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ABSTRACT

Joint entity and relation extraction framework constructs a uni-
fied model to perform entity recognition and relation extraction
simultaneously, which can exploit the dependency between the
two tasks to mitigate the error propagation problem suffered by the
pipeline model. Current efforts on joint entity and relation extrac-
tion focus on enhancing the interaction between entity recognition
and relation extraction through parameter sharing, joint decoding,
or other ad-hoc tricks (e.g., modeled as a semi-Markov decision
process, cast as a multi-round reading comprehension task). How-
ever, there are still two issues on the table. First, the interaction
utilized by most methods is still weak and uni-directional, which
is unable to model the mutual dependency between the two tasks.
Second, relation triggers are ignored by most methods, which can
help explain why humans would extract a relation in the sentence.
They’re essential for relation extraction but overlooked. To this end,
we present a Trigger-Sense Memory Flow Framework (TriMF)
for joint entity and relation extraction. We build a memory mod-
ule to remember category representations learned in entity recog-
nition and relation extraction tasks. And based on it, we design
a multi-level memory flow attention mechanism to enhance the
bi-directional interaction between entity recognition and relation
extraction. Moreover, without any human annotations, our model
can enhance relation trigger information in a sentence through a
trigger sensor module, which improves the model performance and
makes model predictions with better interpretation. Experiment
results show that our proposed framework achieves state-of-the-art
results by improves the relation F1 to 52.44% (+3.2%) on SciERC,
66.49% (+4.9%) on ACE05, 72.35% (+0.6%) on CoNLL04 and 80.66%
(+2.3%) on ADE.
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1 INTRODUCTION

Entity recognition and relation extraction aim to extract structured
knowledge from unstructured text and hold a critical role in infor-
mation extraction and knowledge base construction. For example,
given the following text: Ruby shot Oswald to death with the 0.38-
caliber Colt Cobra revolver in the basement of Dallas City Fail on
Nov. 24, 1963, two days after President Kennedy was assassinated.,
the goal is to recognize entities about People, Location and extract
relations about Kill, Located in held between recognized entities.
There are two things of interest to humans when carrying out this
task. First, potential constraints between the relation type and the
entity type, e.g., the head and tail entities of the Kill are of People
type, and the tail entity of the Located in is of Location type. Second,
triggers for relations, e.g. with words shot and death, the fact (Ruby,
Kill, Oswald) can be easily extracted from the above example.

Current entity recognition and relation extraction methods fall
into two categories: pipeline methods and joint methods. Pipeline
methods label entities in a sentence through an entity recognition
model and then predict the relation between them through a rela-
tion extraction model [9, 25]. Although it is flexible to build pipeline
methods, there are two common issues with these methods. First,
they are more susceptible to error prorogation wherein prediction
errors from entity recognition can affect relation extraction. Second,
they lack effective interaction between entity recognition and rela-
tion extraction, ignoring the intrinsic connection and dependency
between the two tasks. To address these issues, many joint entity
and relation extraction methods are proposed and have achieved
superior performance than traditional pipeline methods. In these
methods, an entity recognition model and a relation extraction
model are unified through different strategies, including constraint-
based joint decoding [22, 34], parameter sharing [5, 11, 26], castas a
reading comprehension task [23, 41] or hierarchical reinforcement
learning [32]. Current joint extraction models have made great
progress, but the following issues still remain:

(1) Trigger information is underutilized in entity recogni-
tion and relation extraction. Before neural information
extraction models, rule-based entity recognition and relation
extraction framework were widely used. They were devoted
to mine hard template-based rules or soft feature-based rules
from text and match them with instances [1-3, 13, 17, 19, 28].


https://doi.org/10.1145/3442381.3449895
https://doi.org/10.1145/3442381.3449895
https://doi.org/10.1145/3442381.3449895

WWW °21, April 19-23, 2021, Ljubljana, Slovenia

Such methods provide good explanations for the extraction
work, but the formulation of rules requires domain expert
knowledge or automatic discovery from a large corpus, suf-
fering from tedious data processing and incomplete rule
coverage. End-to-end neural network methods have made
great progress in the field of information extraction in recent
years. To exploit the rules, many works have begun to com-
bine traditional rule-based methods by introducing a neural
matching module [24, 35, 43]. However, these methods still
need to formulate seed rules or label seed relation triggers
manually, and iteratively expand them.

(2) The interaction between entity recognition and rela-
tion extraction is insufficient and uni-directional. En-
tity recognition and relation extraction tasks are supposed to
be mutually beneficial, but joint extraction methods do not
take full advantage of dependency between the two tasks.
Most joint extraction models are based on parameter shar-
ing, where different task modules share input features or
internal hidden layer states. However, these methods usually
use independent decoding algorithms, resulting in a weak
interaction between the entity recognition module and the
relation extraction module. The joint decoding-based extrac-
tion model strengthens the interaction between modules,
but it requires a trade-off between the richness of features
for different tasks and joint decoding accuracy. Other joint
extraction methods, such as modeling the task as a reading
comprehension problem [23, 41] or a semi-Markov process
[32], still suffer from a lack of bi-directional interaction due to
the sequential order of subtasks. More specifically, if relation
extraction follows entity recognition, the entity classifica-
tion task will ignore the solution of the relation classification
task.

(3) There is no distinction between the syntactic and se-
mantic importance of words in a sentence. We note that
some words have a significant syntactic role but contribute
little to the semantics of a sentence, such as prepositions and
conjunctions. While some words are just the opposite, they
contribute significantly to the semantics, such as nouns and
notional verbs. When encoding context, most methods are
too simple to inject syntactic features into the word vector,
ignoring the fact that words differ in their semantic and syn-
tactic importance. For example, some methods concatenate
part of speech tags of words onto their semantic vectors via
an embedding layer [12, 29]. Other methods combine the
word, lexical, and entity class features of the nodes on the
shortest entity path in the dependency tree to get the final
features, which are then concatenated onto the semantic
vector [8, 29]. These methods do not distinguish the two
roles of a word for sentence semantics and syntax, but rather
treat both roles of all words as equally important.

