
BrowseLite: A Private Data Saving Solution for the Web
Conor Kelton

Stony Brook University
Matteo Varvello
Nokia Bell Labs

Andrius Aucinas
Brave Software

Benjamin Livshits
Brave Software

Imperial College London

ABSTRACT

The median webpage has increased in size by more than 80% in
the last 4 years. This extra complexity allows for a rich browsing
experience, but it hurts the majority of mobile users which still pay
for their traffic. This has motivated several data-saving solutions,
which aim at reducing the complexity of webpages by transforming
their content. Despite each method being unique, they either reduce
user privacy by further centralizing web traffic through data-saving
middleboxes or introduce web compatibility (Web-compat) issues
by removing content that breaks pages in unpredictable ways.

In this paper, we argue that data-saving is still possible without
impacting either users privacy or Web-compat. Our main observa-
tion is that Web images make up a large portion of Web traffic and
have negligible impact on Web-compat. To this end we make two
main contributions. First, we quantify the potential savings that
image manipulation, such as dimension resizing, quality compres-
sion, and transcoding, enables at large scale: 300 landing and 880
internal pages. Next, we design and build BrowseLite, an entirely
client-side tool that achieves such data savings through opportunis-
tically instrumenting existing server-side tooling to perform image
compression, while simultaneously reducing the total amount of
image data fetched. The effect of BrowseLite on the user experi-
ence is quantified using standard page load metrics and a real user
study of over 200 users across 50 optimized web pages. BrowseLite
allows for similar savings to middlebox approaches, while offering
additional security, privacy, and Web-compat guarantees.

CCS CONCEPTS

• Networks → Network performance analysis; Network ex-

perimentation.

KEYWORDS

Web, Browsers, Performance, Optimizations, Images, Data saving

ACM Reference Format:

Conor Kelton, Matteo Varvello, Andrius Aucinas, and Benjamin Livshits.
2021. BrowseLite: A Private Data Saving Solution for the Web. In Proceed-
ings of the Web Conference 2021 (WWW ’21), April 19–23, 2021, Ljubljana,
Slovenia. ACM, New York, NY, USA, 12 pages.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.

1 INTRODUCTION

Amultitude of studies from academia and industry alike suggest up-
trends in the complexity and size of themobileWeb [9, 11, 15, 19, 39],
so much so, that the median page now has reached 2 MB, up
over 80% from 2016 [15]. While this complexity has undoubtedly
created a richer browsing experience, it does cause downsides for
mobile users. Byte-heavy pages are responsible for frustratingly
slow browsing experiences on slower networks, along with sig-
nificant monetary costs for users on limited mobile data plans. In
Canada, for example, the median webpage costs $0.24 to load [34].

As a result, emphasis has been placed on changing Web brows-
ing to consume less data [9, 11, 44, 46, 51]. While there has been
some public confusion over the exact workings and reach of such
data-saving methods [33], recent studies of their actual implemen-
tations [31, 37, 54] reveal a few key shortcomings.

First and foremost, these solutions impose various privacy con-
cerns to their users when compared to regular Web browsing. Some
are deployed as middlebox services which either transparently
proxy the user’s unencrypted traffic [11, 51], or, apply URL redirec-
tion [23] or Man-in-the-Middle proxies [44, 46, 58] to also operate
on encrypted traffic (HTTPS) [37, 54]. Given the rise of HTTPS [28],
the former sees limited use, while the latter breaks the end-to-end
principles of TLS, exposing potentially private or personalized Web
contents to third parties [37, 54].

Further, the exact measures these systems take to actually save
data are often cryptic [31, 33, 37, 54]. As determining Web-compat
issues, or the ability to quantify broken webpages, is an open prob-
lem that requires large amount of manual effort [41], it is hard to
determine how and when these solutions actually break webpages;
though when they do so there is usually public outcry [12].

The goal of this work is to devise a data-saving solution which
solves the above shortcomings. Our intuition is twofold: first, such
a solution needs to be client-side in order to eliminate the privacy
and reach concerns of middlebox approaches. Namely, a client-
side only approach has the potential to save data for personalized
webpage content without exposing it to third parties. Second, by
being image-centric it can impose virtually no impact on Web-
compat, in comparison to, for example, JavaScript code elision [22,
23, 44]. As the median webpage is comprised of 900 KB of images
(or about 44% of its total size) [15], an image-based solution still
has high potential for data-savings.

Many of the aforementioned middlebox techniques [11, 51] auto-
matically apply popular image manipulation techniques (resizing,
quality compression, and transcoding) to save data before the last
mile (see Section 2). While the weight of images across webpages
is known to be quite high, it is unclear which fraction of pages in

ar
X

iv
:2

10
2.

07
86

4v
1

 [
cs

.N
I]

 1
5

Fe
b

20
21

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Kelton et al.

the wild can benefit from such techniques. Our first contribution
is to quantify the impact such middlebox techniques have when
optimizing images. This quantification represents an upper bound
of the data savings which a more private client-side solution can
potentially obtain. We analyze such techniques by compressing
webpages across a crawl of size ∼1.2k (300 landing and 880 internal
webpages), in which we find 21% of total page weight can be saved
at the median, and up to 90% at the 95th percentile (depending on
webpage rank and presence of cold or hot caches).

Motivated by this availability for image savings, we propose
BrowseLite to optimize images in a two-fold, more private, fash-
ion. First, BrowseLite takes advantage of existing compression
technologies typically found on Web servers [32], instrumenting
them from the client at run-time. BrowseLite uses information
from images in the Document Object Model (DOM) to force their
compression while balancing their visual quality. This component
of BrowseLite, URL Rewriting, identifies images as candidates for
compression using simple URL rewriting rules, which enable 70%
reduction of image sizes on ∼16% of webpages from our crawls.

From there, BrowseLite takes a second approach to save-data
for more general pages. This approach, which we call image fetch
reduction, uses a component of the HTTP standard known as
range requests to actually fetch less data from all Web images,
thereby reducing their network data usage. To alleviate the im-
pact on the user’s quality of experience (QoE) caused by rendering
only the requested portions of images, BrowseLite differentiates
between two standard image types on the Web, baseline and pro-
gressive images, during the page load. We show progressive images
can be rendered almost completely with only a fraction of their
data requested. For baseline images, we introduce our own tech-
nique, reflection, to make empty spaces on the webpage from these
partial images appear less visually broken. We also show such tech-
niques incur a modest trade-off in user QoE using both systematic
metrics [16] and real user studies across 50 of our pages with 200
crowdsourced users (See Section 5).

Our experiments show that BrowseLite improves the band-
width consumption of pages, taken from the same ∼1.2k webpages
of our crawls, by 25% at the median. While the primary function
of BrowseLite is to save data, our experiments on the pages of
our crawls loaded over two network conditions show little effect,
or even slight improvements, to the SpeedIndex [16] of 80% of
pages, while causing modest overheads (<500ms) for the latter 20%.
Further, our comparisons of BrowseLite to existing middlebox
image reduction approaches show that savings from BrowseLite
(Section 5) outreach those offered via plain HTTP proxies, and are
competitive with MITM middleboxes. While our comparisons to a
real data-saving system which optimizes full contents of webpages,
Google Web Light [23], do show the high potential of such tools to
save data, we believe BrowseLite to be a competitive alternative
given its higher privacy, security, and Web-compat guarantees.

2 BACKGROUND AND RELATEDWORK

The research community has dedicated significant effort to design
page load optimizations. These works [36, 42, 49, 57] aim at speeding
up the load times of Web pages by optimizing the order of Web
object retrieval over the network. Such reordering schemes require

server-side knowledge or assistance, and/or are unlikely to help in
terms of bandwidth savings [44].

Aside from load performance, data-savings is also a largely ex-
plored topic, with several commercial solutions already available
(e.g., [23, 46]). State of the art data-saving methods can be cate-
gorized as: 1) middlebox transformations, 2) server-side resource
optimizations, and 3) entirely client-side data saving approaches.
In the following, we discuss each category in detail.
Middlebox Transformations. These methods rely on transpar-
ent HTTP proxies or middleboxes [11, 39, 51] to offer data savings
via resource transformations. By operating transparently on path,
they do not require server-side support. However, they cannot be
used in presence of encrypted content (HTTPS) which is nowadays
used by most websites [28, 55]. Popular resource transformations
adopted bymiddleboxes include plain text gzip compression, image
downsizing from its native dimensions to its rendered dimensions
in the client’s viewpoint, and content transcoding to formats which
offer higher compression, e.g., WebP.

