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ABSTRACT

Co-evolving time series appears in a multitude of applications such
as environmental monitoring, financial analysis, and smart trans-
portation. This paper aims to address the following challenges,
including (C1) how to incorporate explicit relationship networks
of the time series; (C2) how to model the implicit relationship of
the temporal dynamics. We propose a novel model called Network
of Tensor Time Series (NeT3), which is comprised of two mod-
ules, including Tensor Graph Convolutional Network (TGCN) and
Tensor Recurrent Neural Network (TRNN). TGCN tackles the first
challenge by generalizing Graph Convolutional Network (GCN)
for flat graphs to tensor graphs, which captures the synergy be-
tween multiple graphs associated with the tensors. TRNN leverages
tensor decomposition to model the implicit relationships among
co-evolving time series. The experimental results on five real-world
datasets demonstrate the efficacy of the proposed method.
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1 INTRODUCTION

Co-evolving time series naturally arises in numerous applications,
ranging from environmental monitoring [2, 30], financial analysis
[32] to smart transportation [21, 23, 37]. As shown in Figure 1a and
1b, each temporal snapshot of the co-evolving time series naturally
forms a multi-dimensional array, i.e., a multi-mode tensor [27]. For
example, the spatial-temporal monitoring data of atmosphere is
a time series of an 𝑁1 × 𝑁2 × 𝑁3 × 𝑁4 tensor, where 𝑁1, 𝑁2, 𝑁3

and 𝑁4 denote latitude, longitude, elevation and air conditions
respectively (e.g. temperature, pressure and oxygen concentration).
Companies’ financial data is a time series of an 𝑁1 × 𝑁2 × 𝑁3

tensor, where 𝑁1, 𝑁2 and 𝑁3 denote the companies, the types
of financial data (e.g. revenue, expenditure) and the statistics of
them respectively. Nonetheless, the vast majority of the recent deep
learning methods for co-evolving time series [21, 23, 24, 35, 37]
have almost exclusively focused on a single mode.
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(a) An example of tensor time

series, which is comprised of

three modes: location, data

type and time.

(b) A temporal snapshot. Rows

and columns present locations

and data types, which are con-

strained by their networks.

(c) A slice along one data type:

co-evolving time series of the

same data type at different lo-

cations.

(d) A slice along one location:

co-evolving time series of dif-

ferent data types at the same lo-

cation.

Figure 1: An exemplary tensor time series and three slices

along different dimensions. (Best viewed in color.)

Data points within a tensor are usually related to each other, and
different modes are associated with different relationships (Figure
1b). Within the above example of environmental monitoring, along
geospatial modes (𝑁1, 𝑁2 and 𝑁3), we could know the (latitudinal,
longitudinal and elevational) location relationship between two data
points. In addition, different data types (𝑁4) are also related with
each other. As governed by Gay-Lussac’s law [3], given fixed mass
and volume, the pressure of a gas is proportional to the Kelvin tem-
perature. These relationships can be explicitly modeled by networks
or graphs [1, 8]. Compared with the rich machinery of deep graph
convolutional methods for flat graphs [11, 18], multiple graphs as-
sociated with a tensor (referred to as tensor graphs in this paper)
are less studied. To fill this gap, we propose a novel Tensor Graph
Convolution Network (TGCN) which extends Graph Convolutional
Network (GCN) [18] to tensor graphs based on multi-dimensional
convolution.

Another key challenge for modeling the temporal dynamics
behind co-evolving time series is how to capture the implicit rela-
tionship of different time series. As shown in Figure 1c, the temporal
patterns of time series with the same data type (e.g. temperature)
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are similar. The relationship of the co-evolving temperature time
series can be partially captured by the location network, e.g., two
neighboring locations often have similar temporal dynamics. How-
ever, the temperature time series from two locations far apart could
also share similar patterns. Most of the existing studies either use
the same temporal model for all time series [21, 23, 35, 37], or use
separate Recurrent Neural Networks (RNN) [30, 45] for different
time series. Nonetheless, none of them offers a principled way to
model the implicit relationship. To tackle with this challenge, we
propose a novel Tensor Recurrent Neural Network (TRNN) based
on Multi-Linear Dynamic System (MLDS) [27] and Tucker decom-
position, which helps reduce the number of model parameters.

Our main contributions are summarized as follows:
• We introduce a novel graph convolution for tensor graphs
and present a novel TGCN that generalizes GCN [18]. The
new architecture can capture the synergy among different
graphs by simultaneously performing convolution on them.

• We introduce a novel TRNN based on MLDS [27] for effi-
ciently modeling the implicit relationship between complex
temporal dynamics of tensor time series.

• We present comprehensive evaluations for the proposed
methods on a variety of real-world datasets to demonstrate
the effectiveness of the proposed method.

The rest of the paper is organized as follows. In Section 2, we
briefly introduce relevant definitions about graph convolution and
tensor algebra, and formally introduce the definition of network
of tensor time series. In Section 3, we present and analyze the
proposed TGCN and TRNN. The experimental results are presented
in Section 4. Related works and conclusion are presented in Section
5 and Section 6 respectively.

2 PRELIMINARIES

In this section, we formally define network of tensor time series
(Subsection 2.3), after we review the preliminaries, including graph
convolution on flat graphs (Subsection 2.1), tensor algebra (Subsec-
tion 2.2), and multi-dimensional Fourier transformation (Subsec-
tion 2.3) respectively. We introduce the definitions of the problems
in Section 2.5.

2.1 Graph Convolution on Flat Graphs

Analogous to the one-dimensional Discrete Fourier Transform (Def-
inition 2.2), the graph Fourier transform is given by Definition 2.3.
Then the spectral graph convolution (Definition 2.4) is defined
based on one-dimensional convolution and the convolution theo-
rem. The free parameter of the convolution filter is further replaced
by Chebyshev polynomials and thus we have Chebyshev approxi-
mation for graph convolution (Definition 2.5).

Definition 2.1 (Flat Graph). Aflat graph contains a one-dimentional
graph signal x ∈ R𝑁 and an adjacency matrix A ∈ R𝑁×𝑁 .

Definition 2.2 (Discrete Fourier Transform). Given an one dimen-
sional signal x ∈ R𝑁 , where 𝑁 is the length of the sequence, its
Fourier transform is defined by:

x̃[𝑛] =
𝑁∑︁
𝑘=1

x[𝑘]𝑒−
𝑖2𝜋
𝑁
𝑘𝑛 (1)

where x[𝑘] is the 𝑘-th element of x and x̃[𝑛] is the 𝑛-th element of
the transformed vector x̃. The above definition can be rewritten as:

x̃ = Fx (2)

where F ∈ R𝑁×𝑁 is the filter matrix and F[𝑛, 𝑘] = 𝑒−
𝑖2𝜋
𝑁
𝑘𝑛 .

Definition 2.3 (Graph Fourier Transform [5]). Given a graph signal
x ∈ R𝑁 , along with its adjacency matrix A ∈ R𝑁×𝑁 , where 𝑁 is
the number of nodes, the graph Fourier transform is defined by:

x̃ = Φ𝑇 x (3)
where Φ is the eigenvector matrix of the graph Laplacian matrix
L = I − D− 1

2AD− 1
2 = ΦΛΦ𝑇 , I ∈ R𝑁×𝑁 , D ∈ R𝑁×𝑁 denote the

identity matrix and the degree matrix, and Λ is a diagonal matrix
whose diagonal elements are eigenvalues.

