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ABSTRACT
Graph neural networks (GNNs) have achieved tremendous suc-

cess in graph mining. However, the inability of GNNs to model

substructures in graphs remains a significant drawback. Specifi-

cally, message-passing GNNs (MPGNNs), as the prevailing type of

GNNs, have been theoretically shown unable to distinguish, detect

or count many graph substructures. While efforts have been paid to

complement the inability, existing works either rely on pre-defined

substructure sets, thus being less flexible, or are lacking in theo-

retical insights. In this paper, we propose GSKN
1
, a GNN model

with a theoretically stronger ability to distinguish graph structures.

Specifically, we design GSKN based on anonymous walks (AWs),

flexible substructure units, and derive it upon feature mappings of

graph kernels (GKs). We theoretically show that GSKN provably

extends the 1-WL test, and hence the maximally powerful MPGNNs

from both graph-level and node-level viewpoints. Correspondingly,

various experiments are leveraged to evaluate GSKN, where GSKN

outperforms a wide range of baselines, endorsing the analysis.
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•Networks → Network structure; • Information systems → Col-
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1 INTRODUCTION
Graph Neural Networks (GNNs) [48, 49] have achieved tremendous

success in mining information networks, such as social networks,

knowledge graphs, and biochemical networks [14, 18, 23, 36]. Un-

derlying most widely studied GNNs [18, 23, 45] lies the mechanism

of message passing [3, 16], or neighborhood aggregation [49], where

the representations for each node are updated by aggregating infor-

mation from their neighbors. It is such a mechanism that enables

efficient recursive computation of graph and node representations

and promotes its tremendous success.

However, message passing and the resultant message passing

GNNs (MPGNNs), as the majority of GNNs, bear inherent draw-

backs in capturing substructures of graphs. For example, [34, 49]

show that the capability of distinguishing different graphs ofMPGNNs

is upper-bounded by the 1-Weisfeiler-Lehman Isomorphism Test (1-

WL Test), which is known unable to distinguish many common sub-

structures (examples in [39]). In addition, [2, 9] show that MPGNNs

are unable to count or detect substructures with 3 or more nodes.

Both theoretical results uncover crucial limitations of MPGNNs, as

graph substructures are widely recognized as indicative in various

complex networks. For example, cliques, or community structures

are common patterns in social networks [17], and rings serve as

indicators on functional groups in molecular chemistry [28], etc.

Whether and how we can extend MPGNNs to account for substruc-

tures in complex graphs is thus an important open problem, posed

by the contrast between the significance of substructures, and the

inability of MPGNNs to model them.

There have been several attempts aiming to improve MPGNNs

for better modeling of substructures [5, 20, 25, 29]. However, [5, 25]

design their solutions based on pre-defined substructure patterns,

namely motifs and graphlets, which should be fixed prior to model

learning. The reliance on fixed sets of substructures leads to a lack

of versatility when applied to diverse real-world networks, each of

which may be characterized by different substructures. On the other

hand, [20, 30] eliminate the reliance on pre-selected substructures

through a flexible substructure pattern named anonymous walks
(AW) [31]. However, their solutions are largely empirical, in that

they fail to compare their solutions against MPGNNs in a principled

ar
X

iv
:2

10
4.

02
99

5v
1 

 [
cs

.L
G

] 
 7

 A
pr

 2
02

1

https://doi.org/10.1145/3442381.3449951
https://doi.org/10.1145/3442381.3449951
https://doi.org/10.1145/3442381.3449951


theoretical manner. As we would like to preserve the versatility

and independence from pre-selection, studying AW based GNNs in

a theoretically principled manner becomes our primary focus.

We resort to a parallel line of work on graph mining, namely

Graph Kernels (GKs). Graph kernels are classical methods that mea-

sure similarities between pairwise substructures, nodes, or graphs

and hence enable graph clustering, comparison, and classification

[35, 42, 52]. We consider graph kernels appropriate for our problem

for three reasons. First, graph kernels inherently involve compar-

isons between substructures, such as subtrees [42], graphlets [43]

and random walks [22], making it natural for us to incorporate

and analyze AW in the framework. In addition, connections be-

tween GKs and GNNs have been well-identified [8, 13, 26], making

it easier to adapt the theory on graph kernels to design and analyze

GNNs. Finally, although graph kernels on AW have been proposed

by AWE [19], both the relationship between AWE and GNNs, and

analyses on AWE remain elusive. We, therefore, consider GKs as

instrumental tools in theoretically bridging AW to GNNs.

In this paper, we propose the Graph Structural Kernel Network

(GSKN), a GNN model derived from GKs that incorporates AWs

and provably extends MPGNNs and the 1-WL test in terms of

distinguishing graph structures. Specifically, we first design the

anonymous walk graph kernel (AWGK), and derive the its GNN

architecture to compute its kernel mapping. We build GSKN by

combining the kernel mapping of AWGKwith existing graph kernel

mappings. We further analyze theoretically the ability of GSKN to

distinguish graph structures from both graph-level and node-level

viewpoints, on both of which GSKN is provably more powerful

than MPGNNs and the 1-WL test. Correspondingly, we carry out

extensive experiments on both graph and node classification tasks,

GSKN outperforms various strong baselines in all scenarios, which

coincides with the theoretical analysis and endorses its versatility.

We summarize our contributions as follows:

• We propose GSKN, a GNN model based on GKs and anony-

mous walks that complements the inability to model sub-

structures of MPGNNs in a theoretically principled manner.

• We design the anonymous walk graph kernel (AWGK) and

derive the corresponding GNN architecture to compute its

kernel mapping. We further build GSKN by flexibly combin-

ing AWGK with existing graph kernel mappings.

• We theoretically show that GSKN possesses a stronger ability

to distinguish graph structures from both graph-level and

node-level viewpoints.

• Graph and node classification on synthetic and real-world

datasets are carried out, where GSKN outperforms various

strong baselines, coinciding with the theoretical analysis.

2 RELATEDWORK
2.1 Graph Neural Networks (GNNs)
Yet GNNs were proposed in relatively early ages [40], only in re-

cent years did we observe their tremendous success [18, 45]. One

important reason underlying the popularity is the simplification

from spectral methods [10] to localized models [12, 23, 47], which

connects GNNs to message passing [3, 16], or neighborhood ag-

gregation [49] and significantly promotes the efficiency of GNNs.

Consequently, GNNs proposed henceforth largely belong to the

category of message-passing GNNs (MPGNNs) [9, 45].

However, MPGNNs bear drawbacks in their ability to model

substructures in graphs. For example, it is shown by [34, 49] that

the ability of MPGNNs to distinguish graphs is upper bounded by

the 1-Weisfeiler-Lehman Isomorphism Test (1-WL Test). 1-WL Test

is known to be blind to regular graphs, and analysis by [39] shows

that numerous pairwise graphs besides regular graphs can also fool

the 1-WL Test, and henceMPGNNs. As another example, [2, 9] show

that MPGNNs are neither able to count subgraph isomorphisms for

patterns with more than 3 nodes, nor able to detect any subgraphs

other than forests of stars. These analyses point out the inherent

limitations of MPGNNs on tackling graph substructures.

2.2 Substructures in Graph Mining
Substructures have been identified as important indicators in graph

mining since [17], who pointed out the significance of triads in

social networks. Later works focus on more diverse sets of substruc-

tures, such as motifs [32], i.e. over-represented subgraph patterns,

and graphlets [38], i.e. induced subgraph patterns. These substruc-

tures have proven to be indicative in analyzing numerous types

of graphs, including biochemical networks [38], social networks

[21, 27, 37] and even semantic segmentation [51].

