
TextGNN: Improving Text Encoder via Graph Neural Network in
Sponsored Search

Jason Yue Zhu∗†

Stanford University
Stanford, CA, USA

jzhu121@stanford.edu

Yanling Cui†
Microsoft

Beijing, China
yanling.cui@microsoft.com

Yuming Liu
Microsoft

Beijing, China
yumliu@microsoft.com

Hao Sun
Microsoft

Beijing, China
hasun@microsoft.com

Xue Li
Microsoft

Sunnyvale, CA, USA
xeli@microsoft.com

Markus Pelger
Stanford University
Stanford, CA, USA

mpelger@stanford.edu

Tianqi Yang
Microsoft

Beijing, China
tianqi.yang@microsoft.com

Liangjie Zhang
Microsoft

Beijing, China
liazha@microsoft.com

Ruofei Zhang
Microsoft

Sunnyvale, CA, USA
bzhang@microsoft.com

Huasha Zhao
Microsoft

Sunnyvale, CA, USA
huasha.zhao@microsoft.com

ABSTRACT
Text encoders based on C-DSSM or transformers have demonstrated
strong performance in many Natural Language Processing (NLP)
tasks. Low latency variants of these models have also been devel-
oped in recent years in order to apply them in the field of sponsored
search which has strict computational constraints. However these
models are not the panacea to solve all the Natural Language Under-
standing (NLU) challenges as the pure semantic information in the
data is not sufficient to fully identify the user intents. We propose
the TextGNN model that naturally extends the strong twin tower
structured encoders with the complementary graph information
from user historical behaviors, which serves as a natural guide to
help us better understand the intents and hence generate better lan-
guage representations. The model inherits all the benefits of twin
tower models such as C-DSSM and TwinBERT so that it can still
be used in the low latency environment while achieving a signifi-
cant performance gain than the strong encoder-only counterpart
baseline models in both offline evaluations and online production
system. In offline experiments, the model achieves a 0.14% overall
increase in ROC-AUC with a 1% increased accuracy for long-tail
low-frequency Ads, and in the online A/B testing, the model shows
∗This work was completed during the 1st author’s internship at Microsoft
†Authors contributed equally to this work

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3449842

a 2.03% increase in Revenue Per Mille with a 2.32% decrease in Ad
defect rate.

CCS CONCEPTS
• Information systems→ Recommender systems; Language
models; Similarity measures; Learning to rank; Query repre-
sentation.

KEYWORDS
Ad Relevance; Sponsored Search; Text Encoder; Graph Neural Net-
work; Transformers; C-DSSM; BERT; Knowledge Distillation
ACM Reference Format:
Jason Yue Zhu, Yanling Cui, Yuming Liu, Hao Sun, Xue Li, Markus Pel-
ger, Tianqi Yang, Liangjie Zhang, Ruofei Zhang, and Huasha Zhao. 2021.
TextGNN: Improving Text Encoder via Graph Neural Network in Sponsored
Search. In Proceedings of the Web Conference 2021 (WWW ’21), April 19–
23, 2021, Ljubljana, Slovenia. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3442381.3449842

1 INTRODUCTION
Sponsored search refers to the business model of search engine
platforms where third-party sponsored information is shown to
targeted users along with other organic search results. This allows
the advertisers such as manufacturers or retailers to increase the
exposure of their products to more targeted potential buyers, and
at the same time gives users a quicker access to solutions for their
needs. Hence it has become an indispensable part of our modern
web experience. While many of the existing models are very pow-
erful for various tasks in sponsored search, there still remain three
main challenges for future developments in this field: 1) while

ar
X

iv
:2

10
1.

06
32

3v
3 

 [
cs

.C
L

] 
 1

 M
ay

 2
02

1

https://doi.org/10.1145/3442381.3449842
https://doi.org/10.1145/3442381.3449842
https://doi.org/10.1145/3442381.3449842


WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Zhu, et al.

the existing models have strong performances on matching com-
mon queries with popular products, they usually still find long-tail
low-frequency queries/Ads to be more challenging. The worse em-
bedding representations in rare items are potentially caused by
under-training due to naturally scarce data on these low-frequency
examples. 2) while many modern models improve in implicit feature
engineering on the existing input data, finding new and easily acces-
sible data with complement information is still a promising route
to greatly improve the model performance but is rarely explored. 3)
the search engine systems generally have very strict constraints on
computational resources and latency requirements. Many recently
developed large powerful models are simply infeasible to deploy
onto the highly constrained online search engine systems.

Representation learning for queries, products, or users has been
a key research field with many breakthroughs over the last years
and has been adopted in many production sponsored search sys-
tems [8][18][4][1]. Convolutional Deep Structured Semantic Model
(C-DSSM) [21] is among the first powerful solutions to encode
text data into low-dimensional representation vectors which can
be applied to downstream tasks and have efficient inference per-
formance, but its NLU performance has been surpassed by many
recently developed NLP models. The pre-trained language models
emerged in recent years, such as transformers [22] and BERT [3],
have demonstrated far superior performance in many NLU tasks
and even reach human level performance on many tasks. These
models are better at capturing contextual information in the sen-
tences and generate better language representation embeddings,
leading to much stronger performance in downstream tasks. How-
ever, due to the complexity, these models are unfortunately not
feasible to run in low latency systems without modifications. Re-
cently, the transformer model has been modified and trained with
special techniques such as knowledge distillation [7], which allows
us to use similar transformers structure but much smaller model
called TwinBERT [17] to run with reasonable computational cost in
the production systems while having little or no performance loss
compared to the full size BERT models. This breakthrough signifi-
cantly improves the user Information Retrieval experience when
using search engines. However, while both C-DSSM and TwinBERT
are specifically designed to be applied to the low latency systems
with strong performance, they are not the panacea to fully solve
all the problems in sponsored search. Their model ability is some-
times hindered by the limited information in the original input
texts and hence still suffers in understanding many challenging low
frequency inputs.

Given the strong performance of the baseline models in NLU
tasks, it would be extremely difficult to further improve them solely
based on the structural changes of the model without introducing
new complement information. The newly developed NLP models
achieve relatively small improvements with exponentially growth
in model complexity, and hence reach the margin of diminishing
returns making it harder to satisfy all the latency constraints. A
real improved model in this field should then be able to take in
additional information beyond the tradition semantic text inputs,
demonstrate stronger performance over the harder low-frequency
inputs, and at the same time should not significantly increase the
inference time.

