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ABSTRACT

Hypergraphs, a generalization of graphs, naturally represent group-

wise relationships among multiple individuals or objects, which

are common in many application areas, including web, bioinfor-

matics, and social networks. The flexibility in the number of nodes

in each hyperedge, which provides the expressiveness of hyper-

graphs, brings about structural differences between graphs and

hypergraphs. Especially, the overlaps of hyperedges lead to com-

plex high-order relations beyond pairwise relations, raising new

questions that have not been considered in graphs: How do hyper-

edges overlap in real-world hypergraphs? Are there any pervasive

characteristics? What underlying process can cause such patterns?

In this work, we closely investigate thirteen real-world hyper-

graphs from various domains and share interesting observations

of the overlaps of hyperedges. To this end, we define principled

measures and statistically compare the overlaps of hyperedges in

real-world hypergraphs and those in null models. Additionally,

based on the observations, we propose HyperLap, a realistic hyper-

graph generative model. HyperLap is (a) Realistic: it accurately

reproduces overlapping patterns of real-world hypergraphs, (b) Au-

tomatically Fittable: its parameters can be tuned automatically

using HyperLap
+
to generate hypergraphs particularly similar to

a given target hypergraph, (c) Scalable: it generates and fits a

hypergraph with 0.7 billion hyperedges within few hours.
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1 INTRODUCTION

Group interactions among multiple individuals or objects are om-

nipresent in complex systems: collaborations of co-authors, co-

purchases of items, group communications in question-and-answer

sites, to name a few. They are naturally modeled as a hypergraph
where each hyperedge (i.e., a subset of an arbitrary number of nodes)

represents a group interaction. Hypergraphs are a generalization

of ordinary graphs, which naturally describe pairwise interactions.
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In real-world hypergraphs, hyperedges are overlapped with each

other, revealing interesting relations between them. Due to the

flexibility in the size of each hyperedge, even a fixed number of hy-

peredges can overlap in infinitely many different ways. Moreover,

these relations are high-order, and decomposing them into pairwise

relations loses considerable information. This unique property of

hypergraphs poses important questions that have not been con-

sidered in graphs: (1) How do hyperedges overlap in real-world

hypergraphs? (2) Are there any non-trivial patterns that distinguish

real-world hypergraphs from random hypergraphs? (3) How can

we reproduce the patterns through simple mechanisms?

These questions are partially answered in recent empirical stud-

ies, which reveal structural and dynamical patterns of real-world hy-

pergraphs. The discovered patterns are regarding giant connected

components [12], diameter [12, 22], 3-cliques [5], 3-hyperedge sub-
hypergraphs [24], simplicial closure [5], similarity between tempo-

rally close hyperedges [6], the number of intersecting hyperedges

[22], etc. These patterns are directly or indirectly affected by the

overlaps of hyperedges. Moreover, the overlaps of hyperedges have

been considered for hyperedge prediction [5, 6, 24] and realistic

hypergraph generation [12].

In this work, we complement the previous studies with new

findings, measures, and realistic generative models regarding the

overlaps of hyperedges. To this end, we closely examine thirteen

real-world hypergraphs from six distinct domains. Specifically, we

analyze the overlaps of hyperedges in them at three different levels:

subsets of nodes, hyperedges, and egonets. Then, we verify our find-

ings using randomized hypergraphs, where we overlap hyperedges

randomly while preserving the degrees of nodes and the sizes of hy-

peredges. Our investigation reveals that the overlaps of hyperedges

in real-world hypergraphs show the following properties:

• Substantial: Hyperedges in each egonet tend to overlap more

substantially in real-world hypergraphs than in randomized ones.

• Heavy-tailed: The number of hyperedges overlapping at each

pair or triple of nodes is more skewed with a heavier tail in real-

world hypergraphs than in randomized ones. The number of

overlapping hyperedges follows a near power-law distribution.

• Homophilic: Nodes contained in each hyperedge tend to be

structurally more similar (i.e., more hyperedges overlap at them)

in real-world hypergraphs than in randomized ones.

