
Interpreting and Unifying Graph Neural Networks with An
Optimization Framework

Meiqi Zhu

Beijing University of Posts and

Telecommunications

zhumeiqi@bupt.edu.cn

Xiao Wang
∗

Beijing University of Posts and

Telecommunications

xiaowang@bupt.edu.cn

Chuan Shi
∗

Beijing University of Posts and

Telecommunications

shichuan@bupt.edu.cn

Houye Ji

Beijing University of Posts and

Telecommunications

jhy1993@bupt.edu.cn

Peng Cui

Tsinghua University

cuip@tsinghua.edu.cn

ABSTRACT
Graph Neural Networks (GNNs) have received considerable atten-

tion on graph-structured data learning for a wide variety of tasks.

The well-designed propagation mechanism which has been demon-

strated effective is the most fundamental part of GNNs. Although

most of GNNs basically follow a message passing manner, litter ef-

fort has been made to discover and analyze their essential relations.

In this paper, we establish a surprising connection between differ-

ent propagation mechanisms with a unified optimization problem,

showing that despite the proliferation of various GNNs, in fact,

their proposed propagation mechanisms are the optimal solution

optimizing a feature fitting function over a wide class of graph

kernels with a graph regularization term. Our proposed unified

optimization framework, summarizing the commonalities between

several of the most representative GNNs, not only provides a macro-

scopic view on surveying the relations between different GNNs, but

also further opens up new opportunities for flexibly designing new

GNNs. With the proposed framework, we discover that existing

works usually utilize naïve graph convolutional kernels for feature

fitting function, and we further develop two novel objective func-

tions considering adjustable graph kernels showing low-pass or

high-pass filtering capabilities respectively. Moreover, we provide

the convergence proofs and expressive power comparisons for the

proposed models. Extensive experiments on benchmark datasets

clearly show that the proposed GNNs not only outperform the

state-of-the-art methods but also have good ability to alleviate over-

smoothing, and further verify the feasibility for designing GNNs

with our unified optimization framework.

∗
Corresponding authors

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

KEYWORDS
Graph neural networks, network representation learning, deep

learning

ACM Reference Format:
Meiqi Zhu, XiaoWang, Chuan Shi, Houye Ji, and PengCui. 2021. Interpreting

and Unifying Graph Neural Networks with An Optimization Framework.

In Proceedings of The Web Conference 2021 (WWW ’21), August 19–23, 2021,
Ljubljana, Slovenia. ACM, New York, NY, USA, 12 pages. https://doi.org/10.

1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Network is a ubiquitous structure for real-world data, such as so-

cial networks, citation networks and financial networks. Recently,

Graph Neural Networks (GNNs) have gained great popularity in

tackling the analytics tasks [7, 14, 31] on network-structured data.

Moreover, GNNs have also been successfully applied to a wide

range of application tasks, including recommendation [8, 28], ur-

ban data mining [5, 34], natural language processing [9, 48] and

computer vision [27, 29].

The classical graph neural networks can be generally divided into

two types: spectral-based GNNs and spatial-based GNNs. Spectral-

basedmethods [6, 37] mainly focus on defining spectral graph filters

via graph convolution theorem; spatial-based methods [10, 38] usu-

ally follow a message passing manner, where the most essential

part is the feature propagation process along network topology.

To date, many representative GNNs have been proposed by de-

signing different feature propagation mechanisms, e.g., attention

mechanism [30], personalized pagerank [15] and jump connection

[39]. The well-designed propagation mechanism which has been

demonstrated effective is the most fundamental part of GNNs. Al-

though there are various propagation mechanisms, they basically

utilize network topology and node features through aggregating

node features along network topology. In view of this, one ques-

tion naturally arises: Albeit with different propagation strategies, is
there a unified mathematical guideline that essentially governs the
propagation mechanisms of different GNNs? If so, what is it? A well

informed answer to this question can provide a macroscopic view

on surveying the relationships and differences between different

GNNs in a principled way. Such mathematical guideline, once dis-

covered, is able to help us identify the weakness of current GNNs,

and further motivates more novel GNNs to be proposed.

ar
X

iv
:2

10
1.

11
85

9v
1

 [
cs

.L
G

]
 2

8
Ja

n
20

21

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, and Peng Cui

As the first contribution of our work, we analyze the propagation

process of several representative GNNs (e.g., GCN [14] and PPNP

[15]), and abstract their commonalities. Surprisingly, we discover

that they can be fundamentally summarized to a unified optimiza-

tion framework with flexible graph convolutional kernels. The

learned representation after propagation can be viewed as the opti-

mal solution of the corresponding optimization objective implicitly.

This unified framework consists of two terms: feature fitting term

and graph Laplacian regularization term. The feature fitting term,

building the relationship between node representation and original

node features, is usually designed to meet different needs of spe-

cific GNNs. Graph Laplacian regularization term, playing the role

of feature smoothing with topology, is shared by all these GNNs.

For example, the propagation of GCN can be interpreted only by

the graph Laplacian regularization term while PPNP needs another

fitting term to constrain the similarity of the node representation

and the original features.

Thanks to the macroscopic view on different GNNs provided by

the proposed unified framework, the weakness of current GNNs

is easy to be identified. As a consequence, the unified framework

opens up new opportunities for designing novel GNNs. Tradition-

ally, when we propose a new GNN model, we usually focus on de-

signing specific spectral graph filter or aggregation strategy. Now,

the unified framework provides another new path to achieve this,

i.e., the new GNN can be derived by optimizing an objective func-

tion. In this way, we clearly know the optimization objective behind

the propagation process, making the new GNN more interpretable

and more reliable. Here, with the proposed framework, we discover

that existing works usually utilize naïve graph convolutional ker-

nels for feature fitting function, and then develop two novel flexible

objective functions with adjustable kernels showing low-pass and

high-pass filtering capabilities. We show that two corresponding

graph neural networks with flexible graph convolutional kernels

can be easily derived. Moreover, we also give the convergence abil-

ity analysis and expressive power comparisons for these two GNNs.

The main contributions are summarized as follows:

• We propose a unified objective optimization framework with

a feature fitting function and a graph regularization term,

and theoretically prove that this framework is able to unify a

series of GNNs propagation mechanisms, providing a macro-

scopic perspective on understanding GNNs and bringing

new insight for designing novel GNNs.

• Within the proposed optimization framework, we design

two novel deep GNNs with flexible low-frequency and high-

frequency filters which can well alleviate over-smoothing.

The theoretical analysis on both of their convergence and

excellent expressive power is provided.

• Our extensive experiments on series of benchmark datasets

clearly show that the proposed two GNNs outperform the

state-of-the-art methods. This further verifies the feasibility

for designing GNNs under the unified framework.

2 RELATEDWORK
Graph Neural Networks. The current graph neural networks

can be broadly divided into two categories: spectral-based GNNs

and spatial-based GNNs. Spectral-based GNNs define graph convo-

lutional operations in Fourier domain by designing spectral graph

filters. [3] generalizes CNNs to graph signal based on the spectrum

of graph Laplacian. ChebNet [6] uses Chebyshev polynomials to ap-

proximate the𝐾-order localized graph filters. GCN [14] employs the

1-order simplification of the Chebyshev filter. GWNN [37] leverages

sparse and localized graph wavelet transform to design spectral

GNNs. Spatial-based GNNs directly design aggregation strategies

along network topology, i.e., feature propagation mechanisms. GCN

[14] directly aggregates one-hop neighbors along topology. GAT

[30] utilizes attention mechanisms to adaptively learn aggregation

weights. GraphSAGE [10] uses mean/max/LSTM pooling for aggre-

gation. MixHop [1] aggregates neighbors at various distances to

capture mixing relationships. GIN [38] uses a simple but expressive

injective multiset function for neighbor aggregation. Policy-GNN

[16] uses a meta-policy framework to adaptively learn the aggrega-

tion policy. Furthermore, there are some advanced topics have been

studied in GNNs. For example, non-Euclidean space graph neural

networks [2, 42]; heterogeneous graph neural networks [33, 44];

explanations for graph neural networks [41, 43]; pre-training graph

neural networks [12, 25]; robust graph neural networks [13, 47].

For more details, please find in [36, 45, 46] survey papers.

Analysis and understanding on GNNs. Many works on

understanding GNNs have been provided recently, which point out

ways for designing and improving graph neural networks. Existing

theoretical analysis works on GNNs are three-fold: 1) The spectral
filtering characteristic analysis: Li et al. [17] show that the graph

convolutional operation is a special form of Laplacian smoothing,

and also point out the over-smoothing problem under many layers

of graph convolutions;Wu et al. [35] make a simplification on GCN

and theoretically analyze the resulting linear model acts as a fixed

low-pass filter from spectral domain; NT et al. [21] also show that

the graph convolutional operation is a simplified low-pass filter on

original feature vectors and do not have the non-linear manifold

learning property from the view of graph signal processing. 2) The
over-smoothing problem analysis: Xu et al. [39] analyze the same

over-smoothing problem by establishing the relationship between

graph neural networks and random walk. And they show that GCN

converges to the limit distribution of random walk as the number

of layers increases; Chen et al. [4] provide theoretical analysis and
imply that nodes with high degrees are more likely to suffer from

over-smoothing in a multi-layer graph convolutional model. 3) The
capability of GNNs analysis: Hou et al. [11] work on understanding

how much performance GNNs actually gain from graph data and

design two smoothness metrics to measure the quantity and quality

of obtained information; Loukas et al. [19] show that GNNs are

Turing universal under sufficient conditions on their depth, width

and restricted depth andwidthmay lose a significant portion of their

power; Oono et al. [22] investigate the expressive power of GNNs as
the layer size tends to infinity and show that deep GNNs can only

preserve information of node degrees and connected components.

However, these works do not theoretically analyze the intrinsic

connections about the propagation mechanisms for GNNs.

Interpreting and Unifying Graph Neural Networks with An Optimization Framework WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

3 A UNIFIED OPTIMIZATION FRAMEWORK
Notations. We consider graph convolutional operations on a

graph G = (V, E) with node set V and edge set E, 𝑛 = |V|
is the number of nodes. The nodes are described by the feature

matrix X ∈ R𝑛×𝑓 , where 𝑓 is the dimension of node feature. Graph

structure of G can be described by the adjacency matrix A ∈ R𝑛×𝑛
where A𝑖, 𝑗 = 1 if there is an edge between nodes 𝑖 and 𝑗 , otherwise

0. The diagonal degree matrix is denoted as D = 𝑑𝑖𝑎𝑔(𝑑1, · · · , 𝑑𝑛),
where 𝑑 𝑗 =

∑
𝑗 A𝑖, 𝑗 . We use

˜A = A + I to represent the adjacency
matrix with added self-loop and D̃ = D + I. Then the normalized

adjacency matrix is
ˆ
˜A = D̃−1/2

˜AD̃−1/2
. Correspondingly, L̃ = I− ˆ

˜A
is the normalized symmetric positive semi-definite graph Laplacian

matrix.