Definition 2.4 (Spectral Graph Convolution [5]). Given a signal x ∈
R𝑁 and a filter g ∈ R𝑁 , the spectral graph convolution is defined
in the Fourier domain according to the convolution theorem:

Φ𝑇 (g★ x) = (Φ𝑇 g) ⊙ (Φ𝑇 x) (4)

g★ x = Φ(Φ𝑇 g) ⊙ (Φ𝑇 x) = Φdiag(g̃)Φ𝑇 x (5)
where ★ and ⊙ denote convolution operation and Hadamard prod-
uct; the second equation holds due to the orthonormality.

Definition 2.5 (Chebyshev Approximation for Spectral Graph Con-
volution [11]). Given an input graph signal x ∈ R𝑁 and its adja-
cency matrix A ∈ R𝑁×𝑁 , the Chebyshev approximation for graph
convolution on a flat graph is given by [11, 18]:

g𝜃 ★ x = Φ(
𝑃∑︁
𝑝=0

𝜃𝑝𝑇𝑝 (Λ̃))Φ𝑇 x =

𝑃∑︁
𝑝=0

𝜃𝑝𝑇𝑝 (L̃)x (6)

where Λ̃ = 2
𝜆𝑚𝑎𝑥

Λ − I is the normalized eigenvalues, 𝜆𝑚𝑎𝑥 is maxi-
mum eigenvalue of the matrix Λ; L̃ = 2

𝜆𝑚𝑎𝑥
L − I; 𝑇𝑝 (𝑥) is Cheby-

shev polynomials defined by 𝑇𝑝 (𝑥) = 2𝑥𝑇𝑝−1 (𝑥) − 𝑇𝑝−2 (𝑥) with
𝑇0 (𝑥) = 1 and 𝑇1 (𝑥) = 𝑥 , and 𝑝 denotes the order of polynomials;
g𝜃 and 𝜃𝑝 denote the filter vector and the parameter respectively.

2.2 Tensor Algebra

Definition 2.6 (Mode-m Product). The mode-m product general-
izes matrix-matrix product to tensor-matrix product. Given a matrix
U ∈ R𝑁𝑚×𝑁 ′ , and a tensorX ∈ R𝑁1×···𝑁𝑚−1×𝑁𝑚×𝑁𝑚+1 · · ·×𝑁𝑀 , then
X ×𝑚 U ∈ R𝑁1×···𝑁𝑚−1×𝑁 ′×𝑁𝑚+1 · · ·×𝑁𝑀 is its mode-m product. Its
element [𝑛1, · · · , 𝑛𝑚−1, 𝑛′, 𝑛𝑚+1, · · · , 𝑛𝑀 ] is defined as:

(X ×𝑚 U) [𝑛1, · · · , 𝑛𝑚−1, 𝑛′, 𝑛𝑚+1, · · · , 𝑛𝑀 ]

=

𝑁𝑚∑︁
𝑛𝑚=1

X[𝑛1, · · · , 𝑛𝑚−1, 𝑛𝑚, 𝑛𝑚+1, · · · , 𝑛𝑀 ]U[𝑛𝑚, 𝑛′]
(7)

Definition 2.7 (Tucker Decomposition). The Tucker decomposition
can be viewed as a form of high-order principal component analysis
[19]. A tensor X ∈ R𝑁1×···×𝑁𝑀 can be decomposed into a smaller
core tensor Z ∈ R𝑁 ′

1×···×𝑁 ′
𝑀 by 𝑀 orthonormal matrices U𝑚 ∈

R𝑁
′
𝑚×𝑁𝑚 (𝑁 ′

𝑚 < 𝑁𝑚):

X = Z
𝑀∏
𝑚=1

×𝑚U𝑚 (8)
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The matrix U𝑚 is comprised of principal components for the𝑚-th
mode and the core tensorZ indicates the interactions among the
components. Due to the orthonormality of U𝑚 , we have:

Z = X
𝑀∏
𝑚=1

×𝑚U𝑇𝑚 (9)

2.3 Multi-dimensional Fourier Transform

Definition 2.8 (Multi-dimensional Discrete Fourier Transform).
Given a multi-dimensional/mode signalX ∈ R𝑁1×···×𝑁𝑀 , the multi-
dimensional Fourier transform is defined by:

X̃ [𝑛1, · · · , 𝑛𝑀 ] =
𝑀∏
𝑚=1

𝑁𝑚∑︁
𝑘𝑚=1

𝑒
− 𝑖2𝜋

𝑁𝑚
𝑘𝑚𝑛𝑚X[𝑘1, · · · , 𝑘𝑀 ] (10)

Similar to the one-dimensional Fourier transform (Definition 2.2),
the above equation can be re-written by a multi-linear form:

X̃ = X ×1 F1 · · · ×𝑀 FM = X
𝑀∏
𝑚=1

×𝑚F𝑚 (11)

where ×𝑚 denotes the mode-m product, F𝑚 ∈ R𝑁𝑚×𝑁𝑚 is the filter
matrix, and F𝑚 [𝑛, 𝑘] = 𝑒−

𝑖2𝜋
𝑁𝑚

𝑘𝑛 .

Definition 2.9 (Separable Multi-dimensional Convolution). The
separable multi-dimensional convolution is defined based on Def-
inition 2.8. Given a signal X ∈ R𝑁1×···×𝑁𝑀 and a separable filter
Y ∈ R𝑁1×···×𝑁𝑀 such that Y[𝑛1, · · · , 𝑛𝑚] = y1 [𝑛1] · · · y𝑀 [𝑛𝑚],
where y𝑚 ∈ R𝑁𝑚 is the filter vector for the𝑚-th mode, then the
multi-dimensional convolution is the same as iteratively applying
one dimensional convolution onto X:

Y ★X = y1 ★1 · · ·★𝑀−1 y𝑀 ★𝑀 X (12)

where ★𝑚 denotes convolution on the𝑚-th mode.
Suppose X ∈ R𝑁1×𝑁2 and Y = y1 · y𝑇2 , where y1 ∈ R𝑁1 and

y2 ∈ R𝑁2 . Then Y ★X means applying y1 and y2 to the rows and
columns of X respectively. Formally we have:

Y ★X = y1 ★1 y2 ★2 X = Y𝑇1XY2 = X
2∏

𝑚=1

×𝑚Y𝑚 (13)

where Y1 ∈ R𝑁1×𝑁1 and Y2 ∈ R𝑁2×𝑁2 are the transformation
matrix corresponding to y1 and y2 respectively.

2.4 Network of Tensor Time Series

Definition 2.10 (Tensor Time Series). A tensor time series is a
(𝑀+1)-mode tensorS ∈ R𝑁1×···×𝑁𝑀×𝑇 or {S𝑡 ∈ R𝑁1×···×𝑁𝑀 }𝑇

𝑡=1,
where the (𝑀 + 1)-th mode is the time and its dimension is 𝑇 .

Definition 2.11 (Tensor Graph). The tensor graph is comprised of
a𝑀-mode tensor X ∈ R𝑁1×···×𝑁𝑀 and the adjacency matrices for
eachmodeA𝑚 ∈ R𝑁𝑚×𝑁𝑚 . Note that if𝑚-th mode is not associated
with an adjacency matrix, then A𝑚 = I𝑚 , where I𝑚 ∈ R𝑁𝑚×𝑁𝑚

denotes the identity matrix.

Definition 2.12 (Network of Tensor Time Series). A network of
tensor time series is comprised of (1) a tensor time series S ∈
R𝑁1×···×𝑁𝑀×𝑇 and (2) a set of adjacency matrices A𝑚 ∈ R𝑁𝑚×𝑁𝑚

(𝑚 ∈ [1, · · · , 𝑀]) for all but the last mode (i.e., the time mode).

2.5 Problem Definition

In this paper, we focus on the representation learning for the net-
work of tensor time series by predicting its future values. The model
trained by predicting the future values can also be applied to recover
the missing values of the time series.