The importance of substructures motivates researchers to seek

solutions that complement MPGNNs with the awareness of sub-

structures. One line of works aims to leverage network motifs and

graphlets [5, 25] to build substructure-aware GNNs. However, both

of them rely on fixed sets of motifs and graphlets that need to be

selected prior to model learning. Since real-world networks are

diverse and may be characterized by varying types of substructures,

the reliance on pre-selection significantly limits their applications

in practice. Another line of works resort to a more flexible sub-

structure unit called anonymous walks (AW) [20, 29] which do

not require pre-selection, and build GNN models with impressive

empirical results. However, one common drawback of them is that

they fail to demonstrate their solutions compared to MPGNNs in a

theoretically principled manner.

2.3 Graph Kernels (GKs)
Kernel methods have been widely studied and applied in general

machine learning [41]. Kernel methods evaluate pairwise similari-

ties between data samples through kernel functions, during which

the data samples are implicitly projected onto higher dimensional

spaces (called the Reproducing Kernel Hilbert Space, RKHS) and thus
endowed with richer features to facilitate classification.

Kernel methods on graphs, namely Graph Kernels (GK) evaluate

pairwise similarity between nodes or graphs by decomposing them

into basic structural units, characteristic choices of which include

random walks [22], subtrees [42], shortest paths [4], graphlets [43],

and also AW [19]. Such decomposition, provides principledmanners

to analyze the ability of GKs to express graph structures [8, 15, 24].

Due to their appealing theoretical properties, there have also

been noticeable efforts in fusing GKs with GNNs. [8, 13, 26] derive

GNN architectures for various graph kernels, such as subtrees,

random walks, paths, and their mixtures. However, regarding the

AWE kernel [19], no efforts are made to connect it with GNNs.



3 PRELIMINARIES
3.1 Notations
We represent a graph by 𝐺 = (𝑉 , 𝐸, 𝑋 ) where 𝑉 , 𝐸, 𝑋 denote node

sets, edge sets and attribute matrices respectively. We denote the

Dirac function as 𝛿 (·, ·), where 𝛿 (𝑎, 𝑏) = 1 iff 𝑎 = 𝑏. We use

W𝑙 (𝐺,𝑢) to denote the set of random walks with length 𝑙 starting

from 𝑢 in graph 𝐺 , and P𝑙 (𝐺,𝑢) similarly as the set of length 𝑙

paths. A path 𝑝 does not allow duplicate nodes while a walk 𝑤

does. We denote 𝑋 (𝑤) = (𝑋𝑤1
, 𝑋𝑤2

, ...𝑋𝑤|𝑤 | ) as the concatenation
of node attributes 𝑋 along a walk𝑤 , and similarly for a path 𝑝 .

3.2 Graph Kernels
Given two graphs 𝐺1 = (𝑉1, 𝐸1, 𝑋1) and 𝐺2 = (𝑉2, 𝐸2, 𝑋2), a graph
kernel function 𝐾 (𝐺1,𝐺2) returns a similarity measure between𝐺1

and 𝐺2 through the following formula:

𝐾 (𝐺1,𝐺2) =
∑︁

𝑢1∈𝑉1

∑︁
𝑢2∈𝑉2

𝜅𝑏𝑎𝑠𝑒
(
𝑙𝐺1

(𝑢1), 𝑙𝐺2
(𝑢2)

)
(1)

where 𝑙𝐺 (𝑢) denotes a set of local substructures centered at node

𝑢 in graph 𝐺 , and 𝜅𝑏𝑎𝑠𝑒 is a base kernel computing the similarity

between two sets of substructures. For simplicity we may omit

𝑙𝐺 (𝑢) and rewrite Eqn. 1 as:

𝐾 (𝐺1,𝐺2) =
∑︁

𝑢1∈𝑉1

∑︁
𝑢2∈𝑉2

𝜅𝑏𝑎𝑠𝑒 (𝑢1, 𝑢2) (2)

as long as the substructure set is clearly stated. We use uppercase

letter 𝐾 (𝐺1,𝐺2) to denote graph kernels, 𝜅 (𝑢1, 𝑢2) to denote node

kernels, and lowercase 𝑘 (𝑥,𝑦) to denote general kernel functions.

The kernel mapping of a kernel 𝜓 maps a data point into the

corresponding RKHSH . Formally, given a kernel 𝑘∗ (·, ·), then the

following equation holds for its kernel mapping𝜓∗,

∀𝑥1, 𝑥2, 𝑘∗ (𝑥1, 𝑥2) = ⟨𝜓∗ (𝑥1),𝜓∗ (𝑥2)⟩H∗ , (3)

whereH∗ is the RKHS of 𝑘∗ (·, ·).
We introduce several commonly studied graph kernels below.

Walk and Path Kernels. A 𝑙-walk kernel 𝐾
(𝑙)
𝑤𝑎𝑙𝑘

compares all

length 𝑙 walks starting from each node in two graphs 𝐺1,𝐺2,

𝜅
(𝑙)
𝑤𝑎𝑙𝑘

(𝑢1, 𝑢2) =
∑︁

𝑤1∈W𝑙 (𝐺1,𝑢1)

∑︁
𝑤2∈W𝑙 (𝐺2,𝑢2)

𝛿 (𝑋1 (𝑤1), 𝑋2 (𝑤2)),

𝐾
(𝑙)
𝑤𝑎𝑙𝑘

(𝐺1,𝐺2) =
∑︁

𝑢1∈𝑉1

∑︁
𝑢2∈𝑉2

𝜅
(𝑙)
𝑤𝑎𝑙𝑘

(𝑢1, 𝑢2).

(4)

Substituting W with P yields a 𝑙-path kernel.

WL Subtree Kernels. The WL subtree kernel is a finite-depth

kernel variant of the 1-WL test. A WL subtree kernel of depth 𝑙 ,

𝐾
(𝑙)
𝑊𝐿

compares all subtrees with depth ≤ 𝑙 rooted at each node.

𝜅
(𝑖)
𝑠𝑢𝑏𝑡𝑟𝑒𝑒

(𝑢1, 𝑢2) =
∑︁

𝑡1∈T𝑖 (𝐺1,𝑢2)

∑︁
𝑡2∈T𝑖 (𝐺2,𝑢2)

𝛿 (𝑡1, 𝑡2)

𝐾
(𝑖)
𝑠𝑢𝑏𝑡𝑟𝑒𝑒

(𝐺1,𝐺2) =
∑︁

𝑢1∈𝑉1

∑︁
𝑢2∈𝑉2

𝜅
(𝑖)
𝑠𝑢𝑏𝑡𝑟𝑒𝑒

(𝑢1, 𝑢2)

𝐾
(𝑙)
𝑊𝐿

(𝐺1,𝐺2) =
𝑙∑︁

𝑖=0

𝐾
(𝑖)
𝑠𝑢𝑏𝑡𝑟𝑒𝑒

(𝐺1,𝐺2),

(5)

where 𝑡 ∈ T (𝑖) (𝐺,𝑢) denotes a subtree of depth 𝑖 rooted at 𝑢 in 𝐺 .

In reality when node attributes 𝑋 are of continuous values, we

may replace the hard 𝛿 (·, ·) in Eqn. 4 and 5 by soft relaxations, such

as the Gaussian kernel

𝑘𝐺𝑎𝑢𝑠𝑠 (𝑥1, 𝑥2) = exp

(
−𝛼
2

∥𝑥1 − 𝑥2∥22
)
, (6)

whose RKHSH𝐺𝑎𝑢𝑠𝑠 is of infinite dimension.