In this paper, we propose a novel framework for joint entity and
relation extraction to address the issues mentioned above. First, our
model makes full use of relation triggers, which can indicate a spe-
cific type of relation. Without any relation trigger annotations, our
model can extract relation triggers in a sentence and provide them
as an explanation for model predictions. Second, to enhance the

Yongliang Shen, et al.

bi-directional interaction between entity recognition and relation
extraction tasks, we design a Memory Flow Attention module. It
stores the already learned entity category and relation category
representations in memory. Then we adopt a memory flow atten-
tion mechanism to compute memory-aware sentence encoding, and
make the two subtasks mutually boosted by enhancing task-related
information of a sentence. The Memory Flow Attention module
can easily be extended to multiple language levels, enabling the
interaction between the two subtasks at both subword-level and
word-level. Finally, we distinguish the syntactic and semantic im-
portance of a word in a sentence and propose a node-wise Graph
Weighted Fusion module to dynamically fuse the syntactic and
semantic information of words.
Our main contributions are as follow:

o Considering the relation triggers, we propose the Trigger
Sensor module, which implicitly extracts the relation trig-
gers from a sentence and then aggregates the information
of triggers into span-pair representation. Thus, it can im-
prove the model performance and strengthens the model
interpretability.
To model the mutual dependency between entity recognition
and relation extraction, we propose the Multi-level Memory
Flow Attention module. This module constructs entity mem-
ory and relation memory to preserve the learned representa-
tions of entity and relation categories. Through the memory
flow attention mechanism, it enables the bi-directional in-
teraction between entity recognition and relation extraction
tasks at multiple language levels.

Since the importance of semantic and syntactic roles that

words play in a sentence are different, we propose a node-

wise Graph Weighted Fusion module to dynamically fuse
semantic and syntactic information.

e Experiments show that our model achieves state-of-the-art
performance consistently on the SciERC, ACE05, CoNLL04,
and ADE datasets, and outperforms several competing base-
line models on relation F1 score by 3.2% on SciERC, 4.9% on
ACEO05, 0.6% on CoNLL04 and 2.3% on ADE.

2 RELATED WORK
2.1 Rule-based Relation Extraction

Traditional relation extraction methods utilize template-based rules
[2, 13, 28], which are first formulated by domain experts or automat-
ically generated from a large corpus based on statistical methods.
Then, they apply hard matching to extract the corresponding rela-
tion facts corresponding to the rules. Later on, some works change
the template-based rules to feature-based rules (such as TF-IDF,
CBOW) and extract relations by soft matching [7, 18, 20, 40], but
still could not avoid mining the rule features from a large corpus
using statistical methods. In short, rule-based relation extraction
models typically suffer from a number of disadvantages, including
tedious efforts on the rule formulation, a lack of extensibility, and
low accuracy due to incomplete rule coverage, but they can provide
a new idea for neural relation extraction systems.

Some recent efforts on neural extraction systems attempt to
focus on rules or natural language explanations [35]. NERO [43]
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explicitly exploits labeling rules over unmatched sentences as su-
pervision for training RE models. It consists of a sentence-level
relation classifier and a soft rule matcher. The former learns the
neural representations of sentences and classifies which relation it
talks about. The latter is a learnable module that produces match-
ing scores for unmatched sentences with collected rules. NERO
labels sentences according to predefined rules, and makes full use
of information from unmatched instances. However, it is still a
tedious process to formulate seed rules manually. And the quality
of rule-making affects the performance of the entire system.

2.2 Joint Entity and Relation Extraction

Previous entity and relation extraction models are pipelined [9, 25].
In these methods, an entity recognition model first recognizes enti-
ties of interest, and a relation extraction model then predicts the
relation type between the recognized entities. Although pipeline
models have the flexibility of integrating different model struc-
tures and learning algorithms, they suffer significantly from error
propagation. To tackle this issue, joint learning models have been
proposed. They fall into two main categories: parameter sharing
and joint decoding methods.

Most methods jointly model the two tasks through parameter
sharing [29, 42]. They unite entity recognition and relation extrac-
tion modules by sharing input features or internal hidden layer
states. Specifically, these methods use the same encoder to pro-
vide sentence encoding for both the entity recognition module
and the relation extraction module. Some methods [4, 26, 27, 33]
perform entity recognition first and then pair entities of interest
for relation classification. While other methods [32, 38] are the
opposite, they predict possible relations first and then recognize
the entities in the sentence. DygIE [27] constructs a span-graph
and uses message propagation methods to enhance interaction be-
tween entity recognition and relation extraction. HRL [32] models
the joint extraction problem as a semi-Markov decision process,
and uses hierarchical reinforcement learning to extract entities and
relations. CASREL [36] considers the general relation classification
as a tagging task. Each relation corresponds to a tagger that recog-
nizes the tail entities based on a head entity and context. CopyMTL
[39] casts the extraction task as a generation task and proposes an
encoder-decoder model with a copy mechanism to extract relation
tuples with overlapping entities. Although entity recognition and
relation extraction modules can adopt different structures in these
methods, their independent decoding algorithms result in insuffi-
cient interaction between the two modules. Furthermore, subtasks
are performed sequentially in these methods, so the interaction
between two tasks is uni-directional.

To enhance the bi-directional interaction between entity recog-
nition and relation extraction tasks, some joint decoding algorithms
have been proposed. [37] proposes to use integer linear planning
to enforce constraints on the prediction results of the entity and
relation models. [21] uses conditional random fields for both entity
and relation models and obtains the output results of the entity
and relation by the Viterbi decoding algorithm. Although the joint
decoding-based extraction model strengthens the interaction be-
tween two modules, it still requires a trade-off between the richness
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of features required for different tasks and the accuracy of joint
decoding.