A natural and easily accessible data source that provides infor-
mation beyond semantic text in the search engine system is users’
implicit feedbacks recorded in logs in the form of clicks through
the links shown to them. A click signals a connection between a
query and an Ad and hence a large behavior graph based on clicks
can be easily built. In the recent years, various Graph Neural Net-
work (GNN) structures [27] have been proposed to deal with the
abundant graph-typed data and demonstrated strong performance
and breakthroughs in social networks, recommendations, or natu-
ral science tasks. Motivated by the recent developments in GNN
community, we are aiming to identify ways to include complemen-
tary and abundant graph-type data into the text model in a natural
way. Most existing GNN models focus only on the aggregation of
pre-existing neighbor features that are fixed throughout training.
Instead of training the language model and the graph model sepa-
rately, we want the two models to work in conjunction with each
other to generate better query/Ad representations that can help
understanding users’ needs in a deeper way.

The main contributions of this work are three-folds:
(1) We propose TextGNN1, a general end-to-end framework

for NLU that combines the strong language modeling text
encoders with graph information processed by Graph Neural
Networks to achieve stronger performance than each of its
individual components.

(2) We find a systematical way to leverage graph information
that greatly improves the robustness and performance by
1% on hard examples. These samples are very challenging
when only using semantic information.

(3) We trained TextGNN with knowledge distillation to get a
compact model. The model has been adopted in the pro-
duction system that has strict computational and latency
constraints while achieving a 2.03% increase in Revenue Per
Mille with a 2.32% decrease in Ad defect rate in the online
A/B testing.

The rest of this paper is organized as follows. Section 2 is a brief
introduction of sponsored search and Ad relevance task. Section
3 reviews related literature. Section 4 discusses the details of the
model, including the architecture, the construction of graph-type
data, and the training methodology. Section 5 reports the experi-
mental results of TextGNN in comparison to the baseline model
under both offline and online settings with a few illustrative case
study examples. Section 6 concludes the paper and briefly discusses
the future directions of this work.

2 SPONSORED SEARCH AND AD RELEVANCE
The TextGNN model is developed to improve the existing Ad Rel-
evance model at a major Sponsored Search platform. In a typical
sponsored search ecosystem, there are often three parties: user, ad-
vertiser and search engine platform. When the user types a query
into the search engine, the goal of the platform is to understand
the underlying intent of the user behind the semantic meanings
of the query, and then try to best match it with a short list of Ads
submitted by the advertisers alongside other organic search results.

1The BERT version implementation of the model may be found at:
https://github.com/microsoft/TextGNN



TextGNN: Improving Text Encoder via Graph Neural Network in Sponsored Search WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

In the back-end when a query is received by the platform, the
system will first conduct a quick but crude recall step using highly
efficient Information Retrieval algorithms (such as TF-IDF [11] or
BM25 [19]) to retrieve an initial list of matched candidates. The
relatively long list is then passed to the downstream components
for a finer filtering and final ranking using much more sophisticated
but slightly less efficient models to serve the users. In both of
the later steps, Deep Learning based Ad Relevance models play
a key role in delivering high quality contents to the user and match
advertisers’ products with the potential customers. For the Ad
Relevance task, our model usually relies only on the query from a
user and keywords provided by the advertiser. A query refers to a
short text that a user typed into the search engine when he/she is
looking for relevant information or product, and the model needs
to identify the user’s intent based on the short query. A keyword
is a short text submitted by an advertiser that is chosen to express
their intent about potential customers. The keyword is in general
not visible from end users, but it is crucial for the search engine
platform to match user intents.

When an Ad is displayed to a user, we call this an impression.
The platform does not receive anything from an impression but
earns revenue only when the displayed Ad is clicked by the user.
Because of this mechanism, the search engine platform has an
incentive to display the Ads that best match user intents, which
directly affects the revenue. Lastly, given the scale of the traffic of
the search engine, Ad Relevance models are such an indispensable
component of the system and any improvement of the performance
of the model can lead to huge impact on the business side of the
search engine.

3 RELATEDWORK
Text Encoders including C-DSSM and Pre-trained Transformer-
based Language Models (such as BERT) have achieved impressive
state-of-the-art performance in many NLP tasks for their effective
language or contextual word representations, hence have become
one of the most important and most active research areas.

C-DSSM is developed specifically for extracting semantic infor-
mation into a low-dimension representation vector by combining
convolutional layers that extract local contextual semantic infor-
mation in the string with max-pooling layers that helps identifying
globally important features. It is still a workhorse model used ex-
tensively in the stacks of many production search engine systems.

The large and expensive BERT model has recently become very
popular. The model is usually learned in two steps. First the model
is trained on extremely large corpus with unsupervised tasks such
as masked language model (MLM) and next sentence prediction
(NSP) to learn the general language, and then in a second step
fine-tuned on the task-specific labelled data to be used in down-
stream tasks. Despite the strong performance of the BERT models
on language representations, they are in general too expensive to
be deployed in the real-time search engine systems where there are
strict constraints on computation costs and latency.

Distilled TwinBERT is one successful model that adapts the
Transformer family models to the sponsored search applications
and achieves comparable performance at reasonable inference time

Query

Token Embedding

Pooling Layer

x L

Crossing Layer

Keyword

Multi-Head 
Self-Attention 

Add & Norm

Feed Forward

Add & Norm

Token Embedding

Pooling Layer

Add & Norm

Feed Forward

Add & Norm

x L

Output

Multi-Head 
Self-Attention 

+ +Position 
Embedding

Position 
Embedding

Figure 1: TwinBERT Architecture

4 TWINBERT
�e architecture of TwinBERT is presented in this section with a
few well-designed network layers to balance the e�ectiveness and
e�ciency. Other topics including model training and online serving
are also discussed in detail.

4.1 Model Architecture
As shown in Figure 1, the architecture of TwinBERT consists of two
multi-layer transformer encoders and a crossing layer to combine
the vector outputs of encoders and produce the �nal output. It is
noteworthy that the parameters of the two encoders of query and
keyword could be shared or di�erent. �e detailed comparison of
the two styles is discussed in Section 5.