3.3 Anonymous Walks
We briefly introduce anonymous walks (AWs) here and refer readers

to [19, 31] for further details. An anonymous walk is similar to a

random walk, but with the exact identities of nodes removed. A

node in an anonymous walk is represented by the first position

where it appears. For example,𝑤1 = (0, 9, 8, 11, 9),𝑤2 = (3, 2, 9, 7, 2)
are different random walks having the same anonymous walk 𝜙𝑖 =

(0, 1, 2, 3, 1), 𝑖 = 1, 2. This AW indicates underlying triadic closures

among 8, 9, 11 and 2, 7, 9.

One appealing theoretical property of AWs is that one can re-

construct a complete neighborhood centered at node 𝑣 based on

the AW distributions starting from 𝑣 .

Theorem 1 ([31]). Let 𝐵(𝑣, 𝑟 ) be the subgraph induced by all nodes
𝑢 such that 𝑑𝑖𝑠𝑡 (𝑣,𝑢) ≤ 𝑟 and 𝑃𝐿 be the distribution of anonymous

walks of length 𝐿 starting from 𝑣 , one can reconstruct 𝐵(𝑣, 𝑟 ) using
(𝑃1, ..., 𝑃𝐿), where 𝐿 = 2(𝑚 + 1),𝑚 is the number of edges in 𝐵(𝑣, 𝑟 ).

We denote the set of anonymous walks of length 𝑙 starting from

node 𝑢 in graph 𝐺 as Φ𝑙 (𝐺,𝑢), and a single anonymous walk as

𝜙 ∈ Φ𝑙 (𝐺,𝑢), similar to the notations of paths and walks.

4 MODEL: GSKN
In this section, we introduce our model Graph Structural Kernel

Network (GSKN). Fig. 1 gives an overview of GSKN. GSKN leverages

two graph kernels, the randomwalk kernel (RWGK)which is similar

to MPGNNs, and the anonymous walk kernel (AWGK) which will

be derived later, carrying complementary structural information

other than the RWGK. Nodes within a graph will be projected to

the RKHS of both kernels, where we perform efficient multi-layer

computation via the Nyström method and fuse both mappings.

4.1 Anonymous Walk Graph Kernels
We first formally extend AWs to the form of GKs. Similar to Eqn. 4,

we design the 𝑙-anonymous walk graph kernel (AWGK) as

𝜅
(𝑙)
𝐴𝑊

(𝑢1, 𝑢2) =
∑︁

𝜙1∈Φ𝑙 (𝐺1,𝑢1)

∑︁
𝜙2∈Φ𝑙 (𝐺2,𝑢2)

𝑘𝐺𝑎𝑢𝑠𝑠 (𝑅(𝜙1), 𝑅(𝜙2)),

𝐾
(𝑙)
𝐴𝑊

(𝐺1,𝐺2) =
∑︁

𝑢1∈𝑉1

∑︁
𝑢2∈𝑉2

𝜅
(𝑙)
𝐴𝑊

(𝑢1, 𝑢2),

(7)

where for an AW 𝜙 with length 𝑙 , 𝑅(𝜙) ∈ R𝑙2 denotes the concate-
nation of one-hot anonymous walk attributes along it. For example,

𝜙 = (1, 2, 3, 1), 𝑅(𝜙) = [0001, 0010, 0100, 0001]. Since enumerating

Φ𝑙 (𝐺,𝑢) is prohibitively costly, we only sample a certain number

of AWs, making |Φ𝑙 (𝐺,𝑢) | constant.
We also combine the AWGK with other kernels that can incorpo-

rate node attributes. In GSKN, we adopt randomwalk graph kernels
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Figure 1: An overview of GSKN. GSKN combines two graph kernels, one being the RWGK, which is similar to MPGNNs, and
the other being the AWGK, which captures additional structural information other than RWGK. Nodes are projected into the
RKHS through the kernel mappings of both, which are formulated as GNNs and computed via the Nyström method.

(RWGK) defined in Eqn. 4 due to its connection with MPGNNs

[8, 26]. We combine both kernels and yield the anonymous-random

walk kernel (ARGK) as:

𝜅
(𝑙)
𝐴𝑅

(𝑢1, 𝑢2) = 𝜅 (𝑙)𝑤𝑎𝑙𝑘
(𝑢1, 𝑢2) + 𝜅 (𝑙)𝐴𝑊

(𝑢1, 𝑢2)

𝐾
(𝑙)
𝐴𝑅

(𝐺1,𝐺2) =
∑︁

𝑢1∈𝑉1

∑︁
𝑢2∈𝑉2

𝜅
(𝑙)
𝐴𝑅

(𝑢1, 𝑢2), (8)

Combining the two kernels via addition yields a simple formula-

tion of the kernel mapping𝜓
(𝑙)
𝐴𝑅

,

𝜓
(𝑙)
𝐴𝑅

(𝑢) =
[
𝜓
(𝑙)
𝑤𝑎𝑙𝑘

(𝑢)


𝜓 (𝑙)

𝐴𝑊
(𝑢)

]
, (9)

where [𝑥 ∥𝑦] denotes vector concatenation. The same holds when

we replace 𝑢 with 𝐺 .

4.2 From AWGK to GNNs
Kernelmethods [46, 52] implicitly perform projections from original

data spaces to their RKHS H , as shown in Eqn. 3. Hence, as GNNs

also project nodes or graphs into vector spaces, connections have

been established between GKs and GNNs through kernel mappings.

In this section, we follow [8] and analyze the kernel mapping of the

AWGK𝜓𝐴𝑊 to derive the corresponding GNN formulation, which

serves as an important building block of GSKN.

Specifically, denoting𝜓𝐺𝑎𝑢𝑠𝑠 as the kernel mapping of the Gauss-

ian kernel (Eqn. 6), the kernel mapping of 𝜅
(𝑙)
𝐴𝑊

can be written as

𝜓
(𝑙)
𝐴𝑊

(𝑢) =
∑︁

𝜙 ∈Φ𝑙 (𝐺,𝑢)
𝜓𝐺𝑎𝑢𝑠𝑠 (𝑅(𝜙)) . (10)

However, asH𝐺𝑎𝑢𝑠𝑠 is of infinite dimension, it is impossible to

evaluate Eqn. 10 accurately. Alternatively, we resort to the Nyström

Method [46] for a finite-dimensional approximation.

Nyström method aims to project points from an arbitrary RKHS

into finite-dimensional subspaces. Specifically, given a collection

of 𝑞 anonymous walk ‘landmarks’ Φ𝑞 = {𝑅(𝜙1), 𝑅(𝜙2), ..., 𝑅(𝜙𝑞)},
the corresponding 𝑞-dimensional subspace is taken as

E = Span

(
𝜓𝐺𝑎𝑢𝑠𝑠 (𝑅 (𝜙1)) ,𝜓𝐺𝑎𝑢𝑠𝑠 (𝑅 (𝜙2)) , ...𝜓𝐺𝑎𝑢𝑠𝑠

(
𝑅
(
𝜙𝑞

) ) )
,

(11)

and the projection of another AW 𝑅(𝜙 ′) onto E can be done by [7]:

𝜓𝐺𝑎𝑢𝑠𝑠 (𝑅(𝜙 ′)) =[𝑘𝐺𝑎𝑢𝑠𝑠 (𝑅(𝜙𝑖 ), 𝑅(𝜙 𝑗 ))]
− 1

2

𝑖 𝑗

[𝑘𝐺𝑎𝑢𝑠𝑠 (𝑅(𝜙1), 𝑅(𝜙 ′)), ...𝑘𝐺𝑎𝑢𝑠𝑠 (𝑅(𝜙𝑞), 𝑅(𝜙 ′))]𝑇 ,
(12)

where [𝑘𝐺𝑎𝑢𝑠𝑠 (𝑅(𝜙𝑖 ), 𝑅(𝜙 𝑗 ))]𝑖 𝑗 is a 𝑞 ×𝑞 positive-semidefinite ma-

trix formed by the kernel values between the 𝑞 landmarks.

