
Maximizing Marginal Fairness for Dynamic Learning to Rank
Tao Yang

University of Utah
Salt Lake City, Utah
taoyang@cs.utah.edu

Qingyao Ai
University of Utah
Salt Lake City, Utah
aiqy@cs.utah.edu

ABSTRACT
Rankings, especially those in search and recommendation systems,
often determine how people access information and how informa-
tion is exposed to people. Therefore, how to balance the relevance
and fairness of information exposure is considered as one of the key
problems for modern IR systems. As conventional ranking frame-
works that myopically sorts documents with their relevance will
inevitably introduce unfair result exposure, recent studies on rank-
ing fairness mostly focus on dynamic ranking paradigms where
result rankings can be adapted in real-time to support fairness in
groups (i.e., races, genders, etc.). Existing studies on fairness in dy-
namic learning to rank, however, often achieve the overall fairness
of document exposure in ranked lists by significantly sacrificing
the performance of result relevance and fairness on the top results.
To address this problem, we propose a fair and unbiased ranking
method named Maximal Marginal Fairness (MMF). The algorithm
integrates unbiased estimators for both relevance and merit-based
fairness while providing an explicit controller that balances the
selection of documents to maximize the marginal relevance and
fairness in top-k results. Theoretical and empirical analysis shows
that, with small compromises on long list fairness, our method
achieves superior efficiency and effectiveness comparing to the
state-of-the-art algorithms in both relevance and fairness for top-k
rankings.
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1 INTRODUCTION
Fairness in ranking has drawn much attention as ranking systems,
especially those in search and recommendation systems, could
significantly affect how people access information and how infor-
mation is exposed to users [5]. For example, job posts ranked highly
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on LinkedIn are more likely to receive more applications; new prod-
ucts on the bottom of Amazon search result pages are less likely
to be clicked by customers. Without proper treatments, ranking
systems could introduce unintended unfairness to various aspects
of people’s lives, such as job opportunities, economical gain, etc.

As traditional ranking algorithms that produce static ranked lists
can hardly handle the unfairness of result exposure in practice, the
ranking paradigms that dynamically change result ranking on the
fly, namely the dynamic Learning-to-Rank (LTR) [20], have received
more and more attention in the research communities. The idea
of dynamic LTR is to learn and adapt ranking models based on
user feedback in real time so that past user interactions or result
distributions could affect the exposure of future results. Through
heavily exposed to implicit user examination bias [14, 16, 33] and
selection bias [21, 28], dynamic LTR allows ranking systems to
produce multiple ranked lists for a single request, which makes it
possible to explicitly control or balance the exposure of results in
different groups (i.e., race, gender, etc.) for ranking fairness.

Existing studies on ranking fairness in dynamic LTR mostly fo-
cuses on developing effective algorithms to achieve merit-based
fairness [5, 25]. Well-known examples include the linear program-
ming algorithm (LinProg) [25] that determines result ranking by
taking group fairness as an optimization constraint, and the FairCo
algorithm [20] that manipulates ranking scores dynamically accord-
ing to the current exposure of results in different groups. Despite
their solid theoretical foundations, these algorithms often sacrifice
the performance of result relevance significantly on the top results
of each ranked list. These trade-offs are uncontrollable as they are
difficult to be quantified explicitly, which makes the risk of applying
fairness algorithms in practice still high today.

In this paper, we present a novel fairness algorithm for dynamic
LTR that considers both relevance and fairness for ranking crite-
rion. We believe that it is important to control and balance result
relevance and fairness in online ranking systems, especially for the
top-k results in ranked lists. Therefore, inspired by the studies of
search diversification that try to improve novelty while preserving
ranking performance (especially the maximal marginal relevance
frameworks [6]), we propose a Maximal Marginal Fairness (MMF)
algorithm that optimizes ranking performance while explicitly mit-
igating amortized group unfairness for selected items. MMF dy-
namically selects documents that are relevant and underexposed
in top-k results to maximize the marginal relevance and fairness.
With a small compromise on the bottom of long ranked lists, MMF
achieves superior performance and significantly outperforms the
state-of-the-art fairness algorithms not only in top-k relevance, but
also in top-k fairness. As most people would examine or only ex-
amine the top results on a result page [8, 13, 19, 27], MMF is highly
competitive and preferable in real LTR systems and applications.
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From technical viewpoints, the main contribution of this paper
are two-fold. First, extending the existing definition of merit-based
group fairness in ranking [5, 25], we develop a metric to measure
the group fairness of exposure in the top-k rankings. We show that
most existing state-of-the-art methods for ranking fairness focus
more on the overall fairness of document exposure while compro-
mising a lot in the top ranks of each ranked list. Second, we propose
a Maximal Marginal Fairness (MMF) algorithm that can explicitly
control and balance result relevance and fairness in top-k rankings.
In particular, our method uses a hyper-parameter 𝜆 to determine
whether the system needs to select an item being relevant or an
item that improves the marginal fairness of the current ranked list.
We evaluate and compare our algorithm with existing state-of-the-
art methods on both synthetic and real-world preference datasets
using simulated user interactions. Theoretical and empirical analy-
sis shows that our method can achieve significant efficiency and
effectiveness improvements in top-k relevance and fairness.

2 RELATEDWORK
Leveraging biased click data for optimizing learning to rank systems
has been a popular approach in information retrieval [13, 14]. As
click data are often noisy and biased, numerous unbiased learning
to rank (ULTR) methods have been proposed based on different
theoretical foundations [4], including click models [9, 12, 29], ran-
domization [22], causal inference [1, 3, 17], etc. Those methods
make it possible to achieve unbiased relevance estimation or rank-
ings for learning to rank in noisy environments.