3.1 The Unified Framework
The well-designed propagation mechanisms of different GNNs basi-

cally follow similar propagating steps, i.e, node features aggregate

and transform along network topology for a certain depth. Here,

we summarize the 𝐾-layer propagation mechanisms mainly as the

following two forms.

For GNNswith layer-wise feature transformation (e.g. GCN [14]),

the 𝐾-layer propagation process can be represented as:

Z = PROPAGATE(X;G;𝐾) =
〈
Trans

(
Agg

{
G;Z(𝑘−1) })〉

𝐾

,

(1)

with Z(0) = X and Z is the output representation after the 𝐾-layer

propagation. And

〈〉
𝐾
, usually depending on specific GNN models,

represents the generalized combination operation after 𝐾 convolu-

tions. Agg
{
G;Z(𝑘−1) }

means aggregating the (𝑘 − 1)-layer output
Z(𝑘−1)

along graph G for the 𝑘-th convolutional operation, and

Trans(·) is the corresponding layer-wise feature transformation

operation including non-linear activation function 𝑅𝑒𝐿𝑈 () and
layer-specific learnable weight matrixW.

Some deep graph neural networks (e.g. APPNP [15], DAGNN

[18]) decouple the layer-wise Trans(·) and Agg
{
G;Z(𝑘−1) }

, and

use a separated feature transformation before the consecutive ag-

gregation steps:

Z = PROPAGATE(X;G;𝐾) =
〈
Agg

{
G;Z(𝑘−1) }〉

𝐾

, (2)

with Z(0) = Trans(X) and Trans(·) can be any linear or non-linear
transformation operation on original feature matrix X.

In addition, the combination operation

〈〉
𝐾
is generally two-fold:

for GNNs like GCN, SGC, and APPNP,

〈〉
𝐾
directly utilizes the𝐾-th

layer output. And for GNNs using outputs from other layers, like

JKNet and DAGNN,

〈〉
𝐾
may represent pooling, concatenation or

attention operations on the some (or all) outputs from 𝐾 layers.

Actually, the propagation process including aggregation and

transformation is the key core of GNNs. Network topology and

node features are the two most essential sources of information

improving the learned representation during propagation: network

topology usually plays the role of low-pass filter on the input node

signals, which smooths the features of two connected nodes [17].

In this way, the learned node representation is able to capture the

homophily of graph structure. As for the node feature, itself con-

tains complex information, e.g., low-frequency and high-frequency

information. Node feature can be flexibly used to further restrain

the learned node representation. For example, APPNP adds the

original node feature to the representation learned by each layer,

which well preserves the personalized information so as to alleviate

over-smoothing.

The above analysis implies that despite various GNNs are pro-

posed with different propagation mechanisms, in fact, they usually

potentially aim at achieving two goals: encoding useful information

from feature and utilizing the smoothing ability of topology, which

can be formally formulated as the following optimization objective:

O = min

Z

{
𝜁

F1Z − F2H

2
𝐹︸ ︷︷ ︸

O𝑓 𝑖𝑡

+ 𝜉𝑡𝑟 (Z𝑇 L̃Z)︸ ︷︷ ︸
O𝑟𝑒𝑔

}
.

(3)

Here, 𝜉 is a non-negative coefficient, 𝜁 is usually chosen from [0,

1], and H is the transformation on original input feature matrix

X. F1 and F2 are defined as arbitrary graph convolutional kernels.

Z is the propagated representation and corresponds to the final

propagation result when minimizing the objective O.

In this unified framework, the first part O𝑓 𝑖𝑡 is a fitting term

which flexibly encodes the information inH to the learned represen-

tation Z through designing different graph convolutional kernels

F1 and F2. Graph convolutional kernels F1 and F2 can be chosen

from the I, ˆ˜A, L̃, showing the all-pass, low-pass, high-pass filtering

capabilities respectively. The second term O𝑟𝑒𝑔 is a graph Laplacian

regularization term constraining the learned representations of

two connected nodes become similar, so that the homophily prop-

erty can be captured, and O𝑟𝑒𝑔 comes from the following graph

Laplacian regularization:

O𝑟𝑒𝑔 =
𝜉

2

𝑛∑︁
𝑖, 𝑗

ˆ
˜A𝑖, 𝑗

Z𝑖 − Z𝑗

2 = 𝜉𝑡𝑟 (Z𝑇 L̃Z). (4)

In the following, we theoretically prove that the propagation

mechanisms of some typical GNNs are actually the special cases

of our proposed unified framework as shown in Table 1. This uni-

fied framework builds the connection among some typical GNNs,

enabling us to interpret the current GNNs in a global perspective.

3.2 Interpreting GCN and SGC
GCN [14]/SGC [35]. Graph Convolutional Network (GCN) has

the following propagation mechanism which conducts linear trans-

formation and nonlinearity activation repeatedly throughout 𝐾

layers:

Z = PROPAGATE(X;G;𝐾)𝑔𝑐𝑛

= 𝜎 (ˆ˜A(· · · (𝜎 (ˆ˜AXW(0)) · · ·)W(𝐾−1)).
(5)

Simplifying Graph Convolutional Network (SGC) reduces this ex-

cess complexity through removing nonlinearities and collapsing

weight matrices between consecutive layers. The linear model ex-

hibits comparable performance since SGC has the similar propaga-

tion mechanism with GCN as:

Z = PROPAGATE(X;G;𝐾)𝑠𝑔𝑐

=
ˆ
˜A · · · ˆ˜AXW(0)W(1) · · ·W(𝐾−1) = ˆ

˜A𝐾XW*,
(6)

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, and Peng Cui

Table 1: The overall correspondences between propagation mechanisms and optimization objectives for GNNs.

Model Characteristic Propagation Mechanism Corresponding Objective

GCN/SGC [14] 𝐾-layer graph convolutions Z =
ˆ
˜A𝐾XW* O = min

Z

{
𝑡𝑟 (Z𝑇 L̃Z)

}
, Z(0) = XW*

GC Operation [14] 1-layer graph convolution Z =
ˆ
˜AXW O = min

Z

{

Z −H

2
𝐹
+ 𝑡𝑟 (Z𝑇 L̃Z)

}
,H = XW, (first-order)

PPNP/APPNP [15] Personalized pagerank H = 𝑓𝜃 (X),

PPNP: Z = 𝛼

(
I − (1 − 𝛼) ˆ˜A

)−1H
APPNP: Z =

〈
(1 − 𝛼) ˆ˜AZ(𝑘) + 𝛼H

〉
𝐾
,Z(0) = H

O = min

Z

{

Z −H

2
𝐹
+ (1/𝛼 − 1)𝑡𝑟 (Z𝑇 L̃Z)

}
JKNet [39] Jumping to the last layer Z =

𝐾∑
𝑘=1

𝛼𝑘
ˆ
˜A𝑘XW* O = min

Z

{

Z − ˆ
˜AH

2
𝐹
+ 𝜉𝑡𝑟 (Z𝑇 L̃Z)

}
,H = XW*

DAGNN [18] Adaptively incorporating different layers H = 𝑓𝜃 (X), Z =
𝐾∑
𝑘=0

𝑠𝑘
ˆ
˜A𝑘H O = min

Z

{

Z −H

2
𝐹
+ 𝜉𝑡𝑟 (Z𝑇 L̃Z)

}

GNN-LF (ours) Flexible low-pass filtering kernel H = 𝑓𝜃 (X),



closed: Z =
{
{𝜇 + 1/𝛼 − 1}I + {2 − 𝜇 − 1/𝛼} ˆ˜A

}−1{𝜇I + (1 − 𝜇) ˆ˜A}H

iter: Z =

〈
1 + 𝛼𝜇 − 2𝛼

1 + 𝛼𝜇 − 𝛼
ˆ
˜AZ(𝑘) + 𝛼𝜇

1 + 𝛼𝜇 − 𝛼H + 𝛼 − 𝛼𝜇
1 + 𝛼𝜇 − 𝛼

ˆ
˜AH

〉
𝐾

,

Z(0) =
𝜇

1 + 𝛼𝜇 − 𝛼H + 1 − 𝜇
1 + 𝛼𝜇 − 𝛼

ˆ
˜AH

O = min

Z

{

{𝜇I + (1 − 𝜇) ˆ˜A}1/2 (Z −H)

2
𝐹
+ (1/𝛼 − 1)𝑡𝑟 (Z𝑇 L̃Z)

}

GNN-HF (ours) Flexible high-pass filtering kernel H = 𝑓𝜃 (X),



closed: Z =
{
(𝛽 + 1/𝛼)I + (1 − 𝛽 − 1/𝛼) ˆ˜A

}−1{I + 𝛽L̃}H
iter: Z =

〈
𝛼𝛽 − 𝛼 + 1

𝛼𝛽 + 1

ˆ
˜AZ(𝑘) + 𝛼

𝛼𝛽 + 1

H + 𝛼𝛽

𝛼𝛽 + 1

L̃H
〉
𝐾

,

Z(0) =
1

𝛼𝛽 + 1

H + 𝛽

𝛼𝛽 + 1

L̃H

O = min

Z

{

{I + 𝛽L̃}1/2 (Z −H)

2
𝐹
+ (1/𝛼 − 1)𝑡𝑟 (Z𝑇 L̃Z)

}

where W* = W(0)W(1) · · ·W(𝐾−1)
. We have the following in-

terpretations on the propagation mode of SGC (GCN) under the

proposed unified framework.

Theorem 3.1. With 𝜁 = 0 and 𝜉 = 1 in Eq. (3), the propagation
process of SGC/GCN optimizes the following graph regularization
term:

O = min

Z

{
𝑡𝑟 (Z𝑇 L̃Z)

}
, (7)

where Z is initialized as XW*.