Similar to BERT model architecture, at the bo�om of each en-
coder is the embedding layer, where the query and keyword sen-
tences are represented separately as embeddings and then fed into
corresponding encoders. �e middle part of each encoder is a stack
of transformer encoders with the same implementation as described
in [33] but a di�erent se�ing. Following the notations in BERT,
the number of layers is denoted as L, the hidden size is H , and the
number of self-a�ention heads is A. In this work, the performance
is mainly reported with the following model se�ing: L = 6, H = 512
andA = 8 (the size of the feed-forward intermediate layer is also set
to equal to H ). �e last and top layer of the encoder is the weighted

pooling layer which applies a weighted sum of the �nal hidden
vectors and produces a single embedding for each input sentence.

4.2 Input Representation
In TwinBERT, the two input sentences are decoupled and encoded
separately, with each encoder only taking care of one single sen-
tence. Di�erent from BERT, there is no need to introduce a separator
token [SEP] to separate the two segments and the input sequence
length is roughly reduced by half. According to [33], the per-layer
complexity of self-a�ention is O(n2) on sequence length and other
operations are O(n). As a result of the cut on sequence length,
the overall inference cost is correspondingly decreased. �e other
classi�cation token [CLS] in BERT is dropped in weighted-average
pooling while reserved only in classi�cation token pooling, which
will be discussed in the pooling layer section.

For token embeddings, TwinBERT uses the tri-le�er based word
embeddings introduced in [28]. Compared to the 30K dimensional
WordPiece embeddings [36] in BERT, tri-le�er based embeddings
have larger vocabulary size (50K), and therefore can bear more
information for be�er performance. On the other hand, they are
more e�cient when extracted at inference time since the extrac-
tion of each token is independent, while WordPiece extraction is a
recursive process.

BERT embeddings are combinations of three components: to-
ken embeddings, segment embeddings and position embeddings.
While, the input of a TwinBERT encoder only contains one single
sentence and segment embeddings are unnecessary. �erefore, the
input embeddings only consist of the sum of token embeddings and
position embeddings.

4.3 Pooling Layer
�e output of the encoder is a sequence of vectors, each correspond-
ing to an input token with position information implied from its
index in the input sentence. To provide a unique �x-length vector
representation for both inputs, a pooling layer is added to provide
a robust approach to unify all token vectors into a single sentence
level embedding. Speci�cally, two pooling methods are experi-
mented: weighted-average pooling and classi�cation token pooling.
Compared to standard average pooing, weighted-average pool-
ing introduces a weight to each token vector and the output is
the weighted-average of all token vectors. �e weight parameters
are learned as part of the entire network. �e second method is
inspired by the special classi�cation token ([CLS]) in BERT and
is so called classi�cation token pooling. �e implementation
involves pre�xing the sequence with [CLS] at the input layer. �e
output of encoder is simply the �nal hidden vector of [CLS]. Com-
parison results of the two methods are presented in the experiment
section.

4.4 Crossing Layer
Given the sentence embeddings of query and keyword, here comes
the question: how to combine the two? Two versions of TwinBERT
are proposed to address the problem, denoted as TwinBERTcos and
TwinBERTres respectively:
Cosine similarity Cosine similarity is an intuitive approach
for combining two vectors of the same length. Formally, cosine

3

Figure 1: Architecture of the twin tower TwinBERT model

cost compared with heavy stacked transformer layers. The Twin-
BERT model as demonstrated in Figure 1 benefits from two impor-
tant techniques: 1) given two input texts, a query and a keyword,
a vanilla transformer encoder would concatenate them into one
input sequence, while TwinBERT has a twin tower structure to
decouple the two-sentence input. Such twin tower structure is first
proposed in the DSSM model [9] for web document ranking. Given
that the keywords are already known to the platform, the encoded
outputs of the keyword-side tower could then be pre-generated
offline and fetched efficiently during inference time. Without con-
catenating the keyword strings, the input to the query-side tower
can also be set with a low maximum length, and hence greatly
reduce the inference time complexity compared to a large BERT
model. 2) knowledge distillation technique is used to transfer the
knowledge learnt by a teacher model to a much smaller student
model. Our teacher model can be seen as a stronger version of the
BM25 signal in the previous weak supervision method [2]. While
the teacher model has strong performance, it is usually too costly
and infeasible to be directly used in a production system. Knowl-
edge distillation enables us to train a smaller model that is much
faster when inference with only little or no significant loss in per-
formance [14][20]. When a TwinBERT model with only 3 layers
of encoders is used, with all the optimizations it is possible to be
deployed in the real-world production systems that satisfies the
strict limit from computational resources and latency requirement.

However, as a pure language model, TwinBERT can only rely
on the semantic meanings of the query-keyword pairs to infer the



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Zhu, et al.

relationships, and in many cases when we encounter uncommon
words it is still very challenging to correctly infer relevance for our
main applications based on the limited input information.

Graph Neural Network has also become a hot research area in
recent years due to its efficacy in dealing with complex graph data.
Graph Convolutional Networks (GCN) [13], GraphSage [5], and
Graph Attention Networks (GAT) [23] are among the most popular
GNN models that can effectively propagate neighbor information
in a graph through connected edges and hence are able to generate
convincing and highly interpretable results on many graph specific
tasks such as node/edge/graph property predictions. Recently there
are also attempts to bring GNN to the sponsored search area such as
click-through rate (CTR, ratio of the number of clicks to the number
of impressions) prediction [15][26], but so far these attempts have
only focused on using GNN to generalize the interactions among
the existing fixed features. There is no strong convincing story why
these features naturally form a graph and the GNN itself has no
impact on the generation of the features. Alternatively people have
also proposed to utilize the graph information implicitly through
label-propagation to unlabeled examples[12], but explicitly using
the neighbor features in the model structure will be more efficient
in aggregating complementary information as demonstrated in the
experiments.

To the best of our knowledge, we are the first to extend various
text encoders with a graph in a natural way, and co-train both text
encoders and GNN parameters at the same time to achieve stronger
performance in our downstream tasks.