For the investigation of real-world hypergraphs, we design novel

and principled measures. We show that our measure of overlapness

of hyperedges satisfies three intuitively clear axioms, while awidely-

used density measure does not. We also introduce a measure of

overlapness at subsets of nodes, which reveals interesting near

power-law behaviors, and a measure of homogeneity of hyperedges,

which plays a key role in realistic hypergraph generation.
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Table 1: HyperLap
+
accurately reproduces the overlaps of hyperedges in real-world hypergraphs. Synthetic hypergraphs cre-

ated by HyperLap
+
exhibit (Obs. 1) dense egonets, (Obs. 2) highly overlapped egonets, (Obs. 3) heavy-tailed pair-of-nodes

degree distribution, (Obs. 4) heavy-tailed triple-of-nodes degree distribution, and (Obs. 5) homogeneous hyperedges. We pro-

vide the full results in [1].

Observation 1 Observation 2 Observation 3 Observation 4 Observation 5

Real

(threads-math)

HyperLap
+

(Proposed)

HyperPA

(Competitor)

What underlying process can cause hyperedges to systemati-

cally overlap exhibiting the above patterns? We design HyperLap,

a stochastic hypergraph generative model. HyperLap accurately

reproduces realistic overlapping patterns of hyperedges. In addition,

we present HyperLap
+
, which automatically tunes the parameters

of HyperLap to generate synthetic hypergraphs particularly similar

to a given target graph (see Table 1). HyperLap gives intuitions

useful in reasoning about and predicting the evolution of the hy-

pergraphs, and it can be used to generate synthetic hypergraphs

for simulations and evaluation of algorithms when it is impossible

to collect or track real hypergraphs. HyperLap
+
can be used to

anonymize hypergraphs that cannot be publicized to share them.

Our contributions are summarized as follow:

• Observations inReal-worldHypergraphs:Wediscover three

unique characteristics of the overlaps of hyperedges in real-world

hypergraphs, and we verify them using randomized hypergraphs.

• Novel Measures:We define novel and principled measures re-

garding the overlaps of hyperedges at 3 different levels. They play
key roles in investigation and realistic hypergraph generation.

• Realistic GenerativeModel:We propose HyperLap, a stochas-

tic hypergraph generator that reproduces realistic overlaps of

hyperedges. We also provide HyperLap
+
, which automatically

fits the parameters of HyperLap to a given hypergraph. Empiri-

cally, they scale near linearly with the number of hyperedges.

Reproducibility: The source code and datasets used in this work

are available at https://github.com/young917/www21-hyperlap.

In Section 2, we discuss related work. In Section 3, we describe

the datasets and the null models used throughout this work. In

Section 4, we share our observations of the overlaps of hyperedges

in real-world hypergraphs. In Section 5, we propose HyperLap, a

realistic hypergraph generative model, and provide experimental

results. Lastly, we offer conclusions in Section 6.

2 RELATEDWORK

There have been extensive studies on macroscopic structural pat-

terns [4, 13, 35, 39], microscopic structural patterns [32, 33], and

dynamical patterns [15, 23, 27] in real-world pairwise graphs, and

numerous realistic graph generators [8, 14, 25, 27, 44] for repro-

ducing the discovered patterns have been proposed. In this sec-

tion, we focus on hypergraphs and review previous studies on

empirical patterns in real-world hypergraphs and realistic hyper-

graph generators. Hypergraphs have been used in a wide range of

fields, including computer vision [45], bioinformatics [17], circuit

design [20], social network analysis [41], and recommendation [30].

They have been used in various analytical and learning tasks, in-

cluding classification [18, 40], clustering [3, 28, 29], and hyperedge

prediction [5, 43]. In addition to the realistic hypergraph gener-

ators described below, a number of random hypergraph models

[7, 9, 19, 37] have been used for statistical tests.

Benson et al. [5] focused on simplicial closure events (i.e., the first

appearance of a hyperedge containing a set of nodes each of whose

pairs co-appear in previous hyperedges) and investigated how their

probabilities are affected by local features, such as average degree,

in real-world hypergraphs from different domains.