Proof. Set derivative of Eq. (7) with respect to Z to zero:

𝜕𝑡𝑟 (Z𝑇 L̃Z)
𝜕Z

= 0 ⇒ L̃Z = 0 ⇒ Z =
ˆ
˜AZ. (8)

Eq. (8) can be explained as an limit distributionwhereZ𝑙𝑖𝑚 =
ˆ
˜AZ𝑙𝑖𝑚 .

Then we use the following iterative form to approximate the limit

Z𝑙𝑖𝑚 with 𝐾 → ∞:

Z(𝐾) = ˆ
˜AZ(𝐾−1) . (9)

When SGC initializes input representation as Z(0) = XW*, Eq. (9)
becomes:

Z(𝐾) = ˆ
˜AZ(𝐾−1) = ˆ

˜A2Z(𝐾−2) = · · · = ˆ
˜A𝐾Z(0) = ˆ

˜A𝐾XW*, (10)

which matches the propagation mechanism of SGC. Since GCN can

be simplified as SGC by ignoring the non-linear transformation,

this conclusion also holds for GCN. □

Graph Convolutional Operation. The above analysis is for

the consecutive 𝐾 layers graph convolutional operations, here, we

also pay attention to the one layer graph convolutional operation

(GC operation) with the following propagation mechanism:

Z = PROPAGATE(X;G; 1)𝑔𝑐 = ˆ
˜AXW. (11)

Theorem 3.2. With F1 = F2 = I, 𝜁 = 1, 𝜉 = 1 in Eq. (3), the 1-
layer GC operation optimizes the following objective under first-order
approximation:

O = min

Z

{

Z − H

2
𝐹
+ 𝑡𝑟 (Z𝑇 L̃Z)

}
, (12)

where H = XW is the linear transformation on feature, W is a train-
able weight matrix.

Proof. Please refer to Appendix A.1 □

3.3 Interpreting PPNP and APPNP
PPNP [15] is a graph neural network which utilizes a propaga-

tion mechanism derived from personalized PageRank and separates

the feature transformation from the aggregation process:

Z = PROPAGATE(X;G;∞)𝑝𝑝𝑛𝑝

= 𝛼
(
I − (1 − 𝛼) ˆ˜A

)−1H, 𝑎𝑛𝑑 H = 𝑓𝜃 (X),
(13)

where 𝛼 ∈ (0, 1] is the teleport probability, and H is the non-

linear transformation result of the original feature X using an MLP

network 𝑓𝜃 (·).
Furthermore, due to the high complexity of calculating the in-

verse matrix, a power iterative version with linear computational

complexity named APPNP is used for approximation. The prop-

agation process of APPNP can be viewed as a layer-wise graph

convolution with a residual connection to the initial transformed

feature matrix H:

Z = PROPAGATE(X;G;𝐾)𝑎𝑝𝑝𝑛𝑝

=

〈
(1 − 𝛼) ˆ˜AZ(𝑘) + 𝛼H

〉
𝐾

, 𝑎𝑛𝑑 Z(0) = H = 𝑓𝜃 (X) .
(14)

Actually, it has been proved in [15] that APPNP converges to PPNP

when 𝐾 → ∞, so we use one objective under the framework to

explain both of them.

Theorem 3.3. With F1 = F2 = I, 𝜁 = 1, 𝜉 = 1/𝛼 − 1, 𝛼 ∈ (0, 1]
in Eq. (3), the propagation process of PPNP/APPNP optimizes the
following objective:

O = min

Z

{

Z − H

2
𝐹
+ 𝜉𝑡𝑟 (Z𝑇 L̃Z)

}
, (15)

where H = 𝑓𝜃 (X).

Interpreting and Unifying Graph Neural Networks with An Optimization Framework WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Proof. We can set the derivative of Eq. (15) with respect to Z
to zero and get the optimal Z as:

𝜕

{
∥Z −H∥2

𝐹
+ 𝜉𝑡𝑟 (Z𝑇 L̃Z)

}
𝜕Z

= 0 ⇒ Z −H + 𝜉L̃Z = 0.
(16)

Note that a matrix M has an inverse matrix if and only if the deter-

minant of matrix det(M) is not zero. Since the eigenvalues of the
normalized Laplacian matrix 𝜆𝑖 ∈ [0, 2), and the eigenvalues of the

matrix I + 𝜉L̃ are (1 + 𝜉𝜆𝑖) > 0. Then det(I + 𝜉L̃) > 0 and Z in Eq.

(16) can be rewritten as:

Z = (I + 𝜉L̃)−1H. (17)

We use
ˆ
˜A and 𝛼 to rewrite Eq. (17):

Z =
{
I + (1/𝛼 − 1)

(
I − ˆ

˜A
)}−1H = 𝛼

(
I − (1 − 𝛼) ˆ˜A

)−1H, (18)

which exactly corresponds to the propagation mechanism of PPNP

or the convergence propagation result of APPNP. □

3.4 Interpreting JKNet and DAGNN
JKNet [39] is a deep graph neural network which exploits in-

formation from neighborhoods of differing locality. This architec-

ture selectively combines aggregations from different layers with

Concatenation/Max-pooling/Attention at the output, i.e., the repre-

sentations "jump" to the last layer.

For convenience, following [4, 35], we simplify the 𝑘-th (𝑘 ∈
[1, 𝐾]) layer graph convolutional operation in the similar way by

ignoring the non-linear activation with 𝜎 (𝑥) = 𝑥 and sharingW* =
W(0)W(1) · · ·W(𝑘−1)

for each layer. Then 𝑘-th layer temporary

output is
ˆ
˜A𝑘XW*. Using attention mechanism for combination

at the last layer, the 𝐾-layer propagation result of JKNet can be

written as:

Z = PROPAGATE(X;G;𝐾)𝐽 𝐾𝑁𝑒𝑡

= 𝛼1
ˆ
˜AXW* + 𝛼2 ˆ˜A2XW* + · · · + 𝛼𝐾 ˆ

˜A𝐾XW* =
𝐾∑︁
𝑘=1

𝛼𝑘
ˆ
˜A𝑘XW*,

(19)

where𝛼1, 𝛼2, ..., 𝛼𝐾 are the learnable fusionweights with

𝐾∑
𝑘=1

𝛼𝑘 = 1,

and for convenient analysis, we assume that all nodes of the 𝑘-th

layer share one common weight 𝛼𝑘 .

Theorem 3.4. With F1 = I, F2 =
ˆ
˜A, 𝜁 = 1, and 𝜉 ∈ (0,∞) in Eq.

(3), the propagation process of JKNet optimizes the following objective:

O = min

Z

{

Z − ˆ
˜AH

2
𝐹
+ 𝜉𝑡𝑟 (Z𝑇 L̃Z)

}
, (20)

here H = XW* is the linear feature transformation after simplifica-
tions.

Proof. Similarly, we can set derivative of Eq. (20) with respect

to Z to zero and get the optimal Z as:

𝜕
{
∥Z − ˆ

˜AH∥2
𝐹
+ 𝜉𝑡𝑟 (Z𝑇 L̃Z)

}
𝜕Z

= 0 ⇒ Z − ˆ
˜AH + 𝜉L̃Z = 0.

(21)

Note that det(I + 𝜉L̃) > 0, thus matrix {I + 𝜉L̃}−1 exists. Then the

corresponding closed-form solution can be written as:

Z =
{
(1 + 𝜉)I − 𝜉 ˆ˜A

}−1 ˆ
˜AH. (22)

Since
𝜉

1+𝜉 < 1 for ∀𝜉 > 0, and matrix
ˆ
˜A has absolute eigenvalues

bounded by 1, thus, all its positive powers have bounded operator

norm, then the inverse matrix can be decomposed as follows with

𝑘 → ∞:

Z =
1

1 + 𝜉
{
I − 𝜉

1 + 𝜉
ˆ
˜A
}−1 ˆ

˜AH

=
1

1 + 𝜉

{
I + 𝜉

1 + 𝜉
ˆ
˜A + 𝜉2

(1 + 𝜉)2
ˆ
˜A2 + · · · + 𝜉𝐾

(1 + 𝜉)𝐾
ˆ
˜A𝐾 + · · ·

}
ˆ
˜AH.

(23)

With H = XW*, we have the following expansion:

Z =
1

1 + 𝜉
ˆ
˜AXW*+ 𝜉

(1 + 𝜉)2
ˆ
˜A2XW*+· · ·+ 𝜉𝐾−1

(1 + 𝜉)𝐾
ˆ
˜A𝐾XW*+· · · .

(24)

Note that
1

1+𝜉 + 𝜉

(1+𝜉)2 + · · · + 𝜉𝐾−1

(1+𝜉)𝐾 + · · · = 1 and we can change

the coefficient 𝜉 ∈ (0,∞) to fit fusion weights 𝛼1, 𝛼2, · · · , 𝛼𝐾 . When

the layer 𝐾 is large enough, the propagation mechanism of JKNet

in Eq. (19) approximately corresponds to the objective Eq. (20). □

DAGNN [18]. DeepAdaptive GraphNeural Networks (DAGNN)

tries to adaptively incorporate information from large receptive

fields. After decoupling representation transformation and propa-

gation, the propagation mechanism of DAGNN is similar to that of

JKNet:

Z = PROPAGATE(X;G;𝐾)𝐷𝐴𝐺𝑁𝑁

= 𝑠0H + 𝑠1 ˆ˜AH + 𝑠2 ˆ˜A2H + · · · + 𝑠𝐾 ˆ
˜A𝐾H

=

𝐾∑︁
𝑘=0

𝑠𝑘
ˆ
˜A𝑘H, 𝑎𝑛𝑑 H = 𝑓𝜃 (X).

(25)

H = 𝑓𝜃 (X) is the non-linear feature transformation using an MLP

network, which is conducted before the propagation process, and

𝑠0, 𝑠1, · · · , 𝑠𝐾 are the learnable retainment scores where

𝐾∑
𝑘=0

𝑠𝑘 = 1

and we assume that all nodes of the 𝑘-th layer share one common

weight 𝑠𝑘 for convenience.

Theorem 3.5. With F1 = F2 = I, 𝜁 = 1 and 𝜉 ∈ (0,∞) in Eq. (3),
the propagation process of DAGNN optimizes the following objective:

O = min

Z

{

Z − H

2
𝐹
+ 𝜉𝑡𝑟 (Z𝑇 L̃Z)

}
, (26)

where H = 𝑓𝜃 (X) is the non-linear transformation on feature matrix,
the retainment scores 𝑠0, 𝑠1, · · · , 𝑠𝐾 are approximated by 𝜉 ∈ (0,∞).

