation techniques from rounding algorithms. In Proc. ACM Symposium on Theory of Compu.380–388.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Zhen Duo Chen, Chuan Xiang Li, Xin Luo, Liqiang Nie, Wei Zhang, and Xin Shun Xu. 2020. SCRATCH: A scalable discrete matrix factorization hashing framework for cross-modal retrieval. IEEE Trans. Circuits Syst. Video Technol. 30, 7 (2020), 2262–2275.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Zhen Duo Chen, Yongxin Wang, Hui Qiong Li, Xin Luo, Liqiang Nie, and Xin Shun Xu. 2019. A two-step cross-modal hashing by exploiting label correlations and preserving similarity in both steps. In Proc. ACM Multimedia Conf.1694–1702.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Miaomiao Cheng, Liping Jing, and Michael K. Ng. 2020. Robust unsupervised cross-modal hashing for multimedia retrieval. ACM Trans. Inf. Syst. 38, 3 (2020), 1–25.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Tat Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yantao Zheng. 2009. NUS-WIDE: A real-world web image database from National University of Singapore. In Proc. ACM Int. Conf. Image Video Retr.48.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cheng Da, Shibiao Xu, Kun Ding, Gaofeng Meng, Shiming Xiang, and Chunhong Pan. 2017. Asymmetric multi-valued hashing. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.736–744.Google ScholarGoogle ScholarCross RefCross Ref
  8. Sanjoy Dasgupta, Charles F. Stevens, and Saket Navlakha. 2017. A neural algorithm for a fundamental computing problem. Science 358, 6364 (2017), 793–796.Google ScholarGoogle Scholar
  9. Guiguang Ding, Yuchen Guo, and Jile Zhou. 2014. Collective matrix factorization hashing for multimodal data. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.2075–2082.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Wei Dong, Moses Charikar, and Kai Li. 2008. Asymmetric distance estimation with sketches for similarity search in high-dimensional spaces. In Proc. Int. ACM SIGIR Conf. Res. Develop. Inf. Retr.123–130.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hugo Jair Escalante, Carlos A. Hernandez, Jesus A. Gonzalez, Aurelio Lopezlopez, Manuel Montes-y-Gómez, Eduardo F. Morales, Luis Enrique Sucar, Luis Villasenor, and Michael Grubinger. 2010. The segmented and annotated IAPR TC-12 benchmark. Comput. Vision Image Understanding 114, 4 (2010), 419–428.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Jianlong Fu, Heliang Zheng, and Tao Mei. 2017. Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.4476–4484.Google ScholarGoogle ScholarCross RefCross Ref
  13. Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. 2013. Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 35, 12 (2013), 2916–2929.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Albert Gordo, Florent Perronnin, Yunchao Gong, and Svetlana Lazebnik. 2014. Asymmetric distances for binary embeddings. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1 (2014), 33–47.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hengtong Hu, Lingxi Xie, Richang Hong, and Qi Tian. 2020. Creating something from nothing: unsupervised knowledge distillation for cross-modal hashing. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.3123–3132.Google ScholarGoogle ScholarCross RefCross Ref
  16. Mengqiu Hu, Yang Yang, Fumin Shen, Ning Xie, Richang Hong, and Heng Tao Shen. 2019. Collective reconstructive embeddings for cross-modal hashing. IEEE Trans. Image Process. 28, 6 (2019), 2770–2784.Google ScholarGoogle ScholarCross RefCross Ref
  17. Mark J. Huiskes and Michael S. Lew. 2008. The MIR flickr retrieval evaluation. In Proc. ACM Int. Conf. on Multimedia Inf. Retr.39–43.Google ScholarGoogle Scholar
  18. Rongrong Ji, Hong Liu, Liujuan Cao, Di Liu, Yongjian Wu, and Feiyue Huang. 2017. Toward optimal manifold hashing via discrete locally linear embedding. IEEE Trans. Image Process. 26, 11 (2017), 5411–5420.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Qing Yuan Jiang and Wu Jun Li. 2017. Deep cross-modal hashing. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.3270–3278.Google ScholarGoogle ScholarCross RefCross Ref