Ranking according to intrinsic result relevance is important yet
not enough today. One of the key principle [23] of ranking in
Information Retrieval states that documents should be ranked in
order of the probability of relevance or usefulness. Such arguments,
however, only consider the responsibilities of ranking systems to
users while ignoring the items being ranked. Recently, there has
been a growing concern about fairness behind ranking algorithms
in both academia and industry [5, 34, 35]. Since rankings are the
main interface from which we find content, products, music, news
and etc., their ordering contributes not only to the utility of users,
but also to information providers.

To address this, some studies focus on restricting the fraction of
items of each attribute in a ranking [32, 34]. While another natural
way of understanding unfairness is by considering difference in
exposure, which directly relates unfairness to economic or social
opportunities [35]. For example, researchers try to achieve amor-
tized fairness of exposure by reducing group disparate exposure
for only the top position [35] or making exposure proportional to
relevance [5, 20, 25, 26]. The reason for reducing exposure disparity
is that minimal difference in relevance can result in a large differ-
ence in exposure across groups [25] if the ranking only is based on
relevance, since there might exist a large skew in the distribution of
exposure like position bias [15], i.e., users observe way much more
top ranks than the bottom part. To achieve this, various methods
have been proposed. For example, fairness loss based on Softmax
function is proposed by Zehlike and Castillo [35], which considers
equal group exposure in top rank. Linear programming methods
are proposed in [5, 7, 25], which try to give a general framework for
computing optimal probabilistic rankings for merit-based fairness.

Table 1: A summary of notations.
𝝈𝒕 ,𝒙𝒕 ,𝒄𝒕 ,
𝒐𝒕 , 𝒑𝒕 , 𝒓𝒕

The presented document ranking (𝝈𝒕 ), the corresponding
feature vectors (𝒙𝒕 ), the clicks on each document (𝒄𝒕 ), the
binary variables indicating user’s examination on each
document (𝒐𝒕 ), user’s propensity to examine results on
certain positions (𝒑𝒕 , namely 𝑃 (𝒐𝒕 = 1)), and the true
(personalized) binary relevance rating of the documents
(𝒓𝒕 ) at time step 𝑡 in dynamic LTR setting.

𝑅 (𝑑) The average relevance across all users for document 𝑑 .
𝑅𝜃 (𝑑 |𝒙𝒕 ) The predicted relevance of 𝑑 given by the model parame-

terized by 𝜃 .
G,𝐺𝑖 ,G𝑘𝑖 The set of groups to consider (G) and the 𝑖𝑡ℎ group (𝐺𝑖 ).

G𝑘
𝑖
is the priority queue of size k for 𝐺𝑖 according to

estimated relevance.

The policy learning method is adopted to maximize ranking metrics
while introducing unfairness as additional loss in [26].

In fact, the ideas behind existing fairness methods are always to
avoid showing items from the same class or group, which is not a
new topic and have already been studied as diversity and novelty
in the information Retrieval Community for decades [11, 30, 31].
Though the utility of diversified ranking is still centered on users
not for providers, studies on search diversification also focus on
optimizing result ranking beyond information relevance. One of
the most famous approaches is the maximal marginal relevance
approach (MMR) [6] that treats ranking as a Markov Decision
Process by selecting documents that maximize the combination of
sub-topic relevance given previously selected results.

In a recent work [20], the proportional controller in control
theory is applied to mitigate unfairness in dynamic LTR settings.
However, existing fairness algorithms in dynamic LTR only con-
sider overall fairness while ignoring the top-k unfairness. In this
paper, we first define the top-k group fairness, which is often ig-
nored by existing works. Then, based on the top-k fairness metrics,
inspired by MMR, we propose a concept named marginal fairness
and directly optimize top-k relevance and fairness in a dynamic
LTR environment where both the relevance and fairness modules
of the algorithms are learned and adapted according to real-time
user feedback.

Another algorithm is related with our work is FA*IR, proposed by
Zehlike et al. [34]. FA*IR is a post-processing method to explicitly
guarantees the exposure of documents in top-k ranking. The key
difference between our algorithm MMF and FA*IR is that FA*IR
focuses on a simplified offline scenario and ignore the fact that
result exposure could affect relevance estimations in LTR.
3 PROBLEM FORMULATION
In this section, we introduce the problem of relevance and fairness
estimation in dynamic LTR with a focus on the top-k results. A
summary of the notations used in this paper is shown in Table 1.
3.1 Relevance Estimation in Dynamic LTR
In dynamic LTR frameworks, the most popular paradigm for rele-
vance estimation is to infer relevance from user feedback directly.
Specifically, from partial and biased feedback such as user clicks,
we need to construct a model to estimate relevance. In general,
traditional LTR models can be categorized as cardinal and ordi-
nal ones. Ordinal LTR models give ordinal numbers according to
output scores for items, while those scores themselves have no
exact meaning. Cardinal LTR models, on the other hand, predict
document ranking scores that are proportional or directly reflect



Maximizing Marginal Fairness for Dynamic Learning to Rank WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

the relevance of the documents. Since exposure disparity explicitly
involves relevance, similar to previous studies [20], we only focus
on cardinal LTR models in this paper. Here, we adopt a LTR model
𝑅𝜃 (𝑑 |𝒙𝒕 ) parameterized by 𝜃 with least-square loss as

L𝜏 (𝜃 ) =
𝜏∑︁
𝑡=1

∑︁
𝑑

(
𝒓𝒕 (𝑑) − 𝑅𝜃 (𝑑 |𝒙𝒕 )

)2

Δ
=

𝜏∑︁
𝑡=1

∑︁
𝑑

(
𝑅𝜃 (𝑑 |𝒙𝒕 )2 − 2𝒓𝒕 (𝑑)𝑅𝜃 (𝑑 |𝒙𝒕 )