Benson et al. [6] considered sequences (i.e., time-ordered hyper-

edges that are relevant to each other) in real-world hypergraphs and

showed that hypergraphs in a sequence tend to be more similar to

recent hyperedges than distant ones. They also discovered that the

number of hyperedges overlapping at each pair and triple of nodes

tends to be larger in each sequence than in a null model. In addition,

the authors proposed to exploit both patterns when predicting the

next hyperedge in a sequence. Notably, in Section 4.2, we also exam-

ine the number of hyperedges overlapping at each pair and triple

of nodes. However, we (a) examine them at the hypergraph level,

(b) discover their near power-law distributions, and (3) compare

them with those in degree-preserving randomized hypergraphs.

Do et al. [12] considered projecting a real-world hypergraph

into multiple pairwise graphs so that each 𝑘-th graph describes the

https://github.com/young917/www21-hyperlap
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Table 2: Frequently-used symbols.

Notation Definition

𝐺 = (𝑉 , 𝐸) hypergraph with nodes 𝑉 and hyperedges 𝐸

𝐸 = {𝑒1, ..., 𝑒 |𝐸 |} set of hyperedges

𝐸 {𝑣 } set of hyperedges that contain a node 𝑣

𝐸𝑆 set of hyperedges that contain a subset 𝑆 of nodes

𝐿 number of levels in HyperLap

𝑤1, ...,𝑤𝐿 weight of each level

𝑆
(ℓ)
𝑔 set of nodes in a group g of level ℓ

interactions between size-𝑘 subsets of nodes. They showed that the

pairwise graphs exhibit (a) heavy-tailed degree and singular-value

distributions, (b) giant connected components, (c) small diameter,

and (d) high clustering coefficients. Inspired by the observations,

the authors proposed a hypergraph generator called HyperPA [12].

In HyperPA, the subset of nodes that form a hyperedge with a new

node is selected with probability proportional to the number of

hyperedges containing the subset.

Kook et al. [22] revealed that the ratio of intersecting hyperedges

and the diameter of real-world hypergraph decreases over time,

while the number of hyperedges increases faster than the number

of nodes. Additionally, they discovered four structural patterns

regarding (a) the number of hyperedges containing each node,

(b) the size of hyperedges, (c) the size of intersections between

two hyperedges, and (d) singular values of incident matrices. In

order to reproduce the patterns, the authors proposed a hypergraph

generator called HyperFF. For each new node, HyperFF simulates

forest fire spreading over hyperedges, and the new node forms a

size-2 hyperedge with each burned node. Then, HyperFF simulates

forest fire again to expand each size-2 hyperedge.

Lee et al. [24] proposed 26 hypergraph motifs (h-motifs), which

are connectivity patterns of three connected hyperedges, based on

the emptiness of the seven Venn diagram regions. They showed

that the relative occurrences of the h-motifs are particularly similar

in real-world hypergraphs from the same domain.

All these findings are directly or indirectly related to the overlaps

of hyperedges. In this work, we complement the previous studies

with new findings, measures, and more realistic and scalable gener-

ators, all of which are related to the overlaps of hyperedges.

3 DATASETS AND NULL MODELS

In this section, we first introduce some notations and preliminaries.

Then, we describe the datasets and the null models used throughout

this paper. Refer to Table 2 for the frequently-used notations.

3.1 Preliminaries and Notations

We review the concept of hypergraphs and then the Chung-Lu

model, which our null model is based on.

Hypergraphs: A hypergraph 𝐺 = (𝑉 , 𝐸) consists of a set of nodes
𝑉 and a set of hyperedges 𝐸 ⊆ 2𝑉 . Each hyperedge 𝑒 ⊆ 𝑉 is a

non-empty subset of |𝑒 | nodes. For each node 𝑣 , we denote the set

of hyperedges that contain 𝑣 by 𝐸 {𝑣 } := {𝑒 ∈ 𝐸 : 𝑣 ∈ 𝑒}, and the

degree 𝑑𝑣 := |𝐸 {𝑣 } | of 𝑣 is defined as the number of hyperedges

that contains 𝑣 . We say two hyperedges 𝑒𝑖 and 𝑒 𝑗 are overlapped or

intersected if they share any node, i.e., 𝑒𝑖 ∩ 𝑒 𝑗 ≠ ∅.