3 TRIGGER-SENSE MEMORY FLOW
FRAMEWORK

3.1 Framework Overview

In this section, we will introduce the Trigger-Sense Memory
Flow Framework (TriMF) for joint entity and relation extraction,
which consists of five main modules: Memory module, Multi-
Level Memory Flow Attention module, Syntactic-Semantic
Graph Weighted Fusion module, Trigger Sensor module, and
Memory-Aware Classifier module.

The overall architecture of the TriMF is illustrated in Figure 2.
We first initialize the Memory, including an Entity Memory M& €
R %hme and a Relation Memory MR e R Xhmr \where n¢ and
n” denote the number of entity categories and relation categories,
hme and hy,, denote the slot size of entity memory and the relation
memory.

subword word span span-pair

Figure 1: Four Levels Encoding

Our model performs a four-level sentence encoding (subword,
word, span, and span-pair, as shown in Figure 1) and two-step clas-
sification (entity classification and relation classification). More
specifically, a sentence is encoded by BERT [10] to obtain subword
sequence encoding E? = R™<" where m denotes the number of
subwords in the sentence, and h denotes the hidden state size of
BERT. Based on M®, M& and E¢, we perform the first Memory
Flow Attention at the subword-level. Then we use f,, to aggregate
the subword sequence encoding into a word sequence encoding
EY = R™hw where n denotes the number of words in the sentence,
and h,, denotes the size of the word vector. Here for f,,, we adopt
the max-pooling function. Based on M®, M€ and E", we perform
the second Memory Flow Attention at the word-level. After that, the
word sequence encoding is fed into the Syntactic-Semantic Graph
Weighted Fusion module to fuse semantic and syntactic information
at the word-level. Then, we combine the word sequence encodings
by f; to obtain the span sequence encodings ES = RN*Ps where N
denotes the number of spans in the sentence, and hs denotes the
size of the span vector. Here for f;, we adopt a method of concate-
nating a span-size embedding on max-pooled word embeddings.
We filter out the spans which are classified as the None category
by a Memory-Aware Entity Classifier. After pairing the spans of
interest, We compute local-context representation gj,.,; and full-
contextual span-pair specific trigger representation g;rigger using
the Trigger Sensor. We combine the encodings of the head span,
tail span, gjocqr and grrigger to obtain the encoding E” € RMxhr
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Figure 2: Trigger-Sense Memory Flow Framework (TriMF) Overview

where E7. | denotes the span pair encoding consisting of the ith

(ij)
and j? spans, M denotes the number of candidate span pairs, and
hy denotes the size of the span pair encoding. Lastly, we input the
candidate span-pair representation to the Memory-Aware Relation
Classifier and predict the relation type between the two spans. In
the next sections, we’ll cover five main modules of our model in
detail.

3.2 Memory

Memory holds category representations learned from historical
training examples, consist of entity memory and relation memory.
Each slot of these two memories indicates an entity category and
a relation category respectively. The category representation is
held in the corresponding memory slot, which can be used by the
Memory Flow Attention module to enhance information related to
the tasks in a sentence, or by the Trigger Sensor module to sense
triggers.

In the Memory module, we define two types of processes, Mem-

ory Read Process and Memory Write Process, to manipulate the
memory.
Memory Read Process Given an input E and our memory M,
we define two processes to read memory: normal read process and
inverse read process. The normal read process takes the input as
query, the memory as key and value. First, we calculate the attention
weights of the input E on the memory M by bilinear similarity
function, and then we weigh the memory by the weights.

Anorm (E, M) = softmax (EWMT) (1)

Readnorm (E,M) = Anorm (EEM) M (2

where W is a learnable parameter for the bilinear attention mecha-
nism. While the inverse read process takes the memory as query,
the input as key and value. We first compute 2d-attention weight
matrix through bilinear similarity function, and then sum the 2d-
attention weight matrix on the memory-slot dimension to obtain
a 1d-attention weight vector on the input E. The more relevant
element in input with the memory has a larger weight. We then

multiply the 1d-attention weight vector with E to get a memory-
aware sequence encoding:

M|
Aing (EM) = ) softmax (M,WET) (3)
i=1
Readiny (E, M) = Ajno (E,M) E 4)
where W is a learnable parameter for the bilinear attention mecha-
nism and |[M| denotes the number of slots in the memory M.
Memory Write Process We write entity memory using gradients
of entity classification losses and write relation memory using gra-
dients of relation classification losses. If the gradient of the current
instance’s classification loss is large, it means that the classified
instance (span or span-pair) representation is far away from the
corresponding memory slot (entity or relation category representa-
tion of ground truth) while closer to the memory slots of the other
categories, and we need to assign a large weight to this instance
when writing it into memory. This makes the representations of
the categories stored in memory more accurate. The write process
for entity memory and relation memory is described below:

oL

ME = M - ESW*® Sogrs Ir (5)
ME = MF —E[, W’ afo‘;flt Ir ©)
logite = log (%) (7)
logit, = log (%) (8)

where £¢ and L” denote entity classification loss and relation
classification loss, Ir denotes the learning rate, W¢ and W’ are
two weight matrices, p(s; = e) denotes the probability of span s;
belonging to entity type e, p(rij = r) denotes the probability of
span-pair’s relation r;; belonging to relation type r, and E}, E;j
denote candidate span and span-pair encoding, respectively. The
above symbols are specifically defined in defined at Sec.3.6.
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3.3 Multi-level Memory Flow Attention

We perform a memory flow attention mechanism between the mem-
ory and the input sequence to enhance task-relevant information,
such as entity surface names and trigger words. Entity memory and
relation memory can enhance entity-related and relation-related
information in the input instance for the two tasks respectively,
thus they can help to strengthen bi-directional interaction between
tasks.