) (1)

where 𝜏 is the total number of existing time steps in dynamic LTR,
and Δ

= means equal while ignoring constants.
As the true relevance judgements 𝒓𝒕 are not available, based on

the studies of unbiased learning to rank [17], we define an unbi-
ased estimation of L𝜏 (𝜃 ) using click data 𝒄𝒕 by applying Inverse
Propensity Score (IPS) weighting as

L̃𝜏 (𝜃 ) =
𝜏∑︁
𝑡=1

∑︁
𝑑

(𝑅𝜃 (𝑑 |xt)2 − 2
ct (d)
𝒑𝒕 (𝑑)

𝑅𝜃 (𝑑 |xt)) (2)

where 𝒑𝒕 is the user’s examination propensities on each result
position (namely 𝑃 (𝒐𝒕 = 1)), and we assume that

𝑃 (𝑐 = 1) = 𝑃 (𝑜 = 1) · 𝑃 (𝑟 = 1) (3)

which means that users click a search result (𝑐 = 1) only when it is
both observed (𝑜 = 1) and perceived as relevant (𝑟 = 1), and 𝑜 and 𝑟
are independent. The unbiasness of L̃𝜏 (𝜃 ) can be proven as below

Eot [L̃𝜏 (𝜃 )] =
𝜏∑︁
𝑡=1

∑︁
𝑑

(𝑅𝜃 (𝑑 |xt)2 − 2
Eot [ct (d)]
𝒑𝒕 (𝑑)

𝑅𝜃 (𝑑 |xt))

=

𝜏∑︁
𝑡=1

∑︁
𝑑

(𝑅𝜃 (𝑑 |xt)2 − 2
𝒑𝒕 (𝑑)rt (d)

𝒑𝒕 (𝑑)
𝑅𝜃 (𝑑 |xt))

=

𝜏∑︁
𝑡=1

∑︁
𝑑

(𝑅𝜃 (𝑑 |xt)2 − 2rt (d)𝑅𝜃 (𝑑 |xt)) = L𝜏 (𝜃 )

(4)

Similarly, we could get unbiased estimation of the average relevance
of 𝑑 across all users (𝑅(𝑑)) as

𝑅𝐼𝑃𝑆 (𝑑) = 1
𝜏

𝜏∑︁
𝑡=1

𝑐𝑡 (𝑑)
𝑝𝑡 (𝑑)

(5)

𝑅𝐼𝑃𝑆 (𝑑) is used for both fairness controlling and as a global rank-
ing baseline without personalization (i.e., considering document
relevance with respect to each individual user). The estimation of
position bias 𝑝𝑡 (𝑑) can be achieved through various methods in
advance [2, 3, 29], which is not in the scope of this paper.

3.2 Merit-based Top-k Fairness
We now introduce the definition of the Top-k merit-based group
unfairness in dynamic LTR. First, similar to previous studies [5,
20, 25], we define the exposure of a document 𝑑 as its marginal
probability of being examined 𝒑𝒕 (𝑑) = 𝑃 (𝒐𝒕 (𝑑) = 1|𝝈𝒕 , 𝒙𝒕 , 𝒓𝒕 )
where 𝝈𝒕 , 𝒙𝒕 , 𝒓𝒕 are the presented ranking, feature vectors, and
true relevance of documents at time step 𝑡 in dynamic LTR. Let
G = {𝐺1, ...,𝐺𝑚} be the possible groups that each document could
belong to. Suppose that we only care about the exposure fairness in

top-k positions, then we can define group-based fairness in top-k
positions following the merit-based fairness definition [20] as

𝐸𝑥𝑝𝑘𝑡 (𝐺𝑖 ) =
1
|𝐺𝑖 |

∑︁
𝑑∈𝐺𝑖∩𝑑∈𝝈𝑘

𝒕

𝑝𝑡 (𝑑) (6)

where 𝝈𝑘
𝒕 is the top k documents in presented ranking 𝝈𝒕 , 𝒑𝒕 (𝑑) is

the examination propensity on 𝑑 at time step 𝑡 . Following previous
studies, we define the merit of a group or document as the expected
average relevance across all documents in the same group:

𝑀𝑒𝑟𝑖𝑡 (𝐺𝑖 ) =
1
|𝐺𝑖 |

∑︁
𝑑∈𝐺𝑖

𝑅(𝑑) (7)

Thus, for any two groups 𝐺𝑖 and 𝐺 𝑗 , we can define their accumula-
tive disparity in top-k positions as

𝐸𝑥𝑝_𝑐𝑢𝑚𝑘
𝜏 (𝐺𝑖 ) =

𝜏∑︁
𝑡=1

𝐸𝑥𝑝𝑘𝑡 (𝐺𝑖 )

𝐸𝑥𝑝_𝑀𝑒𝑟𝑘𝜏 (𝐺𝑖 ) =
1
𝜏 𝐸𝑥𝑝_𝑐𝑢𝑚

𝑘
𝜏 (𝐺𝑖 )

𝑀𝑒𝑟𝑖𝑡 (𝐺𝑖 )

𝐷𝑘
𝜏 (𝐺𝑖 ,𝐺 𝑗 ) =




𝐸𝑥𝑝_𝑀𝑒𝑟𝑘𝜏 (𝐺𝑖 ) − 𝐸𝑥𝑝_𝑀𝑒𝑟𝑘𝜏 (𝐺 𝑗 )





(8)

Thus, larger disparity indicates greater violation of fairness in top-
k rankings. Additional to pairwise disparity defined in Eq.8, for
ranking with more than 2 groups, we define the unfairness of a list
as the average disparity of all pairs:

Unfairness@k = 𝐷𝑘
𝜏 =

2
𝑚(𝑚 − 1)

𝑚∑︁
𝑖=0

𝑚∑︁
𝑗=𝑖+1




𝐷𝑘
𝜏 (𝐺𝑖 ,𝐺 𝑗 )




 (9)

Note that the original merit-based unfairness defined in [20] can be
seen as a special case in our formulation where 𝑘 is the number of
all possible documents. In this paper, our goal is to create rankings
with high relevance 𝒓𝝉 while maintaining a low unfairness 𝐷𝑘

𝜏 in
top-k results after the time step 𝜏 in dynamic LTR.