4 TEXTGNN
In this section we will discuss the architecture of the proposed
TextGNN model in Section 4.1. Then we describe the graph we
used to naturally augment the semantic information of the input
query-keyword sentence pairs in Section 4.2. Lastly in Section 4.3
we briefly recap knowledge distillation and its application in our
model.

4.1 Model Architecture
The architecture of the TextGNN model is discussed in detail in this
subsection and also illustrated in Figure 2. The proposed model is
a natural extension of the high-performance C-DSSM/TwinBERT
baseline model with additional information from graph structured
data. In sponsored search scenario, we have tens of millions candi-
date Ads. It is infeasible to use a complex text encoder to compute
the similarity between a search query and each Ad one-by-one.
Twin tower structure is a good choice for us where we could com-
pute Ads representation vectors in advance and when a query
comes, we then compute the representation vector of the query
online. Notice that we only need to run the complex text encoder
once for each incoming search query, compared with vanilla BERT
which requires this for each unique pair. For transformer encoders,
the computation cost in self-attention is also quadratic to the length
of the input string. Hence, splitting the query and keyword strings
for separate calculation is also much less costly than calculating
the concatenated string. With these benefits in mind, our model
also follows the twin tower structure of the baseline models with
small encoder structure layers so that all the benefits of the twin

tower structured model are inherited and hence can be deployed in
the production system. Taking the query-side tower as an example,
given a query and its three neighbors (defined later in the graph
construction section) will all go through any general Text Encoder
blocks to each generate a vector representation for the short sen-
tence. The information from the four representation vectors is then
aggregated by a GNN Aggregator to generate a single output vector.
This output vector is then connected with the direct output of the
text encoder of the query sentence through either concatenation or
addition, similar to the idea of a Residual Connection Network [6].
The combined output vector is considered as the final output of the
query-side tower and can then be interacted with keyword-side
output (generated from the very similar structured keyword-side
tower) in the crossing layer to get the final output similar to a
C-DSSM/TwinBERT model.

4.1.1 Text Encoder Block. The Text Encoder block is very similar
to a single tower in the C-DSSM/TwinBERT model. For example,
for a transformer type text encoder, a sentence is first tokenized
using the BERT WordPiece tokenizer. Trainable token embedding
vectors is combined with BERT style positional embedding through
addition before it go through three BERT encoder layers. The only
difference with a BERT-style model is that the segment embeddings
in the BERT are no longer needed as all inputs will be from the
same sentence. With this structure so similar to a BERT-type one,
we can conveniently load the weights from the first three layers
of the pre-trained large BERT model to get a good starting point
that leads to much better performance, faster model convergence,
and requires significantly less training data compared to a random
initialization. After the text encoder layers, we get a sequence of
vectors corresponding to each token in the sentence. The vectors are
then combined using a weighted-average pooling layer similar to
the TwinBERT model which has demonstrated better performance
in generating a single vector representation for a sentence.

The four Text Encoder blocks within a single tower are set to
share the same parameters. However, the model is flexible enough
to allow the two towers to have all different Text Encoder blocks, but
as the TwinBERT paper shows that shared encoder blocks generally
lead to slightly better performance we use that approach.

4.1.2 GNN Aggregator. In one tower of our TextGNN, the four
text encoder blocks generate four vector representations, one for
the center node (query/keyword) and the other three for its three
one-hop neighbors. To aggregate the information from four vectors
into one, we adopt a GNN aggregation layer, where we take the
query/keyword as the central node and perform one-hop aggre-
gation using the three neighbor nodes. The aggregation itself can
be very general and use most existing GNN aggregators such as
GCN, GraphSAGE, and GAT. In our experiments we found that
GAT, which assigns learnable weights to the neighbors to gener-
ated a weighted average, demonstrates the strongest performance
and is used in our experiments.

4.1.3 Skip Layer. The output vector of the query/keyword encoder
is connected to the output of GNN Aggregator as the final output
of the query-/keyword-side tower. This layer can be thought as
a skip layer [6] so that the additional GNN outputs serve as a
complementary information to the text semantic representation



TextGNN: Improving Text Encoder via Graph Neural Network in Sponsored Search WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

GNN Aggregator 
(GraphSAGE, GAT)

Crossing LayerConcatenate 
or Add

GNN Aggregator 
(GraphSAGE, GAT)

Concatenate 
or Add

Query

Output

Query 
Neighbor 1

Query 
Neighbor 2

Query 
Neighbor 3

KeywordKeyword 
Neighbor 1

Keyword 
Neighbor 2

Keyword 
Neighbor 3

Text 
Encoder

Text 
Encoder

Text 
Encoder

Text 
Encoder

Text
Encoder

Text 
Encoder

Text 
Encoder

Text 
Encoder

Figure 2: TextGNN Architecture: twin tower structure for decoupled generation of query/keyword embeddings

vector. In this sense the encoder-only-models can also be considered
as a special case of the TextGNN model when the GNN output is
completely skipped. The two vectors are combined using either
concatenation or addition. In case they have different dimensions
an additional dense layer is applied after the GNN Aggregator to
up/downscale the GNN output dimension to match the Text Encoder
output.

4.1.4 Crossing Layer. Given the final outputs of the query-/keyword-
side tower, the two vectors are first combined through concatena-
tion, and then compute the similarity score using the Residual
network proposed in the TwinBERT model. Formally, the residual
function is defined as:

y = F (x,𝑊 ,𝑏) + x, (1)

wherex is the concatenation of the query-side vectorq and keyword-
side vector k and F is the mapping function from x to the residual
with parameters𝑊 and 𝑏. A logistic regression layer is then applied
to the output vector y to predict the binary relevance label.

4.2 Graph Construction
On top of the powerful structure of the model, it is also crucial to
get access to high quality graph-type data. Such data should satisfy
the following properties:

(1) Relevant: since the graph neural networks propagate in-
formation along the edges, we are looking for neighbors
that are highly relevant to the intent of the center node
(query/keyword).

(2) Complementary: we expect the GNN to excel the most in
situations where the language modeling part struggles to
infer the intention only from the semantic meanings of the
sentence, but the additional neighbors might be extremely
valuable to provide complementary information that help
the model to better understand the inputs. This situation
happens most frequently on rare and low frequency items

where the language models usually struggles on these long-
tail inputs.