Memory Flow Attention In order to enhance the task-relevant
information in a sentence, we designed the Memory Flow Attention
based on the Memory. Given a memory M and a sequence encoding
E, We calculate the memory-aware sequence encoding by runing
memory inverse read process:

MFA; (E,M) = Read;pn, (E, M) )

A single memory flow can be extended to multiple memory flows.
We consider two types in our work: relation memory flow and
entity memory flow. So we design a Multi-Memory Flow Attention
mechanism, which is calculated as follows:

MFA, (E, MR, M€) = mean (MFAS (E MR)  MFA, (E MS))

where M€ and MR denote entity and relation memory respectively.
we know that languages are hierarchical, and different levels rep-
resent semantic information at different levels of granularity. As
shown in Figure 3, we extend the multi-memory flow attention
mechanism to multiple levels ( subword-level and word-level ), and
design a Multi-Level Multi-Memory Flow Attention mechanism:

[ aamenion |

| i
I I
! |
| Multi-level |
' | | Memory-aware ‘u—<><> 2d attention
3 Encoding ! |
I
I I
| ! o
b 1 [
i
! Multi-level
1 Encoding
I
I

Figure 3: Multi-Level Multi-Memory Flow Attention

B9 = MFA,, (B9, M7, M®) (11)
w —d

EY = fiy (E ) (12)

E" = MFA,,(E", M", M?) (13)

where E and E" denote memory-aware sequence encoding at
subword-level and word-level respectively.
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3.4 Syntactic-Semantic Graph Weighted Fusion

The semantic information and syntactic structure of a sentence are
important for both entity recognition and relation extraction. We
consider both by constructing semantic and syntactic graphs from
a sentence, with nodes in the graph refer to words in the sentence.
We update a node representation based on its neighbor nodes’ rep-
resentations and the graph structure in the two graphs. We note
that some words have a significant syntactic role but contribute
little to the semantics of a sentence, such as prepositions and con-
junctions. While some words are just the opposite, they contribute
significantly to the semantics, such as nouns and notional verbs.
Therefore, we need to fuse syntactic and semantic graphs based
on the relative importance of the syntactic role and semantic role.
First, the nodes in the two graphs are initialized as:

HO =E" (14)
Syntactic Graph We construct a directed syntactic graph from a
sentence based on dependency parsing, with the word as a node and
the dependency between words as an edge. We then use the R-GCN
[31] to update node representations. The node representations of
the syntactic graph HO in Jth layer are calculated as:

A0 =o| 3

r€Raep JEN]

1 ~ ~
L GORO wOHO| s

Cir

where Wﬁl) and W(()l) denote two learnable weight matrices, and
N denotes the set of neighbor indices of node i under relation
re Rdep‘

Semantic Graph We compute the dense adjacency matrix based on
semantic similarity and randomly sample from the fully connected
graph to construct the semantic graph:

« = LeakyReLU (\X/H(”)T LeakyReLU (\TVH(’)) (16)

where W denotes a trainable weight matrix. Then we compute a
weighted average for aggregation of neighbor nodes N (i), where
the weights come from the normalized adjacency matrices a. We
update the node representations of semantic graph ﬁgl) in [ layer,
which are calculated as follows:

@ = softmax («) (17)
ﬁgl) = 5,‘,,‘WH§1) + Z &i,jWH;l) (18)
JeN(i)

Node-Wise Graph Weighted Fusion We design a graph weighted
fusion module to dynamically fuse two graphs according to the rela-
tive semantic and syntactic importance of words in a sentence. The
[CLS] vector, denote as €55, is often used for sentence-level tasks
and contains information about the entire sentence. We first calcu-
late the bilinear similarity between €S and each node of semantic
and syntactic graphs. Then we normalize the similarity vectors
across two graphs to obtain two sets of weights, which indicate
semantic and syntactic importance respectively. Finally, we fuse all
nodes across the graphs based on the weights:
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W, W = softmax ({eCISWﬁ(I), eswa® }) (19)

H§I+1) =w;- ﬁfl) + \’X\Ii . ﬁl(l) (20)
where W is a learnable weight matrix, w and w denote the node
importance weights of syntactic and semantic graphs, respectively.

Then we map the node representations HU*D to the corresponding
word representations E9 using mean-pooling:

EJ = mean (H(HI),EW) (21)

3.5 Trigger Sensor

We know that a particular relation usually occurs in conjunction
with a particular set of words, which we call relation triggers. They
can help explain why humans would extract a relation in the sen-
tence and play an essential role in relation extraction. We present
a Trigger Sensor module that senses and enhances the contextual
trigger information without any trigger annotations.

Relation triggers typically appear in local context between a
pair of spans (s;,sj), and some approaches encode local context
directly into the span-pair representation for relation classification.
However, these approaches do not consider the case where the
triggers are outside the span-pair, resulting in the model ignoring
useful information from other contexts. We design both a Local-
Context Encoder and a Full-Context Trigger Sensor to compute
the local-context representation gj,.,; and the full-context trigger
representation grigger -

Local-Context Encoder We aggregate local-context information
between spans of interest using max-pooling. The local-context
representation gj,.,; is calculated as:

Elocal = Max (EZ, Eiﬂ, s, EZ) (22)

where E]g( Eiﬂ,-
two spans (Si,Sj).

Full-Context Trigger Sensor Full-context trigger sensor aims to
sense and enhance span-pair specific triggers. Given a pair of spans
(si,sj), we use head span and tail span as queries respectively
and execute normal read process on the relation memory. After
obtaining two span-specific memory representations, we perform
mean-pooling across them to get the span-pair specific relation
representation m?ij):

.- E}gl are the encodings of words between the

mzij) = mean (Readnorm (Els-,M(R) ,Readnorm (Ej MR)) (23)

We calculate the similarity between mzij) and each word repre-
sentation of a word sequence, and then weigh the word sequence
to get the full-context trigger representation grigger-

T
Btrigger = softmax (m(ij) (E9) ) EY (24)

We incorporate the local-context representation gj,.,; and the

full-context trigger representation g¢rigger into the span-pair en-
N ]
coding Eij using f;:

E;=fr (Ef, Ej'aglacal’gtrigger) (25)
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for f, we adopt the concatenate function.