Proof. We also set derivative of Eq. (26) with respect to Z to

zero and get the closed-form solution as:

Z =
{
(1 + 𝜉)I − 𝜉 ˆ˜A

}−1H. (27)

Through the decomposition process similar to JKNet, we have the

following expansion:

Z =
1

1 + 𝜉H + 𝜉

(1 + 𝜉)2
ˆ
˜AH + · · · + 𝜉𝐾

(1 + 𝜉)𝐾+1
ˆ
˜A𝐾H + · · · . (28)

Note that we can change 𝜉 ∈ (0,∞) to fit the retainment scores

where
1

1+𝜉 + 𝜉

(1+𝜉)2 + · · · + 𝜉𝐾−1

(1+𝜉)𝐾 + · · · = 1. Then the propagation

mechanism of DAGNN approximately corresponds to the objective

Eq. (26). □

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, and Peng Cui

3.5 Discussion
For clarity, we conclude the overall relations between different

GNNs and the corresponding objective functions in Table 1. It can

be seen that our proposed framework abstracts the commonalities

between different promising representative GNNs. Based on the

framework, we can understand their relationships much easier. For

example, the corresponding optimization objective for SGC in Theo-

rem 3.1 only has a graph regularization term, while the objective for

APPNP in Theorem 3.3 has both fitting term and graph regulariza-

tion term. The explicit difference of objective function well explains

deep APPNP (PPNP) outperforms SGC (GCN) on over-smoothing

problem by additionally requiring the learned representation to

encode the original features.

On the other hand, our proposed framework shows a big picture

of GNNs by mathematically modelling the objective optimization

function. Considering that different existing GNNs can be fit into

this framework, novel variations of GNNs can also be easily come

up. All we need is to design the variables within this framework

(e.g., different graph convolutional kernels F1 and F2) based on

the specific scenarios, the corresponding propagation can be easily

derived, and new GNNs architecture can be naturally designed.

With one targeted objective function, the newly designed model is

more interpretable and more reliable.

4 GNN-LF/HF: OUR PROPOSED MODELS
Based on the unified framework, we find that most of the current

GNNs simply set F1 and F2 as I in feature fitting term, implying

that they require all original information inH to be encoded into Z.
However, in fact, the H may inevitably contain noise or uncertain

information. We notice that JKNet has the propagation objective

with F2 as
ˆ
˜A, which can encode the low-frequency information in

H to Z. While, in reality, the situation is more complex because

it is hard to determine what information should be encoded, only

considering one type of information cannot satisfy the needs of

different downstream tasks, and sometimes high-frequency or all

information is even also helpful. In this section, we focus on de-

signing novel F1 and F2 to flexibly encode more comprehensive

information under the framework.

4.1 GNN with Low-pass Filtering Kernel
4.1.1 Objective Function. Here we first consider building the

relationship of H and Z in both original and low-pass filtering

spaces.

Theorem 4.1. With F1 = F2 = {𝜇I + (1 − 𝜇) ˆ˜A}1/2, 𝜇 ∈ [1/2, 1),
𝜁 = 1 and 𝜉 = 1/𝛼 − 1, 𝛼 ∈ (0, 2/3) in Eq. (3), the propagation process
considering flexible low-pass filtering kernel on feature is:

O =𝑚𝑖𝑛
{

{𝜇I + (1 − 𝜇) ˆ˜A}1/2 (Z − H)

2
𝐹
+ 𝜉𝑡𝑟 (Z𝑇 L̃Z)

}
, (29)

where H = 𝑓𝜃 (X).

Note that 𝜇 is a balance coefficient, and we set 𝜇 ∈ [1/2, 1) so that
𝜇I + (1 − 𝜇) ˆ˜A = VΛΛΛV𝑇 is a symmetric and positive semi-definite

matrix. Therefore, the matrix {𝜇I + (1 − 𝜇) ˆ˜A}1/2 = VΛΛΛ1/2V𝑇 has a

filtering behavior similar to that of 𝜇I+ (1− 𝜇) ˆ˜A in spectral domain.

And we set 𝛼 ∈ (0, 2/3) to ensure the iterative approximation solu-

tion in subsection 4.1.3 has positive coefficients. By adjusting the

balance coefficient 𝜇, the designed objective can flexibly constrain

the similarity of Z and H in both original and low-pass filtering

spaces, which is beneficial to meet the needs of different tasks.

4.1.2 Closed Solution. To minimize the objective function in

Eq. (29), we set derivative of Eq. (29) with respect to Z to zero and

derive the corresponding closed-form solution as follows:

Z = {𝜇I + (1 − 𝜇) ˆ˜A + (1/𝛼 − 1)L̃}−1{𝜇I + (1 − 𝜇) ˆ˜A}H. (30)

We can rewrite the Eq. (30) using
ˆ
˜A as:

Z =
{
{𝜇 + 1/𝛼 − 1}I + {2 − 𝜇 − 1/𝛼} ˆ˜A

}−1{𝜇I + (1 − 𝜇) ˆ˜A}H. (31)

4.1.3 Iterative Approximation. Considering that the closed-form

solution is computationally inefficient because of the matrix inver-

sion, we can use the following iterative approximation solution

instead without constructing the dense inverse matrix:

Z(𝑘+1) =
1 + 𝛼𝜇 − 2𝛼

1 + 𝛼𝜇 − 𝛼
ˆ
˜AZ(𝑘)+ 𝛼𝜇

1 + 𝛼𝜇 − 𝛼H+ 𝛼 − 𝛼𝜇
1 + 𝛼𝜇 − 𝛼

ˆ
˜AH, (32)

which converge to the closed-form solution in Eq. (31) when𝑘 → ∞,

and with 𝛼 ∈ (0, 2/3), all the coefficients are always positive.

4.1.4 Model Design. With the derived two propagation strate-

gies in Eq. (31) and Eq. (32), we propose two new GNNs in both

closed and iterative forms. Note that we represent the proposed

models as GNN with Low-pass Filtering graph convolutional ker-

nel (GNN-LF).
GNN-LF-closed Using the closed-form propagation matrix

in Eq. (31), we define the following propagation mechanism with

𝜇 ∈ [1/2, 1), 𝛼 ∈ (0, 2/3) and H = 𝑓𝜃 (X):
Z = PROPAGATE(X;G;∞)𝐿𝐹−𝑐𝑙𝑜𝑠𝑒𝑑

=
{
{𝜇 + 1/𝛼 − 1}I + {2 − 𝜇 − 1/𝛼} ˆ˜A

}−1{𝜇I + (1 − 𝜇) ˆ˜A}H,
𝑎𝑛𝑑 H = 𝑓𝜃 (X).

(33)

Here we first get a non-linear transformation resultH on feature

X with an MLP network 𝑓𝜃 (·), and use the designed propagation

matrix {{𝜇 + 1/𝛼 − 1}I + {2 − 𝜇 − 1/𝛼} ˆ˜A
}−1

to propagate both

H and AH, then we can get the representation encoding feature

information from both original and low-frequency spaces.

GNN-LF-iter Using the iter-form propagation mechanism in

Eq. (32), we can design a deep and computationally efficient graph

neural network with 𝜇 ∈ [1/2, 1), 𝛼 ∈ (0, 2/3):
Z = PROPAGATE(X;G;𝐾)𝐿𝐹−𝑖𝑡𝑒𝑟

=

〈
1 + 𝛼𝜇 − 2𝛼

1 + 𝛼𝜇 − 𝛼
ˆ
˜AZ(𝑘) + 𝛼𝜇

1 + 𝛼𝜇 − 𝛼H + 𝛼 − 𝛼𝜇
1 + 𝛼𝜇 − 𝛼

ˆ
˜AH

〉
𝐾

,

Z(0) =
𝜇

1 + 𝛼𝜇 − 𝛼H + 1 − 𝜇
1 + 𝛼𝜇 − 𝛼

ˆ
˜AH, 𝑎𝑛𝑑 H = 𝑓𝜃 (X).

(34)

We directly use the 𝐾-layer output as the propagation results. This

iterative propagation mechanism can be viewed as layer-wise
ˆ
˜A

based neighborhood aggregation, with residual connection on fea-

turematrixH and filtered featurematrix
ˆ
˜AH. Note that we decouple

the layer-wise transformation and aggregation process like [15, 18],

Interpreting and Unifying Graph Neural Networks with An Optimization Framework WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

which is beneficial to alleviate the over-smoothing problem. GNN-

LF-iter and GNN-LF-closed have the following relation:

Theorem 4.2. With𝐾 → ∞, deep GNN-LF-iter converges to GNN-
LF-closed with the same propagation result as Eq. (31).

Proof. After the 𝐾-layer propagation using GNN-LF-iter, the

corresponding expansion result can be written as:

Z(𝑘) =
{
(1 + 𝛼𝜇 − 2𝛼

1 + 𝛼𝜇 − 𝛼)𝑘 ˆ˜A𝑘 + 𝛼
𝑘−1∑︁
𝑖=0

(1 + 𝛼𝜇 − 2𝛼

1 + 𝛼𝜇 − 𝛼)𝑖 ˆ˜A𝑖
}{

𝜇

1 + 𝛼𝜇 − 𝛼H

+ 1 − 𝜇
1 + 𝛼𝜇 − 𝛼

ˆ
˜AH

}
,

(35)

where 𝜇 ∈ [1/2, 1), 𝛼 ∈ (0, 2/3) and | 1+𝛼𝜇−2𝛼
1+𝛼𝜇−𝛼 | < 1. When 𝑘 → ∞,

the left term tends to 0 and the right term becomes a geometric se-

ries. The series converges since
ˆ
˜A has absolute eigenvalues bounded

by 1, then Eq. (35) can be rewritten as:

Z(∞) =
{
{𝜇+1/𝛼 −1}I+{2−𝜇−1/𝛼} ˆ˜A

}−1{𝜇I+ (1−𝜇) ˆ˜A}H, (36)
which exactly is the equation for calculating GNN-LF-closed. □

The training of GNN-LF is also the samewith other GNNs. For ex-

ample, it evaluates the cross-entropy loss over all labeled examples

for semi-supervised multi-class classification task.