(3) Accessible: in sponsored search system, there are large
amount of user input queries and candidate keywords. We
try to find their neighbors in a graph. As a large graph is
preferred, the neighbors need to be found with little effort
and constructing the graph data should be feasible without
heavy manual work, strong assumptions, or complicated
structures.

Given the requirements, we find that the user behavior graph
generated from historical user clicking logs is a great candidate for
our purpose. It is based on the insight that when a user inputs a
query 𝑎 and then clicks the Ad 𝑏, then 𝑏 has to sufficiently fit the
user’s intent from 𝑎 to trigger the click. In the next two subsections,
we discuss such behavior graph and its extension to address the
sparse coverage issue of the behavior graph.

Query

Neighbor 
1

Neighbor 
2

Neighbor 
3

Query

Neighbor 
1

Neighbor 
2

Neighbor 
3Top 1 ANN 

Query with 
eligible 

Neighbors

(a) Click Graph (b) Click Graph with Semantic ANN

Figure 3: Click Graph Construction: use ANN proxy neigh-
bor if no native neighbor available

4.2.1 User Click Graph. The eligible neighbors of a query are the
keyword of Ads that have been shown to be relevant to the query
and received explicit positive feedback by a click. One general as-
sumption to sort all the candidates is that the empirically observable
CTR is highly correlated to the relevance between the query and



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Zhu, et al.

Table 1: Example of neighbors of a query from the Click
Graph

Clicked Neigh Neigh Neigh
Query Keyword # Impress # Click

united state
usps com postal service jobs 59 18

careers login usps com employment 344 92
postal service hiring 1721 384

the keyword. Based on this assumption, as illustrated in Figure
3(a), we take all clicked Ads that have been shown to users at least
50 times in the past year (to partially address the issue of noisy
estimates of CTR on Ads with small number of impressions) and
take the top three as the neighbors.

Table 1 shows an illustrative example, where the search query
is "usps com careers login". Its top three neighbors, which are the
keywords of the corresponding Ads, are listed with their historical
total number of impressions and clicks. Although the first keyword
"united state postal service jobs" is only shown 59 times which is
significantly fewer than the third keyword "postal service hiring"
with 1,721 impressions, it has a much higher CTR of 30.5% compared
to 22.3%, indicating that users who searched for this query are more
likely to find the first keyword useful, which is a strong indication
of higher relevance.

4.2.2 User Click Graph with Semantic ANN. For rare and low fre-
quency queries/keywords, we observe by construction substantially
less feedback from clicks logs. Furthermore, to avoid the noise of
selecting neighbors with high CTR, we have criteria to exclude
neighbors that are shown less than 50 times in the past year and
this unfortunately eliminates a number of neighbors and makes the
situation even worse for long-tail inputs. To address this issue, we
propose a neighbor completion technique based on Approximate
Nearest Neighbor (ANN) [10] using Neighborhood Graph Search
(NGS) [24]. As illustrated in Figure 3(b), first we infer vector repre-
sentations by a powerful C-DSSM (which is used extensively in a
major sponsored search system) for all nodes in user click graph.
Next, for a query that we could not identify any eligible clicked
keywords, we infer its vector representation by the same C-DSSM.
Then, we leverage the ANN search tool to find another query that is
supposed to be semantically close enough to the original query and
has the click neighbors and use its clicked keywords as approximate
neighbors for the original query. This has the same spirit as the
common technique of query rewriting in search engine systems but
does so in a more implicit way. For keywords without any clicked
queries, we find neighbors for them in a similar way.

In Table 2 we show another example that we are not able to find
any eligible neighbors for the query "video games computers free",
but its ANN query "no internet games" has user behavior feedback
and the three approximate neighbors are obviously relevant to the
original query.

For both types of graphs, we only take at most the top three neigh-
bors. The number of neighbors can be set as a hyper-parameter of
the model framework. We choose three for following reasons:

Table 2: Example of a query fromwith Semantic ANN: proxy
neighbor are quite relevant to the original query

ANN Clicked Neigh Neigh Neigh
Query Query Keyword # Impress # Click
video free games 58 1
games no online games 260 4

computers internet online
free games computer games 67 1

(1) More than one neighbor to provides additional complemen-
tary information while also adds robustness.

(2) Each additional neighbor means an extra run of the text en-
coder. Even though the encoder blocks can be run in parallel
a large number of neighbors can still be computationally
challenging for the system.

(3) We do not want to include more neighbors that are less rele-
vant and introduce additional noisy information to "pollute"
the encoded representation.

Therefore, choosing three neighbors balances all the requirements
and concerns.

4.3 Knowledge Distillation
In order to have a high performance but compact model that satis-
fies the computation and latency constraints, the teacher-student
training framework via knowledge distillation is used. We use an ex-
pensive but high-performance RoBERTa model [16] as the teacher
model to label a very large query-keyword pair dataset, the label
scores are between 0 and 1. Our model is relatively data-hungry and
without this teacher model to automatically label the huge dataset,
our existing human-labelled data is not sufficient to train a strong
model that gets close to teacher model level performance. Since the
model target, the RoBERTa score, is a continuous value, it provides
more fine-grained information than the traditional binary labels.
For example, a score of 0.99 indicates a stronger relevance than a
score of 0.51, although both will be categorized as relevant pairs.
We use mean squared error to measure the difference between the
model output and the RoBERTa teacher scores.

With such a strong teacher model, we train the student Twin-
BERT/TextGNN model with small encoder blocks (only 3 trans-
former layers). Hence the student models are much more feasible
in inference time but are able to achieve close to teacher model per-
formance with only very minor performance loss. We could even
further finetune the student model on a smaller human-labelled
dataset with binary labels and achieve a performance surpassing
the much larger teacher model. Hence, the performance of our
model is not capped/limited by the teacher model.