Trigger Extraction Using the trigger sensor, we can also extract
relation triggers and provide a reasonable explanation for model
predictions. Based on the similarity of each word representation
with the span-pair specific relation representations mzij),
the words. The top-ranked words can be used as relation triggers to
explain the model’s predictions. We will show the trigger extraction
ability of our model in the case study section.

we rank

3.6 Memory-Aware Classifier

Representations of the entity and relation categories are stored in
entity memory and relation memory, respectively. Based on the
bilinear similarity between instance (span or span-pair) representa-
tion and categories representations, we compute the probability of
candidate span s; being an entity e:

exp (E;WeME)

psi=e) = (26)

Dke& €Xp (EfWeME)

and the probability of candidate span-pair (s;, s;) having a relation
r:

_ ) — ; R
P (r(ij) = r) = sigmoid (Ezij)Wer ) (27)
where W¢ € RisXhme and W € RFrXhmr denote two learnable

weight matrices. Finally, we define a joint loss function for entity
classification and relation classification:

L=L+ LT

where L* denotes the cross-entropy loss over entity categories(including

the None category), and £" denotes the binary cross-entropy loss
over relation categories.

3.7 Two-Stage Training

At the start of training, since the memory is randomly initialized,
the Memory Flow Attention module and Trigger Sensor module
will introduce noises to the sequence encoding. These noises fur-
ther corrupt the semantic information of the pre-trained BERT
[10] through the gradient descent. We therefore divide the model
training procedure into two stages. In the first stage, we aim to
learn more accurate category representations and store them into
the corresponding memory slots. We only train Memory-Aware
Classifier and Graph Weighted Fusion modules and update the
memory through the memory write process. In the second stage, we
add Memory Flow Attention and Trigger Sensor modules to the
training procedure. Based on the more accurate representations of
the categories stored in the memory, we can strengthen the con-
textual task-related features and relation triggers through memory
read process.

4 EXPERIMENTS
4.1 Datasets

We evaluate TriMF described above using the following four datasets:

e SciERC: The SciERC [26] includes annotations for scientific
entities, their relations, and coreference clusters for 500 sci-
entific abstracts. The dataset defines 6 types for annotating
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Dataset Model Entity Relation
Precision Recall F1 Precision Recall F1
ScilEf 67.20 61.50 64.20 47.60 33.50 39.30
DyGIE} - - 65.20 - - 41.60
SciERC DYGIE++7 - - 67.50 - - 48.40
SpERTY (using SciBERT [6]) 70.87 69.79 70.33 53.40 48.54 50.84
TriMF{ (using SciBERT) 70.18 (£0.65)  70.17 (£0.94)  70.17 (£0.56)  52.63 (£1.24) 52.32 (+1.73) 52.44 (+0.40)
DyGIET - - 88.40 - - 63.20
DYGIE++7 - - 88.60 - - 63.40
ACEOS TriMF} 87.67 (£0.17)  87.54 (£0.29)  87.61 (£0.21)  65.87 (£0.55) 67.12 (£0.63) 66.49 (+0.32)
Multi-turn QA% 84.70 84.90 84.80 64.80 56.2 60.20
MRC4ERE++% 85.90 85.20 85.50 62.00 62.20 62.10
TriMFs 87.67 (£0.17)  87.54 (£0.29) 87.61(£0.21) 62.19 (£0.52) 63.37 (£0.52) 62.77 (+0.22)
Multi-head + AT [4] # 83.9 62.04
Multi-turn QA% 89.00 86.60 87.80 69.20 68.20 68.90
CoNLL04 SpERT: 88.25 89.64 88.94 73.04 70.00 71.47
MRC4ERE++% 89.30 88.50 88.90 72.20 71.50 71.90
TriMF# 90.26 (£0.62)  90.34 (£0.60) 90.30 (£0.24)  73.01 (£0.21) 71.63 (£0.26) 72.35 (+0.23)
Multi-head + AT [4] £* - - 86.73 - - 75.52
ADE SpERT#* 88.99 89.59 89.28 77.77 79.96 78.84
TriMFi* 89.50 91.29 90.38 74.22 83.43 80.66

Table 1: Precision, Recall, and F1 scores on the SciERC, ACE05, CoNLL04 and ADE datasets. (macro-average=", boundary

evaluation=T, strict evaluation=1)

scientific entities and 7 relation categories. We adopt the
same data splits as in [26].

e ACEO05: ACE05 was built upon ACE04, and is commonly
used to benchmark NER and RE methods. ACE05 defines 7
entity categories. For each pair of entities, it defines 6 relation
categories. We adopt the same data splits as in [29].

e CoNLL04: The CoNLL04 dataset [30] consists of 1,441 sen-
tences with annotated entities and relations extracted from
news articles. It defines 4 entity categories and 5 relation
categorie. We adopt the same data splits as in [14], which
contains 910 training, 243 dev, and 288 test sentences.

o ADE: The Adverse Drug Events (ADE) dataset [15] consists
of 4, 272 sentences and 6, 821 relations extracted from med-
ical reports. These sentences describe the adverse effects
arising from drug use. ADE dataset contains two entity cate-
gories and a single relation category.

4.2 Compared Methods

Our model is compared with current advanced joint entity and rela-
tion extraction models, divided into three types: general parameter-
sharing based models (Multi-head AT, SPtree, SpERT, ScilE), span-
graph based models (DyGIE, DyGIE ++), and reading-comprehension
based models (multi-turn QA, MRC4ERE).

Multi-head + AT [4] treats the relation extraction task as a multi-
head selection problem. Each entity is combined with all other
entities to form entity pairs that can be predicted which relations to
have. In addition, instead of being a multi-category task where each
category is mutually exclusive, the relation classification is treated
as multiple bicategorical tasks where each relation is independent,
which allows more than one relation to be predicted.

SPTree [29] shares parameters of the encoder in joint entity recog-
nition and relation extraction tasks, which strengthens the correla-
tion between the two tasks. SPTree is the first model that adopts
a neural network to solve a joint extraction task for entities and
relations.