Table 3: Summary statistics of 13 real-world hypergraphs

from 6 domains: the number of nodes |𝑉 |, the number of hy-

peredges |𝐸 |, the average hyperedge size avg𝑒∈𝐸 |𝑒 |, and the

maximum hyperedge sizemax𝑒∈𝐸 |𝑒 |.
Dataset |V| |E| avge∈E |e| maxe∈E |e|
email-Enron 143 1,459 3.13 37

email-Eu 986 24,520 3.62 40

contact-primary 242 12,704 2.41 5

contact-high 327 7,818 2.32 5

NDC-classes 1,149 1,049 6.16 39

NDC-substances 3,767 6,631 9.70 187

tags-ubuntu 3,021 145,053 3.42 5

tags-math 1,627 169,259 3.49 5

threads-ubuntu 90,054 115,987 2.30 14

threads-math 153,806 535,323 2.61 21

coauth-DBLP 1,836,596 2,170,260 3.43 280

coauth-geology 1,091,979 909,325 3.87 284

coauth-history 503,868 252,706 3.01 925

Chung-Lu Models: The Chung-Lu (CL) model [10] is a random

graph model, and it yields graphs where a given degree sequence

of nodes is expected to be preserved. Consider a graph 𝐺 = (𝑉 , 𝐸)
where 𝐸 is a set of pairwise edges. Given a desired degree distri-

bution {𝑑1, 𝑑2, ..., 𝑑 |𝑉 |}, where 𝑑𝑖 is the degree of the node 𝑖 , the
CL model generates a random graph by creating an edge between

each pair of nodes with probability proportional to the product

of their degrees. That is, for each pair (𝑖, 𝑗) of nodes, the edge 𝑒𝑖 𝑗
is created with probability

𝑑𝑖𝑑 𝑗

2𝑀 , where𝑀 = 1
2

∑ |𝑉 |
𝑘=1

𝑑𝑘 , assuming

𝑑𝑘 <
√
𝑀 holds for all 𝑘 . If we let 𝑑𝑖 be the degree of each node 𝑖 in

the generated graph, its expected value is equal to 𝑑𝑖 , i.e.,

E[𝑑𝑖 ] =
∑︁ |𝑉 |

𝑗=1

𝑑𝑖𝑑 𝑗

2𝑀
= 𝑑𝑖

∑︁ |𝑉 |
𝑗=1

𝑑 𝑗

2𝑀
= 𝑑𝑖 .

While the CL model flips a coin for all possible 𝑂 ( |𝑉 |2) node
pairs, the fast CL (FCL) model [34] samples two nodes indepen-

dently with probability proportional to the degree of each node.

Then, it creates an edge between the sampled pair of nodes. This

process is repeated |𝐸 | times, and the total time complexity is𝑂 ( |𝐸 |).
Even in graphs generated by the FCL model, the expected degree

of each node 𝑖 is equal to 𝑑𝑖 .

3.2 Datasets

We use thirteen real-world hypergraphs from six different do-

mains [5] after removing duplicated or singleton hyperedges. Refer

to Table 3 for some statistics of the hypergraphs.

• email (email-Enron [21] and email-Eu [26, 42]): Each node is

an email account and each hyperedge is a set of the sender and

receivers of an email.

• contact (contact-primary [38] and contact-high [31]): Each node

is a person, and each hyperedge is a group interaction among

individuals.

• drugs (NDC-classes and NDC-substances): Each node is a class

label (in NDC-classes) or a substances (in NDC-substances) and

each hyperedge is a set of labels/substances of a drug.
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• tags (tags-ubuntu and tags-math): Each node is a tag, and each

hyperedge is a set of tags attached to a question.

• threads (threads-ubuntu and threads-math): Each node is a user,

and each hyperedge is a group of users participating in a thread.

• co-authorship (coauth-DBLP, coauth-geology [36], and coauth-

history [36]): Each node is an author and each hyperedge is a set

of authors of a publication.

3.3 Null Model: HyperCL (Algorithm 1)

We introduce HyperCL, a random hypergraph generator that ex-

tends the FCL model (see Section 3.1) to hypergraphs. We use ran-

dom hypergraphs generated by HyperCL as null models throughout

this work. As described in Algorithm 1, the degree distribution of

nodes and the size distribution of hyperedges in a considered real-

world hypergraph are given as inputs. For each 𝑖-th hyperedge 𝑒𝑖 ,

its nodes are sampled independently, with probability proportional

to the degree of each node (i.e., the probability is 𝑑𝑣/
∑ |𝑉 |

𝑗=1 𝑑 𝑗 for

each node 𝑣) until the size of the hyperedge reaches 𝑠𝑖 (lines 4-6).