4 OUR APPROACH
In this section, we describe our approach to balance relevance and
fairness in dynamic LTR. Specifically, we first introduce the concept
of maximal marginal fairness, then we discuss our MMF algorithm.

4.1 Maximal Marginal Fairness
In this paper, we define a new concept for ranking fairness as Mar-
ginal Fairness. Ranking can bemodeled as a greedy selection process
where we create a ranked list by sequentially selecting documents
from a candidate pool. Based on this assumption, considerable rank-
ing algorithms have been proposed to optimize ranking utility from
various perspectives such as information relevance [18], novelty
[24], etc. Particularly, in the studies of search diversification, one
of the most well-known algorithms is the Maximal Marginal Rele-
vance (MMR) algorithm [6] that greedily selects documents based
on their Marginal Relevance, the maximal utility of a document
given the selected results in the current ranked list, to balance rank-
ing relevance and novelty. Inspired by MMR and the concept of
marginal relevance, we model ranking as a greedy selection prob-
lem and define marginal fairness as the marginal gain of fairness, or
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the marginal reduction of unfairness, when selecting and adding a
document given the selected results in the current ranked list.

𝑑𝑘𝜏 is the document we select for 𝑘𝑡ℎ position in the ranked list
𝝈𝝉 . Formally, then the marginal fairness of selecting document 𝑑𝑘𝜏
from group 𝐺 is

𝑀𝐹 (𝐺 |𝜎𝑘−1
𝜏 ) = 𝐷𝑘−1

𝜏 − 𝐷𝑘
𝜏 (𝑑𝑘𝜏 ), where 𝑑𝑘𝜏 ∈ 𝐺 (10)

where 𝐷𝑘
𝜏 (𝑑𝑘𝜏 ) is the unfairness after we select 𝑑𝑘𝜏 .

Then, tomaximizemerit-based fairness of top𝑘 results, a straight-
forward method is to maximize marginal fairness by selecting the
document with maximum𝑀𝐹 (𝐺 |𝜎𝑘−1

𝜏 ). This observation serves as
our foundation for the construction of the MMF algorithm.

4.2 Algorithm
The MMF algorithm includes three sub-modules – the selection of
documents for maximizing marginal fairness, the selection of docu-
ments for maximizing relevance, and the controller that balances
top-k relevance and fairness.

4.2.1 Fairness Module. As discussed previously, MMF optimizes
top-k fairness through greedily selecting documents to maximize
marginal fairness. In Eq. (10), the computation of marginal fair-
ness requires us to compute the current and updated disparities
(𝐷𝑘−1

𝜏 (𝐺𝑖 ,𝐺 𝑗 ) and 𝐷𝑘
𝜏 (𝐺𝑖 ,𝐺 𝑗 )) for every pair of groups. In prac-

tice, however, we can prove that maximal marginal fairness can
be achieved directly by selecting a document from the group with
lowest expected merit 𝐸𝑥𝑝_𝑀𝑒𝑟𝑘𝜏 (𝐺𝑖 ) in Eq. (8) given that the scale
of 𝒑𝝉 (𝑑) is much smaller than 𝐸𝑥𝑝_𝑀𝑒𝑟𝑘𝜏 (𝐺𝑖 )1. Also, as the true
relevance of documents 𝑅(𝑑) is not available, we use 𝑅𝐼𝑃𝑆 (𝑑) to
estimate 𝑅(𝑑) and get an unbiased estimation of 𝐸𝑥𝑝_𝑀𝑒𝑟𝑘𝜏 (𝐺𝑖 ) as

ˆ
𝐸𝑥𝑝_𝑀𝑒𝑟𝑘𝜏 (𝐺𝑖 ).

Thus, we compute the best group to select documents fromMMF
as

𝐺𝑘
𝜏 =𝑚𝑎𝑥

𝐺
𝑀𝐹 (𝐺 |𝜎𝑘−1

𝜏 ) =𝑚𝑖𝑛
𝐺

ˆ
𝐸𝑥𝑝_𝑀𝑒𝑟𝑘𝜏 (𝐺) (11)

Note that every document in𝐺𝑘
𝜏 would have the maximal marginal

fairness given the ranked list 𝜎𝑘−1
𝜏 .

4.2.2 Relevance Module. To maximize the performance of top-k
results in terms of ranking relevance, the optimal solution is to
select documents based on their estimated relevance from user
interactions (i.e., 𝑅𝐼𝑃𝑆 ) or a LTR model parameterized by 𝜃 (𝑅𝜃 ) as

𝑑𝑘𝜏 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑑∉𝜎𝑘−1
𝜏

𝑅𝜃 (𝑑) (12)

where we only consider relevance but not fairness in selecting
the next document for the ranked list. In case we need to select
documents from the group with maximal marginal fairness, we
could apply similar process and get

𝑑𝑘𝜏 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑑∈𝐺𝑘
𝜏 ∧𝑑∉𝜎𝑘−1

𝜏

𝑅𝜃 (𝑑) (13)

In practice, Eq. (12) and Eq. (13) can be computed together by
maintaining multiple priority queues G, for each group separately.