4.2 GNN with High-pass Filtering Kernel
4.2.1 Objective Function. Similar with GNN-LF, we now con-

sider preserving the similarity of H and Z in both original and

high-pass filtering spaces. For neatness of the subsequent analysis,

we choose the following objective:

Theorem 4.3. With F1 = F2 = {I + 𝛽L̃}1/2, 𝛽 ∈ (0,∞), 𝜁 = 1 and
𝜉 = 1/𝛼 − 1, 𝛼 ∈ (0, 1] in Eq. (3), the propagation process considering
flexible high-pass convolutional kernel on feature is:

O = min

Z

{

{I + 𝛽L̃}1/2 (Z − H)

2
𝐹
+ 𝜉𝑡𝑟 (Z𝑇 L̃Z)

}
, (37)

where H = 𝑓𝜃 (X).

Analogously, 𝛽 is also a balance coefficient, and we set 𝛽 ∈ (0,∞)
so that I+𝛽L̃ = V ∗ΛΛΛ∗V ∗𝑇

is a symmetric and positive semi-definite

matrix and the matrix {I + 𝛽L̃}1/2 = V ∗ΛΛΛ∗1/2V ∗𝑇
has a filtering

behavior similar to that of {I + 𝛽L̃}. As can be seen in Eq. (37),

by adjusting the balance coefficient 𝛽 , the designed objectives can

flexibly constrain the similarity of Z and H in both original and

high-frequency spaces.

4.2.2 Closed Solution. We calculate the closed-form solution as:

Z =
{
I + (𝛽 + 1/𝛼 − 1)L̃

}−1{I + 𝛽L̃}H, (38)

it also can be rewritten as:

Z =
{
(𝛽 + 1/𝛼)I + (1 − 𝛽 − 1/𝛼) ˆ˜A

}−1{I + 𝛽L̃}H. (39)

4.2.3 Iterative Approximation. Considering it is inefficient to

calculate the inverse matrix, we give the following iterative approx-

imation solution without constructing the dense inverse matrix:

Z(𝑘+1) =
𝛼𝛽 − 𝛼 + 1

𝛼𝛽 + 1

ˆ
˜AZ(𝑘) + 𝛼

𝛼𝛽 + 1

H + 𝛼𝛽

𝛼𝛽 + 1

L̃H. (40)

4.2.4 Model Design. With the derived two propagation strate-

gies in Eq. (39) and in Eq. (40), we propose two new GNNs in both

closed and iterative forms. Similarly, we use GNN-HF to denote

GNN with High-pass Filtering graph convolutional kernels.

GNN-HF-closed Using the closed-form propagation matrix

in Eq. (39), we define the following new graph neural networks

with closed-form propagation mechanism:

Z = PROPAGATE(X;G;∞)𝐻𝐹−𝑐𝑙𝑜𝑠𝑒𝑑

=
{
(𝛽 + 1/𝛼)I + (1 − 𝛽 − 1/𝛼) ˆ˜A

}−1{I + 𝛽L̃}H,
𝑎𝑛𝑑 H = 𝑓𝜃 (X).

(41)

Note that 𝛽 ∈ (0,∞) and 𝛼 ∈ (0, 1]. By applying the propagation

matrix {(𝛽 + 1/𝛼)I + (1 − 𝛽 − 1/𝛼) ˆ˜A}−1 directly on both H and

L̃H matrix, then we can get the representation encoding feature

information from both original and high-frequency spaces.

GNN-HF-iter Using the iterative propagation mechanism in

Section 4.2.3, we have a deep and computationally efficient graph

neural networks with 𝛽 ∈ (0,∞) and 𝛼 ∈ (0, 1].
Z = PROPAGATE(X;G;𝐾)𝐻𝐹−𝑖𝑡𝑒𝑟

=

〈
𝛼𝛽 − 𝛼 + 1

𝛼𝛽 + 1

ˆ
˜AZ(𝑘) + 𝛼

𝛼𝛽 + 1

H + 𝛼𝛽

𝛼𝛽 + 1

L̃H
〉
𝐾

,

Z(0) =
1

𝛼𝛽 + 1

H + 𝛽

𝛼𝛽 + 1

L̃H, 𝑎𝑛𝑑 H = 𝑓𝜃 (X) .

(42)

We directly use the 𝐾-layer output as the propagation results. Simi-

larly, this iterative propagation mechanism can be viewed as layer-

wise
ˆ
˜A based neighborhood aggregation, and residual connection

on both feature matrix H and high-frequency filtered feature ma-

trix L̃H. And we also decouple the layer-wise transformation and

aggregation process during propagation. GNN-HF-iter and GNN-

HF-closed have the following relation:

Theorem 4.4. When 𝐾 → ∞, deep GNN-HF-iter converges to
GNN-HF-closed with the same propagation result as Eq. (39).

Proof. Please refer to Appendix A.2. □

5 SPECTRAL EXPRESSIVE POWER ANALYSIS
In this section, we study several propagation mechanisms in graph

spectral domain to examine their expressive power. A polynomial

filter of order 𝐾 on a graph signal x is defined as

(∑𝐾
𝑘=0

𝜃𝑘 L̃
𝑘)x,

where 𝜃𝑘 is the corresponding polynomial coefficients. Similar with

[4], we also assume that the graph signal x is non-negative and x
can be converted into the input signal H under linear transforma-

tion. We aim to compare the polynomial coefficients 𝜃𝑘 for different

GNNs and show that GNN-LF/HF with 𝐾 order flexible polynomial

filter coefficients have better spectral expressive power. For conci-

sion, we mainly analyze the filter coefficients of GNN-LF, and the

spectral analysis of SGC, PPNP, GNN-HF is in Appendix A.3.

5.1 Filter Coefficient Analysis
Analysis of GNN-LF. From the analysis in Theorem 4.2, we

have the expanded propagation result of GNN-LF-iter in Eq. (35),

which has been proved to converge to the propagation result of

GNN-LF-closed with 𝐾 → ∞. Taking this propagation result for

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, and Peng Cui

analysis, we have the following filtering expression when 𝐾 → ∞:

z(𝐾) =
{
𝛼

𝐾−1∑︁
𝑖=0

(1 + 𝛼𝜇 − 2𝛼

1 + 𝛼𝜇 − 𝛼
)𝑖 ˆ
˜A𝑖
}{ 𝜇

1 + 𝛼𝜇 − 𝛼 x + 1 − 𝜇
1 + 𝛼𝜇 − 𝛼

ˆ
˜Ax

}
=

𝛼𝜇

1 + 𝛼𝜇 − 𝛼

{ 𝐾−1∑︁
𝑖=0

(1 + 𝛼𝜇 − 2𝛼

1 + 𝛼𝜇 − 𝛼
)𝑖 ˆ
˜A𝑖
}
x + 𝛼 − 𝛼𝜇

1 + 𝛼𝜇 − 2𝛼
·

{ 𝐾∑︁
𝑖=1

(1 + 𝛼𝜇 − 2𝛼

1 + 𝛼𝜇 − 𝛼
)𝑖 ˆ
˜A𝑖
}
x

=
𝛼𝜇

1 + 𝛼𝜇 − 𝛼

{ 𝐾−1∑︁
𝑖=0

(1 + 𝛼𝜇 − 2𝛼

1 + 𝛼𝜇 − 𝛼
)𝑖 (I − L̃

)𝑖 }x + 𝛼 − 𝛼𝜇
1 + 𝛼𝜇 − 2𝛼

·

{ 𝐾∑︁
𝑖=1

(1 + 𝛼𝜇 − 2𝛼

1 + 𝛼𝜇 − 𝛼
)𝑖 (I − L̃

)𝑖 }x.
(43)

Expand the above equation, then the filter coefficients on L̃𝑘 (𝑘 ∈
[0, 𝐾]) can be summarized into the following forms:

1) Filter coefficients for L̃0:

𝜃0 =
𝛼𝜇 (1 + 𝛼𝜇 − 2𝛼)
(1 + 𝛼𝜇 − 𝛼)2

+ (𝛼 − 𝛼𝜇) (1 + 𝛼𝜇 − 2𝛼)𝐾−1

(1 + 𝛼𝜇 − 𝛼)𝐾
+
𝐾−1∑︁
𝑗=1

𝛿 𝑗

(
𝑗

0

)
,

𝛿 𝑗 =
{ 𝛼𝜇

1 + 𝛼𝜇 − 𝛼 + 𝛼 − 𝛼𝜇
1 + 𝛼𝜇 − 2𝛼

} (1 + 𝛼𝜇 − 2𝛼

1 + 𝛼𝜇 − 𝛼
) 𝑗
.

(44)

2) Filter coefficients for L̃𝑘 , 𝑘 ∈ [1, 𝐾 − 1]:

𝜃𝑘 =

𝐾∑︁
𝑗=𝑘

𝛿 𝑗 (−1)𝑘
(
𝑗

𝑘

)
,

𝛿 𝑗 =
{ 𝛼𝜇

1 + 𝛼𝜇 − 𝛼 + 𝛼 − 𝛼𝜇
1 + 𝛼𝜇 − 2𝛼

} (1 + 𝛼𝜇 − 2𝛼

1 + 𝛼𝜇 − 𝛼
) 𝑗
.

(45)

3) Filter coefficients for L̃𝐾 :

𝜃𝐾 =
(𝛼 − 𝛼𝜇) (1 + 𝛼𝜇 − 2𝛼)𝐾−1

(1 + 𝛼𝜇 − 𝛼)𝐾
(−1)𝐾

(
𝐾

𝐾

)
. (46)

From the above analysis result on GNN-LF, we find the expres-

sion forms of filter coefficients depend on different 𝑘 and are de-

termined by two adjustable factors 𝛼 and 𝜇, which improve the

expressive power of the spectral filters and further alleviate the

over-smoothing problem.

Analysis of SGC/PPNP/GNN-HF. Note that the analysis of

GNN-HF is similar with that of GNN-LF, for concision, we show

them in Appendix A.3.

5.2 Discussion on Expressive Power
As [18, 39] point out, the reason for the over-smoothing problem

is that typical GCN converges to the limit distribution of random

walk which is isolated from the input feature and makes node

representations inseparable as the number of layer increases. [4]

also gives another understanding from the view of polynomial

filtering coefficient and points out that flexible and arbitrary filter

coefficients are essential for preventing over-smoothing.