5 EXPERIMENTS
In this section we present experiment results of TextGNN on vari-
ous tasks. We also show the comparison with the strong baseline
models to show the superiority of the proposed new model and the
efficacy of introducing graph information. In Section 5.1 we discuss
some key statistics of the complementary graph data, and some
related details of our training methods. Section 5.2 compares the



TextGNN: Improving Text Encoder via Graph Neural Network in Sponsored Search WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 3: Coverage Summary of Two Graph Construction
Methods: almost full coverage after adopting ANN Neigh-
bors

Click Only ANN
Q K Q K

1 Neighbor 4% 7% 5% 7%
2 Neighbors 3% 4% 3% 4%
3 Neighbors 30% 76% 92% 88%
Coverage 37% 87% 100% 99%

performance with the baseline encoder-only models. Section 5.3
shows a more detailed sub-group analysis. Section 5.4 presents case
studies of typical examples with false positive and false negative
examples for TwinBERT which are correctly classified by the new
TextGNN model and provide intuitive insights why the additional
graph information can be valuable. Lastly in Section 5.5 we present
an initial effort to apply our model to online production system and
show the significant improvement over the baseline in online A/B
testings.

5.1 Data and Training Details
For our knowledge distillation training, 397 million query-keyword
pairs are scored by the teacher RoBERTa model. The student models
are initialized using the parameters of the first three transformer
layers of the 12-layer uncased BERT-base checkpoint [25]. The
models are evaluated on a small evaluation dataset consisting of
243 thousand human labelled samples. The query and keyword pairs
were given labels with five different levels of relevance: excellent,
perfect, good, fair, and bad. In the evaluation stage the first four
levels excellent, perfect, good, and fair are mapped as positive
samples (label 1) where the bad category is kept as negative category
(label 0). The model ROC-AUC is our main metric for evaluation.

We construct the behavior click graph based on the historical
search engine click logs from July 2019 to June 2020. Here in Table 3
we present some statistics on the neighbor coverage comparing the
two ways of graph constructions. Here are some key observations:

(1) Without the added ANN neighbors, almost 2/3 of the queries
miss neighbors from the user click graph. The situation is
significantly better for keywords as the majority of the Ads
have been shown and clicked by users.

(2) With the ANN search, we essentially increase the neighbor
coverage to almost 100%.

(3) Among all nodes, the majority of them have at least three eli-
gible neighbors. For the examples with less than 3 neighbors,
dummy padding are added.

5.2 Model Performance Results
In the experiment we train the baseline TwinBERT model and the
new TextGNN model with the same common hyper-parameters
for a fair comparison. The same training dataset files were used by
both models, but the additional neighbor information is not read by
the baseline TwinBERT model as it does not have the mechanism
to process the additional information.

Tabel 4 presents the ROC-AUC values of the baseline model and
TextGNN based on two different types of graphs. We see that the
addition of GNN has significantly improves the performance of the
baseline model and the performance increase of this magnitude
will lead to a huge difference in revenue for large scale systems.

Table 4: ROC-AUC Comparison: TextGNN with ANN Neigh-
bor Graph significantly outperform baseline TwinBERT

Model AUC
TwinBERT 0.8459
TextGNN 0.8461

TextGNN with ANN Neighbor 0.8471

5.3 Sub-group Analysis
In addition to showing the stronger overall performance of the
TextGNN models over the baseline, we also conduct a more detailed
sub-group analysis on inference results to confirm that the TextGNN
models indeed improve on the tail examples just as expected.

We split the validation data into three bins by the Ads frequency
in the dataset (as a proxy for their population frequency of im-
pressions). 43% of the samples are Ads that have been shown only
once (among 243k samples) which are the rare examples, and 12%
of the samples have been shown twice. Even though the tail Ads
individually are rarely recalled and shown to users, they consist of
the majority portion of the total traffic and the improvements on
these long-tail examples can lead to significant benefits.

We see the results in Figure 4 that the TextGNN model based on
vanilla click graph shows an extremely large improvement in the
most rare Ads, but the performance downgrades in common ones.
Our hypothesis is that in the more common examples the semantic
information is already good, and the limited additional information
from a sparse graph is not enough to offset the potential under-
fitting from a more complex model. Once we adopt ANN to generate
a more complete graph, we see the TextGNN model demonstrates
stronger performance than baseline across the board.

Lastly, we note that the non-ANN version is still much stronger
than the ANN version in the bin of the most rare Ads, potentially
because the ANN proxy neighbors are on average having lower
quality than the native neighbors, and hence introduce noise to
the model. This analysis also reveals a future direction to further
improve the model where we can potentially use the sample fre-
quency as a simple indicator to switch between various candidate
models based on their strength within different sub-groups.

5.4 Case Studies
We expect the introduction of graph data to improve the model
performance especially on tail inputs that are often seen as "hard"
samples for the baseline models. In table 5, we present some "hard"
cases to demonstrate the value that graph data could bring.

5.4.1 False-positive Examples of TwinBERT. The first example shows
that the user searched for the Greek methology "achilles heel",
which was incorrectly determined by TwinBERT as relevant to
plantar fasciitis shoes. From the semantic meaning, heel is very



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Zhu, et al.

Table 5: Case study Examples: neighbors provide crucial complementary information

False Positive Examples
Query Query Neighbors Keyword Keyword Neighbors

achilles heel
what is an achilles heel

plantar fasciitis shoes
shoes plantar fasciitis heel pain

what is achilles heel work shoes plantar fasciitis
causes heel spurs tennis shoes good plantar fasciitis

animal repellent products
animal repeller

animal odor
best cleaning remove & product home

keep squirrel out attic air fresheners home
animal repellent best air fresheners

False Negative Examples
Query Query Neighbors Keyword Keyword Neighbors

sharding
mongodb cluster

sql server
sql server download windows 10

database sharding sql server hosting
N/A sequel server database

use imovie
imovies

adobe premiere
adobe premiere pro mac

imovie 11 tutorials adobe premier mac
imovie video editor use imovie

85.18%

84.91% 84.97%

86.04%

84.85%

84.50%

85.28%
85.14%

85.26%

83.50%

84.00%

84.50%

85.00%

85.50%

86.00%

86.50%

1 2 3+

TwinBERT TextGNN TextGNN with ANN

Figure 4: Performance on Different Subgroups of Data
by Ads Frequency: TextGNN with vanilla click neighbor
achieves extremely large gain in low frequency Ads, while
the ANN version outperforms the baseline across the board

close to shoes and the achilles ankle is highly related to the pain of
tendon. However, the neighbors strongly indicate that people who
search for this query are actually looking for the story from Greek
mythology and not the foot injury.