Definition 2.13 (Future Value Prediction). Given a network of ten-
sor time series with S ∈ R𝑁1×···×𝑁𝑀×𝑇 and {A𝑚 ∈ R𝑁𝑚×𝑁𝑚 }𝑀

𝑚=1,
and a time step 𝑇 ′, the task of the future value prediction is to
predict the future values of S from 𝑇 + 1 to 𝑇 +𝑇 ′.

Definition 2.14 (Missing Value Recovery). We formulate the task
of missing value recovery from the perspective of future value
prediction. Suppose the data point S[𝑛1, · · · , 𝑛𝑀 ,𝑇 ′] (𝑇 ′ ≤ 𝑇 ) of
S ∈ R𝑁1×···×𝑁𝑀×𝑇 is missing, then we takes 𝜔 ≤ 𝑇 ′ historical
values of S prior to the time step 𝑇 ′: {S𝑡 }𝑇

′−1
𝜔=𝑇 ′−𝜔 as input, and

predict the value of the Ŝ [𝑛1, · · · , 𝑛𝑀 ,𝑇 ′].

3 METHODOLOGY

An overview of the proposed NeT3 is presented in Figure 2, which
works as follows. At each time step 𝑡 , the proposed Tensor Graph
Convolutional Network (TGCN) (Section 3.1) takes as input the
𝑡-th snapshot S𝑡 ∈ R𝑁1×···×𝑁𝑀 along with its adjacency matrices
{A𝑚 ∈ R𝑁𝑚×𝑁𝑚 }𝑀

𝑚=1 and extracts its node embedding tensor
H𝑡 , which will be fed into the proposed Tensor Recurrent Neural
Network (TRNN) (Section 3.2) to encode temporal dynamics and
produce R𝑡 . Finally, the output module (Section 3.3) takes both H𝑡

and R𝑡 to predict the snapshot of the next time step Ŝ𝑡+1. Note that
Y𝑡 in Figure 2 denotes the hidden state of TRNN at the time step 𝑡 .

3.1 Tensor Graph Convolution Network

In this subsection, we first introduce spectral graph convolution on
tensor graphs and its Chebychev approximation in Subsection 3.1.1.
Then we provide a detailed derivation for the layer-wise updating
function of the proposed TGCN in Subsection 3.1.2.

3.1.1 Spectral Convolution for Tensor Graph. Analogues to the
multi-dimensional Fourier transform (Definition 2.8) and the graph
Fourier transform on flat graphs (Definition 2.3), we first define the
Fourier transform on tensor graphs in Definition 3.1. Then based
on the separable multi-dimensional convolution (Definition 2.9),
and tensor graph Fourier transform (Definition 3.1), we propose
spectral convolution on tensor graphs in Definition 3.2. Finally,
in Definition 3.3, we propose to use Chebychev approximation in
order to parameterize the free parameters in the filters of spectral
convolution.

Definition 3.1 (Tensor Graph Fourier Transform). Given a graph
signal X ∈ R𝑁1×···×𝑁𝑀 , along with its adjacency matrices for each
mode A𝑚 ∈ R𝑁𝑚×𝑁𝑚 (𝑚 ∈ [1, · · · , 𝑀]), the tensor graph Fourier
transform is defined by:

X̃ = X
𝑀∏
𝑚=1

×𝑚Φ𝑚 (14)

where Φ𝑚 is the eigenvector matrix of graph Laplacian matrix
L𝑚 = Φ𝑚Λ𝑚Φ𝑇𝑚 for A𝑚 ; ×𝑚 denotes the mode-m product.
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Figure 2: The framework of the proposedmodel NeT
3
. At each time step 𝑡 , the model takes a snapshot S𝑡 from the tensor time

series S and extracts its node embedding tensor H𝑡 via Tensor Graph Convolution Network (TGCN) module. H𝑡 will be fed

into the Tensor RNN (TRNN) module to encode the temporal dynamics. Finally, the output module takes both of H𝑡 and R𝑡
to predict the snapshot of the next time step Ŝ𝑡+1. Note that Y𝑡 and Y𝑡+1 are the hidden states of TRNN at time step 𝑡 and 𝑡 + 1
respectively.

Definition 3.2 (Spectral Convolution for Tensor Graph). Given an
input graph signal X ∈ R𝑁1×···×𝑁𝑀 , and a multi-dimensional filter
G ∈ R𝑁1×···×𝑁𝑀 defined by G[𝑛1, · · · , 𝑛𝑀 ] = g1 [𝑛1] · · · g𝑀 [𝑛𝑀 ],
where g𝑚 ∈ R𝑁𝑚 is the filter vector for the𝑚-th mode. By analo-
gizing to spectral graph convolution (Definition 2.4) and separable
multi-dimensional convolution (Definition 2.9) , we define spectral
convolution for tensor graph as:

G ★X = X
𝑀∏
𝑚=1

×𝑚Φ𝑇𝑚diag(g̃𝑚)Φ𝑚 (15)

where g̃𝑚 = Φ𝑇𝑚g𝑚 is the Fourier transformed filter for the𝑚-th
mode; ★ and ×𝑚 denote the convolution operation and the mode-
m product respectively; diag(g𝑚) denotes the diagonal matrix, of
which the diagonal elements are the elements in g𝑚 .

Definition 3.3 (Chebyshev Approximation for Spectral Convolution
on Tensor Graph). Given a tensor graph X ∈ R𝑁1×···×𝑁𝑀 , where
each mode is associated with an adjacency matrix A𝑚 ∈ R𝑁𝑚×𝑁𝑚 ,
the Chebychev approximation for spectral convolution on tensor
graphs is given by approximating g̃𝑚 by Chebyshev polynomials:

G𝜃 ★X = X
𝑀∏
𝑚=1

×𝑚Φ𝑇𝑚 (
𝑃∑︁

𝑝𝑚=0

𝜃𝑚,𝑝𝑚𝑇𝑝𝑚 (Λ̃𝑚))Φ𝑚

= X
𝑀∏
𝑚=1

×𝑚
𝑃∑︁

𝑝𝑚=0

𝜃𝑚,𝑝𝑚𝑇𝑝𝑚 (L̃𝑚)

(16)

where G𝜃 denotes the convolution filter parameterized by 𝜃 ; Λ𝑚 ∈
R𝑁𝑚×𝑁𝑚 is the matrix of eigenvalues for the graph Laplacian ma-
trix L𝑚 = I𝑚 −D

− 1
2

𝑚 A𝑚D
− 1

2
𝑚 = Φ𝑚Λ𝑚Φ𝑇𝑚 ; Λ̃𝑚 = 2

𝜆𝑚,𝑚𝑎𝑥
Λ𝑚 − I𝑚

is the normalized eigenvalues, 𝜆𝑚,𝑚𝑎𝑥 is maximum eigenvalue in
the matrixΛ𝑚 ; L̃𝑚 = 2

𝜆𝑚,𝑚𝑎𝑥
L𝑚−I𝑚 ;𝑇𝑝𝑚 (𝑥) is Chebyshev polyno-

mials defined by𝑇𝑝𝑚 (𝑥) = 2𝑥𝑇𝑝𝑚−1 (𝑥) −𝑇𝑝𝑚−2 (𝑥) with𝑇0 (𝑥) = 1
and 𝑇1 (𝑥) = 𝑥 , and 𝑝𝑚 denotes the order of polynomials; 𝜃𝑚,𝑝𝑚

denote the co-efficient of𝑇𝑝𝑚 (𝑥). For clarity, we use the same poly-
nomial degree 𝑃 for all modes.