Table 2: The statistics of the datasets

Dataset Classes Nodes Edges Features Train/Val/Test
Cora 7 2708 5429 1433 140/500/1000

Citeseer 6 3327 4732 3703 120/500/1000

Pubmed 3 19717 44338 500 60/500/1000

ACM 3 3025 13128 1870 60/500/1000

Wiki-CS 10 11701 216123 300 200/500/1000

MS Academic 15 18333 81894 6805 300/500/1000

From the filter coefficients shown in Section 5.1 and Appendix

A.3, we can find that: 1) SGC or 𝐾-layer graph convolutional op-

erations have fixed constant filtering coefficients, which limit the

expressive power and further lead to over-smoothing. 2) PPNP has

a better filtering expressive ability against SGC (GCN) since the

filter coefficients of the order 𝑘 is changeable along with the factor

𝛼 . 3) Comparing with PPNP and SGC (GCN), GNN-LF/HF are more

expressive under the influence of adjustable factors 𝛼 , 𝜇 or 𝛽 , which

increase the ability to fit arbitrary coefficients of polynomial filter,

and help GNN-LF/HF to alleviate the over-smoothing problem.

From the limit distributions of PPNP [15], GNN-LF in Eq. (36),

GNN-HF in Eq. (53), we can also find that all of them converge to

a distribution carrying information from both input feature and

network structure. This property additionally helps to reduce the

effects of over-smoothing on PPNP/GNN-LF/GNN-HF even if the

number of layers goes to infinity.

6 EXPERIMENTS
6.1 Experimental Setup
Dataset. To evaluate the effectiveness of our proposed GNN-

LF/HF, we conduct experiments on six benchmark datasets in Table

2. 1) Cora, Citeseer, Pubmed [14]: Three standard citation net-

works where nodes represent documents, edges are citation links

and features are the bag-of-words representation of the document.

2) ACM [33]: Nodes represent papers and there is an edge if two

paper have same authors. Features are the bag-of-words represen-

tations of paper keywords. The three classes are Database, Wireless
Communication, DataMining. 3)Wiki-CS [20]: A dataset derived

from Wikipedia, in which nodes represent CS articles, edges are

hyperlinks and different classes mean different branches of the files.

4)MSAcademic [15]: A co-authorship Microsoft Academic Graph,

where nodes represent authors, edges are co-authorships and node

features represent keywords from authors’ papers.

Baselines. We evaluate the performance of GNN-LF/HF by

comparing it with several baselines. 1) Traditional graph learning

methods: MLP [23], LP [49]. 2) Spectral methods: ChebNet [6],

GCN [14]; 3) Spatial methods: SGC [35], GAT [30], GraphSAGE

[10], PPNP [15]. 4) Deep GNN methods: JKNet [39], APPNP [15],

IncepGCN [26].

Settings. We implement GNN-LF/HF based on Pytorch [24].

To ensure fair comparisons, we fix the hidden size as 64 for all

models. We apply 𝐿2 regularization on the first layer parameter

weights, with coefficients of 5e-3 on all datasets except 5e-4 for

Wiki-CS. We set the learning rate 𝑙𝑟 = 0.01 for the other datasets

except 𝑙𝑟 = 0.03 for Wiki-CS, and set dropout rate 𝑑 = 0.5. We

Interpreting and Unifying Graph Neural Networks with An Optimization Framework WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 3: Node classification results (%). We show the average accuracy with uncertainties showing the 95% confidence level
calculated by boot-strapping. Bold and underline are used to show the best and the runner-up results.

Model
Dataset

Cora Citeseer Pubmed ACM Wiki-CS MS Academic
MLP 57.79±0.11 61.20±0.08 73.23±0.05 77.39±0.11 65.66±0.20 87.79±0.42
LP 71.50±0.00 50.80±0.00 72.70±0.00 63.30±0.00 34.90±0.00 74.10±0.00

ChebNet 79.92±0.18 70.90±0.37 76.98±0.16 79.53±1.24 63.24±1.43 90.76±0.73
GAT 82.48±0.31 72.08±0.41 79.08±0.22 88.24±0.38 74.27±0.63 91.58±0.25

GraphSAGE 82.14±0.25 71.80±0.36 79.20±0.27 87.57±0.65 73.17±0.41 91.53±0.15
IncepGCN 81.94±0.94 69.66±0.29 78.88±0.35 87.75±0.61 60.54±1.06 75.45±0.49

GCN 82.41±0.25 70.72±0.36 79.40±0.15 88.38±0.51 71.97±0.51 92.17±0.11
SGC 81.90±0.23 72.21±0.22 78.30±0.14 87.56±0.34 72.43±0.28 88.35±0.36
PPNP 83.34±0.20 71.73±0.30 80.06±0.20 89.12±0.17 74.53±0.36 92.27±0.23
APPNP 83.32±0.42 71.67±0.48 80.05±0.27 89.04±0.21 74.30±0.50 92.25±0.18
JKNet 81.19±0.49 70.69±0.88 78.60±0.25 88.11±0.36 60.90±0.92 87.26±0.23

GNN-LF-closed 83.70±0.14 71.98±0.33 80.34±0.18 89.43±0.20 75.50±0.56 92.79±0.15
GNN-LF-iter 83.53±0.24 71.92±0.24 80.33±0.20 89.37±0.40 75.35±0.24 92.69±0.20

GNN-HF-closed 83.96±0.22 72.30±0.28 80.41±0.25 89.46±0.30 74.92±0.45 92.47±0.23
GNN-HF-iter 83.79±0.29 72.03±0.36 80.54±0.25 89.59±0.31 74.90±0.37 92.51±0.16

use the validation set for early stopping with a patience of 100

epochs. We fix 10 propagation depth for the two iterative version

of GNN-LF/HF. Note that for APPNP and PPNP, all the settings are

consistent with the above descriptions. As for ChebNet, GCN, GAT,

SGC andGraphSAGE,we use the implementations of DGL [32]
1
. For

JKNet and IncepGCN, we use the implementation in [26]
2
. We try

to turn all hyperparameters reasonably to get the best performance,

so some models even achieve better results than original reports.

For JKNet, IncepGCN and SGC, we choose the best results of them

with no more than 10 propagation depth. We conduct 10 runs on

all datasets with the fixed training/validation/test split, where 20

nodes per class are used for training and 500/1000 nodes are used for

val/test. For cora/citeseer/pubmed datasets, we follow the dataset

splits in [40].

6.2 Node Classification
We evaluate the effectiveness of GNN-LF/HF against several state-

of-the-art baselines on semi-supervised node classification task. We

use accuracy (ACC) metric for evaluation, and report the average

ACCwith uncertainties showing the 95% confidence level calculated

by bootstrapping in Table 3. We have the following observations:

1) GNN-LF and GNN-HF consistently outperform all the state-

of-the-art baselines on all datasets. The best and the runner-up

results are always achieved by GNN-LF/HF, which demonstrates

the effectiveness of our proposedmodel. From the perspective of the

unified objective framework, it is easy to check that GNN-LF/HF not

1
https://github.com/dmlc/dgl

2
https://github.com/DropEdge/DropEdge

only keep the representation same with the original features, but

also consider capturing their similarities based on low-frequency

or high-frequency information. These two relations are balanced

so as to extract more meaningful signals and thus perform better.

2) From the results of the closed and iterative versions of GNN-

LF/HF, we can see that using 10 propagation depth for GNN-LF-

iter/GNN-HF-iter is able to effectively approximate the GNN-LF-

closed/GNN-HF-closed. As for performance comparisons between

GNN-LF and GNN-HF, we find that it is hard to determine which

is the best, since which filter works better may depend on the

characteristic of different datasets. But in summary, flexibly and

comprehensively considering multiple information in a GNNmodel

can always achieve satisfactory results on different networks.

3) In addition, PPNP/APPNP always perform better thanGCN/SGC

since their objective also considers a fitting term to help find impor-

tant information from features during propagation. On the other

hand, APPNP outperforms JKNet mainly because that its propaga-

tion process takes full advantage of the original features and APPNP

even decouples the layer-wise non-linear transformation operations

[18] without suffering from performance degradation. Actually, the

above differences of models and explanations for results can be

easily drawn from our unified framework.

6.3 Propagation Depth Analysis
Because our proposed GNN-LF/HF flexibly consider extra filtering

information during propagation and have high expressive power,

here we further conduct experiments on GNN-LF/HF and other

shallow/deep models with different propagation depths using three

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, and Peng Cui

2 4 8 16 32 64

Propagation Depth

74

76

78

80

82

84

A
cc

u
ra

cy

SGC GCN IncepGCN JKNet

APPNP GNN-LF GNN-HF

(a) Cora

2 4 8 16 32 64

Propagation Depth

64

66

68

70

72

A
cc

u
ra

cy

SGC GCN IncepGCN JKNet

APPNP GNN-LF GNN-HF

(b) Citeseer

2 4 8 16 32 64

Propagation Depth

70

72

74

76

78

80

A
cc

u
ra

cy

SGC GCN IncepGCN JKNet

APPNP GNN-LF GNN-HF

(c) Pubmed

Figure 1: Analysis of propagation depth.

Cora

25 25
25

30 30

40 40

50 50

60 60
65 65
70 70
74 74

7474

77 77

77
77

80 80

8080

81 81

8181

82 82

8282

82.5 82.5

82.582.5

82.8

82.8

82.8

8
2
.8

82.8
82.8

82.8

83
83

83
8383

8
3

83
83 8

3

83

83.383.3

8
3
.38

3
.3

8
3
.4

8
3
.483.5

8
3
.7

5e-1 6e-1 7e-1 8e-1 9e-1 1
1e-4

1e-3

1e-2

1e-1

5e-1

30

40

50

60

70

80

Citeseer

45 45

50 50
55 55
60 60

65 65

68 68

6868

69 69

6969

70 70

7070

70.5 70.5

70.570.5

71
71

71

71
71

71

7
1

71

7
171.2

71.2

71.2
71.2

71.2 71.2 71.2

71.4

71.4

71.4

71.4

7
1
.4

71.471.4 71.6
71.6

71.6

71.6 71.6

71.6
71.6

7
1
.8

7
1
.8

7
1
.8

71.8 71.9

71.9

72
72

5e-1 6e-1 7e-1 8e-1 9e-1 1
1e-4

1e-3

1e-2

1e-1

5e-1

45

50

55

60

65

70

(a) GNN-LF

Cora

24

2
4

2
4

2
4

28 28
30 30

40
40

45 45
50 50

55
55

5
5

58 58

5
8

58
58

60 60

6
0

60

65 65

6
5

6
5

65

70 70

7
0

70

74 74

7
4

74

77
77

7
7

77

80
80

8
0

80

81 81

81

81

82

82

82

82.5
82.5

82.5

82.8 82.8

82.8

8
2
.8

83 83

8
3

83

83.4

83.4

8
3
.4

83.4
83.7

1e-3 1e-2 1e-1 1 10 100 900
1e-4

1e-3

1e-2

1e-1

5e-1
1

20

30

40

50

60

70

80

Citeseer

45

45

45

50 50
55 55
59 59

59

59

5
9

60 60

6
0

60

65 65

6
5

65

65

68 68

6
8

6
8

68

70 70 7
0

70

70

70.5

7
0
.5

70.5

7
0
.5

70.5

71

7
1

7
1

7
1

71

71.4

7
1
.4

7
1
.4

7
1
.4

71.4

7
1
.4 71.4

71.7

71.7

7
1
.7

71.7

71.7

7
1
.7

7
1
.7

72

72

7
2

7
2

7
2
.3

1e-3 1e-2 1e-1 1 10 100 900
1e-4

1e-3

1e-2

1e-1

5e-1

1

45

50

55

60

65

70

(b) GNN-HF

Figure 2: Model analysis of GNN-LF/HF on Cora and Citeseer.