Note that

𝑘𝐺𝑎𝑢𝑠𝑠 (𝑅(𝜙𝑖 ), 𝑅(𝜙 𝑗 )) = exp

(
−𝛼
2

∥𝑅(𝜙𝑖 ) − 𝑅(𝜙 𝑗 )∥22
)

= exp

(
𝛼𝑅(𝜙𝑖 )𝑇𝑅(𝜙 𝑗 ) − 𝛼𝑙

)
= 𝜎

(
𝑅(𝜙𝑖 )𝑇𝑅(𝜙 𝑗 )

)
,

(13)

which is essentially a dot product followed by a non-linear trans-

formation 𝜎 (𝑥) = exp(𝛼𝑥 − 𝛼𝑙). Therefore, denoting 𝑍 = [𝑅(𝜙𝑖 )]𝑖 ,
Eqn. 12 can be rewritten as

𝜓𝐺𝑎𝑢𝑠𝑠 (𝑅(𝜙 ′)) = 𝜎
(
𝑍𝑇𝑍

)−1/2
𝜎

(
𝑍𝑇𝑅(𝜙 ′)

)
∈ R𝑞, (14)

and consequently, Eqn. 10, the kernel mapping of the AWGK on

nodes, can be approximately computed as

𝜓
(𝑙)
𝐴𝑊

(𝑢) =
∑︁

𝜙 ∈Φ𝑙 (𝐺,𝑢)
𝜎

(
𝑍𝑇𝑍

)−1/2
𝜎

(
𝑍𝑇𝑅(𝜙)

)
∈ R𝑞, (15)



which can be essentially interpreted as a one-layer GNN, consisting

of linear transformation of anonymouswalks𝑍𝑇𝑅(𝜙), non-linearity
𝜎 , and sum-pooling

2
. Following [8] we can also stackmultiple layers

of Eqn. 15 to resemble a 𝐿-layer GNN,

𝜓
(𝑙)
𝐴𝑊 ,𝐿

= 𝜓
(𝑙)
𝐴𝑊 ,1

◦𝜓 (𝑙)
𝐴𝑊 ,2

◦ ...︸                  ︷︷                  ︸
𝐿 layers

. (16)

The kernel mapping for 𝐾
(𝑙)
𝐴𝑊

(𝐺1,𝐺2) can be thus computed

through a sum pooling over all nodes,

Ψ
(𝑙)
𝐴𝑊 ,𝐿

(𝐺) =
∑︁
𝑢∈𝑉

𝜓
(𝑙)
𝐴𝑊 ,𝐿

(𝑢), (17)

which is also similar to GNNs.

Finally, we combine the kernel mappings of AWGK and RWGK

via concatenation (Eqn. 9) to get node-level embeddings

𝜓
(𝑙)
𝐴𝑅,𝐿

(𝑢) =
[
𝜓
(𝑙)
𝑤𝑎𝑙𝑘,𝐿

(𝑢)


𝜓 (𝑙)

𝐴𝑊 ,𝐿
(𝑢)

]
, (18)

where𝜓
(𝑙)
𝑤𝑎𝑙𝑘,𝐿

(𝑢) is the 𝐿 layer GCKN-walk defined in [8], which

basically replaces 𝐴𝑊 with𝑤𝑎𝑙𝑘 in Eqn. 15. Replacing 𝑢 with 𝐺 ,𝜓

with Ψ yields graph-level embeddings.
3

4.3 Learning the Model
The model parameters are essentially 𝑍𝑤𝑎𝑙𝑘 and 𝑍𝐴𝑊 , i.e. the land-

marks for the finite-dimensional approximation, which are equiva-

lent to weights in common GNNs. Since we adopt kernel methods,

we adopt an unsupervised method for selecting the 𝑍 .

[50] shows that the landmarks for Nyström Methods can be

efficiently chosen by running 𝑘-means clustering on the data, and

[8] shows that such techniques are also empirically good under

graph kernels. Therefore, we learn the 𝑍𝐴𝑊 by running 𝑞-means

on the anonymous walks 𝑅(𝜙), and similarly for 𝑍𝑤𝑎𝑙𝑘 .

Complexity The complexity of computing the embeddings of

GSKN consists of three parts: walk enumeration, feature trans-

formation, and 𝑞-means training. Finding all length 𝑙 walks can be

done using Depth-First Search (DFS), whose worst-case complexity

for each graph is 𝑂 ( |𝑉 |𝑑𝑙 ), where 𝑑 is the maximum degree. The

complexity for sampling anonymous walks is 𝑂 ( |𝑉 | · |Φ𝑙 (𝐺,𝑢) |𝑙).
For feature transformation, denoting the input and output di-

mensions as 𝑞0, 𝑞1 respectively, each walk is encoded in 𝑞1 inner

products, each with a complexity of 𝑙 · 𝑞0, yielding 𝑂 (𝑙 · 𝑞1𝑞0).
Similarly, each anonymous walk is encoded in𝑂 (𝑞1 · 𝑙2) operations.

For𝑞-means training, the complexity for heuristically solving a𝑞-

means on𝑛×𝑑 data would be𝑂 (𝑞𝑛𝑑). Therefore, for walks and AWs

the complexity would be 𝑂 ( |𝑉 |𝑑𝑙𝑞0𝑞1 · 𝑙), 𝑂 ( |𝑉 | · |Φ𝑙 (𝐺,𝑢) |𝑙2𝑞1))
respectively. Therefore, the total complexity would be asymptoti-

cally dominated by 𝑂 ( |𝑉 |𝑑𝑙 ), which is irrelevant to AW. Thus, we

conclude that the efficiency of GSKN should not be compromised

by incorporating AW.

Considering the fact that the complexity is exponential to 𝑙 for

RW, but only polynomial for AW, in practice we use different 𝑙 for

RW and AW, which will be detailed in the experiments.

2
In practice, we add 𝜖 = 1e-7 to the diagonal, i.e. (𝜎 (𝑍𝑇𝑍 ) + 𝜖𝐼 )−1/2 for better

numerical stability.

3
Note that𝜓

(𝑙 )
𝑤𝑎𝑙𝑘

can be replaced by any other kernel mapping which leverages node

attributes. We take the RWGK for simplicity.

Algorithm 1 Algorithm of GSKN

Require: Graph 𝐺 = (𝑉 , 𝐸, 𝑋 )
Ensure: Node-level embeddings 𝜓

(𝑙)
𝐴𝑅

, graph-level embeddings

Ψ
(𝑙)
𝐴𝑅

1: for all nodes 𝑢 ∈ 𝑉 do
2: Generate random walk sequences W𝑙 (𝐺,𝑢).
3: Generate anonymous walk sequences Φ𝑙 (𝐺,𝑢).
4: end for
5: for layer 𝑘 = 0, ..., 𝐿 do
6: for all center node 𝑢 ∈ 𝑉 do
7: Compute kernel mapping of AWGK (Eqn. 15).

8: Compute kernel mapping of RWGK.

9: Node-Level Embedding𝜓
(𝑙)
𝐴𝑅,𝑘

(𝑢) (Eqn. 18)
10: end for
11: Unsupervised Learning of 𝑍 with Nyström method.

12: end for
13: Graph-Level Embedding Φ(𝐺) = ∑

𝑢∈𝑉 𝜓
(𝑙)
𝐴𝑅,𝐿

(𝑢)
14: return 𝜓

(𝑙)
𝐴𝑅,𝐿

(𝑢), 𝑢 ∈ 𝑉 ,𝜓 (𝑙)
𝐴𝑅,𝐿

(𝐺).