The second example shows that TwinBERT determines that "an-
imal repellent products" is highly relevant to animal cleaning prod-
uct. From the semantic meaning it is true that repellent is close in
meaning to the word "remove" but the two products are used for
completely different purposes. When averaging over the neighbors
it is very clear that this is a negative example.

5.4.2 False-negative Examples of TwinBERT. The query "sharding"
is a very specific concept in database systems on how large data
are split and stored. Without the domain knowledge it is very hard
to understand such an uncommon word. Furthermore, the word is

tokenized to: [CLS], sha, ##rdi, ##ng, [SEP] by the BERT WordPiece
tokenizer, making it essentially an impossible task for TwinBERT to
identify the relevance. However, from the historical user behaviors
we clearly see both sides taking the very important common words
"database", hence allowing the TextGNN model to leverage on the
user behavior to identify domain specific connections and find the
hidden relevance.

The second false-negative one is an example of two video editing
softwares on the Mac platform. Without the domain knowledge is
it impossible to conclude from the semantic meaning that adobe
premier mac is a video editing software. However, since the query
string is identified as a neighbor of the keyword, our graph model
can use this information to find the correct connection.

5.5 Online A/B Test
A slightly simplified version of our TextGNN model has already
been successfully deployed in a major sponsored search platform
and demonstrated significant performance gains. We have evaluated
the performance of the models on the sponsored product advertising
system where user search queries are matched with products with
rich information provided by advertisers. In this initial effort we
choose C-DSSM as the text encoder for its much faster inference
time in the application of large-scale Ads corpus and use graph
aggregators only on the product side of the tower. Note again
that the product side representations can be generated offline in
advance and hence at online service stage the latency is identical to
a traditional C-DSSM model. We use the TextGNN model outputs
as features to be feed into a downstream online product advertising
system and evaluated the efficacy of this simple model in both
offline and online settings.

For evaluation, we randomly sampled examples from online logs
and labeled the data manually by human experts and observe on
average 1.3% (we only show normalized relative numbers due to
business confidentiality) PR-AUC lift across different validation sets
when comparing the simplified TextGNN model with the baseline
C-DSSM model.



TextGNN: Improving Text Encoder via Graph Neural Network in Sponsored Search WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

The online A/B testing results of the TextGNN model are summa-
rized in Table 6 as we applied the model to both recall and relevance
stage of the Ads serving in the system, where we observe significant
gains in several normalized key online metrics numbers that are
crucial for our sponsored search system. The two most important
metrics are:

(1) Revenue Per Mille (RPM): the revenue gained for every
thousand search requests, which is one of the most important
online metrics for sponsored search.

(2) Ad Defect Rate: the ratio of irrelevant Ad impressions with
respect to total number of Ad impressions. In online A/B test,
this ratio is approximated by sampling Ad impressions and
submitting them for human-evaluated labels. This is highly
correlated to user satisfaction and hence is considered as a
very crucial metric.

As shown in the table, the TextGNN model yields very impressive
results as it can greatly boost the RPM and reduce the Ad Defect
Rate, which is a strong sign that model could help to improve
revenue and user experience simultaneously. It’s worthy pointing
out that current production model already contains many advanced
sub-models and features so the magnitude of the improvement in
the online KPI here is considered as a significant gain for our system
at the large scale.

Table 6: Online A/B Testing: significant improvements in
production product advertising systems

Tasks Relative RPM Relative Ad Defect Rate
TextGNN Relevance +2.03% -2.32%
TextGNN Selection +1.21% -0.34%

6 CONCLUSION
We present a powerful NLP model TextGNN that combines two
strong model structures, text encoders and GNN, into a single end-
to-end framework and shows strong performance in the task of Ad
relevance. The model retains the strong natural language under-
standing ability from the existing powerful text encoders, while
complements text encoders with additional information from graph-
type data to achieve stronger performance than what could be
achieved from only pure semantic information. We demonstrate
with experiments that the TextGNN model show overall much
stronger performance than a great baseline model based only on
text encoders, and that the new model demonstrates the big gains
in the most difficult task of low-frequency Ads. In our next step,
the ensemble model idea could be explored to automatically mix
different representation model outputs based on Ads frequency to
achieve even better performance.

REFERENCES
[1] Xiao Bai, Erik Ordentlich, Yuanyuan Zhang, Andy Feng, Adwait Ratnaparkhi,

Reena Somvanshi, and Aldi Tjahjadi. 2018. Scalable Query N-Gram Embedding
for Improving Matching and Relevance in Sponsored Search. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (London, United Kingdom) (KDD ’18). Association for Computing
Machinery, New York, NY, USA, 52–61. https://doi.org/10.1145/3219819.3219897

[2] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W. Bruce
Croft. 2017. Neural Ranking Models with Weak Supervision. In Proceedings
of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval (Shinjuku, Tokyo, Japan) (SIGIR ’17). Association for
Computing Machinery, New York, NY, USA, 65–74. https://doi.org/10.1145/
3077136.3080832

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186. https://doi.org/10.18653/v1/N19-1423

[4] Mihajlo Grbovic and Haibin Cheng. 2018. Real-Time Personalization Using
Embeddings for Search Ranking at Airbnb. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (London, United
Kingdom) (KDD ’18). Association for Computing Machinery, New York, NY, USA,
311–320. https://doi.org/10.1145/3219819.3219885

[5] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Advances in Neural Information Processing Systems
30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (Eds.). Curran Associates, Inc., 1024–1034. http://papers.nips.cc/
paper/6703-inductive-representation-learning-on-large-graphs.pdf

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Resid-
ual Learning for Image Recognition. http://arxiv.org/abs/1512.03385 cite
arxiv:1512.03385Comment: Tech report.

[7] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the Knowledge in
a Neural Network. arXiv:1503.02531 [stat.ML]

[8] Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin,
Janani Padmanabhan, Giuseppe Ottaviano, and Linjun Yang. 2020. Embedding-
based Retrieval in Facebook Search. Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (Aug 2020).
https://doi.org/10.1145/3394486.3403305

[9] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning Deep Structured Semantic Models for Web Search
using Clickthrough Data. ACM International Conference on Information
and Knowledge Management (CIKM). https://www.microsoft.com/en-
us/research/publication/learning-deep-structured-semantic-models-for-web-
search-using-clickthrough-data/

[10] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. 604–613.