Flywheel [11], Google’s Web compression proxy, is perhaps the
seminal work in the data-saving space. This proxy claims up to 80%
data savings via transcoding of image formats, and gzip compres-
sion of JavaScript and CSS. FlexiWeb [51] is a follow-up implemen-
tation of Flywheel which leverages machine learning to optimize
the trade-off between data savings and user quality-of-experience
(QoE). Work from Alibaba [39] extends Flywheel’s techniques to
any mobile application by intercepting (unencrypted) mobile traffic.

Given the near-ubiquitous adoption of end-to-end encryption [28,
55] the potential for implementing such transformations via trans-
parent middleboxes remains in question. Further, privacy is of con-
cern to these methods, given that they require third party access to
contents of webpages, much of which may be personalized.
Server-Side Resource Optimizations. These methods rely on
some server side support to allow the clients to only fetch a min-
imalist version of the page [9, 18, 22, 29, 44, 46]. The methods
proposed include removal and reorganization of various Web ob-
jects from the page [9, 44, 46], detection and elision of unnecessary
code [18, 22, 29], and URL rewriting based on content similarity to
enable smarter and more effective caching at the client [43]. To best
understand which portions of pages to remove, or which content to
rewrite, requires knowledge of the page state gained by completely
loading the webpage before it is sent to the client, which is why
these solutions require server-side support.

To allow for data-savings without explicit server-side control,
many of the above methods [44, 46] can be implemented as man-
in-the-middle proxies which either break TLS or leverage URL
redirection, i.e., serve other Web page contents directly from their
servers. For example, Google’s Web Light [9] redirects the initial
request for a webpage through its servers, without sharing the
page’s cookies to Google’s servers. While this is a plus for privacy,
as no client-side state can be inferred, it limits the reach of the
approach, given that personalized content cannot be optimized [54].
Further, such implementations leak information about which URLs
are requested to third party servers, providing an opportunity to
build full browsing profiles of end-users [54]. Recent work [37] has
highlighted the above privacy risks of such approaches, and has also
shown that many current implementations are built on outdated

BrowseLite: A Private Data Saving Solution for the Web WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

0 250 500 750 1000 1250 1500 1750 2000
Savings (KB)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F
Ac
ro
ss
 P
ag
es

Standard: top100
Extreme: top100
Standard: apr50k
Extreme: apr50k
Standard: apr100k
Extreme: apr100k

(a)

2000 7000 12000 17000 22000 27000 32000
Savings (KB)

0.90

0.95

1.00

CD
F

Ac
ro

ss
 P

ag
es

Standard: top100
Extreme: top100
Standard: apr50k
Extreme: apr50k
Standard: apr100k
Extreme: apr100k

(b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Savings (Fraction of Page Size)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

Ac
ro

ss
 P

ag
es

top100
top100 w/ cache
apr50k
apr50k w/ cache
apr100k
apr100k w/ cache

(c)

Figure 1: Room for bandwidth savings by adjusting image sizes. Shown in (a) and (c) are CDFs of potential raw and normalized

savings respectively across pages of different ranks from our crawls. Normalization in (c) are against page weights with and

without browser caching. As shown in (b), pages in the 90th percentile see room for over 7MB of savings.

software, use substandard TLS certificate validation, and/or use
weak TLS cipher suites, opening up users to additional security
risks.

Last but not least, these methods often make use of complicated
rules for replacing/removing JavaScript [9, 22, 29, 58]. Other so-
lutions label dead code based on offline randomized user input
testing [18]. This implies that the efficacy of such solutions in terms
of Web-compat remains quite uncertain and hard to measure, often
requiring much manual effort to quantify [41]. Furthermore, when
pages do break, there is often backlash from users and Web devel-
opers alike due to the lack of transparency of these systems [12].
Client-Side Only Solutions. These methods run fully in the
client, with no server support (either directly or via redirection)
or support of on path middleboxes. While this approach offers the
highest privacy guarantees, it is limited in which data-saving strate-
gies can be adopted, since the actual contents of Web pages are
unknown to clients until retrieved.

Content blocking is the most common client-side data saving solu-
tion. This strategy simply blocks resources which can be identified
as non-useful to users at the time of their request, such as advertise-
ments in the case of ad-blocking. While more complicated solutions
that block potentially useful page components, e.g., JavaScript, are
available [22], they require apriori knowledge of page contents
gained from observing the page load over a period of time.

Content blocking is also made available by Chromium under its
Data-Saving mode to block all Web page images [40], replacing
them with a single placeholder image. Image blocking saves users
data, but it has drastic impact on the user experience of Web pages.
While users are allowed to download these images individually,
they have little to no context as to which images may be important
to them. BrowseLite balances data-savings and the user’s brows-
ing QoE; further, no user action is required. Our user study using
BrowseLite revealed that users tend to rate pages without images
as completely broken (1 on a 1-5 scale at the median), whereas
pages with data-optimized images received much more favorable
responses (3 at the median).

The work in [59] outlines what can be done from the client in
terms of page load optimization, but focuses mainly on speculative

caching (similar to [43]), as well as content pre-fetching to improve
latency rather than data-savings. While caching clearly reduces
data sent over the network, it does not offer data savings under
cold connections, which the same work stresses the prevalence and
importance of [59]. BrowseLite is primarily designed to save users
data under cold caches, though our results (Section 5) highlight
how BrowseLite will not waste data in presence of hot caches.
Further, recent works have shown security implications for too
liberal caching policies, such as enforcing the caching of similar
content between domains [53].

3 POTENTIAL FOR IMAGE SAVINGS

We begin our measurement by determining the potential for savings
made available through less private, middlebox based optimization
of images. Our analysis serves the purpose of creating a baseline for
which to compare the data-savings of our more private, exclusively
client-side, BrowseLite. While the weight of images across web-
pages is known to be quite high (44% as per HTTP Archive) [15],
it is unclear how much of these images could be saved using the
middlebox approaches of image resizing, quality compression, and
transcoding (see Section 2).
Methodology. We resort toWeb crawling [56] to collect a repre-
sentative dataset on the current status of image usage in the wild.
To obtain a set of domains to crawl, we use the Majestic list [1]
which contains the top million domains with the most referring
subnets. We chose the Majestic list, as opposed to the more popular
Alexa list [2], as it is a free alternative that is still exclusively based
on Web browser traffic [50].

We crawl 3 buckets of webpage rankings from the Majestic list
(top100, apr50k, and apr100k) [1]. For each bucket, we select the
first 100 websites, e.g., pages 100-200 for the top100 and pages
ranked 50,000-50,100 in the apr50k bucket. Given the importance
of covering internal pages [14, 56], we crawl the first 10 links to
the same domain, if available, from each top level domain. Our
crawls originated a data-set encompassing ∼1.2k (300 landing and
880 internal pages) with, on average, 3 internal pages per domain.

To perform the crawls by scripting Chromium version 83 using
a combination of tooling via Lighthouse [3] and Puppeteer [8]. We

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Kelton et al.

0-25th 25th-50th 50th-75th 75th-100
Percentile

0.0

0.2

0.4

0.6

0.8

1.0
SS

IM

Strategy
Standard
Extreme

Figure 2: The resulting trade-offs in image quality, mea-

sured via SSIM, across the different levels of potential sav-

ings from Figure 1.

use Lighthouse to load a page and collect various network and in-
page statistics, such as network bytes associated with each resource
requested, and the final rendered locations and sizes associated with
all images from the Cascading Style Sheets (CSS) of the webpage.
We use Puppeteer to obtain the response bodies of all network
requests, and to scroll through the page to capture information of
images which may be lazy loaded, or those added only in presence
of user interactions. We ensure each webpage (landing and internal)
is loaded using a cold cache. However, we also save the necessary
HTTP headers (i.e. Cache-Control, Expires, Last-Modified,
and Etag), to implement browser logic for determining whether a
given request is cacheable [20]. This allows us to simulate the load
of these pages with caching enabled, offline after our crawls. This
analysis is particularly important for internal pages, where many
resources may be cached from the landing page.

Lighthouse currently provides rough estimates of wasted bytes
due to a page failing to implement standard image data-saving
optimizations (See Section 2. For our measurements, we extend
these estimates in two ways. In the following, we detail both exten-
sions to Lighthouse reports and, for each, provide an analysis of
the extensions based on the ∼1.2k websites from our crawl.
Image compression pipeline. We estimate the potential data
waste in images by manipulating all the HTTP response bodies of
image requests through 3 image optimization techniques as recom-
mended by Lighthouse and employed by proxy based approaches
(e.g., Flywheel [11]), that is, image resizing, quality compression,
and transcoding. Our first extension to Lighthouse data-saving mea-
surements is to pipeline images through these 3 optimizations, as
Lighthouse currently only applies these individually. This approach
can underestimate savings as these optimizations compound to save
data [11, 51]. We employ two versions of the pipeline, standard and
extreme, which have trade-offs in terms of savings versus potential
impact on the user’s QoE. To quantify the reduction in QoE caused
by image savings, we use the structural similarity metric [60] (SSIM),
a full image reference metric which is commonly used to measure
quality degradation in images due to transformations (blurring,
compression, color reduction, etc.).