0.5 0.6 0.7 0.8 0.9 1.0
79

80

81

A
cc

u
ra

cy

GNN-LF

=0.05

1e-3 1e-2 1e-1 1 10 100 900
71.5

74.5

77.5

80.5

A
cc

u
ra

cy

GNN-HF

=0.05

Figure 3: Impact factor analysis with fixed 𝛼 on Pubmed.

datasets. For all the models, we set the hidden size as 64 and tune

hyperparameters reasonably to get the best performance. Note that

because of the specific architecture of JKNet and IncepGCN in [26],

they are analyzed from 3 layers and IncepGCN on pubmed dataset

faces the out of memory problem when the depth is bigger than

34. Figure 1 shows the accuracy with different propagation depths,

and we have the following observations:

GNN-LF/HF and APPNP greatly alleviate the over-smoothing

problem, since the performance does not drop when the depth

increases. Furthermore, GNN-LF/HF are more flexible and more

expressive with higher results under the influence of extra graph

filters and three adjustable impact factors 𝛼 , 𝜇 and 𝛽 . As analyzed

before, the polynomial filter coefficients of GNN-LF/HF are further

more expressive and flexible than APPNP, GCN or SGC, which is

useful for mitigating over-smoothing problem. Accuracy breaks

down seriously for GCN while it drops a little bit slowly for SGC,

but both GCN and SGC face the over-smoothing problem since

the fixed polynomial filter coefficients limit their expressive power.

As for JKNet/IncepGCN, they are deep GNNs to alleviate over-

smoothing problem but still have to face performance degradation

when the propagation depth increases.

6.4 Model Analysis
In this section, we analyze the performance of GNN-LF/HF with

different impact factors: teleport probability 𝛼 , balance coefficient

𝜇 and balance coefficient 𝛽 . In general, 𝛼 adjusts the regulariza-

tion term weight and has an effect on structural information dur-

ing propagation; 𝜇 and 𝛽 focus on adjusting the balance weights

between different filters and have effects on feature information

during propagation.

We carefully adjust the value of three impact factors with GNN-

LF-closed/GNN-HF-closed models on cora and citeseer datasets,

and draw the contour map for accuracy in Figure 2. As can be

seen: 1) For GNN-LF, 𝛼 plays a more dominant influence than 𝜇.

The classification accuracy exactly increases as 𝛼 becomes larger,

and with the continuous increase of 𝛼 , the results begin to drop.

Generally, the best performance can be achieved when 𝛼 ∈ [1𝑒 −
2, 5𝑒 − 1]. On the other hand, the accuracy is relatively stable with

different 𝜇, and generally speaking, 𝜇 is with a suitable range around

[0.6, 0.9]. 2) For GNN-HF, 𝛼 and 𝛽 both play dominant influence, the

suitable weight range for 𝛼 is also [1e-2, 5e-1] and lager 𝛽 may result

in performance degradation. In general, our proposed GNN-LF/HF

Interpreting and Unifying Graph Neural Networks with An Optimization Framework WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

achieve stable and excellent performance within a wide changing

range of these impact factors 𝛼 and 𝜇 or 𝛽 .

We then analyze the influence of balance coefficients 𝜇 and 𝛽

with the fixed 𝛼 on pubmed dataset, shown in Figure 3, and we have

similar conclusions: For GNN-LF, the performance first increases

stably as 𝜇 grows and then may show a slight drop after a certain

threshold. The appropriate range for best performance is [0.6, 0.9].

For GNN-LF, the classification accuracy first increases and then

drops with the rise of 𝜇 after a certain threshold.

7 CONCLUSION
The intrinsic relation for the propagation mechanisms of different

GNNs is studied in this paper. We establish the connection between

different GNNs and a flexible objective optimization framework.

The proposed unified framework provides a global view on un-

derstanding and analyzing different GNNs, which further enables

us to identify the weakness of current GNNs. Then we propose

two novel GNNs with adjustable convolutional kernels showing

low-pass and high-pass filtering capabilities, and their excellent

expressive power is analyzed as well. Extensive experiments well

demonstrate the superior performance of these two GNNs over the

state-of-the-art models on real world datasets.

REFERENCES
[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina

Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. 2019. MixHop:

Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood

Mixing. In ICML. 21–29.
[2] Gregor Bachmann, Gary Becigneul, and Octavian Ganea. 2020. Constant Curva-

ture Graph Convolutional Networks. In ICML.
[3] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral

Networks and Locally Connected Networks on Graphs. In ICLR.
[4] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.

Simple and Deep Graph Convolutional Networks. In ICML.
[5] Rui Dai, Shenkun Xu, Qian Gu, Chenguang Ji, and Kaikui Liu. 2020. Hybrid

Spatio-Temporal Graph Convolutional Network: Improving Traffic Prediction

with Navigation Data. In KDD. 3074–3082.
[6] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-

tional neural networks on graphs with fast localized spectral filtering. In NIPS.
3844–3852.

[7] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. 2020. A Fair

Comparison of Graph Neural Networks for Graph Classification. In ICLR.
[8] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.

2019. Graph Neural Networks for Social Recommendation. In WWW. 417–426.

[9] Hongyang Gao, Yongjun Chen, and Shuiwang Ji. 2019. Learning Graph Pooling

and Hybrid Convolutional Operations for Text Representations. In WWW. 2743–

2749.

[10] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation

Learning on Large Graphs. In NeurIPS. 1024–1034.
[11] Yifan Hou, Jian Zhang, James Cheng, Kaili Ma, Richard T. B. Ma, Hongzhi Chen,

and Ming-Chang Yang. 2020. Measuring and Improving the Use of Graph Infor-

mation in Graph Neural Networks. In ICLR.
[12] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,

and Jure Leskovec. 2020. Strategies for Pre-training Graph Neural Networks. In

ICLR.
[13] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang.

2020. Graph Structure Learning for Robust Graph Neural Networks. In KDD.
66–74.

[14] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In ICLR.
[15] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-

dict then Propagate: Graph Neural Networks meet Personalized PageRank. In

ICLR.
[16] Kwei Herng Lai, Daochen Zha, Kaixiong Zhou, and Xia Hu. 2020. PolicyGNN:

Aggregation Optimization for Graph Neural Networks. In KDD. 461–471.
[17] Qimai Li, Zhichao Han, and Xiaoming Wu. 2018. Deeper Insights into Graph

Convolutional Networks for Semi-Supervised Learning. In AAAI. 3538–3545.
[18] Meng Liu, Hongyang Gao, and Shuiwang Ji. 2020. Towards Deeper Graph Neural

Networks. In KDD. 338–348.

[19] Andreas Loukas. 2020. What graph neural networks cannot learn: depth vs width.

In ICLR.
[20] Péter Mernyei and Catalina Cangea. 2020. Wiki-CS: A Wikipedia-Based Bench-

mark for Graph Neural Networks. arXiv preprint arXiv:2007.02901 (2020).
[21] Hoang Nt and Takanori Maehara. 2019. Revisiting Graph Neural Networks: All

We Have is Low-Pass Filters. arXiv preprint arXiv:1905.09550 (2019).
[22] Kenta Oono and Taiji Suzuki. 2020. Graph Neural Networks Exponentially Lose

Expressive Power for Node Classification. In ICLR.
[23] S.K. Pal and S. Mitra. 1992. Multilayer perceptron, fuzzy sets, and classification.

IEEE Transactions on Neural Networks 3, 5 (1992), 683–697.
[24] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.

2017. Automatic differentiation in PyTorch. (2017).

[25] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,

Kuansan Wang, and Jie Tang. 2020. GCC: Graph Contrastive Coding for Graph

Neural Network Pre-Training. In KDD. 1150–1160.
[26] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2020. DropEdge:

Towards Deep Graph Convolutional Networks on Node Classification. In ICLR.
[27] Chenyang Si, Wentao Chen, Wei Wang, Liang Wang, and Tieniu Tan. 2019. An

Attention Enhanced Graph Convolutional LSTM Network for Skeleton-Based

Action Recognition. In CVPR. 1227–1236.
[28] Qiaoyu Tan, Ninghao Liu, Xing Zhao, Hongxia Yang, Jingren Zhou, and Xia Hu.

2020. Learning to Hash with Graph Neural Networks for Recommender Systems.

In WWW. 1988–1998.

[29] Damien Teney, Lingqiao Liu, and Anton van den Hengel. 2017. Graph-Structured

Representations for Visual Question Answering. In CVPR. 3233–3241.
[30] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. ICLR.
[31] ChunWang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, and Chengqi Zhang.

2019. Attributed Graph Clustering: a Deep Attentional Embedding approach. In

IJCAI. 3670–3676.
[32] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,

Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang

Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric, Highly-

Performant Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315
(2019).

[33] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S

Yu. 2019. Heterogeneous Graph Attention Network. In WWW. 2022–2032.

[34] Xiaoyang Wang, Yao Ma, Yiqi Wang, Wei Jin, Xin Wang, Jiliang Tang, Caiyan Jia,

and Jian Yu. 2020. Traffic Flow Prediction via Spatial Temporal Graph Neural

Network. In WWW. 1082–1092.

[35] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian

Weinberger. 2019. Simplifying Graph Convolutional Networks. In ICML. 6861–
6871.

[36] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

Philip S. Yu. 2020. A Comprehensive Survey on Graph Neural Networks. IEEE
Transactions on Neural Networks (2020), 1–21.