1We ignore the proof for simplicity

4.2.3 Balance between Relevance and Fairness. MMF implements a
simple yet effective method to control the relevance and fairness of
top-k rankings in dynamic LTR by adding a stochastic controller
parameterized with 𝜆. Intuitively, the idea of the controller is to
choose the final selected item 𝑑𝑘𝜏 between the document that maxi-
mizes ranking relevance𝑑𝑘𝜏 and the document maximizing marginal
fairness 𝑑𝑘𝜏 with probability 𝜆. Formally, we have

𝑑𝑘𝜏 ∼ (𝜆𝑑𝑘𝜏 + (1 − 𝜆)𝑑𝑘𝜏 ) (14)

The greater 𝜆 is, the fairer the ranking is and the less ranking
relevance is. Different from the linear trade-off strategy used in
other fairness algorithms [20, 25] that directly combines the fairness
and relevance scores before the document selection process, we
adopt a probabilistic strategy to strike the balance, which not only
makes the algorithm more robust to the magnitude of estimated
relevance and fairness scores, but also provides explicit functions
to balance relevance and fairness in practical applications.

The overall MMF is shown in Algorithm 1. At step 1, we do
initialization. At step 2, a user enters the dynamic LTR system. At
step 3 − 7, we dynamically learn a LTR model 𝑅𝜃 or directly use
the averaged inverse propensity weighted clicks 𝑅𝐼𝑃𝑆 to estimate
the relevance of items. The LTR model has advantages over 𝑅𝐼𝑃𝑆
as it can estimate personalized relevance if features contain user
information. At step 8 − 10, we construct priority queues for each
group with estimated relevance from step 3 − 7. In practice, we
could construct priority queues while estimating relevance at the
time. At step 12− 21, we select the item according to Equations (12)
to (14). At step 15, 𝐺𝑖𝑛𝑑 is a function to get group index of an item.
At step 22, we collect clicks in a real-world application or sample
clicks according to Eq.3 for our experiments. At step 23 − 27, we
update the relevance estimation accordingly. Note that, for different
time steps, users interact with the same item candidates at step
2 − 27.

4.3 Complexity Analysis
To illustrate the efficiency of MMF, we conduct complexity analysis
and use the state-of-the-art fairness algorithm, i.e., FairCo [20].
FairCo is one of the most efficient fairness algorithms for dynamic
LTR. It achieves fairness by dynamically adding perturbations to
the ranking scores of documents based on the exposure of different
groups. As relevance is estimated separately, we only discuss the
complexity of fairness controlling in FairCo and MMF.

4.3.1 Time Complexity. Let 𝑘 be the number of ranks we care
about, |G| be the number of groups, and 𝑛 be the total number
of documents to rank. As FairCo needs to add score perturba-
tions to all documents, it need to track the cumulative group ex-
posure of all documents (i.e., 𝐸𝑥𝑝_𝑐𝑢𝑚𝑛

𝜏 (𝐺𝑖 ) in Eq. (8)) and do
linear interpolation with 𝑂 (𝑛) time. It needs 𝑂 (𝑘 · 𝑙𝑜𝑔(𝑛)) to se-
lect top-k results from 𝑛 documents and thus has the overall time
complexity as 𝑂 (𝑘 · 𝑙𝑜𝑔(𝑛) + 𝑛). In contrast, MMF only tracks
𝐸𝑥𝑝_𝑐𝑢𝑚𝑘

𝜏 (𝐺𝑖 ) for top-k results with 𝑂 ( |G| · 𝑘) time. Besides, it
takes 𝑂 ( |G| · 𝑘 · 𝑙𝑜𝑔(𝑛)) time to construct priority queue for each
group, and takes 𝑂 ( |G| × 𝑘) time to implement Eq.11. The overall
complexity of MMF is 𝑂 (𝑘 · |G| ·

(
1 + 𝑙𝑜𝑔(𝑛)

)
). Therefore, MMF

takes 𝑂 ((𝑛 − |G| · 𝑘) + 𝑘 · 𝑙𝑜𝑔(𝑛) · (1 − |G|)) less time than FairCo.
Because the size of all documents is usually much more than the
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Algorithm 1:MMF

1 initialize 𝜆 within [0,1], 𝑘 , ct ←− 0, initialize 𝑅𝜃 , 𝑅𝐼𝑃𝑆 (𝑑) ←− 0;
2 for each user (time step 𝜏) do
3 if Use_LTR_model then
4 Estimate relevance for all items with model 𝑅𝜃 ;
5 else
6 Estimate relevance for all items with 𝑅𝐼𝑃𝑆 (𝑑)

according to Eq.5;
7 end
8 for each group 𝐺𝑖 do
9 construct priority queues G𝑖 of size k for group 𝐺𝑖

with estimated relevance.
10 end
11 ranking=[];
12 for each rank i do
13 if random>𝜆 then
14 𝑑𝑖 selected with Eq.12, and ranking.append(𝑑𝑖 );
15 𝑗 = 𝐺𝑖𝑛𝑑 (𝑑𝑖 ), index group id and assigin to j;
16 G𝑗 .𝑝𝑜𝑝 ()
17 else
18 select 𝐺𝑘

𝜏 according to Eq.11 and assign 𝐺𝑘
𝜏 to j;

19 ranking.append(G𝑗 .𝑝𝑜𝑝 ());
20 end
21 end
22 present ranking and collect user clicks c𝜏 , or sampling

clicks according to Eq.3;
23 if Use_LTR_model then
24 train L̃𝜏 (𝜃 ) loss in Eq.4. ;
25 else
26 update 𝑅𝐼𝑃𝑆 (𝑑) according to Eq.5;
27 end
28 end

number of ranks and the number of groups we care (i.e., 𝑛 >> 𝑘

and 𝑛 >> |G|) in most ranking applications, MMF outperforms
FairCo in time.

4.3.2 Space Complexity. MMF needs to track of 𝐸𝑥𝑝_𝑐𝑢𝑚𝑘
𝜏 (𝐺𝑖 )

in Eq. (8) for all positions in top-k rankings for the computation
of marginal fairness, which has space complexity as 𝑂 ( |G| · 𝑘).
FairCo only needs to track the overall cumulative exposure of all
documents, which has space complexity as𝑂 (𝑛). As the number of
groups (e.g., race, gender) and the ranks we care are usually small,
MMF outperforms FairCo in space.