For the resizing component of the pipeline, in standard mode,
we resize the image as sent over the network to its CSS attributes
width and height; for extreme mode we resize the image to half of

these values. We note that the CSS attributes depend on the size
of the viewport, and hence smaller viewports may achieve higher
relative savings for the same image at the same perceptual quality.
In all our experiments, we instrument Chromium to emulate a
Pixel 2 which has viewport size of 411x731 (5.5 inches), or the most
popular size in 2019 [17]. Following image resizing, all jpeg, tiff, png,
bmp, and gif images are transcoded to WebP, a “next generation”
image format which offers higher compression with visual quality
comparable to the other formats [13]. In standard mode WebP
images are compressed by reducing their quality setting to 85 (out
of 100), as this is reported as the best trade-off between savings and
SSIM degradation according to previous works [11, 51]. In extreme
mode, we aggressively reduce image qualities to 10 (out of 100).

Results from the image compression pipeline are shown in Fig-
ure 1 (a) and (b). Pictured first is the CDF of savings, in KBytes, for
images across pages from the top100 and apr50k websites. What we
can observe is that lower ranked pages see generally higher savings,
with medians of 152KB, 292KB, and 308KB for standard mode of
top100, apr50k and apr100k respectively, and 189KB, 375KB, 390KB
for extreme mode on the same. This result is intuitive, as more pop-
ular pages are expected to be more optimized. While the savings
offered for the median page is rather modest, the distribution of
savings is quite long-tailed, as shown in Figure 1 (b). The figure
shows that even top ranked pages see savings of over 3MB at the
95th percentile. Further, the gap between the standard and extreme
modes is modest, being at most 100KB at the median page across
the ranks. This is likely because savings offered through resizing
and reducing quality begin to diminish when configured further
past that of our standard level.

Outside of raw bytes, we compare savings as a fraction of the
total page weight. Figure 1 (c) provides the normalized savings,
for our standard mode, across our crawls broken up by page rank.
As before, the lower ranked pages offer more potential savings,
with 10.3%, 20.1%, 21.9% of the median page being saved for top100,
apr50k, and apr100k respectively. This jumps to 30.8%, 38.9%, and
44.5% for in the 75th percentile across the respective crawls.

We also analyze the savings normalized by the weight of pages
under caching. Specifically, we do not count URLs (including im-
ages) that are a) found on both top level pages and second-level
pages, and b) marked as cacheable by their HTTP headers [20]
towards the total weight and savings of second-level pages. Note
that we assume a double-keyed HTTP cache [26, 30]. It follows that
when determining repeat URLs, the same image on different do-
mains will be counted for savings across both pages. Figure 1 (c) also
shows this result, where we can observe that savings increase in the
presence of warm caches; specifically savings of up to 14.2%, 21.6%,
and 36.8% are observed for the median page in top100, apr50k, and
apr100k respectively. This is because many Web resources, other
than images, are shared between landing pages and inner pages,
thus increasing the relative weight of data-saving techniques.

Moving to SSIM analysis, we observe that standard mode pro-
vides rather mild QoE trade-offs, while the trade-off for the extreme
mode is harsher. Figure 2 shows paired boxplots of the resulting
SSIM metrics of images, optimized by both standard and extreme
modes and bucketed by their resulting percentile of data-savings.
While themedian SSIM of images for all levels of savings in standard

BrowseLite: A Private Data Saving Solution for the Web WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

10KB 100KB 1MB 10MB
Delta Savings (Log-Scale)

0.875

0.900

0.925

0.950

0.975

1.000

CD
F

Ac
ro

ss
 P

ag
es

(a)

1KB 10KB 100KB 1MB
Delta Savings (Log-Scale)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

CD
F

Ac
ro

ss
 P

ag
es

(b)

Figure 3: Log scaled difference in savings (KBytes) when (a)

not considering CSS background images and (b) when fail-

ing to appropriately calculate savings for CSS sprites.

mode does not fall below .95 (.83 for the 25th percentile), the me-
dian of extreme mode sits at .74 across all levels of savings. Finally,
we also observed that images that benefit more from data-savings
see lesser reductions to their visual quality. This analysis suggests
that high data-savings are possible with modest QoE impact, with
standard mode offering the more preferable trade-off.
CSS sprites. Lighthouse ignores potential savings from resizing im-
ages which are embedded by CSS, or CSS background images. This
is because a typical use for background images is CSS sprites [25],
or images that consist of multiple smaller images embedded in one
parent file (or sprite sheet). The sprite sheet is then dynamically
cropped by the webpage to render the component images. Mea-
suring savings for CSS sprites correctly requires accounting for
the final size and location of all sprites, not just the original image.
Due to this complexity, Lighthouse currently ignores calculating
data-savings for all background images, thus leading to potential
savings underestimations.

We identify CSS sprites, or more generally any images that are
cropped dynamically using the CSS property background-position,
and separate these from normal CSS background images. We com-
pute savings for normal background images using the pipeline
previously discussed in this section. To calculate savings for CSS
sprites, we compare the total area used by sprite sheets on the
page with the total area of these images as sent over the network.
Figure 3 (a) shows the Cumulative Distribution Function (CDF) of
the data-savings which are currently missed by Lighthouse due
to ignoring background images. Figure 3 (b) shows a CDF of the
overestimation in savings seen from incorrectly resizing entire CSS
sprite sheets to their component sprite size. The CDFs refer to the
full set of pages from our dataset, and show the change in KBytes
of savings in log scale. The graphs start at (a) 0.875 and (b) 0.6 for
visibility as only 12.5% and 40% of pages were affected for (a) and
(b) respectively. While not accounting for background CSS images
only misses < 50 𝐾𝐵 of savings for 88% of pages, there are 5% of
pages for which > 100 𝐾𝐵 are missed. Resizing the CSS sprite sheet
to the size of a single sprite can cause an overestimation of 100 𝐾𝐵
and 2𝑀𝐵 of savings for the pages at the 60th and 90th percentile,
respectively.

4 IMPLEMENTATION

Measurements from our previous section are motivating evidence
that image optimizations contribute to significant bandwidth sav-
ings forWeb browsing, especially in the upper tail of lesser-optimized
pages which see savings on the order of MBytes. However, such
savings represent a bound for image savings attained by either
privacy invasive approaches, e.g., using middleboxes, TLS intercep-
tion, URL rewriting, or solutions which require some form of server
collaboration.

In this section, we introduce BrowseLite, a collection of tech-
niques which realize image data-savings directly at the client (e.g.,
a browser), thus offering higher privacy guarantees. BrowseLite
consists of two main techniques, URL Rewriting and image fetch
reduction, which are both described in the following.

4.1 Image Server Instrumentation from the

Client

The key challenge for a client-side data saving approach is that
it cannot apply transformations in the same way as middleboxes;
when images are received by the browser, the user’s data has al-
ready been wasted. Instead, it requires a way to ask the server
for a more compressed version of images. Our intuition is that
this is possible thanks to the recent widespread of image services
run by popular content delivery networks (CDNs) like Fastly [4],
Akamai [5], and CloudFlare [6]. These image services offer similar
means as middleboxes to reduce image file sizes. Such savings are
typically made accessible by configuring parameters in the URL of
the image being served by the CDN.

However, these image services are not always configured opti-
mally. For one, images uploaded to these services may be resized in
a “one-size fits all” manner, for convenience, even though mobile
pages, for instance, are accessed from a large diversity of device
types and screen sizes. For smaller devices, this implies images can
be further resized without observable quality degradation. Further,
browser fragmentation means modern image formats (e.g., WebP
and AVIF) are not always supported. For these reasons, image ser-
vices can be configured in an overly conservative manner to not
deliver these modern formats, missing out on significant savings
(see Figure 1). Lastly, image services may be configured to deliver
images under higher visual quality (as determined, for example,
by SSIM discussed in Section 3), rather than higher data-savings.
However, many image formats are able to keep much of the same
visual quality at even a significant level of compression, e.g., jpeg
and WebP images provide no noticeable visual quality reduction at
85% compression levels [11] (See Section 3). As we will show later
(see Table 4), these configurations of image services can miss up to
70% savings across real pages.