We show the pseudo-code of GSKN in Algorithm 1.

5 THEORETICAL ANALYSIS
In this section, we provide theoretical analyses regarding the ability

of GSKN to distinguish different graph structures. Corresponding

to the previous formulations, we analyze from two viewpoints, both

graph-level, and node-level.

We begin our analysis from the graph-level analysis and reach

the following conclusion.

Theorem 2. Suppose the feature space X is finite, and define the

space of graphs with feature space X as G = {𝐺 = (𝑉 , 𝐸, 𝑋 ), 𝑋 ⊂
X}. Given an arbitrary graph 𝐺 ∈ G, there exists parameterization

of GSKN such that it is as powerful as the 1-WL test and hence

MPGNNs. Moreover, There exists graphs 𝐺 ′ ∈ G such that GSKN

can learn strictly more powerful functions than the 1-WL test.

We would like to point out that although the finite feature space

assumption is weaker than that of [49], it is still adequate in practice.

For categorical attributes (e.g. one-hot, discrete, bag-of-words) with

finite dimensions, the feature space is always finite. For continuous

node attributes, in practice, we always discretize them into bins (e.g.

through floating-point numbers), yielding a finite feature space.

We prove the theorem in the following procedure.

(1) First, we show that the layer-wise update rule for both𝜓
(𝑙)
𝐴𝑊

and 𝜓
(𝑙)
𝑤𝑎𝑙𝑘

are injective w.r.t input attributes in Lemma 3.

Upon it, we show the power of GSKN in Corollary 1.

(2) In addition, we show that GSKN can distinguish graph struc-

tures while 1-WL and MPGNNs cannot in Lemma 4.

Lemma 1. Given 𝑓 (𝑥) = [𝑓1 (𝑥)∥ 𝑓2 (𝑥)] and 𝑥1 ≠ 𝑥2, 𝑓 (𝑥1) ≠

𝑓 (𝑥2) if 𝑓1 (𝑥1) ≠ 𝑓1 (𝑥2) or 𝑓2 (𝑥1) ≠ 𝑓2 (𝑥2).

Proof. The result comes from 𝑥 ≠ 𝑦 ⇒ [𝑥 ∥𝑧] ≠ [𝑦∥𝑧] and is

hence trivial. □



Since Ψ
(𝑙)
𝐴𝑅,𝐿

(𝐺) =
[
Ψ
(𝑙)
𝑤𝑎𝑙𝑘,𝐿

(𝐺)∥Ψ(𝑙)
𝐴𝑊 ,𝐿

(𝐺)
]
, 𝐺1 and 𝐺2 will be

concluded different if either Ψ
(𝑙)
𝑤𝑎𝑙𝑘,𝐿

or Ψ
(𝑙)
𝐴𝑊 ,𝐿

deems them differ-

ent. Therefore, the ability of Ψ
(𝑙)
𝐴𝑅,𝐿

will be lower bounded by both

Ψ
(𝑙)
𝑤𝑎𝑙𝑘,𝐿

and Ψ
(𝑙)
𝐴𝑊 ,𝐿

. We then show the ability of both of them by

analyzing its layer-wise update function.

Lemma 2. Consider function 𝑔(𝑥) =𝑊𝑥 , 𝑥 ∈ 𝑋 , and 𝑋 ⊂ R𝑎 is

finite.𝑊 ∈ R𝑏×𝑎 . Then ∃𝑊 , such that 𝑔(𝑥) is injective w.r.t 𝑥 .

Proof. 𝑔(𝑥) is injective ⇔∀𝑥 ≠ 𝑥 ′ ∈ 𝑋,𝑔(𝑥) ≠ 𝑔(𝑥 ′) ⇔ ∀𝑥 ≠

𝑥 ′ ∈ 𝑋, 𝑥 − 𝑥 ′ ∉ Ker𝑊 . When 𝑎 < 𝑏, then as long as rank(𝑊 ) = 𝑎,
Ker𝑊 = {0}, and therefore ∀𝑥 ≠ 𝑥 ′, 𝑥 − 𝑥 ′ ∉ Ker𝑊 .

When 𝑎 < 𝑏, notice that 𝑋 = {𝑥 − 𝑥 ′ |𝑥 ≠ 𝑥 ′ ∈ 𝑋 } is also finite.

Since the set {Ker𝑊 |𝑊 ∈ R𝑏×𝑎} is infinite, then there always exists

𝑊 , such that Ker𝑊 ∩ 𝑋 = ∅. □

Lemma 3. Consider the layer-wise update function in Eqn. 15.

There exists parameter 𝑍 such that the function is injective w.r.t

Φ𝑙 (𝐺,𝑢) (and similarlyW𝑙 (𝐺,𝑢)).

Proof. We first prove that there exist 𝑍 such that

𝜎

(
𝑍𝑇𝑍

)−1/2
𝜎

(
𝑍𝑇 𝑥

)
(19)

is injective to 𝑥 , and Lemma 3 follows by Lemma 5 in [49].

According to Lemma 2, there exists 𝑍 such that 𝑍𝑇 𝑥 is injective

w.r.t 𝑥 ∈ 𝑋 from finite feature space. Also, 𝜎 (·) is element-wise

monotonic and therefore injective, and 𝜎

(
𝑍𝑇𝑍

)−1/2
is of full rank

(because we add a small 𝜖 to its diagonal in practice), thereby mul-

tiplying by it is injective.

We thus conclude that ∃𝑍 such that Eqn. 19 is injective, and the

injectiveness of Eqn. 15 is ensured following Lemma 5 in [49]. □

Corollary 1. GSKN is at least as powerful as the 1-WL test, and

hence the strongest MPGNNs.

Proof. According to Theorem 3 in [49], a GNN is as strong as

the 1-WL test as long as the layer-wise neighborhood aggregation

for node features is injective, and the graph readout function is

injective. According to Lemma 3 and the fact that neighbors can

be viewed as length 2 walks, the layer-wise injective nature can

be satisfied. Also, similar to the arguments on Eqn. 4.2 in [49], the

graph readout is also injective. □

We then show that Ψ
(𝑙)
𝐴𝑅,𝐿

=

[
Ψ
(𝑙)
𝑤𝑎𝑙𝑘,𝐿

∥Ψ(𝑙)
𝐴𝑊 ,𝐿

]
is able to learn

functions beyond the 1-WL test.

Lemma 4. There exists graphs𝐺 such that Ψ
(𝑙)
𝐴𝑅,𝐿

is strictly more

powerful than the 1-WL test.

Proof. For proving Lemma 4 it suffices to provide such examples

𝐺1,𝐺2 where 1-WL test deems them isomorphic and Ψ
(𝑙)
𝐴𝑅,𝐿

(𝐺1) ≠
Ψ
(𝑙)
𝐴𝑅,𝐿

(𝐺2). Rings would be one type of such examples, as shown

in Fig. 2. [11] shows that 1-WL cannot distinguish between 𝑅
2𝑘 , a

ring with 2𝑘 nodes and 𝑅𝑘,𝑘 , two disjoint rings with 𝑘 nodes each.

We show that Ψ
(𝑙)
𝐴𝑊 ,𝐿

can distinguish such pairs of graphs, and

Ψ
(𝑙)
𝐴𝑅,𝐿

follows. Since any walk on 𝑅𝑘,𝑘 would pass at most 𝑘 distinct

nodes, an arbitrary anonymous walk would have a label of at most

𝑘 . Therefore, it is sufficient to take 𝑙 > 𝑘 , where on 𝑅
2𝑘 anonymous

walks with label larger than 𝑘 would be observed. □

Figure 2: Two simple non-isomorphic graphs that are indis-
tinguishable by 1-WL [11]. 𝑡 is the number of iterations.