3.1.2 Tensor Graph Convolutional Layer. Due to the linearity of
mode-m product, Equation (16) can be re-formulated as:

G𝜃 ★X =

𝑃∑︁
𝑝1, · · · ,𝑝𝑀=0

X
𝑀∏
𝑚=1

×𝑚𝜃𝑚,𝑝𝑚𝑇𝑝𝑚 (L̃𝑚)

=

𝑃∑︁
𝑝1, · · · ,𝑝𝑀=0

𝑀∏
𝑚=1

𝜃𝑚,𝑝𝑚X
𝑀∏
𝑚=1

×𝑚𝑇𝑝𝑚 (L̃𝑚)

(17)

We follow [18] to simplify Equation (17). Firstly, let 𝜆𝑚,𝑚𝑎𝑥 = 2
and we have:

L̃𝑚 =
2

𝜆𝑚,𝑚𝑎𝑥
L𝑚 − I𝑚

= I𝑚 −D
− 1

2
𝑚 A𝑚D

− 1
2

𝑚 − I𝑚

= −D− 1
2

𝑚 A𝑚D
− 1

2
𝑚

(18)

For clarity, we use Ã𝑚 to represent D− 1
2

𝑚 A𝑚D
− 1

2
𝑚 . Then we fix

𝑃 = 1 and drop the negative sign in Equation (18) by absorbing it
to parameter 𝜃𝑚,𝑝𝑚 . Therefore, we have

𝑃∑︁
𝑝=0

𝜃𝑚,𝑝𝑚𝑇𝑝 (L̃𝑚) = 𝜃𝑚,0 + 𝜃𝑚,1Ã𝑚 (19)

Furthermore, by plugging Equation (19) back into Equation (17)
and replacing the product of parameters

∏𝑀
𝑚=1 𝜃𝑚,𝑝𝑚 by a single

parameter 𝜃𝑝1, · · · ,𝑝𝑀 , we will obtain:

G𝜃 ★X =
∑︁

∃𝑝𝑚=1

𝜃𝑝1, · · · ,𝑝𝑀X
∏
𝑝𝑚=1

×𝑚Ã𝑚 + 𝜃0, · · · ,0X (20)

We can observe from the above equation that 𝑝𝑚 works as an
indicator for whether applying the convolution filter Ã𝑚 to X or
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not. If 𝑝𝑚 = 1, then Ã𝑚 will be applied to X, otherwise, I𝑚 will be
applied. When 𝑝𝑚 = 0 for ∀𝑚 ∈ [1, · · · , 𝑀], we will have 𝜃0, · · · ,0X.
To better understand how the above approximation works on tensor
graphs, let us assume𝑀 = 2. Then we have:
G𝜃 ★X = 𝜃1,1X×1 Ã1 ×2 Ã2 +𝜃1,0X×1 Ã1 +𝜃0,1X×2 Ã2 +𝜃0,0X

(21)
Given the approximation in Equation (20), we propose the tensor

graph convolution layer in Definition 3.4.

Definition 3.4 (Tensor Graph Convolution Layer). Given an input
tensor X ∈ R𝑁1×···×𝑁𝑀×𝑑 , where 𝑑 is the number of channels,
along with its adjacency matrices {A𝑚}𝑀

𝑚=1, the Tensor Graph
Convolution Layer (TGCL) with 𝑑 ′ output channels is defined by:

TGCL(X, {A𝑚}𝑀𝑚=1)

=𝜎 (
∑︁

∃𝑝𝑚=1

X
∏
𝑝𝑚=1

×𝑚Ã𝑚 ×𝑀+1 Θ𝑝1, · · · ,𝑝𝑀 + X ×𝑀+1 Θ0) (22)

where Θ ∈ R𝑑×𝑑′ is parameter matrix; 𝜎 (·) is activation function.

In the NeT3model (Figure 2), given a snapshot S𝑡 ∈ R𝑁1×···×𝑁𝑀

along with its adjacency matrices {A𝑚}𝑀
𝑚=1, we use a one layer

TGCL to obtain the node embeddingsH𝑡 ∈ R𝑁1×···×𝑁𝑀×𝑑 , where
𝑑 is the dimension of the node embeddings:

H𝑡 = TGCN(S𝑡 ) (23)

3.1.3 Synergy Analysis. The proposed TGCL effectively models
tensor graphs and captures the synergy among different adjacency
matrices. The vector p = [𝑝1, · · · , 𝑝𝑀 ] ∈ [0, 1]𝑀 represents a
combination of𝑀 networks, where 𝑝𝑚 = 1 and 𝑝𝑚 = 0 respectively
indicate the presence and absence of the Ã𝑚 . Therefore, each node
in X could collect other nodes’ information along the adjacency
matrix Ã𝑚 if 𝑝𝑚 = 1. For example, suppose𝑀 = 2 and 𝑝1 = 𝑝2 = 1
(as shown in Figure 3 and Equation (21)), then node X[1, 1] (node
𝑣) could reach node X[2, 2] (node 𝑤 ′) by passing node X[2, 1]
along the adjacency matrix Ã1 (X×1 Ã1) and then arriving at node
X[2, 2] via Ã2 (X×1 Ã1×2 Ã2). In contrast, with a traditional GCN
layer, node 𝑣 can only gather information of its direct neighbors
from a given model (node 𝑣 ′ via Ã1 or𝑤 via Ã2).

An additional advantage of TGCL lies in that it is robust to
missing values in X since TGCL is able to recover the value of a
node from various combination of adjacency matrices. For example,
suppose the value of node 𝑣 = 0, then TGCL could recover its value
by referencing the value of 𝑣 ′ (via X ×1 Ã1), or the value of𝑤 (via
X×2 Ã2), or the value of𝑤 ′ (via X×1 Ã1 ×2 Ã2). However, a GCN
layer could only refer to the node 𝑣 ′ via Ã1 or𝑤 via Ã2.

Figure 3: An illustration of synergy analysis of TGCL.

3.1.4 Complexity Analysis. For a𝑀-mode tensor with 𝐾 (1 ≤ 𝐾 ≤
𝑀) networks, the complexity of the tensor graph convolution (Equa-
tion (20)) is 𝑂 (2𝐾−1∏𝑀

𝑚=1 𝑁𝑚 (2 +∑𝐾
𝑘=1

𝑁𝑘 )).

3.2 Tensor Recurrent Neural Network

Given the output from TGCN:H𝑡 ∈ R𝑁1×···×𝑁𝑀×𝑑 (Equation (23)),
the next step is to incorporate temporal dynamics forH𝑡 .

As shown in Figure 4, we propose a novel Tensor Recurrent Neu-
ral Network (TRNN), which captures the implicit relation among
co-evolving time series by decomposingH𝑡 into a low dimensional
core tensor Z𝑡 ∈ R𝑁

′
1×···×𝑁 ′

𝑀
×𝑑 (𝑁 ′

𝑚 < 𝑁𝑚) via a Tensor Dimen-
sion Reduction module (Section 3.2.1). The Tensor RNN Cell (Sec-
tion 3.2.2) further introduces non-linear temporal dynamics intoZ𝑡
and produces the hidden stateY𝑡 ∈ R𝑁

′
1×···×𝑁 ′

𝑀
×𝑑 . Finally, the Ten-

sor Dimension Reconstruction module (Section 3.2.3) reconstructs
Y𝑡 and generates the reconstructed tensor R𝑡 ∈ R𝑁1×···×𝑁𝑀×𝑑 .