We design BrowseLite to detect the use of such image ser-
vices, and to uncover potential data-savings in their configurations.
Specifically, BrowseLite detects whether or not an image server
supports the same transformations as the standard mode outlined
in Section 3, that is, CSS right-sizing, quality reduction, and for-
mat transcoding. If such support is detected, BrowseLite modifies
HTTP requests for these images in real-time to automatically apply
such transformations, thereby optimizing bandwidth consumption.
We call this component of our work URL Rewriting.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Kelton et al.

To identify the presence or lack of an image service associated
with a given image, BrowseLite searches for parameters in the URL
of images that might related to the image’s dimension, compression
level, and format. For example, in the URL1, the parameters w_400,
q_100, and extension .jpg correspond to the actual dimensions,
quality compression level (out of 100), and format of the downloaded
image. The equality of the image data and the URL parameters
suggests that the image can be dynamically resized, compressed,
and transcoded just by changing such parameters on the fly.

Editing URL parameters is not without risk, as a URL may simply
be statically defined with no image service available, and should
thus not be edited. This manner of false positive can, at the very
least, cause an extra unnecessary round trip andmitigate bandwidth
savings, and at the worst actually hurt bandwidth savings.

To avoid latency and bandwidth harming requests as much as
possible, BrowseLite takes a two step approach to URL Rewriting.
First, we rewrite any value in the URL that matches a native size,
quality, or format property of the image. Intuitively, this method
achieves high true positive rate, but also high false positive rate.
Thus, second, we generate a series of rules from the true positives
to increase precision; instead of rewriting any location in the URL
matching a property, we only rewrite URL parameters matching
such rules (e.g., w_ in our example above). We further extend these
rules by manually exploring mobile vs. non-mobile versions of
the page and the image service APIs of 12 popular CDNs2. We
create such rules across the ≈10k images obtained from our crawls
outlined in Section 3. In the end we chose a subset of rules for
matching which gave the best trade off in terms of true positive
and true negative rates for all our observed images.

Figure 4 summarizes the final results of the URL Rewriting
process. We can observe that a total of 50 unique rules were utilized
which affect 16.1% of images for an error rate of 7.2%. Breaking
down the error rate, 6.6% of images returned aHTTP 404 status code,
implying a need for a single re-fetch when running BrowseLite.
The latter 0.6% returned a size greater than the original size. Overall,
of the affected images, 69.9% of the original image size was saved
on average. We discuss the impact URL Rewriting has on page
data-savings in the following section.

4.2 Fetching Less with Range Requests

The HTTP standard outlines the ability to request arbitrary bytes
of an HTTP response over the network. This is achieved by an
HTTP range header being attached to a request which indicates the
amount of bytes of the resource that should be sent from the server.
Assuming this capability is properly implemented at the server, a
206 status is returned for the request, with the subset of bytes re-
quested as the response body. As Web image formats were designed
to display render even under slow or lossy networks, not only can
images be partially requested, but major image codecs (e.g., libpng,
libjpeg, libwebp) support partial rendering as well. As 96% of the
servers in our crawls supported range requests, our rationale is to
combine the use of range requests with URL Rewriting to achieve
savings on a more general set of webpages. We call the process of
1https://static.wixstatic.com/media/98a2de_37749ccfe79f48d1a977af77d1c2bd0e~mv2.jpg/
v1/fill/w_400,h_52,al_c,q_100,usm_0.66_1.00_0.01/Classic_Car_Painting_By_Pavel_Hol%
C3%BD.jpg
2Rules and manual efforts found in the document: https://tinyurl.com/86srq141.

BrowseLite to request less for images its image fetch reduction
component. In Section 5 we compare the effectiveness of the com-
bined URL Rewriting and image fetch reduction components of
BrowseLite to existing approaches, e.g., middleboxes and Google
Web Light [23], in terms of data-savings.

While clearly requesting 50% of the bytes of an image can usher
in 50% data-savings, what remains is the impact on semi-complete
images on user QoE. Generally, the first X% of the bytes of Web
images can be used to render the top most X% of the pixels of
images. This implies that only the top half (approximately, given
compression) of the images will be displayed given a 50% range
request, making most images appear broken.

However, there are some factors which can alleviate this impact.
First, progressiveness is a rendering mechanism of jpeg and png
formats in which image data is encoded such that it is able to be
rendered in layers as opposed to top-to-bottom. What this implies is
that an image can be rendered in its entirety, albeit at a lower quality
(SSIM), given only a fraction of the available bytes. As discussed
in Section 3, much of the potential data-savings for images come
from the fact that they are sent at a larger size than they will be
rendered at the client. Due to downsizing, when they arrive at the
client certain progressive images can be rendered at high quality
even with a fraction of their payloads requested.

For non-progressive images, when applying image fetch reduc-
tion, BrowseLite performs a visual trick to make pages appear
less visually broken while still attaining meaningful savings. This
technique takes the partial data of the image that is obtained over
the network, and fills in the broken gaps of empty space with re-
flected and blurred content of the image, which we call reflections.
The idea stems from a popular technique on the Web known as
image previews [27]. This is a technique employed by many popular
Web services (e.g., Facebook [35] and Medium [48]) where pages
display small and blurred portions (on the order of bytes) of im-
ages before the full versions are downloaded, as opposed to empty
spaces or placeholders. However, since BrowseLite does not have
access to server-side control, and thus full image data, we cannot
pre-process the images offline to make previews. Instead, we use
the partial data in the range request to make reflections on the fly,
at the client.

Figure 5 shows a visualization of image fetch reduction in
case of regular (a) and progressive images (b). For Figure 5 (a),
both images show the page with 50% the image data requested.
When reflection is applied (left most), the page is 95% visually
complete (according to the SpeedIndex metric, see Section 5.2 for
more details) and only 73% visually complete without reflection.
Figure 5 (b) shows a page with 15% (left most) and 80% (right most)
of the image data requested, respectively. Given the progressive
image is sent over the network at dimensions much larger than
its final rendered ones, the page is still 95% visually complete with
only 15% of the data fetched.

4.3 BrowseLite

We implement URL Rewriting and image fetch reduction as a
Puppeteer [8] application. While we test with Chromium version 83,
our application can function out of the box on any Chromium based
browser or one in which supports the Chrome Debugging Protocol
(e.g., Brave, Edge, and Opera [21]). Further, while BrowseLite is

https://static.wixstatic.com/media/ 98a2de_37749ccfe79f48d1a977af77d1c2bd0e~mv2.jpg/v1/fill/ w_400,h_52,al_c,q_100,usm_0.66_1.00_0.01/Classic_Car_Painting_By_Pavel_Hol%C3%BD.jpg
https://static.wixstatic.com/media/ 98a2de_37749ccfe79f48d1a977af77d1c2bd0e~mv2.jpg/v1/fill/ w_400,h_52,al_c,q_100,usm_0.66_1.00_0.01/Classic_Car_Painting_By_Pavel_Hol%C3%BD.jpg
https://static.wixstatic.com/media/ 98a2de_37749ccfe79f48d1a977af77d1c2bd0e~mv2.jpg/v1/fill/ w_400,h_52,al_c,q_100,usm_0.66_1.00_0.01/Classic_Car_Painting_By_Pavel_Hol%C3%BD.jpg

BrowseLite: A Private Data Saving Solution for the Web WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Image Optimization Unique Rewrite Rules TPR FPR (404) FPR (No Savings) Savings

Right-Sizing 39 15.4% 6.1% 0.6% 66.2%
Quality Reduction 5 3.7% 1.2% 0.01% 53.7%
Format Transcoding 6 3.9% 0.1% 0.01% 44.1%
Any Transformation 50 16.1% 6.6% 0.6% 69.9%

Figure 4: Quantifying the effectiveness of instrumenting image services for better image optimizations from the client. Savings

is in terms of average reduction in size of these images. While a small fraction of pages are able to be rewritten in this way,

the relative savings is quite large.

prototyped as an external application, many of the components use
internal browser APIs. We discuss the potential for BrowseLite to
be fully integrated with the browser in Section 6.

To perform URL Rewriting, BrowseLite intercepts all HTTP
requests associated with images as defined by the Chromium net-
work stack. Each request URL is associated with a DOM node of
the Web page which can be used to extract the image’s CSS width
and height as needed for URL Rewriting. Next, the actual request
URL is run through a regex to reconfigure the URL parameters to
fetch a lighter version of the image, if possible, in the same manner
as discussed in Section 3 and Table 4.