5 EXPERIMENTS AND RESULTS
To evaluate our method, we conduct experiments on one dataset
with simulated preference data (i.e., the News dataset [10]) and
one dataset with real-world preference data (i.e., the Movie dataset
[10]). All the experimental scripts and model implementations used
on this paper is available online2.

2https://github.com/Taosheng-ty/Dynamic-Fairness.git

5.1 Simulated Preference Data
In this paper, we create a simulated preference dataset with the
news articles in the AdFrontes Media Bias dataset3, which we refer
to as the News dataset. In this News dataset, each article contains a
polarity value 𝜌𝑑 that has been rescaled to the range between -1 and
1 (i.e., left-leaning and right-leaning). Following the methodology
used by Morik et al. [20], we simulate a dynamic LTR problem
on the News Dataset with simulated users and assign each user
with a polarity preference drawn from a mixture of two guassian
distirubtion and are also cliped to [−1, 1].
𝜌𝑢𝑡 ∼ 𝑐𝑙𝑖𝑝 [−1,1] (𝑝𝑛𝑒𝑔N(−0.5, 0.2) + (1 − 𝑝𝑛𝑒𝑔)N (0.5, 0.2)) (15)

where 𝑝𝑛𝑒𝑔 is the probability of the user to be left-leaning. In ad-
dition, we simulate each user with an opensness parameter 𝑜𝑢𝑡 ∼
U(0.05, 0.55), indicating on the breadth of interest outside their
polarity. With sampled 𝑢𝑡 , 𝜌𝑢𝑡 , and articles’ polarity value anno-
tation 𝜌𝑑 , we could synthesize a true binary relevance judgement
following a Bernoulli distribution as

𝒓𝒕 (𝑑) ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖

[
𝑝 = 𝑒𝑥𝑝

(
−(𝜌𝑢𝑡 − 𝜌𝑑 )2

2(𝑜𝑢𝑡 )2

)]
(16)

In each experiment trial, we sample a set of 30 news articles 𝐷
to recommend to users. To investigate ranking fairness, we group
articles according to their polarity by assigning articles with 𝜌𝑑 ∈
[−1, 0) to group 𝐺1 and articles with 𝜌𝑑 ∈ [0, 1] to group 𝐺2.

We implement four baselines for comparison. The first one is
the Naive method that ranks documents by the sum of their ob-
served user clicks (i.e., 𝒄𝒕 ). The second one is a simple unbiased LTR
algorithm DULTR(Glob) that ranks documents by the unbiased
relevance estimation 𝑅𝐼𝑃𝑆 (𝑑) in Eq. (5). To show the effectiveness
of MMF as a fairness algorithm, we also include two state-of-the-art
fairness algorithms for dynamic LTR, which are LinProg [25] and
FairCo [20]. Proposed by Singh and Joachims [25], LinProg consid-
ers group fairness as optimization constraints and implement a lin-
ear programming algorithm to maximize ranking fairness based on
the relevance estimated by 𝑅𝐼𝑃𝑆 (𝑑). In theory, LinProg would pro-
duce the best ranked lists in terms of merit-based fairness. FairCo
achieves group fairness by dynamically adding perturbations to
the ranking scores of documents based on the exposure of different
groups. It has been proven to be effective in optimizing the fairness
of dynamic LTR and much more efficient than LinProg.

For all models in the experiments on the News dataset, we use
𝑅𝐼𝑃𝑆 (𝑑) to estimate document relevance directly as all users are
simulated. This means 𝑈𝑠𝑒_𝐿𝑇𝑅_𝑚𝑜𝑑𝑒𝑙 in Algo.1 is set as False.
LinProg and FairCo use a hyper-parameter to reduce unfairness
of exposure over all documents. For simplicity, we set it as 0.1
for LinProg and 0.01 for FairCo as these were the tuned hyper-
parameters in Morik et al. [20]. For MMF, we tune 𝜆 from 0 to 1 and
show the corresponding results in Table 2a and Figure 4. Besides,
We follow the experiment setting in [20] and adopt the discount
function of NDCG as the user’s user examination probability for
each position for this paper in simulation,

𝑝𝑖 =
( 1
𝑙𝑜𝑔2(1 + 𝑖)

)
(17)

where 𝑝𝑖 indicates examination probability at rank 𝑖 .
3https://www.adfontesmedia.com/interactive-media-bias-chart/

https://github.com/Taosheng-ty/Dynamic-Fairness.git
https://www.adfontesmedia.com/interactive-media-bias-chart/
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Figure 1: The absolute difference between estimated global
relevance and true global relevance on News (20 trials).
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Figure 2: Convergence of NDCG@10 and Unfairness@10 as
the number of users increases on News. (20 trials)

5.2 Results with Simulated Preference Data
5.2.1 Do the unbiased estimates converge to the true relevance
no matter fairness controlling is applied or not? Fig. 1 shows the
absolute difference between estimated global relevance and true
global relevance defined in Eq. (5) after applying different rank-
ing algorithm. The error of all algorithm with IPS weighting (Lin-
prog,FairCo,D_ULTR(Glob) and MMF(𝜆 = 0.6)) gradually approach
zero, while the error of Naive algorithm keeps around 0.25. There
are no significant difference of convergence between IPS weighted
algorithms which means we could exclude the influence of rele-
vance estimation when comparing ranking and fairness controlling
for IPS weighted algorithms. The result verifies that IPS weighting
help to get an unbiased estimation of the true expected relevance
for each news articles no matter what ranking algorithm is used
and thus estimated relevance can be used to maximize ranking and
fairness utility.