  20. Qing Yuan Jiang and Wu Jun Li. 2019. Discrete latent factor model for cross-modal hashing. IEEE Trans. Image Process. 28, 7 (2019), 3490–3501.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Wang Cheng Kang, Wu Jun Li, and Zhi Hua Zhou. 2016. Column sampling based discrete supervised hashing. In Proc. AAAI Conf. Artif. Intell.1230–1236.Google ScholarGoogle ScholarCross RefCross Ref
  22. Dmitry Krotov and John J. Hopfield. 2019. Unsupervised learning by competing hidden units. Proc. Natl. Acad. Sci. USA 116, 16 (2019), 7723–7731.Google ScholarGoogle ScholarCross RefCross Ref
  23. Zhihui Lai, Yudong Chen, Jian Wu, Wai Keung Wong, and Fumin Shen. 2018. Jointly sparse hashing for image retrieval. IEEE Trans. Image Process. 27, 12 (2018), 6147–6158.Google ScholarGoogle ScholarCross RefCross Ref
  24. Chao Li, Cheng Deng, Ning Li, Wei Liu, Xinbo Gao, and Dacheng Tao. 2018. Self-supervised adversarial hashing networks for cross-modal retrieval. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.4242–4251.Google ScholarGoogle ScholarCross RefCross Ref
  25. Wenye Li, Jingwei Mao, Yin Zhang, and Shuguang Cui. 2018. Fast similarity search via optimal sparse lifting. In Proc. Neural Inf. Process. Syst.176–184.Google ScholarGoogle Scholar
  26. Andrew C. Lin, Alexei M. Bygrave, Alix De Calignon, Tzumin Lee, and Gero MiesenböCk. 2014. Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination. Nat. Neurosci. 17, 4 (2014), 1097–6256.Google ScholarGoogle ScholarCross RefCross Ref
  27. Guosheng Lin, Chunhua Shen, David Suter, and Anton van den Hengel. 2013. A general two-step approach to learning-based hashing. In Proc. IEEE Int. Conf. Comput. Vis.2552–2559.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Zijia Lin, Guiguang Ding, Mingqing Hu, and Jianmin Wang. 2015. Semantics-preserving hashing for cross-view retrieval. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.3864–3872.Google ScholarGoogle ScholarCross RefCross Ref
  29. Hong Liu, Rongrong Ji, Yongjian Wu, Feiyue Huang, and Baochang Zhang. 2017. Cross-modality binary code learning via fusion similarity hashing. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.7380–7388.Google ScholarGoogle ScholarCross RefCross Ref
  30. Wei Liu, Cun Mu, Sanjiv Kumar, and Shih Fu Chang. 2014. Discrete graph hashing. In Proc. Neural Inf. Process. Syst.3419–3427.Google ScholarGoogle Scholar
  31. Wei Liu, Jun Wang, Rongrong Ji, and Yu Gang Jiang. 2012. Supervised hashing with kernels. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.2074–2081.Google ScholarGoogle Scholar
  32. Mingsheng Long, Yue Cao, Jianmin Wang, and Philip S. Yu. 2016. Composite correlation quantization for efficient multimodal retrieval. In Proc. Int. ACM SIGIR Conf. Res. Develop. Inf. Retr.579–588.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Xin Luo, Liqiang Nie, Xiangnan He, Ye Wu, Zhen Duo Chen, and Xin Shun Xu. 2018. Fast scalable supervised hashing. In Proc. Int. ACM SIGIR Conf. Res. Develop. Inf. Retr.735–744.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Xin Luo, Peng Fei Zhang, Zi Huang, Liqiang Nie, and Xin Shun Xu. 2019. Discrete hashing with multiple supervision. IEEE Trans. Image Process. 28, 6 (2019), 2962–2975.Google ScholarGoogle ScholarCross RefCross Ref
  35. Changyi Ma, Chonglin Gu, Wenye Li, and Shuguang Cui. 2020. Large-scale image retrieval with sparse binary projections. In Proc. Int. ACM SIGIR Conf. Res. Develop. Inf. Retr.1817–1820.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Xinhong Ma, Tianzhu Zhang, and Changsheng Xu. 2020. Multi-level correlation adversarial hashing for cross-modal retrieval. IEEE Trans. Multimedia 22, 12 (2020), 3101–3114.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Devraj Mandal, Kunal N. Chaudhury, and Soma Biswas. 2019. Generalized semantic preserving hashing for cross-modal retrieval. IEEE Trans. Image Process. 28, 1 (2019), 102–112.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Walter Rudin. 1976. Principles of mathematical analysis. Vol. 3. McGraw-hill New York.Google ScholarGoogle Scholar