Moving to image fetch reduction, since BrowseLite does
not assume server cooperation, it does not know the file size of
an image apriori, which is needed to form a range request. For
this reason, BrowseLite assigns a range header to instead request
the first 2KB of every image. Contained in the server’s response
is the image’s full size in bytes, and the metadata for the image.
This metadata is immediately passed to the browser since it is used
to facilitate the final layout of the page [10], which should not be
delayed. Once the full image size is known, a second range request
is immediately issued to obtain the lighter version of the image as
a fraction of its known total size.

Following the request procedure, the resultant image is built
in memory using the concatenated data from the first and second
range requests to prevent wasted bandwidth. To display the im-
age from memory, the image is in-lined in the Web page using a
dataURI [24] on the associated DOM element which was previ-
ously obtained. The metadata from the initial 2KB of the image
is used to determine, on the fly, its progressiveness. If the image
is progressive, the dataURI simply consists of the data requested
over the network. If the image is not progressive, the image data is
decoded, reflected, blurred, and re-encoded to a final dataURI.

Finally, fallback cases are necessary for both URL Rewriting
and image fetch reduction components of BrowseLite. If the
initial 2KB request returns a 404, then URL Rewriting is aborted
and only image fetch reduction is used. In case of a false positive,
e.g., the returned image is bigger than the original, BrowseLite
can only proceed to image fetch reduction. For image fetch
reduction, range request support is determined on the fly if the
server does not respond with the expected initial 2KB, or does not
return the expected response headers to notify BrowseLite of the
image’s total size. In these cases, the full image, after having been
subjected to URL Rewriting, is downloaded in its entirety. As
discussed before, BrowseLite only sees about 7% false positives

when URL Rewriting, and only 4% of servers do not support range
requests needed for image fetch reduction.

5 RESULTS

Wemove to evaluate BrowseLite in terms of its impact on user QoE,
data-savings, and page load performance. We also compare the data-
savings of BrowseLite to the less private middlebox optimizations
of Section 3 and Google Web Light.

5.1 Bandwidth Savings and Visual Trade-offs

We begin by analyzing the potential data-savings offered through
URL Rewriting. Figure 6 shows the CDF of the fraction of page
bytes saved, per the URLs in each bucket of our crawls (Section 3).
The figure shows that URL Rewriting can only be used for 10–20%
of the URLs in the two higher ranked popular buckets (top100 and
apr50k), while it has little effect on less popular URLs (apr100k).
This is because higher ranked pages are more likely to make use of
image services which URL Rewriting opportunistically exploits.

For the pages where URL Rewriting can be used, it offers signif-
icant data savings. For example, 5% of pages in apr50k and top100
see savings of 20-30% or 400KB saved per page, on average. With
respect to user experience, images have a median SSIM value of .97
(see Figure 1(c)), a negligible quality reduction which is not de-
tectable by a user. These high SSIM values are observed because
these images are rewritten using standard means of compression.

Next, we quantify data savings and QoE impact of image fetch
reduction. While SSIM is useful to quantify visual impacts made
to transformations that effect the entire contents of an image (e.g.,
blurring and color compression), it was not intended to reference
quality of full images against partially complete images, as are
produced by image fetch reduction. We instead quantify visual
impact for pages using the visual completeness, a component of
SpeedIndex [16, 45] which is a Web performance metric describing
the average time in which Web pages are rendered. Visual com-
pleteness is the comparison mechanism used by SpeedIndex to
determine the fraction of a loading Web page that is rendered at a
given point in time, allowing it to reasonably measure the visual
impact of partially complete images and pages. Under the hood, the
visual completeness compares color histograms from screenshots
of the Web page at points in its load to a screenshot of its fully ren-
dered state. The visual completeness at a given time is the fraction
of pixels with colors matching the final state.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Kelton et al.

(a)

(b)

Figure 5: The visual completeness of (a) reflection and (b)

progressiveness of images. The left pair shows the state of

the page with 50% of the image data requested. The page

with reflection is still 93% visually complete while the page

without is only 78% virtually complete. The right pair shows

the state of a page with a large progressive image. The page

is already 95% visually complete with only 15% of the data

requested (99% with 80% requested).

Figures 7 (a) and 7 (b) compare the visual completeness values
of pages with various amounts of image data requested, in 10%
increments, relative to the pages with 100% of the image data re-
quested. Each point on the CDF represents the visual completeness
reached by 25%, 50%, and 75% of pages. Figure 7 (a) pictures all
pages together, and (b) pages with a supermajority (>=60%) of pro-
gressive images (≈11% of pages in our dataset). We can observe that
across all pages, the median page is still 90% visually complete with
only 50% of data requested. Likewise, pages in the 75th percentile
are 90% visually complete with only 30% of the data requested.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Savings (Fraction of Page Size)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

CD
F

Ac
ro

ss
 P

ag
es

apr100k
apr50k
top100

Figure 6: Page savings recovered by manipulation of server-

side compression via URL Rewriting. As ≈16% images are

optimized, savings are shown from the 80th percentile.

The median page with a supermajority of progressive images re-
mains 90% visually complete even with only 10–15% of the image
data requested.

To expand on this result in terms of data saved, Figures 7 (c)
and (d) show CDFs of savings across pages assuming various levels
of image data requested – distinguishing between all pages (c)
and the subset of pages hosting a supermajority of progressive
images (d). Savings for general pages in (c) are shown for 25%, 50%,
and 75% of the image data requested. Given Figure 7 has shown
that, for progressive images, image fetch reduction can be more
aggressive and reach higher visual completeness, savings in (d) are
shown for 10%, 25%, and 50% of image data fetched. We can observe
that the median page sees a 28% reduction in size by requesting 50%
of image data. This jumps to 42% savings for 25% of image data
requested. The progressive pages saw ≈ 40% savings with 10% data
requested while remaining at least 90% visually complete.

5.2 User Experience

While visual completeness is a useful proxy for quantifying the
impact BrowseLite has on the user experience at scale, it is not a
substitute for feedback from real users. Thus, we performed a user
study to investigate how BrowseLite affects the end user.

We selected 40 pages with regular images and 10 pages with su-
permajority progressive images to show users in a crowdsourcing
study, run via the Microworkers [7] platform. Our study was a sim-
ple Web page that contained screenshots of the first viewport of the
pages compressed via BrowseLite. For the screenshots, the image
fetch reduction component of BrowseLite was configured such
that 50% of the image data was requested across all pages. The 40
regular pages were chosen randomly from 4 buckets of visual com-
pleteness to their original counterparts. These buckets were chosen
based on the distribution of pages in Figure 7 (a), i.e., VC >= 95%,
90% <= VC < 95%, 85% <= VC < 90% and VC < 85% for an average
visual completeness of 89%. The 10 progressive images had mean
visual completeness of 97%. On the study Web page, we showed the
users the compressed version of each page with BrowseLite side
by side with the original page. The formal question we asked to
users was, ‘How would you rate the quality of this compressed page
which can extend your mobile data plan so you can browse more?’.

BrowseLite: A Private Data Saving Solution for the Web WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

0 20 40 60 80 100
Percent of Image Data Requested

40

50

60

70

80

90

100

Vi
su

al
 C

om
pl

et
en

es
s

25% of pages
50% of pages
75% of pages

(a)

0 20 40 60 80 100
Percent of Image Data Requested

40

50

60

70

80

90

100

Vi
su

al
 C

om
pl

et
en

es
s

25% of pages
50% of pages
75% of pages

(b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Savings (Fraction of Page Size)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

Ac
ro

ss
 P

ag
es

0.25 Fetched
0.5 Fetched
0.75 Fetched

(c)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Savings (Fraction of Page Size)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

Ac
ro

ss
 P

ag
es

0.10 Fetched
0.25 Fetched
0.50 Fetched

(d)

Figure 7: CDFs of savings offered by BrowseLite as well as the tradeoff in visual rendering quality. Plots (a) and (b) quantify

visual completeness values against the percent of image data requested. The plots picture all pages and only those with a

supermajority of progressive images respectively. Plots (c) and (d) convey normalized savings for the same, broken up by

three levels of image data requested. For (d) the levels show less data requested, since pages with progressive images are more

visually complete with the same amount of data requested.

We provided the user a quality scale from 1–5 with meanings for
each choice given in Figure 8.