3.2.1 Tensor Dimension Reduction. As shown in the left part of
Figure 4, the proposed tensor dimension reduction module will
reduce the dimensionality of each mode of H𝑡 ∈ R𝑁1×···×𝑁𝑀×𝑑 ,
except for the last mode (hidden features), by leveraging Tucker
decomposition (Definition 2.7):

Z𝑡 = H𝑡

𝑀∏
𝑚=1

×𝑚U𝑇𝑚 (24)

where U𝑚 ∈ R𝑁 ′
𝑚×𝑁𝑚 denotes the orthonormal parameter matrix,

which is learnable via backpropagation; Z𝑡 ∈ R𝑁
′
1×···×𝑁 ′

𝑚×𝑑 is the
core tensor ofH𝑡 .

3.2.2 Tensor RNN Cell. Classic RNN cells, e.g. Long-Short-Term-
Memory (LSTM) [15] are designed for a single input sequence, and
therefore do not directly capture the correlation among co-evolving
sequences. To address this problem, we propose a novel Tensor
RNN (TRNN) cell based on tensor algebra.

We first propose a Tensor Linear Layer (TLL):

TLL(X) = X
𝑀+1∏
𝑚=1

×𝑚W𝑚 + b (25)

where X ∈ R𝑁1×···×𝑁𝑀×𝑑 is the input tensor, andW𝑚 ∈ R𝑁𝑚×𝑁 ′
𝑚

(∀𝑚 ∈ [1, · · · , 𝑀]) and W𝑀+1 ∈ R𝑑×𝑑′ are the linear transition
parameter matrices; b ∈ R𝑑′ denotes the bias vector.

TRNN can be obtained by replacing the linear functions in any
RNN cell with the proposed TLL. We take LSTM as an example to re-
formulate its updating equations. By replacing the linear functions
in the LSTM with the proposed TLL, we have updating functions
for Tensor LSTM (TLSTM)1:

F𝑡 = 𝜎 (TLL𝑓 𝑧 (Z𝑡 ) + TLL𝑓 𝑦 (Y𝑡−1)) (26)
I𝑡 = 𝜎 (TLL𝑖𝑧 (Z𝑡 ) + TLL𝑖𝑦 (Y𝑡−1)) (27)
O𝑡 = 𝜎 (TLL𝑜𝑧 (Z𝑡 ) + TLL𝑜𝑦 (Y𝑡−1)) (28)

C̃𝑡 = tanh(TLL𝑐𝑧 (Z𝑡 ) + TLL𝑐𝑦 (Y𝑡−1)) (29)

C𝑡 = F𝑡 ⊙ C𝑡−1 + I𝑡 ⊙ C̃𝑡 (30)
Y𝑡 = O𝑡 ⊙ 𝜎 (C𝑡 ) (31)

1Bias vectors are omitted for clarity.
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Figure 4: Tensor Recurrent Neural Network (TRNN).

where Z𝑡 ∈ R𝑁 ′
1×···×𝑁 ′

𝑀
×𝑑 and Y𝑡 ∈ R𝑁 ′

1×···×𝑁 ′
𝑀
×𝑑′ denote the

input core tensor and the hidden state tensor at the time step 𝑡 ; F𝑡 ,
I𝑡 , O𝑡 ∈ R𝑁

′
1×···×𝑁 ′

𝑀
×𝑑′ denote the forget gate, the input gate and

the output gate, respectively; C̃𝑡 ∈ R𝑁
′
1×···×𝑁 ′

𝑀
×𝑑′ is the tensor for

updating the cell memory C𝑡 ∈ R𝑁 ′
1×···×𝑁 ′

𝑀
×𝑑′ ; TLL∗ (·) denotes

the tensor linear layer (Equation (25)), and its subscripts in the
above equations are used to distinguish different initialization of
TLL2; 𝜎 (·) and tanh(·) denote the sigmoid activation and tangent
activation functions respectively; ⊙ denotes the Hadamard product.

3.2.3 Tensor Dimension Reconstruction. To predict the values of
each time series, we need to reconstruct the dimensionality of each
mode. Thanks to the orthonormality of U𝑚 (∀𝑚 ∈ [1, · · · , 𝑀]), we
can naturally reconstruct the dimensionality ofY𝑡 ∈ R𝑁

′
1×···×𝑁 ′

𝑀
×𝑑′

as follows:

R𝑡 = Y𝑡
𝑀∏
𝑚=1

×𝑚U𝑚 (32)

where R𝑡 ∈ R𝑁1×···×𝑁𝑀×𝑑′ is the reconstructed tensor.

3.2.4 Implicit Relationship. The Tucker decomposition (Definition
2.7 and Equation (24) can be regarded as high-order principal com-
ponent analysis [19]. The matrix U𝑚 extracts eigenvectors of the
𝑚-th mode, and each element inZ indicates the relation between
different eigenvectors. We define 𝜌 ≥ 0 as the indicator of interac-
tion degree, such that 𝑁 ′

𝑚 = 𝜌𝑁𝑚 (∀𝑚 ∈ [1, · · · , 𝑀]), to represent
to what degree does the TLSTM capture the correlation. The ideal
range for 𝜌 is (0, 1). When 𝜌 = 0, the TLSTM does not capture
any relations and it is reduced to a single LSTM. When 𝜌 = 1,
the TLSTM captures the relation for each pair of the eigenvectors.
When 𝜌 > 1, the U𝑚 is over-complete and contains redundant
information.

Despite the dimentionality reduced by Equation (24), it is not
guaranteed that the number of parameters in TLSTM will always
be less than the number of parameters in multiple separate LSTMs,
because of the newly introduced parametersU𝑚 (∀𝑚 ∈ [1, · · · , 𝑀]).

2For all TLL related to Z𝑡 : TLL∗𝑧 ( ·) , W𝑚 ∈ R𝑁𝑚×𝑁 ′
𝑚 (∀𝑚 ∈ [1, · · · , 𝑀 ]) and

W𝑀+1 ∈ R𝑑×𝑑′ . For all TLL related to Y𝑡−1: TLL∗𝑦 ( ·) , W𝑚 ∈ R𝑁 ′
𝑚×𝑁 ′

𝑚 (∀𝑚 ∈
[1, · · · , 𝑀 ]) andW𝑀+1 ∈ R𝑑′×𝑑′ .

The following lemma provides an upper-bound for 𝜌 given the
dimensions of the input tensor and the hidden dimensions.

Lemma 3.5 (Upper-bound for 𝜌). Let 𝑁𝑚 and 𝑁 ′
𝑚 be the dimen-

sions of U𝑚 in Equation (24), and let 𝑑 ∈ R and 𝑑 ′ ∈ R be the hidden
dimensions of the inputs and outputs of TLSTM. TLSTM uses less
parameters than multiple separate LSTMs, as long as the following
condition holds:

𝜌 ≤

√√
(∏𝑀

𝑚=1 𝑁𝑚 − 1)𝑑 ′(𝑑 + 𝑑 ′ + 1)
2
∑𝑀
𝑚=1 𝑁

2
𝑚

+ 1

256
−
√︂

1

256
(33)

Proof. There are totally
∏𝑀
𝑚=1 𝑁𝑚 time series in the tensor time

series S ∈ R𝑁1×···×𝑁𝑀×𝑇 , and thus the total number of parameters
for

∏𝑀
𝑚=1 𝑁𝑚 separate LSTM is:

𝑁 (𝐿𝑆𝑇𝑀) =
𝑀∏
𝑚=1

𝑁𝑚 [4(𝑑𝑑 ′ + 𝑑 ′𝑑 ′ + 𝑑 ′)]

= 4𝑑 ′(𝑑 + 𝑑 ′ + 1)
𝑀∏
𝑚=1

𝑁𝑚

(34)

The total number of parameters for the TLSTM is:

𝑁 (𝑇𝐿𝑆𝑇𝑀) = 4𝑑 ′(𝑑 + 𝑑 ′ + 1) + 8
𝑀∑︁
𝑚=1

𝑁 ′2
𝑚 +

𝑀∑︁
𝑚=1

𝑁 ′
𝑚𝑁𝑚 (35)

where the first two terms on the right side are the numbers of
parameters of the TLSTM cell, and the third term is the number of
parameters required by {U𝑚}𝑀

𝑚=1 in the Tucker decomposition.
Let Δ = 𝑁 (𝑇𝐿𝑆𝑇𝑀) − 𝑁 (𝐿𝑆𝑇𝑀) , and let’s replace 𝑁 ′

𝑚 by 𝜌𝑁𝑚 ,
then we have:

Δ = (8𝜌2 + 𝜌)
𝑀∑︁
𝑚=1

𝑁 2
𝑚 − 4(

𝑀∏
𝑚=1

𝑁𝑚 − 1)𝑑 ′(𝑑 + 𝑑 ′ + 1) (36)

Obviously, Δ is a convex function of 𝜌 . Hence, as long as 𝜌 satisfies
the condition specified in the following equation, it can be ensured
that the number of parameters is reduced.

𝜌 ≤

√√
(∏𝑀

𝑚=1 𝑁𝑚 − 1)𝑑 ′(𝑑 + 𝑑 ′ + 1)
2
∑𝑀
𝑚=1 𝑁

2
𝑚

+ 1

256
−
√︂

1

256
(37)

□
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3.3 Output Module

Given the reconstructed hidden representation tensor obtained
from the TRNN: R𝑡+1 ∈ R𝑁1×···×𝑁𝑀×𝑑′ , which captures the tem-
poral dynamics, and the node embedding of the current snapshot
S𝑡 : H𝑡 ∈ R𝑁1×···×𝑁𝑀×𝑑 , the output module is a function mapping
R𝑡 andH𝑡 to S𝑡+1 ∈ R𝑁1×𝑁2 · · ·×𝑁𝑀 .

We use a Multi-Layer Perceptron (MLP) with a linear output
activation as the mapping function:

Ŝ𝑡+1 = MLP( [H𝑡 ,R𝑡 ]) (38)

where Ŝ𝑡+1 ∈ R𝑁1×···×𝑁𝑀 represents the predicted snapshot;H𝑡

and R𝑡 are the outputs of TGCN and TRNN respectively; and [·, ·]
denotes the concatenation operation.

3.4 Training

Directly training RNNs over the entire sequence is impractical in
general [31]. A common practice is to partition the long time series
data by a certain window size with 𝜔 historical steps and 𝜏 future
steps [21, 23, 37].

Given a time step 𝑡 , let {S𝑡 ′}𝑡𝑡 ′=𝑡−𝜔+1 and {S𝑡 ′}𝑡+𝜏𝑡 ′=𝑡+1 be the
historical and the future slices, the objective function of onewindow
slice is defined as:

arg min
Θ,W,B

| |NeT3 ({S𝑡 ′}𝑡𝑡 ′=𝑡−𝜔+1) − {S𝑡 ′}𝑡+𝜏𝑡 ′=𝑡+1) | |
2
𝐹

+𝜇1
𝑡∑︁

𝑡 ′=𝑡−𝜔+1
| |H𝑡 ′ −Z𝑡 ′

𝑀∏
𝑚=1

×𝑚U𝑚 | |2𝐹

+𝜇2
𝑀∑︁
𝑚=1

| |U𝑚U𝑇𝑚 − I𝑚 | |2𝐹

(39)

where NeT3denotes the proposed model; Θ andW represent the
parameters of TGCN and TRNN respectively;B denotes the bias vec-
tors; the second term denotes the reconstruction error of the Tucker
decomposition; the third term denotes the orthonormality regular-
ization for U𝑚 , and I𝑚 denotes identity matrix (∀𝑚 ∈ [1, · · · , 𝑀]);
| | · | |𝐹 is the Frobenius norm; 𝜇1 and 𝜇2 are coefficients.

4 EXPERIMENTS

In this section, we present the experimental results for the following
questions:
Q1. How accurate is the proposed NeT3on recovering missing

value and predicting future value?
Q2. To what extent does the synergy captured by the proposed

TGCN help improve the overall performance of NeT3?
Q3. How does the interaction degree 𝜌 impact the performance

of NeT3?
Q4. How efficient and scalable is the proposed NeT3?
We first describe the datasets, comparison methods and imple-

mentation details in Subsection 4.1, then we provide the results of
the effectiveness and efficiency experiments in Subsection 4.2 and
Subsection 4.3, respectively.

4.1 Experimental Setup

4.1.1 Datasets. We evaluate the proposed NeT3 model on five
real-world datasets, whose statistics is summarized in Table 1.

Table 1: Statistics of the datasets.

Dataset Shape # Nodes Modes with A

Motes 54 × 4 × 2880 216 1, 2
Soil 42 × 5 × 2 × 365 420 1, 2, 3

Revenue 410 × 3 × 62 1,230 1, 2
Traffic 1000 × 2 × 1440 2,000 1
20CR 30 × 30 × 20 × 6 × 180 108,000 1, 2, 3, 4

Motes Dataset. The Motes dataset3 [4] is a collection of reading
log from 54 sensors deployed in the Intel Berkeley Research Lab.
Each sensor collects 4 types of data, i.e., temperature, humidity,
light, and voltage. Following [7], we evaluate all the methods on
the log of one day, which has 2880 time steps in total, yielding a
54×4×2880 tensor time series. We use the average connectivity of
each pair of sensors to construct the network for the first mode (54
sensors). As for the network of four data types, we use the Pearson
correlation coefficient between each pair of them:

A[𝑖, 𝑗] = 1

2
(𝑟𝑖 𝑗 + 1) (40)

where 𝑟𝑖 𝑗 ∈ [−1, 1] denotes the Pearson correlation coefficient
between the sequence 𝑖 and the sequence 𝑗 .

Soil Dataset. The Soil dataset contains one-year log of water
temperature and volumetric water content collected from 42 loca-
tions and 5 depth levels in the Cook Agronomy Farm (CAF)4 near
Pullman, Washington, USA, [12] which forms a 42 × 5 × 2 × 365
tensor time series. Since the dataset neither provides the specific
location information of sensors nor the relation between the water
temperature and volumetric water content, we use Pearson correla-
tion, as shown in Equation (40), to build the adjacency matrices for
all the modes.

Revenue Dataset. The Revenue dataset is comprised of an actual
and two estimated quarterly revenues for 410 major companies
(e.g. Microsoft Corp.5, Facebook Inc.6) from the first quarter of
2004 to the second quarter of 2019, which yields a 410 × 3 × 62
tensor time series. We construct a co-search network [20] based
on log files of the U.S Securities and Exchange Commission (SEC)7
to represent the correlation among different companies, which is
used as the adjacency matrix for the first mode. We also use the
Pearson correlation coefficient to construct the adjacency matrix
for the three revenues as in Equation (40).

Traffic Dataset. The Traffic dataset is collected from Caltrans
Performance Measurement System (PeMS).8 Specifically, hourly
average speed and occupancy of 1,000 randomly chosen sensor
stations in District 7 of California from June 1, 2018, to July 30, 2018,
are collected, which yields a 1000×2×1440 tensor time series. The
adjacency matrixA1 for the first mode is constructed by indicating
whether two stations are adjacent: A1 [𝑖, 𝑗] = 1 represents the
stations 𝑖 and 𝑗 are next to each other. As for the second mode,
3http://db.csail.mit.edu/labdata/labdata.html
4http://www.cafltar.org/
5https://www.microsoft.com/
6https://www.facebook.com/
7https://www.sec.gov/dera/data/edgar-log-file-data-set.html
8https://dot.ca.gov/programs/traffic-operations/mobility-performance-reports

http://db.csail.mit.edu/labdata/labdata.html
http://www.cafltar.org/
https://www.microsoft.com/
https://www.facebook.com/
https://www.sec.gov/dera/data/edgar-log-file-data-set.html
https://dot.ca.gov/programs/traffic-operations/mobility-performance-reports
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since the Pearson correlation between speed and occupancy is not
significant, we use identity matrix I as the adjacency matrix.