Note that duplicated nodes are ignored so that each 𝑖-th hypergraph

contains 𝑠𝑖 distinct nodes.

In hypergraphs generated by HyperCL, the size distribution of

hyperedges is exactly the same as the input size distribution, and

the degree distribution of nodes is also expected to be similar to

the input degree distribution. Specifically, if we assume

∑ |𝑉 |
𝑗=1 𝑑 𝑗 ≫

(max𝑘∈{1, · · · , |𝐸 | } 𝑠𝑘 ) · (max𝑘∈{1, · · · , |𝑉 | } 𝑑𝑘 ) and let 𝑑𝑣 be the in a

generated hypergraph,

E[𝑑𝑣] =
∑︁

𝑒∈𝐸 𝑃 [𝑣 ∈ 𝑒]

≈
∑︁

𝑒∈𝐸
©­«|𝑒 | · 𝑑𝑣∑ |𝑉 |

𝑗=1 𝑑 𝑗

ª®¬ =
𝑑𝑣∑ |𝑉 |
𝑗=1 𝑑 𝑗

∑︁
𝑒∈𝐸 |𝑒 | = 𝑑𝑣 .

We show experimentally in [1] that the degree distributions in

hypergraphs generated by HyperCL are closed to the input degree

distribution.

4 OBSERVATIONS

In this section, we examine overlapping patterns of hyperedges

in real-world hypergraphs, and we verify them by comparison

with those in randomized hypergraphs obtained by HyperCL. We

investigate the overlaps of hyperedges at three different levels, and

our observations are summarized as follow.

• (L1) Egonet Level: The overlaps of hyperedges in the egonet of

each node tend to be more substantial in real-world hypergraphs

than in randomized ones.

• (L2) Pair/Triple of Nodes Level: The number of hyperedges

overlapping at each pair or triple of nodes follows a near (trun-

cated) power-law distribution. Moreover, the number of overlap-

ping hyperedges is more skewed with a heavier tail in real-world

hypergraphs than in randomized ones.

• (L3) Hyperedge Level: Hyperedges tend to contain nodes that

are structurally more similar (i.e., nodes where more hyperedges

overlap) in real-world hypergraphs than in randomized ones.

4.1 L1. Egonet Level

Algorithm 1: HyperCL: Random Hypergraph Generator

Input : (1) distribution of hyperedge sizes {𝑠1, ..., 𝑠 |𝐸 |}
(2) distribution of node degrees {𝑑1, ..., 𝑑 |𝑉 |}

Output : random hypergraph 𝐺 = (𝑉 , 𝐸)
1 𝑉 ← 𝑉 and 𝐸 ← ∅
2 for each 𝑖 = 1, ..., |𝐸 | do
3 𝑒𝑖 ← ∅
4 while |𝑒𝑖 | < 𝑠𝑖 do

5 𝑣 ← select a node with prob. proportional to the

degree

6 𝑒𝑖 ← 𝑒𝑖 ∪ {𝑣}
7 𝐸 ← 𝐸 ∪ {𝑒𝑖 }
8 return 𝐺 = (𝑉 , 𝐸)

Density of Egonets:We first investigate egonets in real-world hy-

pergraphs. We define the egonet of a node 𝑣 as the set of hyperedges

that contains 𝑣 (i.e., 𝐸 {𝑣 } := {𝑒 ∈ 𝐸 : 𝑣 ∈ 𝑒}). To quantitatively

measure how substantially the hyperedges in an egonet overlap

each other, we first consider the density (see Definition 1) of the

egonets in real-world and randomized hypergraphs, and this leads

to Observation 1. While one might expect the density of a set of

hyperedges E to be defined as the number of hyperedges divided

by the size of the powerset of the induced nodes V (i.e.,
|E |

2|V|−1 ),
we follow the definition in [16] in this work.

Definition 1 (Density [16]). Given a set of hyperedges E, the
density of the set, 𝜌 (E) is defined as:

𝜌 (E) := |E |
|⋃𝑒∈E 𝑒 |

.