In addition, we extend our analysis to node-level viewpoints,

and show that our model provably extends the WL subtree kernel

(Eqn. 5) in differentiating different rooted local subgraphs.

Theorem 3. Given a graph 𝐺 = (𝑉 , 𝐸, 𝑋 ) and 𝑢1, 𝑢2 ∈ 𝑉 . Denote
M(𝑢1, 𝑢2) as the set of exact matchings between subsets of neigh-

borhoods of 𝑢1 and 𝑢2 (formally defined in [42]). For 𝑢1, 𝑢2 such

that |M(𝑢1, 𝑢2) | = 1, the following inequality holds.

𝜅
(𝑙)
𝑠𝑢𝑏𝑡𝑟𝑒𝑒

(𝑢1, 𝑢2) = 𝛿
(
𝜓
(𝑙)
𝑤𝑎𝑙𝑘

(𝑢1),𝜓 (𝑙)
𝑤𝑎𝑙𝑘

(𝑢2)
)

≥ 𝛿
(
𝜓
(𝑙)
𝐴𝑅

(𝑢1),𝜓 (𝑙)
𝐴𝑅

(𝑢2)
) (20)

Moreover, there exists 𝐺,𝑢1, 𝑢2 such that strict inequality holds.

Remarks. Both theWL subtree kernel and the Delta function 𝛿 (·, ·)
return only 0 or 1, and therefore they are indicators of whether they

deem local subgraphs rooted at𝑢1 and𝑢2 isomorphic.𝛿 (𝜓1 (𝑢1),𝜓1 (𝑢2)) >
𝛿 (𝜓2 (𝑢1),𝜓2 (𝑢2)) indicates 𝛿 (𝜓1 (𝑢1),𝜓1 (𝑢2)) = 1, while 𝛿 (𝜓2 (𝑢1),
𝜓2 (𝑢2)) = 0, which indicates that𝜓2 is more powerful than𝜓1.

Proof. The first equality is shown by Theorem 1 in [8]. The

second inequality is a direct corollary of Lemma 1.

To show that there exists 𝐺,𝑢1, 𝑢2 such that strict inequality

holds, we revisit the example in Fig. 2. Suppose𝐺 consists of disjoint

rings (i.e. 2-regular graphs), 𝑢1 is in an 𝑅
2𝑘 , while 𝑢2 is in an (𝑅𝑘 ),

and node attributes are node degrees 𝑋 (𝑢) = deg(𝑢). Similar to

Lemma 4, AWs with length 𝑙 > 𝑘 would be sufficient such that

𝛿

(
𝜓
(𝑙)
𝐴𝑊

(𝑢1),𝜓 (𝑙)
𝐴𝑊

(𝑢2)
)
= 0. However, since node attributes and

node degrees are all the same, the kernel mapping of the RWGK

𝜓
(𝑙)
𝑤𝑎𝑙𝑘

will follow 𝛿

(
𝜓
(𝑙)
𝑤𝑎𝑙𝑘

(𝑢1),𝜓 (𝑙)
𝑤𝑎𝑙𝑘

(𝑢2)
)
= 1,∀𝑙 . □

6 EXPERIMENTS
In this section, we introduce our empirical evaluations on GSKN.

We first introduce experimental settings, before presenting various

experimental results. Specifically, our evaluations consist of:

• Qualitative evaluation, where we carry out experiments on

synthetic datasets to illustrate properties of GSKN in an

intuitive manner.

• Quantitative evaluation, including graph classification and

node classification on real-world graph datasets.

• Self evaluation, including analysis on model components,

model parameters, and model efficiency.



Datasets MUTAG PROTEINS PTC IMDB-B IMDB-M COLLAB BZR COX2 PROTEINS_full Cora Pubmed PPI

Task Graph Graph Graph Graph Graph Graph Graph Graph Graph Node Node Node

Type biochem biochem biochem social social social biochem biochem biochem citation citation biochem

# Graphs 188 1,113 344 1,000 1,500 5,000 405 467 1,113 - - -

Avg # node 18 39 26 20 13 74 36 41 39 2,708 19,717 14,755

Avg # edge 20 73 51 97 66 2,458 38 43 73 5,429 44,338 228,431

# Class 2 2 2 2 3 3 2 2 2 7 3 121

Attribute Type Disc. Disc. Disc. No No No Cont. Cont. Cont. Disc. Disc. Disc.

Attr. Dim. 1 1 1 - - - 3 3 29 1,433 500 50

Table 1: Dataset statistics for graph and node classification. Disc. stands for discrete node attributes, while Cont. stands for
continuous node attributes.

6.1 Experimental Setup
We first introduce the datasets, comparison methods as well as

settings for experimental evaluation.

DatasetsWe take the following benchmark datasets for evaluation.

• GraphClassification.We use the same benchmark datasets

as in [13], including 6 biochemical network datasets (MU-

TAG, PROTEINS, PTC, BZR, COX2, PROTEINS_full), and 3

social network datasets (IMDB-B, IMDB-M, and COLLAB).

All biochemical network datasets have node attributes, with

MUTAG, PROTEINS, PTC categorical and BZR, COX2, PRO-

TEINS_full continuous, while none of the social network

datasets have node features.

• Node Classification. We utilize citation networks (Cora,

Pubmed [23]), and the protein interaction network (PPI).

Detailed dataset statistics and properties are listed in Table 1.

Baselines We take the following models as baselines for graph

classification.

• LDP [6] serves as a simple baseline based on degree infor-

mation only.

• Graph Kernels, including the WL subtree kernel [42], the

Shortest Path (SP) Kernel [4], the RW kernel, GNTK [13],

RetGK [52], DDGK[1], hashing graph kernels (HGK-WL,

HGK-SP) [33], Graph2Vec [35], and WWL [44].

• GNNs, including PatchySAN [36], GraphSAGE [18], GCN

[23], GIN [49].

• AW based methods. We choose AWE [19] and Graph-

STONE [29]. AWE is based on skip-gram optimization on

AW while GraphSTONE is an AW based GNN.

• Graph Kernel Networks, i.e. GCKN. We choose GCKN-

Path, the strongest variant mentioned in [8].

For node classification, we take GNNs as baselines, including GCN,

GraphSAGE, GAT, GIN, GraLSP [20] and GraphSTONE. Among

them, GraLSP and GraphSTONE also adopt AW to model substruc-

ture information.

Hyperparameter SettingsWe take 64-dimensional embeddings

for all methods. The parameter settings of other baselines follow

the recommended settings in relevant codes. For GSKN, we take

𝛼 = 1.5 in Eqn. 6 and 13, and choose anonymous walk length to be

5 or 6 depending on each dataset. Since the embeddings of GSKN

come from the concatenation of kernel mappings of both AWGK

and RWGK, we set the embedding size of each part as 32.

6.2 Synthetic Experiments for
Proof-of-concept
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(d) Ladder

Figure 3: Illustration of the 4 types of graphs in synthetic
dataset Structure.

Model Cycle Wheel Path Ladder Avg

RW Kernel 62.6 100.0 74.3 100.0 84.8

WL Kernel 55.2 98.5 65.5 98.5 79.7

SP Kernel 61.9 100.0 43.8 92.2 75.5

GIN - - - - 90.0

GCKN 95.0 100.0 94.9 100.0 97.5

GSKN 99.5 100.0 99.5 100.0 99.7

Table 2: Graph classification results on synthetic dataset
Structure. GIN uses supervised training, leaving accuracy on
each type of graphs not comparable.