20CR Dataset. We use the version 3 of the 20th Century Reanal-
ysis data910 [9, 29] collected by the National Oceanic and Atmo-
spheric Administration (NOAA) Physical Sciences Laboratory (PSL).
We use a subset of the full dataset, which covers a 30 × 30 area of
north America, ranging from 30◦ N to 60◦ N, 80◦ W to 110◦ W,
and it contains 20 atmospheric pressure levels. For each of the loca-
tion point, 6 attributes are used, including air temperature, specific
humidity, omega, u wind, v wind and geo-potential height.11 We
use the monthly average data ranging from 2001 to 2015. Therefore,
the shape of the data is 30×30×20×6×180. The adjacency matrix
A1 for the first mode, latitude, is constructed by indicating whether
two latitude degrees are next to each other: A1 [𝑖, 𝑗] = 1 if 𝑖 and
𝑗 are adjacent. The adjacency matrices A2 and A3 for the second
and the third modes are built in the same way as A1. We build A4

for the 6 attributes based on Equation (40).

4.1.2 Comparison Methods. We compare our methods with both
classic methods (DynaMMo [22], MLDS [27]) and recent deep learn-
ing methods (DCRNN [23], STGCN [37]). We also compare the pro-
posed full model NeT3with its ablated versions. To evaluate TGCN,
we compare it with MLP, GCN [18] and iTGCN. Here, iTGCN is
an ablated version of TGCN, which ignores the synergy between
adjacency matrices. The updating function of iTGCN is given by
the following equation:

𝜎 (
𝑀∑︁
𝑚=1

X ×𝑚 Ã𝑚 ×𝑀+1 Θ𝑚 + X ×𝑀+1 Θ0) (41)

where 𝜎 (·) denotes the activation function, Θ denotes parameter
matrix and X ∈ R𝑁1×···×𝑁𝑀×𝑑 . For a fair comparison with GCN
and the baseline methods, we construct a flat graph by combining
the adjacency matrices:

A = A𝑀 ⊗𝑘 · · · ⊗𝑘 A1 (42)

where ⊗𝑘 is Kronecker product, the dimension of A is
∏𝑀
𝑚=1 𝑁𝑚 ,

and 𝑁𝑚 is the dimension of A𝑚 . To evaluate TLSTM, we compare
it with multiple separate LSTMs (mLSTM) and a single LSTM.

4.1.3 Implementation Details. For all the datasets and tasks, we
use one layer TGCN, one layer TLSTM, and one layer MLP with
the linear activation. The hidden dimension is fixed as 8. We fix
𝜌 = 0.8, 0.8, 0.2, 0.1 and 0.9 for TLSTM on Motes, Soil, Revenue,
Traffic, and 20CR datasets respectively. The window size is set as
𝜔 = 5 and 𝜏 = 1, and Adam optimizer [17] with a learning rate of
0.01 is adopted. Coefficients 𝜇1 and 𝜇2 are fixed as 10−3.

920th Century Reanalysis V3 data provided by the NOAA/OAR/ESRL PSL, Boulder,
Colorado, USA, from their Web site https://psl.noaa.gov/data/gridded/data.20thC_
ReanV3.html
10Support for the Twentieth Century Reanalysis Project version 3 dataset is provided
by the U.S. Department of Energy, Office of Science Biological and Environmental
Research (BER), by the National Oceanic and Atmospheric Administration Climate
Program Office, and by the NOAA Physical Sciences Laboratory.
11For details of the attributes, please refer to the 20th Century Reanalysis project
https://psl.noaa.gov/data/20thC_Rean//

4.2 Effectiveness Results

In this section, we present the effectiveness experimental results for
missing value recovery, future value prediction, synergy analysis
and sensitivity experiments.

4.2.1 Missing Value Recovery. For all the datasets, we randomly
select 10% to 50% of the data points as test sets, and we use the mean
and standard deviation of each time series in the training sets to nor-
malize each time series. The evaluation results on Motes, Soil, Rev-
enue and Traffic are shown in Figure 5a-5d, and the results for 20CR
are presented in 7a. The proposed full model NeT3(TGCN+TLSTM)
outperforms all of the baseline methods on almost all of the set-
tings. Among the baselines methods, those equipped with GCNs
generally have a better performance than LSTM. When comparing
TGCN with iTGCN, we observe that TGCN performs better than
iTGCN on most of the settings. This is due to TGCN’s capability in
capturing various synergy among graphs. We can also observe that
TLSTM (TGCN+TLSTM) achieves lower RMSE than both mLSTM
(TGCN+mLSTM) and LSTM (TGCN+LSTM), demonstrating the
effectiveness of capturing the implicit relations.

4.2.2 Future Value Prediction. We use the last 2% to 10% time steps
as test sets for the Motes, Traffic, Soil and 20CR datasets, and we
use the last 1% to 5% time steps as test sets for the Revenue dataset.
Similar to the missing value recovery task, The datasets are nor-
malized by mean and standard deviation of the training sets. The
evaluation results are shown in Figure 5e-5h and Figure 7b. The
proposed NeT3 outperforms the baseline methods on all of the five
datasets. Different from the missing value recovery task, the classic
methods perform much worse than deep learning methods on the
future value prediction, which might result from the fact that these
methods are unable to capture the non-linearity in the temporal
dynamics. Similar to the missing value recovery task, generally,
TGCN also achives lower RMSE than iTGCN and GCN, and TLSTM
performs better than both mLSTM and LSTM.

We present the visualization of the future value prediction task
on the Traffic dataset in Figure 8.

4.2.3 Experiments on Synergy. In this section, we compare the
proposed TGCN with iTGCN, GCN1, GCN2, GCN3 and GCN4 (if
applicable) on the missing value recovery and future value predic-
tion tasks. Here, GCN1, GCN2, GCN3 and GCN4 denote the GCN
with the adjacency matrix of the 1st, 2nd, 3rd and 4th mode respec-
tively. iTGCN is an independent version of TGCN (Equation (41)),
which is a simple linear combination of different GCNs (GCN1,
GCN2, GCN3 and GCN4). As shown in Figure 6 and Figure 7c-7d,
generally, TGCN outperforms GCNs designed for single modes and
the simple combination of them (iTGCN).

4.2.4 Sensitivity Experiments. We use different values of 𝜌 for TL-
STM on theMotes dataset for the missing value recovery and future
value prediction tasks and report their RMSE values in Figure 9a
and Figure 9b. It can be noted that, in general, the greater 𝜌 is, the
better results (i.e., smaller RMSE) will be obtained. We believe the
main reason is that a greater 𝜌 indicates that TLSTM captures more
interaction between different time series. Figure 9c shows that the
number of parameters of TLSTM is linear with respect to 𝜌 .

https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html
https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html
https://psl.noaa.gov/data/20thC_Rean//
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(a) Motes-Missing (b) Soil-Missing (c) Revenue-Missing (d) Traffic-Missing

(e) Motes-Future (f) Soil-Future (g) Revenue-Future (h) Traffic-Future

Figure 5: RMSE of missing value recovery (upper) and future value prediction (lower).