Observation 1. Egonets in real-world hypergraphs tend to be
denser than those in randomized hypergraphs.

Specifically, as seen in the figures in the first row of Table 4, when

considering the egonets with the same number of hyperedges, they

tend to contain fewer nodes in real-world hypergraphs than in

randomized ones. Thus, the density, which is defined as the ratio

of the number of hyperedges to the number of nodes tends to be

higher in real-world hypergraphs than in randomized ones. In the

figures, the slopes of the regression lines, which are close to the

average egonet density, are steeper in real-world hypergraphs than

in randomized ones.

Principled Measure: Overlapness: However, density does not

fully take the overlaps of hyperedges into consideration. Consider

two sets of hyperedges: E1 = {{𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑐, 𝑑}, {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}} and
E2 = {{𝑣,𝑤, 𝑥}, {𝑥,𝑦}, {𝑦, 𝑧}}. While, intuitively, E1 are overlapped
more substantially than E2, the densities of both sets, which consist
of the same numbers of nodes and hyperedges, are the same.

To address this issue, we first present three axioms that any

reasonable measure of the hyperedge overlaps should satisfy. Then,

we propose overlapness, a new measure that satisfies all the axioms.

The three axioms are formalized in Axioms 1, 2, and 3.

Axiom 1 (Number of Hyperedges). Consider two sets of hyper-
edges E and E ′ that contain hyperedges of the same size, and the
same number of distinct nodes. Then, the set with more hyperedges is
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Table 4: Hyperedges in real-world hypergraphs overlap distinctly from those in randomized hypergraphs. We examine (Obs.

1) density of each egonet, (Obs. 2) overlapnesses of each egonet, (Obs. 3) the number of hyperedges overlapping at each pair of

nodes, (Obs. 4) the number of hyperedges overlapping at each triple of nodes, and (Obs. 5) homogeneity of each hyperedge. Re-

garding Observation 5, we preprocessed the continuous values of hyperedge homogeneity by binning them into their nearest

integers. We provide the full results in [1].

email-Eu contact-primary NDC-substances tags-math threads-ubuntu coauth-DBLP
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n
3
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n
4

O
b
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e
r
v
a
t
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o
n
5

more overlapped than the other. Formally,(
( |E | < |E ′ |) ∧ (|𝑒 | = |𝑒 ′ | = 𝑛,∀𝑒 ∈ E,∀𝑒 ′ ∈ E ′)

∧ (|
⋃
𝑒∈E

𝑒 | = |
⋃
𝑒′∈E′

𝑒 ′ |)
)
⇒ 𝑓 (E) < 𝑓 (E ′) .

Axiom 2 (Number of Distinct Nodes). Consider two hyper-
edges E = {𝑒1, · · · , 𝑒𝑛} and E ′ = {𝑒

′
1, · · · , 𝑒

′
𝑛} with the same number

of hyperedges and the same size distribution of hyperedges. Then, the
set containing less distinct nodes is more overlapped than the other.
Formally,(
( |E | = |E ′ | = 𝑛) ∧ (|𝑒𝑖 | = |𝑒 ′𝑖 |,∀𝑖 ∈ {1, · · · , 𝑛})

∧ (|
⋃
𝑒∈E

𝑒 | > |
⋃
𝑒′∈E′

𝑒 ′ |)
)
⇒ 𝑓 (E) < 𝑓 (E ′) .

Axiom 3 (Sizes of Hyperedges). Consider two sets of hyperedges
E = {𝑒1, · · · , 𝑒𝑛} and E ′ = {𝑒

′
1, · · · , 𝑒

′
𝑛} with the same number of

distinct nodes and the same number of hyperedges. Then, the set with
larger hyperedges is more overlapped than the other. Formally,(
( |E | = |E ′ | = 𝑛) ∧ (|𝑒𝑖 | < |𝑒 ′𝑖 |) ∧ (|𝑒 𝑗 | ≤ |𝑒

′
𝑗 |,∀𝑗 ∈ {1, · · · , 𝑛} \ {𝑖})

∧ (|
⋃
𝑒∈E

𝑒 | = |
⋃
𝑒′∈E′

𝑒 ′ |)
)
⇒ 𝑓 (E) < 𝑓 (E ′).