SpERT [11] is a simple and effective model for joint entity and
relation extraction. It uses BERT [10] to encode a sentence, and
enumerates all spans in the sentence. Then it performs span classifi-
cation and span-pair classification to extract entities and relations.
ScilE [26] is a framework for extracting entities and relations from
the scientific literature. It reduces error propagation between tasks
and leverages cross-sentence relations through coreference links by
introducing a multi-task setup and a coreference disambiguation
task.

DyGIE/DYGIE++ [27, 33] dynamically build a span graph, and iter-
atively refine the span representations by propagating coreference
and relation type confidences through the constructed span graph.
Also, DyGIE++ takes event extraction into account.

Multi-turn QA [23] treats joint entity and relation extraction task
as a multiple-round question-and-answer task. Each entity and each
relation is depicted using a question-and-answer template, so that
these entities and relations can be extracted by answering these
templated questions.

MRC4ERE++ [41] introduces a diversity question answering mech-
anism based on Multi-turn QA. Two answering selection strategies
are designed to integrate different answers. Moreover, MRC4ERE++
proposes to predict a subset of potential relations to filter out irrel-
evant ones to generate questions effectively.
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4.3 Evaluation Metrics

We evaluate these models on both entity recognition and relation
extraction tasks. An entity is considered correct if its predicted
span and entity label match the ground truth. When evaluating
relation extraction task, previous works have used different metrics.
For the convenience of comparison, we report multiple evaluation
metrics consistent with them. We define a strict evaluation, where
a relation is considered correct if its relation type, as well as the
two related entities, are both correct, and a boundary evaluation,
where entity type correctness is not considered. We reported strict
relation f1 on Conll04 and ADE, boundary relation f1 on SciERC,
and both on ACE05. Our experiments on these datasets all report a
micro-F1 score, except for the ADE dataset, where we report the
macro-F1 score.

4.4 Experiment Settings

In most experiments, we use BERT [10] as the encoder, pre-trained
on an English corpus. On the SciERC dataset, we replace BERT with
SciBERT [6]. We perform the four-level encoding with a subword
encoding size h = 768, a word encoding size h,, = 768, a span
encoding size hg = 793, and a span-pair encoding size h, = 2354.
We set both entity memory slot size h;e and relation memory
slot size hp,r to 768. We just use a single graph neural layer in
semantic and syntactic graphs. We initialize entity memory and
relation memory using the normal distribution N (0.0, 0.02). We
use the Adam Optimizer with a linear warmup-decay learning rate
schedule (with a peak learning rate of 5e-5), a dropout before the
entity and relation bilinear classifier with a rate of 0.5, a batch size
of 8, span width embeddings of 25 dimensions and max span-size
of 10. The training is divided into two stages with the first stage of
18 epochs, and the second stage of 12 epochs 1.

4.5 Results and Analysis

Main Results We report the average results over 5 runs on Sci-
ERC, ACE05 and CoNLL04 datasets. For ADE, we report metrics
averaged across the 10 folds. Table 1 illustrates the performance
of the proposed method as well as baseline models on SciERC,
ACEO05, CoNLL04 and ADE datasets. Our model consistently out-
performs the state-of-the-art models for both entity and relation
extraction on all datasets. Specifically, the relation F1 scores of our
model advance previous models by +3.2%, +4.9%, +0.6%, +2.3% on
SciERC, ACE05, CoNLL04 and ADE respectively. We attribute the
improvement to three reasons. First, our model can share learned
information between tasks through the Memory module, enhanc-
ing task interactions in both directions(from NER to RE, and from
RE to NER). Second, the Trigger Sensor module can enhance the
relation trigger information, which is essential for relation classi-
fication. Lastly, taking a step further from introducing structure
information through syntactic graphs, we distinguish the semantic
and syntactic importance of words to fuse two-way information
through a dynamic Graph Weighted Fusion module. We conduct
ablation studies to further investigate the effectiveness of these
modules.

10ur code will be available at https://github.com/tricktreat/trimf
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Entity Relation
Method F1 A F1 A
SciERC
TriMF 70.17 - 52.44 -
w/o Graph Weighted Fusion ~ 70.12  -0.05 51.83 -0.61
w/o Trigger Sensor 70.19  +0.02 51.23 -1.21
w/o0 Subword-level MFA 70.11 -0.06  51.27 -1.17
w/o Token-level MFA 70.21 +0.04 5178 -0.66
ACEO05
TriMF 87.61 - 62.77 -
w/o Graph Weighted Fusion ~ 87.55 -0.06  61.68 -1.09
w/o Trigger Sensor 87.45 -0.16 61.60 -1.17
w/o Subword-level MFA 87.09 -0.52 61.68 -1.09
w/o Token-level MFA 8742 -0.19 62.02 -0.75

Table 2: Effect of Different Modules

4.6 Ablation Study

Effect of Different Modules To prove the effects of each proposed
modules, we conduct the ablation study. As shown in Table 2, all
modules contribute to the final performance. Specifically, removing
the Trigger Sensor module has the most significant effect, causing
the relation F1 score to drop from 52.44% to 51.23% on SciERC, from
62.77% to 61.60% on ACE05. Comparing the effects of Memory-Flow
Attention at subword-level and word-level on the two datasets, we
find that the improvement of MFA at subword-level is more sig-
nificant. We thus believe that fine-grained semantic information
is more effective for relation extraction. The performance of the
Syntactic-Semantic Graph Weighted Fusion module varies widely
across datasets, achieving an improvement of 1.09% on ACE05, but
only 0.61% on SciERC. This may be related to the different impor-
tance of syntactic information for relation extraction on different
domains.