Model Accuracy on Regular

GCKN 50.0

GSKN 100.0

Table 3: Graph classification results on synthetic datasetReg-
ular.

To evaluate the expressiveness of GSKN against existing GKs

and GNNs in a straightforward manner, we carry out experiments

on two synthetic datasets with distinct structures as a simple proof-

of-concept. As mentioned in Section 5, our model is theoretically

stronger than the 1-WL test, and hence all MPGNNs.



Dataset MUTAG PROTEINS PTC IMDB-B IMDB-M COLLAB

LDP
∗

88.9 ± 9.6 73.3 ± 5.7 63.8 ± 6.6 68.5 ± 4.0 42.9 ± 3.7 76.1 ± 1.4

GCN
∗

85.6 ± 5.8 76.0 ± 3.2 64.2 ± 4.3 74.0 ± 3.4 51.9 ± 3.8 79.0 ± 1.8

PatchySAN
∗

92.6 ± 4.2 75.9 ± 2.8 60.0 ± 4.8 71.0 ± 2.2 45.2 ± 2.8 72.6 ± 2.2

GIN
∗

89.4 ± 5.6 76.2 ± 2.8 64.6 ± 7.0 75.1 ± 5.1 52.3 ± 2.8 80.2 ± 1.9

Graph2Vec 83.1 ± 6.5 73.9 ± 2.6 59.6 ± 5.9 51.1 ± 4.0 47.4 ± 3.1 52.6 ± 1.9

WL subtree
∗

90.4 ± 5.7 75.0 ± 3.1 59.9 ± 4.3 73.8 ± 3.9 50.9 ± 3.8 78.9 ± 1.9

RetGK
∗

90.3 ± 1.1 75.8 ± 0.6 62.5 ± 1.6 71.9 ± 1.0 47.7 ± 0.3 81.0 ± 0.3

GNTK
∗

90.0 ± 8.5 75.6 ± 4.2 67.9 ± 6.9 76.9 ± 3.6 52.8 ± 4.6 83.6 ± 1.0

DDGK 85.0 ± 1.1 72.3 ± 4.7 65.7 ± 6.3 63.2 ± 4.5 49.1 ± 2.9 75.4 ± 1.8

AWE 88.9 ± 6.4 71.5 ± 4.9 63.8 ± 8.5 73.1 ± 4.1 53.1 ± 3.9 73.6 ± 2.3

GraphSTONE 67.2 ± 8.9 59.1 ± 4.4 55.6 ± 5.9 57.2 ± 2.7 35.9 ± 3.2 55.7 ± 2.4

GCKN
∗

92.8± 6.1 76.0 ± 3.4 67.3 ± 5.0 75.9 ± 3.7 53.0 ± 3.1 82.3 ± 1.1

GSKN 93.3 ± 3.3 82.3 ± 2.4 85.2 ± 5.1 79.9 ± 3.3 59.3 ± 3.1 81.8 ± 1.1

Table 4: Graph classification results on datasets without continuous node attributes. Results with * are taken from [13].

Model

Cora Pubmed PPI

Macro-f1 Micro-f1 Macro-f1 Micro-f1 Macro-f1 Micro-f1

30% 70% 30% 70% 30% 70% 30% 70% 30% 70% 30% 70%

GCN
∗

79.84 81.09 80.97 81.94 76.93 77.21 76.42 77.49 12.57 12.62 40.40 40.44

GAT
∗

79.33 82.08 80.41 83.43 76.94 76.92 77.64 77.82 11.91 11.97 39.92 40.10

GraphSAGE
∗

80.52 81.90 82.13 83.17 76.61 77.24 77.36 77.84 11.81 12.41 39.80 40.08

GraLSP
∗

82.43 83.27 83.67 84.31 81.21 81.38 81.43 81.52 11.34 11.89 39.55 39.80

GraphSTONE
∗ 82.78 83.54 83.88 84.73 78.61 78.87 79.53 81.03 15.55 15.91 43.60 43.64

GCKN 77.35 78.74 78.54 79.52 79.33 81.03 79.38 81.10 15.19 16.15 40.79 41.07

GSKN 77.44 79.32 78.87 80.55 80.06 81.98 80.26 82.13 19.19 20.06 43.71 43.82

Std (GSKN) / % 0.003 0.017 0.004 0.017 0.002 0.005 0.003 0.005 0.001 0.002 0.001 0.002

Table 5: Macro-f1 and Micro-f1 scores of node classification. Results with * are taken from [29]

Model BZR COX2 PROTEINS_full

HGK-WL
∗

78.6 ± 0.6 78.1 ± 0.5 75.9 ± 0.2

HGK-SP
∗

76.4 ± 0.7 72.6 ± 1.2 75.8 ± 0.2

WWL
∗

84.4 ± 2.0 78.3 ± 0.5 77.9 ± 0.8

GNTK
∗

85.5 ± 0.8 79.6 ± 0.4 75.7 ± 0.2

GCKN
∗ 85.9 ± 0.5 81.2 ± 0.8 76.3 ± 0.5

GSKN 85.3 ± 0.4 82.3 ± 0.6 81.9 ± 0.3

Table 6: Graph classification results on datasets with contin-
uous node attributes. Results with * are taken from [13].

In the first dataset Structure, we generate graphs with 4 different

structures, including Cycle, Path, wheel, and Ladder. We show illus-

trations of these structures in Fig. 3. We generate graph instances

𝑔 for each class with their sizes 𝑛 ∼ Uniform(20, 80). We also ran-

domly add 10% edges in the generated graphs 𝑔 to incorporate some

noise. We generate 100 graphs for each structure.

In the other synthetic dataset Regular, we generate 100 5-regular
graphs with two types, one being connected 5-regular graphs with

20 nodes, Reg-20-5, and the other being two disjoint 5-regular graphs
with 10 nodes each, 2-Reg-10-5. As stated in [39], the 1-WL test,

and hence MPGNNs cannot distinguish among different 𝑑-regular

graphs.

We compare our model with classical graph kernel methods on

Structure, including the RWkernel, theWL kernel, and the SP kernel

to show the general ability to distinguish among graph structures.

We also compare against GNNs, including GIN and GCKN. For the

WL kernel, we use degrees as node attributes following [49]. Results

are shown in Table 2. It can be shown that although all methods

are almost 100% correct on Wheels and Ladders, the performances

differ a lot on Cycle and Path. Among all the comparison methods,

GSKN is able to outperform GCKN, the second strongest baseline

by 5% on Cycle and Path, showing its better ability in distinguishing

among different structures in general.

We further show that GSKN complements GNNs using Regular,
a dataset where ordinary GNNs would be theoretically incapable.

We show the results in Table 3. It can be shown that GCKN can



do no better than guessing, while GSKN achieves 100% accuracy,

showing the improvement of GSKN over GNNs.

6.3 Quantitative Evaluations
In this section, we present results on graph and node classification.

6.3.1 Graph Classification. We follow the same experimental pro-

tocols as [13, 49], and report the average accuracy and standard

deviation over a 10-fold cross-validation on each dataset. We use

the same data splits as [49] using their code. For classification, we

use the SVM implementation of the Cyanure toolbox
4
.

We show the graph classification results in Table 4 and 6. Results

marked with * are taken from [13]. We make the following findings.

• GSKN outperforms all baselines in all datasets except COL-

LAB. Specifically, GSKN achieves 6% improvement on PRO-

TEINS and IMDB-M, and over 10% improvement on PTC.

These improvements demonstrate the strength of GSKN in

terms of graph classification.

• Compared with GCKN, our model is also able to achieve

improvements on all datasets except COLLAB. Since GSKN

extends GCKN, the improvements endorse the effectiveness

of the AWGK, and its compatibility with GCKN.