5.2.2 Can 𝑀𝑀𝐹 effectively reduce unfairness while maintaining
good ranking performance? Fig.2 shows the convergenceNDCG@10
and unfairness@10 for Naive, D-ULTR(Glob), FairCo, Linprog and
MMF (𝜆 = 0.6). Among them, Naive shows the highest unfair-
ness, while NDCG remains low as user interaction increases. D-
ULTR(Glob) achieve the best NDCG while its unfairness is worse
than all other algorithms except Naive. Our algorithm MMF man-
ages to substantially reduce unfairness while achieve similar NDCG
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Figure 3: Performance of NDCG(top) and Unfairness (bot-
tom) for different prefixes on News (20 trials).

performance with D_ULTR(Glob). For the other two algorithm, Lin-
Prog and FairCo both show inferior performance than MMF in
terms of NDCG and unfairness.

5.2.3 How𝑀𝑀𝐹 performs at different prefixes of a ranking? Fig.3
shows the performance NDCG and unfairness at different prefixes
for Naive, D-ULTR(Glob), FairCo,Linprog and MMF(𝜆 = 0.6 after
6000 users interactions. More details are shown in Table 2a. In terms
of NDCG performance, Naive shows worse performance than IPS
weighting algorithms, especially in top ranks, which make sense
since richer-get-richer dynamics can be more severe in top ranks.
In terms of fairness, among all algorithms, Naive shows the worst
performance almost for top ranks. Among the fairness controlling
algorithms, Linprog and FairCo show superior performance on
overall fairness (i.e., unfairness@all). As is shown in Table.2a, com-
pared to Linprog and FairCo, MMF performs much better on top
ranks while showing a slight compromise on overall unfairness.
This may attribute to that MMF try to mitigate unfairness for each
prefix, while Linprog and FairCo always consider all documents.
We think this is the key advantage of our algorithm compared with
Linprog and FairCo since top ranks are relatively important for
rankings, and many users would leave after viewing top results.

5.2.4 How does 𝜆 control trade-off between ranking performance
and unfairness for𝑀𝑀𝐹 ? Fig. 4 shows the performance NDCG@10
and unfairness@10 for MMF with different 𝜆 after 6000 users in-
teractions. Note that we only show LinProg and FairCo with the
tuned hyper-parameters as shown in [20]. Thus their performances
are constants. As we can see, the use of hyper-parameter 𝜆 in MMF
enables us to explicitly control the trade-off between relevance
and fairness. When 𝜆 = 0.0, MMF degenerates to D_ULTR(Glob),
thus it has similar unfairness with D_ULTR(Glob), greater than
Linprog and FairCo. With the increasing of 𝜆, unfairness gradually
decreases and become less than Linprog and FairCo on top results.
From the figure, we can see that choosing 𝜆 from 0.4 to 0.7 for MMF
can achieve better performance than the baseline algorithms on
both relevance and fairness.
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Table 2: Comparison of MMF with different baselines on News and Movie. Significant improvements or degradations with
respect to the performance of FairCo are indicated with +/− in the paired t-test with p-value 𝑝 ≤ 0.05. The best performance
of fair algorithms in each column is highlighted in boldface.

(a) Performance of learning-to-rank algorithms on News data.

NDCG@3 NDCG@5 NDCG@10 NDCG@all Unfairness@3 Unf.@5 Unf.@10 Unf.@all
Unfair
Algorithms

Naive 0.418− 0.430− 0.470− 0.697− 0.220− 0.268− 0.293− 0.174−
D_ULTR(Glob) 0.438+ 0.448+ 0.490+ 0.708 0.188− 0.218− 0.242− 0.136−

Fair Algorithms FairCo 0.434 0.443 0.483 0.705 0.036 0.037 0.049 0.015
LinProg 0.433 0.439 0.462 0.694 0.043 0.051 0.065 0.010

MMF(𝜆 = 0.6) 0.436 0.447+ 0.488+ 0.708 0.004+ 0.005+ 0.007+ 0.020

(b) Performance of learning-to-rank algorithms on Movie data.

NDCG@3 NDCG@5 NDCG@10 NDCG@all Unfairness@3 Unf.@5 Unf.@10 Unf.@all

Unfair
algorithm

Naive 0.633− 0.638− 0.652− 0.761− 0.166− 0.168 0.111+ 0.265−
D_ULTR(Glob) 0.671− 0.665− 0.672− 0.775− 0.102+ 0.105+ 0.066+ 0.243−

D_ULTR 0.827+ 0.819+ 0.816+ 0.871+ 0.035+ 0.036+ 0.042+ 0.232−

Fair algorithm FairCo 0.814 0.802 0.791 0.850 0.123 0.162 0.234 0.021
MMF(𝜆 = 0.1) 0.810 0.804 0.802+ 0.863+ 0.008+ 0.011+ 0.016+ 0.312−
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Figure 4: Performance ofNDCG@10(top) andUnfairness@10
(bottom) of MMF with different 𝜆 on News (20 trials).

5.3 Real-World Preference Data
To evaluate our method on a real-world preference data, we use
the ML20M dataset, which we refer to as the Movie dataset. Fol-
lowing the prepossessing method in [20], we select five production
companies with the most movies in the dataset(MGM, Warner Bros,
Paramount, 20th Century Fox, Columbia). We aim to ensure fairness
of exposure for films from the five production companies, which
means movies from the same company belong to the same group.
A set of 300 most rated movies by those production companies are
selected. Then the 100 movies with the highest standard deviation
in the rating across users are selected. For users, we select 104 users
who have rated the most number of the chosen 100 movies. Finally,
we get a partially filled rating matrix with 104 users and 100 movies.
We use an off-the-shelf matrix factorization algorithm4 to fill the
missing entries. We then normalize the rating to [0, 1] by applying
a Sigmoid function centered at rating 𝑏 = 3 with slope 𝑎 = 10.
Thus, it can serve relevance probabilities where higher star ratings
4Surprise library (http://surpriselib.com/) for SVD with biased=False and D=50

correspond to higher likelihoods of positive feedback, which is
used to generate clicks. We use the user embedding from the matrix
factorization model as user features 𝑥𝑡 . We keep the dimension of
user features to 50. At each time step 𝑡 , we sample a user 𝑥𝑡 and the
ranking algorithm presents a ranking of the 100 movies. For the
user personal relevance estimation model 𝑅𝜃 used by FairCo and
DULTR, and our method, we use a one hidden-layer neural network
that consists of 𝐷 = 50 input nodes, which corresponds to user
feature dimension, then fully connected to 64 nodes in the hidden
layer with RELU activation, which is then connected 100 output
nodes with Sigmoid to output the predicted relevance probability
for the 100 selected movies.