(a) Motes-Missing (b) Soil-Missing (c) Revenue-Missing (d) Traffic-Missing

(e) Motes-Future (f) Soil-Future (g) Revenue-Future (h) Traffic-Future

Figure 6: Synergy Analysis: RMSE of missing value recovery (upper) and future value prediction (lower).

(a) Missing Value Recovery (b) Future Value Prediction (c) Synergy-Missing (d) Synergy-Future

Figure 7: Experiments on the 20CR dataset
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Figure 8: Visualization of future value prediction on the Traffic dataset. Upper part presents the results for normalized speed.

Lower part presents the results for normalized occupancy.

(a) Missing value recovery (b) Future value prediction (c) Number of parameters

Figure 9: Sensitivity experiments of 𝜌 on the Motes dataset.

Table 2: In the upper part, 𝜌𝑚𝑎𝑥 and 𝜌𝑒𝑥𝑝 are the upper

bounds and the values of 𝜌 used in experiments. Themiddle

and lower parts present the number of parameters inTLSTM

and LSTM, and the parameter reduction ratio.

Motes Soil Revenue Traffic 20CR
𝜌𝑚𝑎𝑥 2.17 2.43 0.64 0.31 57.25
𝜌𝑒𝑥𝑝 0.80 0.80 0.20 0.10 0.90

TLSTM 18,552 10,996 87,967 180,554 16,696
mLSTM 117,504 57,120 669,120 1,088,000 58,752,000
Reduce 84.21% 80.75% 86.85% 83.40% 99.97% Figure 10: Scalability experiments.
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4.3 Efficiency Results

In this section, we present experimental results for memory effi-
ciency and scalability.

4.3.1 Memory Efficiency. As shown in Table 2, the upper bounds
(𝜌𝑚𝑎𝑥 ) of 𝜌 for the five datasets are 2.17, 2.43, 0.64, 0.31 and 57.25.
In the experiments, we fix 𝜌𝑒𝑥𝑝 = 0.80, 0.80, 0.20, 0.10 and 0.90
for the Motes, Soil, Revenue, Traffic and 20CR datasets, respectively.
Given the above values of 𝜌𝑒𝑥𝑝 , the TLSTM row in Table 2 shows
the number of parameters in TLSTM. The mLSTM row shows the
required number of parameters for multiple separate LSTMs for
each single time series. Compared with mLSTM, TLSTM signifi-
cantly reduces the number of parameters by more than 80% and
yet performs better than mLSTM (Figure 5 and Figure 7a-7b).

4.3.2 Scalability. We evaluate the scalability of NeT3on the 20CR
dataset in terms of the training time and the number of parameters.
We fix the 𝜌 = 0.9, and change the size of the input tensor by
shrinking the dimension of all the modes by the specified ratios:
[0.2, 0.4, 0.6, 0.8, 1.0]. Given the ratios, the input sizes (the number
of nodes) are therefore 684, 6,912, 23,328, 55,296 and 108,000 respec-
tively. The averaged training time of one epoch for TLSTM against
the size of the input tensor is presented in left part of Figure 10, and
the number of parameters of TLSTM against the size of the input
tensor is presented in right part of Figure 10. Note that h and k
on the x-axis represent hundreds and thousands respectively. s and
k on the y-axis represent seconds and thousands respectively. The
figures show that the training time and the number of parameters
grow almost linearly with the size of input tensor.

5 RELATEDWORKS

In this section, we review the related work in terms of (1) co-
evolving time series, (2) graph convolutional networks (GCN), and
(3) networked time series.

5.1 Co-evolving Time Series

Co-evolving time series is ubiquitous and appears in a variety of
applications, such as enviornmental monitoring, financial analysis
and smart transportation. Li et al. [22] proposed a linear dynamic
system based on Kalman filter and Bayesian networks to model
co-evolving time series. Rogers et al. [27] extended [22] and further
proposed a Multi-Linear Dynamic System (MLDS), which provides
the base of the proposed TRNN. Yu et al [38] proposed a Temporal
Regularized Matrix Factorization (TRMF) for modeling co-evolving
time series. Zhou et al. [42] proposed a bi-level model to detect the
rare patterns of time series. Recently, Yu et al. [39] used LSTM [15]
for modeling traffic flows. Liang et al. [24] proposed a multi-level
attention network for geo-sensory time series prediction. Srivastava
et al. [30] and Zhou et al. [45] used separate RNNs for weather and
air quality monitoring time series. Yu et al. [40] proposed a HOT-
RNN based on tensor-trains for long-term forecasting. Zhou et
al. [43] proposed a multi-domality neural attention network for
financial time series. One limitation of this line of research is that
it often ignores the relation network between different time series.

5.2 Graph Convolutional Networks

Plenty of real-world data could naturally be represented by a net-
work or graph, such as social networks and sensor networks. Bruna
et al. [5] defined spectral graph convolution operation in the Fourier
domain by analogizing it to one-dimensional convolution. Henaff et
al. [14] used a linear interpolation, and Defferrard et al. [11] adopted
Chebyshev polynomials to approximate the spectral graph convo-
lution. Kipf et al. [18] simplified the Chebyshev approximation and
proposed a GCN. These methods were typically designed for flat
graphs. There are also graph convolutional network methods con-
sidering multiple types of relationships. Monti et al. [26] proposed
a multi-graph CNN for matrix completion, which does not apply
to tensor graphs. Wang et al. [33] proposed HAN which adopted
attention mechanism to extract node embedding from different
layers of a multiplex network [10, 16, 36], which is a flat graph
with multiple types of relations, but not the tensor graph in our
paper. Liu et al. [25] proposed a TensorGCN for text classification.
It is worth pointing out that the term tensor in [25] was used in a
different context, i.e., it actually refers to a multiplex graph. For a
comprehensive review of the graph neural networks, please refer
to [34, 41, 44].

5.3 Networked Time Series

Relation networks have been encoded into traditional machine
learning methods such as dynamic linear [22] and multi-linear [27]
systems for co-evolving time series [6, 7, 13]. Recently, Li et al. [23]
incorporated spatial dependency of co-evolving traffic flows by the
diffusion convolution. Yu et al. [37] used GCN to incorporate spatial
relations and CNN for capturing temporal dynamics. Yan et al. [35],
introduced a spatial-temporal GCN for skeleton recognition. Li
et al. [21] leveraged RGCN [28] to model spatial dependency and
LSTM [15] for temporal dynamics. These methods only focus on
the relation graphs of a single mode, and ignore relations on other
modes e.g. the correlation between the speed and occupancy of the
traffic. In addition, these methods rely on the same function for
capturing temporal dynamics of all time series.

It is worth pointing out that the proposed NeT3 unifies and
supersedes both co-evolving time series and networked time series
as a more general data model. For example, if the adjacency matrix
A𝑚 (𝑚 = 1, ..., 𝑀) for each mode is set as an identity matrix, the
proposed NeT3 degenerates to co-evolving (tensor) time series (e.g.,
[22]); networked time series in [6] can be viewed as a special case
of NeT3 whose tensor X only has a single mode.

6 CONCLUSION

In this paper, we introduce a novel NeT3 for jointly modeling of
tensor time series with its relation networks. In order to effectively
model the tensor with its relation networks at each time step, we
generalize the graph convolution from flat graphs to tensor graphs
and propose a novel TGCN which not only captures the synergy
among graphs but also has a succinct form. To balance the common-
ality and specificity of the co-evolving time series, we propose a
novel TRNN, which helps reduce noise in the data and the number
of parameters in the model. Experiments on a variety of real-world
datasets demonstrate the efficacy and the applicability of NeT3.
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