Effect of Interaction Between Two Subtasks There is a mutual
dependency between the entity recognition and relation extrac-
tion tasks. Our framework models this relationship through the
Multi-level Memory Flow Attention module. Depending on the
memory that the attention mechanism relies on, it can be divided
into Relation-specific MFA and Entity-specific MFA. The Relation-
specific MFA module enhances the relation-related information
based on the relation memory, allowing the entity recognition task
to utilize the information already captured in the relation extrac-
tion task, as does Entity-specific MFA. To verify that the Memory
Flow Attention module can facilitate the interaction between entity
recognition and relation extraction, we perform ablation studies,
as shown in Table 3. On ACE05 and SciERC, both Entity-specific
MFA and Relation-specific MFA bring significant performance im-
provement. In addition, the Relation-specific MFA improves more
compared with Entity-specific MFA. We think the reason may be
that our model performs entity recognition first and then relation
extraction. This order determines that information from entity
recognition has been used by relation extraction, but the informa-
tion from relation extraction is not fed back to entity recognition.
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Entity Relation
Method F1 A F1 A
SciERC
TriMF 70.17 - 52.44 -
w/o MFA 70.04 -0.13 50.78 -1.66

w/o Relation MFA  70.07 -0.10 51.28 -1.16
w/o Entity MFA 70.17 0 51.84 -0.60

ACE05
TriMF 87.61 - 62.77 -
w/o MFA 87.42 -0.19 6219 -0.58

w/o Relation MFA  87.37 -0.24 62.06 -0.71
w/o Entity MFA 8738 -0.23 62.64 -0.13

Table 3: Effect of Interaction between NER and RE

When using Relation-specific MFA, a bridge for bi-directional in-
formation flow is built between the two tasks. Furthermore, when
we use both Entity-specific MFA and Relation-specific MFA, the
experiment achieves the best performance, indicating that MFA can
enhance the bi-directional interaction between entity recognition
and relation extraction.

Effect of Different Graph Fusion Methods Our proposed graph
weighted fusion module employs a node-wise weighted fusion ap-
proach based on attention, which enables a flexible fusion of node
representations according to words’ syntactic importance and se-
mantic importance. To demonstrate the effectiveness of our ap-
proach, we compare other node-wise fusion methods, including
no-fusion, max-fusion, mean-fusion and sum-fusion, as shown in
Table 4. Comparing the two experiments which only use the se-
mantic graph or syntactic graph, we find that the syntactic graph
provides a greater improvement in model performance, probably
because the initial encodings of the nodes of the syntactic graph
have already contained semantic information. Compared to max-
fusion, mean-fusion, and sum-fusion, the node-wise weight-fusion
method brings more improvement on relation F1 scores of both
SciERC and ACEO05, which proves the effectiveness of our method.
Effect of Different Stage Divisions for Memory We explored
the effect of different two-stage divisions on the relation classifi-
cation, as shown in Figure 4 (x-axis is the number of epochs for
the first stage and the total number of epochs is 30). We can note
that if our model skips the first stage (x=0) or ignores the second
stage (x=30), the performance of the model degrades significantly.
Specifically, as the proportion of first stage epochs to total epochs
increases, our model performs better. But at a certain point, the per-
formance degrades significantly. We believe this is due to a decrease
in epochs of the second stage and the memory already written in
the first stage is not utilized effectively. Therefore the two-stage
training strategy is effective, and a good balance of the two stages
can bring out a better model performance.

Effect of Different Gradients Flow to Memory Our model pri-
marily writes the memory in Memory-Aware Classifier. Further-
more, we can also tune the memory in MFA and Trigger Sensor mod-
ules through the backpropagation of gradients. The gradient flows
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Entity Relation
Method P R F1 P R F1
SciERC
No Graph 69.87 7033 70.10 5256 49.59 51.03

Semantic Graph  68.47 69.61 49.04 52.00 50.62 51.30
Syntactic Graph ~ 72.18 70.68 71.42 54.02 48.97 51.37

Mean-fusion 69.77 69.02 69.39 5356 49.39 51.38

Sum-fusion 69.45 69.57 69.51 5294 49.65 51.24

Max-fusion 69.12 69.64 69.38 53.01 4945 51.17

Weighted fusion ~ 70.18 70.17  70.17 52.63 5232 52.44
ACEO05

No Graph 87.24 87.18 87.21 60.11 61.83 60.96

Semantic Graph ~ 87.57 87.69 87.63 59.45 62.47 60.92
Syntactic Graph ~ 87.47 87.36 87.41 5929 62.96 61.07

Mean-fusion 87.32 87.78 87.55 59.74 6290 61.28
Sum-fusion 87.85 87.47 87.66 60.12 62.26 61.17
Max-fusion 87.51 87.62 87.56 60.22 62.25 61.22

Weighted fusion 87.67 87.54 87.61 62.19 6337 62.77
Table 4: Effect of Different Graph Fusion Methods
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Figure 4: Effect of Train Stage Division

are divided into three types: Trigger Sensor gradients, Subword-
level MFA gradients and Word-level MFA gradients, and we inves-
tigated the effects of different gradients, as shown in Table 6. We
see that on the ACE05 dataset, when we block any of the gradi-
ents flows, the model performance decreases significantly, by 1.35%,
1.54%, and 0.92% on relation F1 score, which indicates that tuning
the memory during the second stage is effective. However, On the
SciERC dataset, there is no significant drop, and we believe that the
model has learned accurate representations of the categories in the
first training stage.

Effect of Relation Filtering Threshold The precision and recall
of relation classification are correlated with predefined thresholds.
We investigate the impact of the relation filtering threshold on
relation F1. Figure 5 shows the relation F1 score on the SciERC
and ACEO5 test sets, plotted against the relation filtering threshold.
We see that the performance of our model is stable for the choice
of relation filtering thresholds. Our model is able to achieve good
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Original Text

Relation

Top-5 Relation Triggers

Urutigoechea and the others were arrested Wednesday in the cities
of Bayonee and Bonloc in southwestern France in Poitiers in west-
central France.

Kleber Elias Gia Bustamante, accused by the police of being a mem-
ber of the "Red Sun" central committee, has been living clandestinely

accused of assassinating the industrialist, Jose Antonio Briz Lopez.