[11] Karen Spärck Jones. 1972. A statistical interpretation of term specificity and its
application in retrieval. Journal of Documentation 28 (1972), 11–21.

[12] Soo-Min Kim, Patrick Pantel, Lei Duan, and Scott Gaffney. 2009. Improving Web
Page Classification by Label-Propagation over Click Graphs. In Proceedings of the
18th ACM Conference on Information and Knowledge Management (Hong Kong,
China) (CIKM ’09). Association for Computing Machinery, New York, NY, USA,
1077–1086. https://doi.org/10.1145/1645953.1646090

[13] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In Proceedings of the 5th International Conference
on Learning Representations (Palais des Congrès Neptune, Toulon, France) (ICLR
’17). https://openreview.net/forum?id=SJU4ayYgl

[14] Xue Li, Zhipeng Luo, Hao Sun, Jianjin Zhang, Weihao Han, Xianqi Chu, Liangjie
Zhang, and Qi Zhang. 2019. Learning Fast Matching Models from Weak Annota-
tions. In The World Wide Web Conference. Association for Computing Machinery,
2985–2991.

[15] Zekun Li, Zeyu Cui, Shu Wu, Xiaoyu Zhang, and Liang Wang. 2019. Fi-GNN: Mod-
eling Feature Interactions via Graph Neural Networks for CTR Prediction. In Pro-
ceedings of the 28th ACM International Conference on Information and Knowledge
Management (Beijing, China) (CIKM ’19). Association for Computing Machinery,
New York, NY, USA, 539–548. https://doi.org/10.1145/3357384.3357951

[16] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. arXiv:1907.11692 [cs.CL]

[17] Wenhao Lu, Jian Jiao, and Ruofei Zhang. 2020. TwinBERT: Distilling Knowledge
to Twin-Structured BERT Models for Efficient Retrieval. arXiv:2002.06275 [cs.IR]

[18] Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg,
and Jure Leskovec. 2020. PinnerSage: Multi-Modal User Embedding Framework
for Recommendations at Pinterest. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (Virtual Event,
CA, USA) (KDD ’20). Association for Computing Machinery, New York, NY, USA,
2311–2320. https://doi.org/10.1145/3394486.3403280

[19] Stephen Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, and M. Gatford.
1995. Okapi at TREC-3. In Overview of the Third Text REtrieval Conference (TREC-
3) (overview of the third text retrieval conference (trec–3) ed.). Gaithersburg, MD:
NIST, 109–126. https://www.microsoft.com/en-us/research/publication/okapi-
at-trec-3/

[20] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. CoRR

https://doi.org/10.1145/3219819.3219897
https://doi.org/10.1145/3077136.3080832
https://doi.org/10.1145/3077136.3080832
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3219819.3219885
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1503.02531
https://doi.org/10.1145/3394486.3403305
https://www.microsoft.com/en-us/research/publication/learning-deep-structured-semantic-models-for-web-search-using-clickthrough-data/
https://www.microsoft.com/en-us/research/publication/learning-deep-structured-semantic-models-for-web-search-using-clickthrough-data/
https://www.microsoft.com/en-us/research/publication/learning-deep-structured-semantic-models-for-web-search-using-clickthrough-data/
https://doi.org/10.1145/1645953.1646090
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1145/3357384.3357951
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2002.06275
https://doi.org/10.1145/3394486.3403280
https://www.microsoft.com/en-us/research/publication/okapi-at-trec-3/
https://www.microsoft.com/en-us/research/publication/okapi-at-trec-3/


WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Zhu, et al.

abs/1910.01108 (2019). arXiv:1910.01108 http://arxiv.org/abs/1910.01108
[21] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Gregoire Mesnil.

2014. Learning Semantic Representations Using Convolutional Neural
Networks for Web Search. WWW 2014. https://www.microsoft.com/en-
us/research/publication/learning-semantic-representations-using-
convolutional-neural-networks-for-web-search/

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, undefinedukasz Kaiser, and Illia Polosukhin. 2017. Atten-
tion is All You Need. In Proceedings of the 31st International Conference on Neural
Information Processing Systems (Long Beach, California, USA) (NIPS’17). Curran
Associates Inc., Red Hook, NY, USA, 6000–6010.

[23] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. ICLR (2018).

[24] Jingdong Wang and Shipeng Li. 2012. Query-Driven Iterated Neighborhood
Graph Search for Large Scale Indexing. In Proceedings of the 20th ACM Interna-
tional Conference on Multimedia (Nara, Japan) (MM ’12). Association for Comput-
ing Machinery, New York, NY, USA, 179–188.

[25] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and Jamie
Brew. 2019. HuggingFace’s Transformers: State-of-the-art Natural Language
Processing. ArXiv abs/1910.03771 (2019).

[26] Xiao Yang, Tao Deng, Weihan Tan, Xutian Tao, Junwei Zhang, Shouke Qin, and
Zongyao Ding. 2019. Learning Compositional, Visual and Relational Representa-
tions for CTR Prediction in Sponsored Search. In Proceedings of the 28th ACM
International Conference on Information and Knowledge Management (Beijing,
China) (CIKM ’19). Association for Computing Machinery, New York, NY, USA,
2851–2859. https://doi.org/10.1145/3357384.3357833

[27] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. 2019. Graph Neural Networks: A Review of
Methods and Applications. arXiv:1812.08434 [cs.LG]

https://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://www.microsoft.com/en-us/research/publication/learning-semantic-representations-using-convolutional-neural-networks-for-web-search/
https://www.microsoft.com/en-us/research/publication/learning-semantic-representations-using-convolutional-neural-networks-for-web-search/
https://www.microsoft.com/en-us/research/publication/learning-semantic-representations-using-convolutional-neural-networks-for-web-search/
https://doi.org/10.1145/3357384.3357833
https://arxiv.org/abs/1812.08434

	Abstract
	1 Introduction
	2 Sponsored Search and Ad Relevance
	3 Related Work
	4 TextGNN
	4.1 Model Architecture
	4.2 Graph Construction
	4.3 Knowledge Distillation

	5 Experiments
	5.1 Data and Training Details
	5.2 Model Performance Results
	5.3 Sub-group Analysis
	5.4 Case Studies
	5.5 Online A/B Test

	6 Conclusion
	References