For comparison, we also showed users screenshots of the same
pages optimized with the Google Web Light tool [23] (see Section 2).
While Web Light acts as a good upper bound for what can truly be
done in terms of data-savings, it is a less private approach, and not
easily quantified in terms of Web-compat. We showed 41 total Web
Light pages (by forcefully navigating pages through Web Lights
servers at http://googleweblight.com/i?u=URL [23, 54], as 9 of the
pages in our set of 50 could not be optimized by Web Light and
simply redirected to the original page, a behavior documented by
recent analyses [54]. Not including such 9 pages, the Web Light
pages had mean visual completeness of 73%.

Participants to our study were shown 20 of the 50 pages; for
each of the 20, either our page or Web Light version (if available)
was randomly shown, to avoid bias by having users compare two
of the same URLs during the study. Two controls were also shown,
one with a perfect rendition of a page (visual completeness of 100),
and one with a page where all images were replaced by image
placeholder icons (visual completeness of 29). We only accepted
users who rated these as 4-5 and 1-2, respectively, which filtered out
approximately 35% of user responses to our study. We collected rat-
ings from 200 Microworkers users (after filtering) giving each page
approximately 40 ratings. We provide a link to an anonymous video
of the study 3 which shows both pages optimized by BrowseLite
and by Web Light, as seen by our Microworker users.

Figure 8 shows themedian rating of each page calculated over the
≈40 user ratings collected per page. For BrowseLite, we distinguish
between the pages with supermajority progressive images and
pages where the reflection trick was used (see Section 4.2). From
Figure 8 we draw a few observations. The first is that users rated all
10 progressive pages very highly (mostly very good and few good),
corroborating that progressive images can see higher data-savings
for the same trade off in the user experience, discussed in Figure 7.

The second is that the majority of pages with reflected images
(21 out 40) were rated as usable for most users. Though none of
the pages were rated as broken, about 20% were given a poor rating.

3https://streamable.com/e89yji

Upon further investigation of these pages, we observed that this
rating was typically given if a) human faces were distorted or b)
actual text embedded within these images was reflected (and thus
unreadable). Conversely, pages with text overlaid on the image,
and not part of the image data where rated quite positively (4 or 5).
While we do not take means to prevent such cases in BrowseLite,
we believe it to be a good direction for future work (see Section 6).
Further, the only page that received a median score of 1 was our
control page with broken placeholder images. This result suggests
that reflections are generally more favorable for the user experience
than placeholder images, a technique used by Chromium under its
Data-Saving mode images [40].

Finally, Figure 8 shows that Web Light, while removing and
rearranging much of the page contents and having a much lower
visual completeness on average, was rated generally highly by
users (21 good pages). However, as Google’s servers have access
to the contents before they are sent to the client, Web Light has
more context, and time, to analyze the important parts of the page,
factors not available to BrowseLite.

5.3 Range Requests and Caching

One caveat in applying range requests to save data is the potential
impact on caching. For example, let’s assume a user of BrowseLite
loads a page using a cellular connection, and then later loads the

Method

Broken

(1)

Poor

(2)

Usable

(3)

Good

(4)

Very Good

(5)

BrowseLite
(Reflections) 0 8 21 8 3

BrowseLite
(Progressive) 0 0 0 3 7

Web Light 0 2 11 21 7

Figure 8: User responses form our crowdsourced user study.

The rows represent the type of optimization: BrowseLite

on pages with regular images, BrowseLite on the progres-

sive image pages, and Web Light optimized pages.

http://googleweblight.com/i?u=URL
https://streamable.com/e89yji

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Kelton et al.

−2000 −1000 0 1000 2000
Change in SpeedIndex (ms)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F
Ac

r
ss
 S
ite

s

Wi-Fi
4G

(a)

Extra Request DOM Search Image Transform
Overhead Type

0.0

0.2

0.4

0.6

0.8

1.0

Ov
er
he

ad
(b)

Figure 9: The CDF in (a) shows SpeedIndex is inflated

by 70ms for the median page onWi-Fi and 25ms on 4G. The

boxplots in (b) show the relative contributions from each

source of delay caused by BrowseLite on the SpeedIndex.

same page under aWi-Fi connection, where no data-saving is neces-
sary. Ideally, the portions of the images fetched using range requests
are not re-fetched when opting out of BrowseLite.

The heuristics that browsers employ for caching content ranges
are notwell documented.We thus set up an experiment onChromium
(version 83) to determine how caching rules for range requests are
currently handled. First, we instrument Chromium to fetch real
pages and images from our study under a cold cache. Next, we
perform the following experiments:
(1) We issued two successive range range requests for images with

range of 0-10KB and 10-20KB and found they were both cached
on subsequent requests, suggesting range requests of the same
range are cacheable.

(2) We issued two range requests with overlapping ranges and
found that the browser rewrites the range request to only fetch
the remaining data, e.g., a request for 0–10KB of an image
following a range request for 0–20KB of the same was rewritten
to request the range not yet in the cache: 10–20KB.

(3) We issued a request for the full image following a range request
and found that no data was wasted. For example first request-
ing 0–10KB of an image, followed by requesting the full image,
only results in the remaining portion of the full image being
requested by the browser.

(4) The reverse of the above is also true: we issued a request for
the full image followed by a range request for 0–10KB of the
same and found the range request to be served from the cache.
These results add to the realism of a data-saving approach that

leverages range requests, in that switching between BrowseLite
and normal browsing does not adversely affect HTTP caching, and
hence waste data. This result further implies: a) flexible ranges can
be used, say, if network conditions change, and b) BrowseLite can
be turned off, presumably by reading existing functionalities like
the HTTP Save-Data header [31] with no excess data waste.

5.4 Performance

BrowseLite was designed with data-savings rather speed as its
main goal. However, to be usable, it is still important that pages are
not significantly slowed down, which we investigate here.

BrowseLite introduces a few extra operations to page loads
which can potentially slow them down. The first is the extra range

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Savings (Fraction of Page Size)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F
Ac
ro
ss
 P
ag
es

MITM Proxy
HTTP Proxy
Web Light
BrowseLite

Figure 10: CDF of data-savings ofmiddlebox approaches and

Google Web Light compared to those of BrowseLite.

request used to fetch image metadata. Second is the search in the
DOM to associate an image request to an object on the page. Third
is the extra processing needed to create the reflections of non-
progressive images. However, the data saved by BrowseLite has
the potential to offset such overhead. Note that while the extra
request given an erroneous rule from URL Rewriting also adds
some latency, this occurs relatively infrequently, as denoted by
Figure 4.

In order to quantify these additions to a Web page load, we mea-
sure the average overhead in rendering time of pages as given by
the SpeedIndex [16] metric. Figure 9 shows the CDF of change in
SpeedIndex when loading pages normally and with BrowseLite
across the ∼1,200 pages of our crawls. We compare across two
network conditions, a Wi-Fi connection (https://fast.com reported
40Mbps up, 10Mbps down, 10ms RTT) and a Verizon 4G LTE connec-
tion (4Mbps up, 3Mbps down, 40ms RTT).We benchmark BrowseLite
with a visual completion budget of 90%, implying that 50% of the
images are requested (see Figure 7).

We can observe that ≈80% of pages on Wi-Fi experience over-
heads of <500 ms. Further, while 20% of pages experience a more
noticeable delay (>500 ms), 41-48% of pages actually see an im-
proved SpeedIndex by an average of ≈400ms. While 4G connections
have higher RTT than Wi-Fi, implying the extra range requests of
BrowseLite are further delayed, they also have lower bandwidth,
and thus benefit more from BrowseLite’s data savings. The result
is that the distribution of change in SpeedIndex over WiFi and 4G
are quantitatively similar. The improvement in SpeedIndex over
both connections is due to the fact that some pages have images
that actually render sooner since only 50% of the image content
needs to be requested. While the fact that 20% of pages experience
noticeable slowdowns is significant, we note that the primary objec-
tive of BrowseLite is to save bandwidth, and we expect users will
tolerate a slight delay in their pages in exchange for data savings.

For the pages that see increased SpeedIndex, in Figure 9 we
analyze the 3 main causes of overhead from BrowseLite for their
relative attributions to the increases. From this, we can observe
that the largest fraction of overhead is indeed due to the extra RTT
(causing 50% of the inflation in the median page), followed closely
by transformation times using the browser’s native image canvas
APIs (45% in the median page). The DOM search is relatively fast in
comparison (5% in the median page). The contributions to overhead

https://fast.com

BrowseLite: A Private Data Saving Solution for the Web WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

were similar between the Wi-Fi and 4G experiments, with the extra
range request taking up 5% more overhead on 4G than on Wi-Fi. In
section 6 we provide a few potential ways the transformation and
search overheads can be minimized going forward, mainly through
tighter implementation of BrowseLite in the browser.