• Compared with AWE and GraphSTONE, both of which use

anonymous walks for graph representation, GSKN is also

able to perform better. Specifically, AWE does not leverage

node attributes, which limits its performance. GraphSTONE

requires learning a topic model over AWs, which may re-

quire large graphs to ensure its effectiveness. By comparison,

GSKN alleviates both drawbacks and achieves improvements

with adequate modeling of anonymous walks, i.e. through

the AWGK and its kernel mapping.

We also show the classification results on graphswith continuous

node attributes in Table 6. On these datasets, GSKN also performs

competitively (similar to GCKN and GNTK on BZR, 1% and 4% over

the best baseline on COX2 and PROTEINS_full). We conclude that

on a wide range of graph datasets can GSKN perform favorably

against competitive baselines.

6.3.2 Node Classification. We then carry out node classification

experiments. We follow the same experimental settings as [29]. Dif-

ferent fractions of nodes are sampled randomly for testing, leaving

the rest for training. We use Logistic Regression as the classifier

and take the macro and micro F1 scores for evaluation. The results

are averaged over 10 independent runs.

The results are shown in Table 5. Wemake the following findings.

• GSKN achieves a 3-4% improvement on PPI over the best

baseline (GraphSTONE), a similar performance as the best

baseline (GraLSP) on Pubmed, and a 1% improvement over

GCKN on Cora. Note that GCKN and GSKN do not use node-

level supervision (e.g. node labels, edges), which may explain

why both of them fail on Cora.

• Compared with GCKN, GSKN achieves a 1% improvement

on Cora, a 1% improvement on Pubmed, and a 3-4% improve-

ment on PPI. Since GCKN and GSKN are similarly trained,

such improvements endorse the effectiveness of the kernel

4
http://julien.mairal.org/cyanure/

Model MUTAG PROTEINS PTC

RW (degree) 86.7 71.8 58.5

AW 93.3 76.5 81.7

RW (attribute) 91.1 74.5 61.5

RW (attribute) + AW 93.3 82.3 85.2

Table 7: Graph classification results with different model
components and input features.

mapping of AWGK, and hence GSKN. As the node features

are richer on Cora (1433 dims) and Pubmed (500 dims) than

on PPI (50 dims), the additional structural information plays

more significant roles on PPI than on Pubmed and Cora.

Consequently, the improvements of GSKN are more evident

on PPI than on Cora and Pubmed.

6.4 Model Analysis
We carry out model analysis, including ablation studies, efficiency,

and parameter analysis to provide better understandings of GSKN.

We use graph classification to reflect the performances of the model.

6.4.1 Ablation Studies. Corresponding to the theoretical analysis

in Section 5, we carry out ablation studies to illustrate the strength

of the AWGK kernel mapping Ψ
(𝑙)
𝐴𝑊

by modifying input features

and switching model components. We use different variants of our

model, and run experiments on MUTAG, PROTEINS, and PTC.

We use four variants of our model.

• RW (degree) denotes the Ψ
(𝑙)
𝑤𝑎𝑙𝑘,𝐿

part with node degrees as

input attributes. For graph classification, using node degrees

as input attributes is a common practice, such as [49].

• AW denotes the Ψ
(𝑙)
𝐴𝑊 ,𝐿

part only.

• RW (attributes) denotes theΨ
(𝑙)
𝑤𝑎𝑙𝑘,𝐿

part with node attributes

as inputs.

• RW (attributes) + AW denotes

[
Ψ
(𝑙)
𝑤𝑎𝑙𝑘,𝐿

∥Ψ(𝑙)
𝐴𝑊 ,𝐿

]
, which is

our full model formulation.

The results are shown in Table 7. It can be shown that Ψ
(𝑙)
𝐴𝑊 ,𝐿

alone

is a competitive graph classifier, outperforming RW (attribute).

Moreover, by adding AW to RW (attribute), performances are im-

proved by 2% on MUTAG, 8% on PROTEINS, and > 20% on PTC,

showing the strength and compatibility of Ψ
(𝑙)
𝐴𝑊 ,𝐿

to Ψ
(𝑙)
𝑤𝑎𝑙𝑘,𝐿

.

6.4.2 Efficiency. We compare the efficiency of GSKN with several

GK baselines: the RW Kernel, the WL Kernel, DDGK, and AWE.

We also compare the efficiency of GSKN against GCKN. We train

all models and report the time needed for convergence on a single

machine equipped with a GPU with 12GB RAM.

Results are presented in Fig.8. It can be shown that GSKN is

comparablewith themost efficient graph kernels, e.g. theWLKernel

and Graph2Vec, and takes less than three times the time of GCKN.

The results demonstrate that our model is highly efficient and thus

scalable. By contrast, although AWE takes similar approaches (i.e.

anonymous walks) as GSKN, GSKN is over 200 times more efficient

than AWE, while being more accurate as shown in Table 4.



(a) Anonymous walk length 𝑙 (b) Number of anonymous walks per node

|Φ𝑙 (𝐺,𝑢) |
(c) 𝛼 in Eqn. 6 (d) Embedding size

Figure 4: Parameter analysis of GSKN on PTC.

(a) Anonymous walk length 𝑙 (b) Number of anonymous walks per node

|Φ𝑙 (𝐺,𝑢) |
(c) 𝛼 in Eqn. 6 (d) Embedding size

Figure 5: Parameter analysis of GSKN on PROTEINS.

Model MUTAG IMDB-B COLLAB

RW Kernel 0.9 55.8 > 48h

WL Kernel 0.3 1.2 4.7

Graph2Vec 0.5 1.5 5.4

DDGK 70.2 360.1 2400.7

AWE 348.6 1824.5 > 48h

GCKN 1.1 1.3 6.5

GSKN 1.1 1.9 15.3

Table 8: Running time in minutes on different datasets.

6.4.3 Parameter Analysis. Weanalyze four parameters in ourmodel,

anonymouswalk length 𝑙 , the number of anonymouswalks sampled

per node |Φ𝑙 (𝐺,𝑢) |, the bandwidth parameter 𝛼 of the Gaussian

kernel in Eqn. 6, and the embedding size. We conduct experiments

on PTC and PROTEINS, whose results are shown in Fig. 4 and 5

respectively. We make the following findings:

• Both parameters related to the Ψ
(𝑙)
𝐴𝑊 ,𝐿

, i.e. 𝑙 and |Φ𝑙 (𝐺,𝑢) |
need to be chosen appropriately instead of choosing arbi-

trarily large values. Specifically, 𝑙 = 6 and |Ψ𝑙 (𝐺,𝑢) | = 30

would be most appropriate, while excessively large values

may compromise the performance by as much as 10%.

• Larger𝛼s in the Gaussian kernel (Eqn. 6) lead to better perfor-

mance. Similar results are found in [8], where they attribute

the results to the fact that larger 𝛼 leads to a closer resem-

blance between the Gaussian kernel and the Dirac kernel.

• Larger embedding size does not necessarily lead to better

performance. For GSKN, a size of 64 is appropriate.

7 CONCLUSION
In this paper, we propose GSKN, a GNN model with theoretically

stronger ability than MPGNNs to distinguish graph structures.

Specifically, we design our model based on anonymous walks (AWs),

flexible substructure units, and derive it upon graph kernels (GKs),

with efficient Nyström methods for computation. We theoretically

demonstrate the stronger ability of GSKN to distinguish graph

structures from both graph-level and node-level viewpoints. Cor-

respondingly, both graph and node classification experiments are

leveraged to evaluate our model, where our model outperforms a

wide range of baselines, endorsing the analysis.
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