(Bonloc, Located in, France)

(Kleber Elias Gia Bustamante, Kill,
since his escape from the Garcia Moreno Prison, where he was held  Jose Antonio Briz Lopez)

southwestern, west-central, cities, of, in

Prison, assassinating, held, of, accused

Table 5: Results of Trigger Words Extraction

Entity Relation
Method F1 A F1 A
SciERC
TriMF 70.17 - 52.44 -
w/o Trigger Sensor Grad. 70.14  -0.03 5228 -0.16
w/o Subword-level MFA Grad. 70.23 +0.08 52.03 -0.41
w/o Word-level MFA Grad. 70.12  -0.05 52.14 -0.30
ACE05
TriMF 87.61 - 6277 -
w/o Trigger Sensor Grad. 87.55 -0.06 6142 -1.35
w/o Subword-level MFA Grad. 87.43 -0.18 6123 -1.54
w/o Word-level MFA Grad. 87.34 -0.27 6185 -0.92

Table 6: Effect of Gradient Flow to Memory

results on relation classification except for extreme thresholds of
0.0 or 1.0. Therefore, within a reasonable range, our model is not
sensitive to choose a threshold.
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Figure 5: Effect of Relation Filtering Threshold

4.7 Case Study

Trigger Words Extraction With the Trigger Sensor module, our
model has the ability to extract the relation triggers. We rank the
similarities of each word representation with the span-pair specific
relation representation, which have been calculated in the Trigger

Sensor. Filtering out the entity surface words and stopwords, the
top k words are picked as relation triggers and used to interpret
the results of the relation extraction. We show two cases in Table 5.
Memory Flow Attention Visualization We visualize the weights
of attention to provide a straightforward picture of how the entity
and relation memory flow attention we designed can both enhance
the interaction between entity recognition and relation extraction.
Also, it can enhance the information about relation triggers in
context, to some extent explaining the model’s predictions. Figure
6 shows two cases of how attention weights on context from a
relation memory flow can help the model recognize entities and
highlight relation triggers. Each example is split into two visualiza-
tions, with the top showing the original attention weights and the
bottom showing the attention weights after masking the entities. In
the top figure, we can see that the darker words belong to an entity,
for example, "Urutigoechea”, "Bayonee", "Bonloc" in case 1, "Dallas",
"Jack Ruby" in case 2, illustrating that the attention of our relation
memory flow attention can highlight relevant entity information.
Consistent with [16], our attention distribution also illustrates that
entity names provide more valid information for relation classifica-
tion compared to context. To more clearly visualize the attention
weights of different contextual words, we mask all entities, formal-
ize the weights of the remaining words, and then visualize them. As
shown in the bottom figure, the relation memory flow pays more at-
tention on the words that indicate the type of relation, i.e., relation

wenom "o

triggers, such as "in", "southwestern”, "west-central” in case 1 can
indicate "Located in" relation, and "assassin", "murdering” in case 2
can indicate "Kill" relation. This shows that our relation memory
flow is able to highlight relation triggers, helping the model with
better performance on relation extraction.

Error Cases In addition to visualizing Memory Flow Attention
weights on true positives, we also analyze a number of false pos-
itives and false negatives. These error cases include relation re-
quiring inference, ambiguous entity recognition and long entity
recognition, as shown in Table 7. In the first case, although our
model is able to recognize the four entities about Location, it in-
correctly extracts the relation "(Guernsey, Located in, France)" and
does not extract the correct one "(Guernsey, Located in, Channel
Islands)". This is because the model does not infer the complex loca-
tion relation between the four entities. Our model is prone to make
mistakes when classifying ambiguous entities, and False Positive
and False Negative often occur together. For example, in the second
row of the Table 7, the model does not recognize "CBS News" as a
Location entity, but recognizes "CBS" which is not labeled in the
test set. Furthermore, recognition of long entities is a challenge
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Case 1 - original:
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Case 2 - original:
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Figure 6: Two case studies of relation memory flow attention during inference. The darker cells have higher attention weights.

The problem is not unusual in [[ Guernsey |y Located-in JH Located-in» One of [ Britain ]t yocated-in 'S [ Channel Islands ]t 1ocated-in Off the coast of [[ France

]]Tj,ocaled-in

... and former [[ CBS |1 work-for News ] commentator [[ Eric Sevareid J{ Live-in |t Work-for » Who was born in [ Velva |1 pive-in , several miles southeast of [

Minot ].

Text of the statement issued by the [ Organization of the Oppressed on Earth ] claiming [[ U. S. ]T Live-in]T Live-in Marine Lt.[[ William R. Higgins

JH_Live-in]JH_Live-in Was hanged.

Table 7: Typical error examples. Red brackets indicate entities predicted by the model, blue brackets indicate true entities, and
the labels in the lower right corner indicate the type of relation between the corresponding entities and the head or tail type

(T for the tail entity; H for the head entity)

for our model due to the fact that long entities are sparse in the
dataset. For example, in the third row of the Table 7, the model
fails to recognize the long entity "Organization of the Oppressed on
Earth".

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a Trigger-Sense Memory Flow Framework
(TriMF) for joint entity and relation extraction. We use the memory
to boost the task-related information in a sentence through the
Multi-level Memory Flow Attention module. This module can effec-
tively exploit the mutual dependency and enhance the bi-directional
interaction between entity recognition and relation extraction tasks.
Also, focusing on the relation triggers, we design a Trigger Sensor
to sense and enhance triggers based on memory. Our model can
extract the relation triggers without any trigger annotations, which
can better assist the relation extraction and provide an explanation.
Furthermore, we distinguish the semantic and syntactic importance
of a word in a sentence and fuse semantic and syntactic graphs

dynamically based on the attention mechanism. Experiments on Sci-
ERC, ACE05, CoNLL04 and ADE datasets show that our proposed
model TriMF achieves state-of-the-art performance.

In the future, we will improve our work along with two directions.
First, we plan to impose constraints on the representations of entity
categories and relation categories written in the memory, due to
the fact that relations and entities substantively satisfy specific
constraints at the ontology level. Second, for improving the model’s
ability on sensing the trigger, we plan to add weak supervision (e.g.
word frequency, entity boundary) to the Trigger Sensor module.
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