5.5 Comparisons

Finally, we compare the data-savings of BrowseLite – the com-
bined image fetch reduction and URL Rewriting components —
to the bandwidth savings made available through middlebox ap-
proaches aswell as those offered byGoogleWeb Light. For BrowseLite,
we target a visual completeness budget of at least 90% and thus
assume that 50% of image data should be fetched. For middleboxes,
we used the savings for the standard mode of our measurements
Section 3. For Web Light pages, we navigated all the pages from
our crawls through the Web Light system and derived savings as
compared to the original versions of the same pages. All savings
are in terms of relative page weights saved, including hot caches of
inner-pages as described in Section 3.

Figure 10 shows the CDF of data-savings offered by BrowseLite,
middlebox approaches that act as (a) MITM proxies, and (b) HTTP
only proxies, and Google Web Light, across the pages of our crawls.
The figure shows that Web Light acts as an upper bound for po-
tential savings on pages, with the median page seeing up to 90%
savings. As noted in Section 2, since all content is served through
Web Light’s servers, more resources (outside images), and even the
actual style of the page, can be directly manipulated. This comes
not only at the cost of privacy concerns, but also significant impact
on Web-compat; from our experiments, pages served via Web Light
achieve only 60% visual completeness to their originals, on average.
Web Light also failed to optimize ≈10% of pages, as was observed
for our user study and existing work [54].

While middlebox approaches see about 4% less savings compared
to BrowseLite at the median (21.6% vs 25.4%), the upper percentiles
see up to 30% more savings. While middlebox approaches are also
limited to images, they intercept the content before reaching the
client, allowing for more optimization opportunities at the cost of
privacy concerns similar to those of Web Light. Further, if we look
at only HTTP images from our dataset (we attempted HTTPS con-
nections for all pages), the median savings of middlebox approaches
drops to 0%, and only 20% at the 90th percentile, suggesting ≈62%
less pages are available to be optimized by not intercepting TLS.

6 DISCUSSION

This section discusses some subtle privacy concerns of BrowseLite
as well as complexities of an in-browser implementation, along with
some future work based on results from our user study.
Privacy considerations. While BrowseLite is designed with
privacy in mind, one subtle privacy concern lies in the caching of
range requests. The current version of Chromium modifies range
requests based on information from its cache in order to only fetch
the next required portion of the range (see Section 5). Since re-
sources in the HTTP cache can be hit across domains, this implies
that a range request initiated on one domain can be resumed on
another, thus leaking information on what other sites have been
previously visited.

This attack, known as a cross site leak or XS-Leak [52], is not
specific to range requests. Many browsers have begun discussing
the implementation of (or have already implemented in the case
of Safari [26, 30]) dual-key caching. This policy prevents access to
cross-origin resources from the HTTP cache, with main intent of
stopping XS-Leaks. As this feature will also prevent such XS-leaks
with range requests, we expect the image fetch reduction feature
of BrowseLite to remain available and safe for the future.

While BrowseLite is implemented entirely client side for pri-
vacy, techniques for savings, such as image fetch reduction and
more curated rules for URL Rewriting, could be implemented pri-
vately at a CDN. However, the fact that 80% of landing pages and
60% of internal pages are not leveraging CDNs implies a client-side
intervention is currently of import [15].
Browser implementation. One concern for the adoption of BrowseLite
is the performance impact of >500ms for 20% of pages (Figure 9(a)).
While the current version of BrowseLite is implemented as a pup-
peteer application, a native implementation in the browser has the
potential to eliminate overhead caused by image processing (for
reflections) and DOM searches, which combined account for up to
50% of overhead (see Figure 9(b)). A native implementation can as-
sociate DOM elements directly with network requests, eliminating
the need for a DOM search after the initial range request. Further,
native use of image libraries (e.g., libpng, libwebp) bundled with
the browser will allow for faster reflections, compared with our
current use of the high level canvas APIs and conversion of the im-
ages to dataURIs. If BrowseLite were to see adoption, we believe
these to be the next steps in its performance improvement. We do
not perceive a way to avoid the extra range request to discover
image metadata, which is a required step for BrowseLite to work
properly.
User Studies and Quality of Experience. From our user study
analyses, we made the observation that reflections were poorly
rated when image fetch reduction resulted in images with dis-
torted faces or text. In the future, we wish to test these hypotheses
with additional user studies. However, if true, what can be done to
alleviate this impact on the user experience remains in question.
One possibility we deem worth exploring is to use facial or textual
detection models (e.g., via CNNs [38]) on the partially downloaded
image to identify presence of such features. Upon successful de-
tection, an extra range request can be issued to better complete
such images. Another approach is experimentation with context
encoders [47], which can potentially complete our partially ren-
dered images with no additional data cost. Either way, trade-offs in
terms of the load times and bandwidth implications these proposed
techniques may have on page loads will need to be explored.

7 CONCLUSION

Given the increased complexity and size of webpages, there has
been an enormous effort on the part of theweb community to reduce
data costs that the modern web now has on end users. However,
existing approaches all trade off user privacy or web compatibility
in exchange for such data savings. This paper presents BrowseLite,
a private data saving solution that focuses on optimization of im-
ages during browsing. BrowseLite reduces the data strain images
place on the network by reducing their data requirements, through

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Kelton et al.

auto-configuring image services and by replacing standard HTTP
requests for images with range requests. As shown through our
experimentation, BrowseLite is able to achieve 25% data savings
on the median webpage, with only a minor overhead on the page
load time. Further, BrowseLite is able to reduce data requirements,
while keeping the median webpage usable, as reported by real users.
In future work, we plan to look at a tighter implementation of
BrowseLite in modern browsers and to explore the effects of a
more advanced image processing pipeline to further reduce the
potentially negative impacts on the end-user experience.

REFERENCES

[1] [n.d.]. https://majestic.com/reports/majestic-million.
[2] [n.d.]. https://www.alexa.com/topsites.
[3] [n.d.]. https://developers.google.com/web/tools/lighthouse.
[4] [n.d.]. https://www.fastly.com/.
[5] [n.d.]. https://www.akamai.com/.
[6] [n.d.]. https://www.cloudflare.com//.
[7] [n.d.]. https://microworkers.com/.
[8] [n.d.]. Puppeteer. https://github.com/puppeteer/puppeteer.
[9] 2020. Chrome LiteMode. tinyurl.com/1h8p6ykr.
[10] addy osmani. 2020. Optimize Cumulative Layout Shift. tinyurl.com/2hcsh4zu.
[11] Victor Agababov, Michael Buettner, Victor Chudnovsky, Mark Cogan, Ben Green-

stein, Shane McDaniel, Michael Piatek, Colin Scott, Matt Welsh, and Bolian Yin.
2015. Flywheel: Google’s data compression proxy for the MobileWeb. Proceedings
of the 12th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2015 (2015).

[12] Ankur P Agarwal. 2015. Google Web Lite - Move Fast, Break Things?
https://pricebaba.com/blog/google-weblight-move-fast-break-things.

[13] Jyrki Alakuijala and Vincent Rabaud. 2017. Lossless and Transparency
Encoding in WebP. https://developers.google.com/speed/webp/docs/
webp_lossless_alpha_study.

[14] Waqar Aqeel, Balakrishnan Chandrasekaran, Anja Feldmann, and Bruce M.
Maggs. 2020. On Landing and Internal Web Pages: The Strange Case of Jekyll
and Hyde in Web Performance Measurement. In Proceedings of the ACM Internet
Measurement Conference (IMC ’20). Association for Computing Machinery, New
York, NY, USA.

[15] HTTP Archive. 2019. Web Almanac by HTTP Archive.
https://almanac.httparchive.org/en/2019/.

[16] Cody Arsenault. 2017. Speed Index Explained - Another Way to Measure Web
Performance. https://www.keycdn.com/blog/speed-index.

[17] Device Atlas. 2019. https://tinyurl.com/59d5gy7b.
[18] Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. 2019. Less is More:

Quantifying the Security Benefits of DebloatingWebApplications. In 28th USENIX
Security Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA.

[19] Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V. Madhyastha, and Vyas
Sekar. 2015. Klotski: Reprioritizing Web Content to Improve User Experience on
Mobile Devices. In NSDI15. USENIX Association, Oakland, CA.

[20] Paul Calvano. 2019. Web Almanac by HTTP Archive: Part IV Chapter 16 Caching.
https://almanac.httparchive.org/en/2019/caching.

[21] Andrea Cardaci. 2020. Chrome-Remote-Interface. https://github.com/cyrus-
and/chrome-remote-interface.