Besides the baselines discussed in Section 5.1, we also include
a new baseline in the experiments on the Movie dataset, which
is D-ULTR. D-ULTR conducts unbiased learning to train the LTR
model with click data. Different from D-ULTR(Glob) that directly
ranks documents with 𝑅𝐼𝑃𝑆 (𝑑), D-ULTR can model personalized
relevance by taking user features into account when building the
LTR model. Thus, we expect D-ULTR to perform much better than
D-ULTR(Glob) on the Movie dataset with real user preferences.
Similarly, we train LTR models with user features for both FairCo
andMMF. Note that we exclude LinProg on theMovie dataset as it is
designed to work with global relevance and is too computationally
expensive for rankings with a large number of documents.

5.4 Results with Real-World Preference Data
5.4.1 Can 𝑀𝑀𝐹 effectively reduce unfairness while maintaining
good ranking performance? We show the performance of rank-
ing relevance and fairness for all algorithms on the Movie dataset
in Fig. 5 For references, we plot a Skyline model that trains the
LTR model with ground truth relevance judgements and ranks doc-
uments via the output estimated relevance from the LTR model.
Firstly, as is shown in Fig. 5, personalization do help to reach bet-
ter ranking performance just as [20] already reported. Ranking
algorithms (DULTR, FairCo, MMF, skyline) relying on personalized
relevance show superior ranking performance than algorithms like

http://surpriselib.com/
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Figure 5: Convergence of NDCG@10 and Unfairness@10 as
the number of users increases on Movie (5 trials).
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Figure 6: Performance of NDCG(top) and Unfairness (bot-
tom) of MMF with different prefixes on Movie (5 trials).

Naive and DULTR(Glob), where no personalization is used. Rank-
ing algorithms involving IPS and personalization can approach the
skyline as more user interactions are available, which again verifies
the effectiveness of IPS and personalization.

After we show the effectiveness of personalization and IPS, we
now take a look at the overall performance shwon in Table 2b.
Naive and DULTR(Glob) show the worst performance in terms
of ranking and fairness since no personalization or fairness con-
trolling involved. Compared to FairCo, our method MMF(𝜆 = 0.1)
show a slight compromise on NDCG@3 while achieving better
performance on NDCG@5, NDCG@10, NDCG@all, and much bet-
ter performance on fairness metrics on top results. The fairness
controlling of FairCo is not effective in optimizing fairness on top-k
ranks. We think the reason might be that FairCo focuses on mitigat-
ing overall unfairness instead of top ranks, which means it ignores
fairness of top ranks. Such phenomenon can be clearly shown in
Fig. 6.
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Figure 7: Performance ofNDCG@10(top) andUnfairness@10
(bottom) of MMF with different 𝜆 on Movie (5 trials).

5.4.2 How does 𝑀𝑀𝐹 perform at different prefix of a ranking?
Fig.6 shows the performance NDCG and unfairness at different
prefixes for Naive, D-ULTR(Glob),ULTR, FairCo,MMF (𝜆 = 0.1)
after 6000 users interactions. As we can see, MMF achieves similar
performance with D-ULTR in terms of relevance ranking while
maintaining superior performance on ranking fairness on top re-
sults. Specifically, it significantly outperforms FairCo on both rele-
vance and fairness for 𝑘 from 3 to 50. While FairCo has excellent
performance on unfairness@all, it sacrifices both relevance and fair-
ness performance on top results significantly. It even shows more
unfairness on top results than unfair algorithms such as D-ULTR.

5.4.3 How does 𝜆 control trade-off of ranking performance and miti-
gating unfairness for𝑀𝑀𝐹 . Fig. 7 shows the performanceNDCG@10
and unfairness@10 for MMF with different 𝜆 after 6000 users inter-
actions. Again, we report FairCo with the best parameter settings
here. As 𝜆 gradually increases, a trade-off can be seen from the
growing of fairness (negative unfairness) and decreasing of ranking
performance. And we may choose 𝜆 to be between 0.0 and 0.2, be-
tween which MMF have better ranking performance as well as less
unfairness. The optimal 𝜆 for Movie data is smaller than for News
data. We think it’s because of their different relevance distribution.
Documents in the News dataset often have similar relevance. In
such situation, we should pay more attention to fairness (greater 𝜆)
for News dataset since relevance of different documents are close
to each other.

6 CONCLUSION AND FUTUREWORK
In this work, we propose a concept of marginal fairness and a Maxi-
mal Marginal Fairness (MMF) algorithm for balancing the relevance
and fairness of top-k results in dynamic learning to rank. We de-
velop a metric to measure the group fairness of exposure in the
top-k results of each ranked list and show that most existing state-
of-the-art methods for ranking fairness focus more on the overall
fairness of document exposure while compromising a lot in top
ranks of each ranked list. In contrast, our proposed MMF algorithm
explicitly maximizes the marginal fairness of top-k rankings and
can produce better rankings than the state-of-the-art fairness al-
gorithms in both top-k relevance and top-k fairness. In the future,
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we will further explore the possibility of extending MMF for more
general ranking scenarios or construct new LTR models that inte-
grate the optimization of relevance and fairness from the bottom
of model design.
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