Table 5: Overlapness measures the degree of hypergraph

overlaps reasonably, satisfying all the axioms, while the oth-

ers do not. See Appendix A for details.

Metric Axiom 1 Axiom 2 Axiom 3

Intersection % % %

Union Inverse % ! %

Jaccard Index % % %

Overlap Coefficient % % %

Density ! ! %

Overlapness (Proposed) ! ! !

Note that density and the four additional widely-used measures

listed in Table 5 do not satisfy all the axioms. Thus, we propose over-
lapness (see Definition 2) as a measure of the degree of hyperedge

overlaps, and it satisfies all the axioms, as formalized in Theorem 1.

Definition 2 (Overlapness). Given a set of hyperedges E, the
overlapness of the set, 𝑜 (E) is defined as follow:

𝑜 (E) :=
∑
𝑒∈E |𝑒 |
|⋃𝑒∈E 𝑒 |

.

Theorem 1 (Soundness of Overlapness). Overlapness 𝑜 (·)
satisfies Axioms 1, 2, and 3.

Proof. See Appendix A. ■
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Figure 1: Hypergraphs from the same domain share similar

hyperedge overlapping patterns at the egonet level.

In overlapness, the sum of sizes of hyperedges, instead of the

number of hyperedges, is considered. Notably, the overlapness of

a hyperedge set is equivalent to the average degree of the dis-

tinct nodes in the set. In addition, overlapness is equivalent to

weighted density if we assign the size of each hyperedge as its

weight. Overlapness agrees with our intuition in the previous

example. That is, for E1 = {{𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑐, 𝑑}, {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}} and
E2 = {{𝑣,𝑤, 𝑥}, {𝑥,𝑦}, {𝑦, 𝑧}}, 𝑜 (E1) = 12/5 > 𝑜 (E2) = 7/5.
Overlapness of Egonets:We measure the overlapness of egonets

in real-world and randomized hypergraphs, and this leads to Ob-

servation 2. As seen in the figures in the second row of Table 4,

egonets in real-world hypergraphs tends to have higher overlapness

than those in randomized hypergraphs. The slopes of the regression

lines, which are close to the average egonet overlapness, are steeper

in real-world hypergraphs than in randomized ones.

Observation 2. Egonets in real-world hypergraphs have higher
overlapness than those in randomized hypergraphs.

Comparison across Domains: Furthermore, we compute the sig-

nificance of density and overlapness of egonets in the hypergraph

𝐺 which are defined as

sig𝜌 (𝐺) B
𝜌 (𝐺) − 𝜌 (𝐺 ′)

maxg∈𝜔 (𝐺), g′∈𝜔 (𝐺′) |𝜌 (g) − 𝜌 (g′) |
,

sigo (𝐺) B
𝑜 (𝐺) − 𝑜 (𝐺 ′)

maxg∈𝜔 (𝐺), g′∈𝜔 (𝐺′) |𝑜 (g) − 𝑜 (g′) |
,

respectively, where𝐺 ′ is a randomized hypergraph of 𝐺 ; 𝜌 (·) and
𝑜 (·) are the average egonet density and overlapness, respectively;

and 𝜔 (·) is the set of egonets. As seen in Figure 1, real-world hyper-

graphs from the same domain share similar significance of density

and overlapness of egonets, indicating that their hyperedges share

similar overlapping patterns at the egonet level.

4.2 L2. Pair/Triple of Nodes Level

Given a pair or triple of nodes, how many hyperedges do overlap

at them? In other words, how many hyperedges do contain the

pair or triple? While the degree is generally defined as the number

of hyperedges that contains each individual node, here we extend

the concept to pairs and triples of nodes. Specifically, if we let

𝐸𝑆 := {𝑒 ∈ 𝐸 : 𝑆 ⊆ 𝑒} be the set of hyperedges overlapping at a

subset 𝑆 ⊆ 𝑉 of nodes, then the degree of each node pair {𝑖, 𝑗} is
defined as 𝑑 (2) ({𝑖, 𝑗}) := |𝐸 {𝑖, 𝑗 } |, and the degree of each node triple
{𝑖, 𝑗, 𝑘} is defined as 𝑑 (3) ({𝑖, 𝑗, 𝑘}) := |𝐸 {𝑖, 𝑗,𝑘 } |. The degree of a pair
or triple can also be interpreted as the structural similarity between

the nodes in the pair or triple. Intuitively, nodes are structurally

more similar as they are included together in more hyperedges.