  39. Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Fei Fei Li. 2015. ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115, 3 (2015), 211–252.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Chaitanya K. Ryali, John J. Hopfield, Leopold Grinberg, and Dmitry Krotov. 2020. Bio-Inspired hashing for unsupervised similarity search. In Proc. Int. Conf. Mach. Learn.8295–8306.Google ScholarGoogle Scholar
  41. Fumin Shen, Chunhua Shen, Wei Liu, and Heng Tao Shen. 2015. Supervised discrete hashing. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.37–45.Google ScholarGoogle ScholarCross RefCross Ref
  42. Yufeng Shi, Xinge You, Feng Zheng, Shuo Wang, and Qinmu Peng. 2019. Equally-guided discriminative hashing for cross-modal retrieval. In Proc. Int. Joint Conf. Artif. Intell.4767–4773.Google ScholarGoogle ScholarCross RefCross Ref
  43. Jingkuan Song, Yang Yang, Yi Yang, Zi Huang, and Heng Tao Shen. 2013. Inter-media hashing for large-scale retrieval from heterogeneous data sources. In Proc. ACM SIGMOD Int. Conf. Manag.785–796.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Charles F. Stevens. 2016. A statistical property of fly odor responses is conserved across odors. In Proc. Natl. Acad. Sci.6737––6742.Google ScholarGoogle ScholarCross RefCross Ref
  45. Di Wang, Xinbo Gao, Xiumei Wang, and Lihuo He. 2015. Semantic topic multimodal hashing for cross-media retrieval. In Proc. Int. Joint Conf. Artif. Intell.3890–3896.Google ScholarGoogle Scholar
  46. Di Wang, Xinbo Gao, Xiumei Wang, and Lihuo He. 2019. Label consistent matrix factorization hashing for large-scale cross-modal similarity search. IEEE Trans. Pattern Anal. Mach. Intell. 41, 10 (2019), 2466–2479.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Di Wang, Quan Wang, and Xinbo Gao. 2018. Robust and flexible discrete hashing for cross-modal similarity search. IEEE Trans. Circuits Syst. Video Technol. 28, 10 (2018), 2703–2715.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Lu Wang, Chao Ma, Enmei Tu, Jie Yang, and Nikola Kasabov. 2018. Discrete sparse hashing for cross-modal similarity search. In Proc. Int. Conf. Neural Inf. Process.256–267.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Yongxin Wang, Xin Luo, Liqiang Nie, Jingkuan Song, Wei Zhang, and Xin Shun Xu. 2021. BATCH: A scalable asymmetric discrete cross-modal hashing. IEEE Trans. Knowl. Data Eng.(2021). https://doi.org/10.1109/TKDE.2020.2974825Google ScholarGoogle Scholar
  50. Yongxin Wang, Xin Luo, and Xin Shun Xu. 2020. Label embedding online hashing for cross-modal retrieval. In Proc. ACM Multimedia Conf.871–879.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Yunbo Wang, Xianfeng Ou, Jian Liang, and Zhenan Sun. 2021. Deep semantic reconstruction hashing for similarity retrieval. IEEE Trans. Circuits Syst. Video Technol. 31, 1 (2021), 387–400.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Yair Weiss, Antonio Torralba, and Rob Fergus. 2009. Spectral hashing. In Proc. Neural Inf. Process. Syst.1753–1760.Google ScholarGoogle Scholar
  53. Rongkai Xia, Yan Pan, Hanjiang Lai, Cong Liu, and Shuicheng Yan. 2014. Supervised hashing for image retrieval via image representation learning. In Proc. AAAI Conf. Artif. Intell.2156–2162.Google ScholarGoogle ScholarCross RefCross Ref
  54. Xing Xu, Fumin Shen, Yang Yang, Heng Tao Shen, and Xuelong Li. 2017. Learning discriminative binary codes for large-scale cross-modal retrieval. IEEE Trans. Image Process. 26, 5 (2017), 2494–2507.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Jile Zhou, Guiguang Ding, and Yuchen Guo. 2014. Latent semantic sparse hashing for cross-modal similarity search. In Proc. Int. ACM SIGIR Conf. Res. Develop. Inf. Retr.415–424.Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    WWW '21: Proceedings of the Web Conference 2021
    April 2021
    4054 pages
    ISBN:9781450383127
    DOI:10.1145/3442381

    Copyright © 2021 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 3 June 2021

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate1,899of8,196submissions,23%

    Upcoming Conference

    WWW '24
    The ACM Web Conference 2024
    May 13 - 17, 2024
    Singapore , Singapore

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format