[37] Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, and Xueqi Cheng. 2019. Graph

Wavelet Neural Network. In ICLR.
[38] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful

are Graph Neural Networks. In ICLR.
[39] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken ichi

Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs

with Jumping Knowledge Networks. In ICML. 5449–5458.
[40] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. 2016. Revisiting

semi-supervised learning with graph embeddings. In ICML. 40–48.
[41] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.

2019. GNNExplainer: Generating Explanations for Graph Neural Networks. In

NeurIPS. 9240–9251.
[42] Zhitao Ying, Ines Chami, Christopher Ré, and Jure Leskovec. 2019. Hyperbolic

Graph Convolutional Neural Networks. In NeurIPS. 4869–4880.
[43] Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. 2020. XGNN: Towards Model-

Level Explanations of Graph Neural Networks. In KDD. 430–438.
[44] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V.

Chawla. 2019. Heterogeneous Graph Neural Network. In KDD. 793–803.
[45] Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2020. Deep Learning on Graphs: A

Survey. IEEE Transactions on Knowledge and Data Engineering (2020), 1–1.

[46] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong

Sun. 2018. Graph Neural Networks: A Review of Methods and Applications.

arXiv: Learning (2018).

[47] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2019. Robust Graph

Convolutional Networks Against Adversarial Attacks. In KDD. 1399–1407.
[48] Hao Zhu, Yankai Lin, Zhiyuan Liu, Jie Fu, Tat-Seng Chua, and Maosong Sun. 2019.

Graph Neural Networks with Generated Parameters for Relation Extraction. In

ACL. 1331–1339.
[49] Xiaojin Zhu, John Lafferty, and Ronald Rosenfeld. 2005. Semi-supervised learning

with graphs. (2005).

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, and Peng Cui

A PROOFS AND ANALYSIS
A.1 Proof of Theorem 3.2
With the objective Eq. (12), we have the following closed-form

solution:

ˆZ = (I + L̃)−1H. (47)

Similar to the analysis in [21], we can decompose the matrix (I +
L̃)−1 and get the first-order truncated form as:

(I + L̃)−1 ≈ I − L̃ =
ˆ
˜A. (48)

In this way, we have the first-order approximation of the GC oper-

ation:

Z(𝐺𝐶) = ˆ
˜AH =

ˆ
˜AXW. (49)

At this point, we provide another explanation on graph convolu-

tional operation with the first-order approximation based on the

framework.

A.2 Proof of Theorem 4.4
GNN-HF-iter uses the iteration equation:

Z(0) =
1

𝛼𝛽 + 1

H + 𝛽

𝛼𝛽 + 1

L̃H,

Z(𝑘+1) =
𝛼𝛽 − 𝛼 + 1

𝛼𝛽 + 1

ˆ
˜AZ(𝑘) + 𝛼

𝛼𝛽 + 1

H + 𝛼𝛽

𝛼𝛽 + 1

L̃H.
(50)

The corresponding closed form with the same H = 𝑓𝜃 (X) is:

Z =
{
(𝛽 + 1/𝛼)I + (1 − 𝛽 − 1/𝛼) ˆ˜A

}−1{I + 𝛽L̃}H. (51)

After the 𝐾-layer propagation using GNN-HF-iter, the correspond-

ing expansion result can be written as:

Z(𝑘) =
{
(𝛼𝛽 − 𝛼 + 1

𝛼𝛽 + 1

)𝑘 ˆ˜A𝑘 + 𝛼
𝑘−1∑︁
𝑖=0

(𝛼𝛽 − 𝛼 + 1

𝛼𝛽 + 1

)𝑖 ˆ˜A𝑖
}{

1

𝛼𝛽 + 1

H

+ 𝛽

𝛼𝛽 + 1

L̃H
}
,

(52)

where 𝛽 ∈ (0,∞), 𝛼 ∈ (0, 1] and | 𝛼𝛽−𝛼+1
𝛼𝛽+1 | < 1. Similar with the

proof process of GNN-LF-iter in Theorem 4.2, we have the con-

verging result as:

Z(∞) =
{
(𝛽 + 1/𝛼)I + (1 − 𝛽 − 1/𝛼) ˆ˜A}−1{I + 𝛽L̃

}
H, (53)

which exactly is the Eq. (41) for calculating GNN-HF-closed.

A.3 Expressive Power Analysis
Analysis of SGC. As [35] points out, the𝐾-layer graph convolu-

tional operations or simplified graph convolutional operations act

as the spectral polynomial filter of order 𝐾 with fixed coefficients.

[4] proves that such fixed coefficients limit the expressive power of

GCN and thus leads to over-smoothing. The 𝐾-order polynomial

filter on graph signal x is:

z(𝐾) = ˆ
˜A𝐾x =

(
I − L̃

)𝐾x. (54)

By calculating the expansion of Eq. (54), we can conclude the 𝑘-

th polynomial filtering term, denoted by 𝜃𝑘 L̃
𝑘
.Then for the filter

coefficients on L̃𝑘 , 𝑘 ∈ [0, 𝐾], we have 𝜃𝑘 = (−1)𝑘
(𝐾
𝑘

)
, which is a

fixed constant for any k.

Analysis of PPNP. As proved in [15], PPNP or𝐾-order APPNP

(𝐾 → ∞) has the following expressive power:

z(𝐾) =
{
(1 − 𝛼)𝐾 ˆ

˜A𝐾 + 𝛼
𝐾−1∑︁
𝑖=0

(1 − 𝛼)𝑖 ˆ˜A𝑖
}
x. (55)

Since (1 − 𝛼)∞ → 0, we can rewrite it using the normalized graph

Laplacian L̃ as:

z(𝐾) = 𝛼
𝐾−1∑︁
𝑖=0

(
1 − 𝛼

)𝑖 ˆ
˜A𝑖x = 𝛼

𝐾−1∑︁
𝑖=0

(
1 − 𝛼

)𝑖 (I − L̃
)𝑖x. (56)

Then we can calculate the expansion of Eq. (56) and conclude the

𝑘-th polynomial filtering term, denoted by 𝜃𝑘 L̃
𝑘
. Then for the filter

coefficients on L̃𝑘 , 𝑘 ∈ [0, 𝐾 − 1], we have:

𝜃𝑘 = 𝛼

𝐾−1∑︁
𝑖=𝑘

(1 − 𝛼)𝑖 (−1)𝑘
(
𝑖

𝑘

)
. (57)

Analysis of GNN-HF. Similarly, taking the propagation re-

sult in Eq. (52) with 𝐾 → ∞, we can also have the corresponding

filtering expression:

z(𝐾) =
{
𝛼

𝐾−1∑︁
𝑖=0

(𝛼𝛽 − 𝛼 + 1

𝛼𝛽 + 1

)𝑖 ˆ
˜A𝑖
}{

1

𝛼𝛽 + 1

x + 𝛽

𝛼𝛽 + 1

L̃x
}

=
𝛼 (𝛽 + 1)
𝛼𝛽 + 1

{ 𝐾−1∑︁
𝑖=0

(𝛼𝛽 − 𝛼 + 1

𝛼𝛽 + 1

)𝑖 ˆ
˜A𝑖
}
x − 𝛼𝛽

𝛼𝛽 − 𝛼 + 1

·

{ 𝐾∑︁
𝑖=1

(𝛼𝛽 − 𝛼 + 1

𝛼𝛽 + 1

)𝑖 ˆ
˜A𝑖
}
x

=
𝛼 (𝛽 + 1)
𝛼𝛽 + 1

{ 𝐾−1∑︁
𝑖=0

(𝛼𝛽 − 𝛼 + 1

𝛼𝛽 + 1

)𝑖 (I − L̃
)𝑖 }x − 𝛼𝛽

𝛼𝛽 − 𝛼 + 1

·

{ 𝐾∑︁
𝑖=1

(𝛼𝛽 − 𝛼 + 1

𝛼𝛽 + 1

)𝑖 (I − L̃
)𝑖 }x.

(58)

Then for the filter coefficients on L̃𝑘 , 𝑘 ∈ [0, 𝐾], we have the
following conclusions:

1) Filter coefficients for L̃0:

𝜃0 =
𝛼 (𝛽 + 1) (𝛼𝛽 − 𝛼 + 1)

(𝛼𝛽 + 1)2
− 𝛼𝛽 (𝛼𝛽 − 𝛼 + 1)𝐾−1

(𝛼𝛽 + 1)𝐾
+
𝐾−1∑︁
𝑗=1

𝛿 𝑗

(
𝑗

0

)
,

𝛿 𝑗 =
{𝛼 (𝛽 + 1)
𝛼𝛽 + 1

− 𝛼𝛽

𝛼𝛽 − 𝛼 + 1

}
(𝛼𝛽 − 𝛼 + 1

𝛼𝛽 + 1

) 𝑗 .
(59)

2) Filter coefficients for L̃𝑘 , 𝑘 ∈ [1, 𝐾 − 1]:

𝜃0 =

𝐾∑︁
𝑗=𝑖

𝛿 𝑗 (−1)𝑖
(
𝑗

𝑖

)
,

𝛿 𝑗 =
{𝛼 (𝛽 + 1)
𝛼𝛽 + 1

− 𝛼𝛽

𝛼𝛽 − 𝛼 + 1

}
(𝛼𝛽 − 𝛼 + 1

𝛼𝛽 + 1

) 𝑗 .

(60)

3) Filter coefficients for L̃𝐾 :

𝜃𝐾 = −𝛼𝛽 (𝛼𝛽 − 𝛼 + 1)𝐾−1

(𝛼𝛽 + 1)𝐾
(−1)𝐾

(
𝐾

𝐾

)
. (61)

	Abstract
	1 Introduction
	2 Related Work
	3 A Unified Optimization framework
	3.1 The Unified Framework
	3.2 Interpreting GCN and SGC
	3.3 Interpreting PPNP and APPNP
	3.4 Interpreting JKNet and DAGNN
	3.5 Discussion

	4 GNN-LF/HF: Our Proposed Models
	4.1 GNN with Low-pass Filtering Kernel
	4.2 GNN with High-pass Filtering Kernel

	5 Spectral Expressive Power Analysis
	5.1 Filter Coefficient Analysis
	5.2 Discussion on Expressive Power

	6 Experiments
	6.1 Experimental Setup
	6.2 Node Classification
	6.3 Propagation Depth Analysis
	6.4 Model Analysis

	7 Conclusion
	References
	A Proofs and Analysis
	A.1 Proof of Theorem 3.2
	A.2 Proof of Theorem 4.4
	A.3 Expressive Power Analysis