[22] Moumena Chaqfeh, Yasir Zaki, Jacinta Hu, and Lakshmi Subramanian. 2020.
JSCleaner: De-Cluttering Mobile Webpages Through JavaScript Cleanup. (2020).

[23] Google Chrome. [n.d.]. Web Light: Faster and lighter mobile pages from search.
https://support.google.com/webmasters/answer/6211428.

[24] Chris Coyer. 2020. Data URIs. https://css-tricks.com/data-uris/.
[25] Chris Coyier. 2017. CSS Sprites: What They Are, Why They’re Cool, and How

To Use Them. https://css-tricks.com/css-sprites/.
[26] Andy Davies. 2018. Safari Caching and Third-Party Resources.

https://bit.ly/3cLJW22/.
[27] Christoph Erdmann. 2019. Faster Image Loading with Embedded Image Previews.

https://bit.ly/3kfeNoz.
[28] Adrienne Porter Felt, Richard Barnes, April King, Chris Palmer, Chris Bentzel,

and Parisa Tabriz. 2017. Measuring HTTPS Adoption on the Web. In USENIX
Security 17. USENIX Association.

[29] Utkarsh Goel and Moritz Steiner. 2020. System to Identify and Elide Superfluous
JavaScript Code for Faster Webpage Loads. (mar 2020).

[30] Google Groups. 2019. Intent to Implement Double-Keyed HTTP Cache. https:
//rb.gy/5ngyus.

[31] Simon Hearne. 2020. Who Opts-in to Save-Data? tinyurl.com/10bxrn7d.
[32] Katie Hempenius. 2019. CDNs for Optimizing Images. tinyurl.com/4n9g6qhp.
[33] Tim Kadlec. 2019. Making Sense of Chrome Lite Pages. tinyurl.com/26hzk53b.

[34] Tim Kadlec. 2020. What Does My Site Cost. https://whatdoesmysitecost.com/.
[35] Edward Kandrot. 2015. The technology behind preview photos. https://bit.ly/

37lG9FV.
[36] Conor Kelton, Jihoon Ryoo, Aruna Balasubramanian, and Samir R. Das. 2017. Im-

proving User Perceived Page Load Times Using Gaze. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17). USENIX Association,
Boston, MA.

[37] B. Kondracki, A. Aliyeva, M. Egele, J. Polakis, and N. Nikiforakis. 2020. Meddling
Middlemen: Empirical Analysis of the Risks of Data-Saving Mobile Browsers. In
2020 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, Los
Alamitos, CA, USA.

[38] Haoxiang Li, Zhe Lin, Xiaohui Shen, Jonathan Brandt, and Gang Hua. 2015. A
convolutional neural network cascade for face detection. In Proceedings of the
IEEE conference on computer vision and pattern recognition.

[39] Zhenhua Li, Weiwei Wang, Tianyin Xu, Xin Zhong, Xiang-Yang Li, Yunhao Liu,
Christo Wilson, and Ben Y. Zhao. 2016. Exploring Cross-Application Cellular
Traffic Optimization with Baidu TrafficGuard. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16). USENIX Association,
Santa Clara, CA.

[40] Scott Little. 2016. Image Replacement in Blink. https://rb.gy/lj4cdm.
[41] Robert Nyman Mike Taylor. 2014. Intoducing webcompat.com.

https://hacks.mozilla.org/2014/06/introducing-webcompat-com/.
[42] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan. [n.d.].

Polaris: Faster Page Loads Using Fine-grained Dependency Tracking. In NSDI16.
[43] Ravi Netravali and JamesMickens. 2018. Remote-control caching: Proxy-based url

rewriting to decrease mobile browsing bandwidth. InHotMobile 2018 - Proceedings
of the 19th International Workshop on Mobile Computing Systems and Applications,
Vol. 2018-February. Association for Computing Machinery, Inc.

[44] Ravi Netravali and James Mickens. 2019. Prophecy: Accelerating mobile page
loads using final-state write logs. Proceedings of the 15th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2018 (2019).

[45] Ravi Netravali, Vikram Nathan, James Mickens, and Hari Balakrishnan. 2018. Ves-
per: Measuring time-to-interactivity for web pages. In 15th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 18).

[46] Opera. [n.d.]. Data savings and turbo mode. https://www.opera.com/turbo.
[47] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A

Efros. 2016. Context encoders: Feature learning by inpainting. In Proceedings of
the IEEE conference on computer vision and pattern recognition.

[48] Jose M. Perez. 2015. Medium progressive image loading. tinyurl.com/1l1ht86v.
[49] Vaspol Ruamviboonsuk, Ravi Netravali, Muhammed Uluyol, and Harsha V. Mad-

hyastha. 2017. Vroom: Accelerating the Mobile Web with Server-Aided Depen-
dency Resolution. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (Los Angeles, CA, USA) (SIGCOMM ’17). Associa-
tion for Computing Machinery, New York, NY, USA.

[50] Quirin Scheitle, Oliver Hohlfeld, Julien Gamba, Jonas Jelten, Torsten Zimmer-
mann, Stephen D. Strowes, and Narseo Vallina-Rodriguez. 2018. A Long Way
to the Top: Significance, Structure, and Stability of Internet Top Lists. CoRR
abs/1805.11506 (2018).

[51] Shailendra Singh, Harsha V.Madhyastha, Srikanth V. Krishnamurthy, and Ramesh
Govindan. 2015. Flexiweb: Network-aware compaction for accelerating mobile
web transfers. In Proceedings of the Annual International Conference on Mobile
Computing and Networking, MOBICOM, Vol. 2015-September. Association for
Computing Machinery.

[52] Avinash Sudhodanan, Soheil Khodayari, and Juan Caballero. 2019. Cross-Origin
State Inference (COSI) Attacks: Leaking Web Site States through XS-Leaks. arXiv
preprint arXiv:1908.02204 (2019).

[53] Erik Sy, Christian Burkert, Hannes Federrath, andMathias Fischer. 2018. Tracking
Users across the Web via TLS Session Resumption. CoRR abs/1810.07304 (2018).

[54] Ammar Tahir, Muhammad Tahir Munir, Shaiq Munir Malik, Zafar Ayyub Qazi,
and Ihsan Ayyub Qazi. 2020. Deconstructing Google’s Web Light Service. (2020).

[55] Jovi Umawing. 2017. Google Reminds Website Owners to Switch to HTTPS
Before October Deadline. https://rb.gy/saxnj5.

[56] Tobias Urban, Martin Degeling, Thorsten Holz, and Norbert Pohlmann. 2020.
Beyond the front page: Measuring third party dynamics in the field. In Proceedings
of The Web Conference 2020.

[57] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. 2013. Demystifying Page Load Performance with WProf. In 10th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 13).
USENIX Association, Lombard, IL.

[58] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. 2016. Speeding
up Web Page Loads with Shandian. In NSDI16. Santa Clara, CA.

[59] Zhen Wang, Felix Xiaozhu Lin, Lin Zhong, and Mansoor Chishtie. 2012. How
Far Can Client-Only Solutions Go for Mobile Browser Speed?. In Proceedings of
the 21st International Conference on World Wide Web (Lyon, France) (WWW ’12).
Association for Computing Machinery, New York, NY, USA.

[60] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions on
Image Processing 13 (2004).

https://majestic.com/reports/majestic-million
https://www.alexa.com/topsites
https://developers.google.com/web/tools/lighthouse
https://www.fastly.com/
https://www.akamai.com/
https://www.cloudflare.com//
https://microworkers.com/
tinyurl.com/1h8p6ykr
tinyurl.com/2hcsh4zu
https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study
https://developers.google.com/speed/webp/docs/webp_lossless_alpha_study
https://tinyurl.com/59d5gy7b
https://github.com/cyrus-and/chrome-remote-interface
https://github.com/cyrus-and/chrome-remote-interface
https://css-tricks.com/data-uris/
https://css-tricks.com/css-sprites/
https://bit.ly/3kfeNoz
https://rb.gy/5ngyus
https://rb.gy/5ngyus
tinyurl.com/4n9g6qhp
https://bit.ly/37lG9FV
https://bit.ly/37lG9FV
tinyurl.com/1l1ht86v

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Potential for Image Savings
	4 Implementation
	4.1 Image Server Instrumentation from the Client
	4.2 Fetching Less with Range Requests
	4.3 BrowseLite

	5 Results
	5.1 Bandwidth Savings and Visual Trade-offs
	5.2 User Experience
	5.3 Range Requests and Caching
	5.4 Performance
	5.5 Comparisons

	6 Discussion
	7 Conclusion
	References