Table 6: The distribution of the number of hyperedges over-

lapping at each pair or triple of nodes is heavy-tailed and

close to a truncated power-law distribution. This claim is

supported by the reported log-likelihood ratios when fitting

the distributions to each of three heavy-tailed distributions

(power-law, truncated power-law, and log normal) against

the exponential distribution.

Dataset

Pair of Nodes (Obs. 3) Triple of Nodes (Obs. 4)

pw tpw logn pw tpw logn

email-Enron -0.36 4.22 3.50 1.91 3.88 3.47

email-Eu 0.66 1.48 1.29 0.21 0.77 0.63

contact-primary 0.64 1.40 1.35 0.01 0.48 0.48

contact-high 0.75 0.81 0.79 -1.04 - 0.80

NDC-classes 13.49 15.74 14.78 24.37 31.53 29.19

NDC-substances 38.68 43.87 42.55 102.90 116.45 109.77

tags-ubuntu 39.66 41.55 41.25 17.03 17.84 17.79

tags-math 3.82 4.49 4.47 26.97 29.26 29.07

threads-ubuntu 3.79 3.97 3.97 0.34 0.80 0.73

threads-math 14.25 14.78 14.68 -1.04 -0.09 -1.12

coauth-DBLP 19.23 22.47 22.31 5.75 5.84 5.83

coauth-geology 45.20 53.39 52.92 9.69 13.73 13.01

coauth-history 3.74 3.81 3.91 -0.36 1.42 1.27

Examining the degree distributions of pairs and triples of nodes,

instead of that of individual nodes, gives higher-order insights

on how nodes as a set form hyperedges. In the third and fourth

columns of Table 4, we provide the distributions of 𝑑 (2) and 𝑑 (3) in
real-world hypergraphs and those in a corresponding randomized

hypergraph. Our findings are summarized in Observations 3 and 4.

Observation 3. The number of hyperedges overlapping at each
pair of nodes (i.e., degree of each pair) is more skewed with a heavier
tail in real-world hypergraphs than in randomized ones. The distribu-
tion is similar to a truncated power law distribution.

Observation 4. The number of hyperedges overlapping at each
triple of nodes (i.e., degree of each triple) is more skewed with a
heavier tail in real-world hypergraphs than in randomized ones. The
distribution is similar to a truncated power law distribution.

In addition to the visual inspection, we compute the log-likelihood

ratio of three representative heavy-tailed distributions (power-law,

truncated power-law, and log normal) against the exponential dis-

tribution, as suggested in [2, 11]. If the ratio is greater than 0, the
given distribution is more similar to the corresponding heavy-tailed

distribution than an exponential distribution. As reported in Ta-

ble 6, except for one case, at least one heavy-tailed distribution has

a positive ratio, and in most cases the ratio is highest for truncated

power-law distributions. These result support the claim that the

degree distributions of pairs and triples of nodes is heavy-tailed

and similar to truncated power-law distributions.

In fact, these results are intuitive. The more often a pair or triple

of nodes interact together, the more likely they are to interact

together again. For example, researchers that have co-authored

multiple papers are likely to share common interests, which can

lead to more collaborations in the future.

4.3 L3. Hyperedge Level

How are nodes that form hyperedges together related to each

other? It is unlikely in real-world hypergraphs that each hyperedge
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Table 7: The distributions of hyperedge homogeneity in real

hypergrpahs and those generated by HyperLap
+
are heavy-

tailed. Log-likelihood ratios are calculated as in Table 6.

Dataset

Real-World Data Generated

pw tpw logn pw tpw logn

email-Enron -1.09 -0.26 -0.38 -2.71 -0.43 -4.76

email-Eu 0.90 0.90 0.91 -3.00 3.13 2.08

contact-primary 2.19 2.30 2.22 0.67 2.26 1.90

contact-high 1.55 1.55 1.95 2.50 4.72 3.65

NDC-classes 0.00 0.39 0.18 -0.47 0.87 0.52

NDC-substances 0.64 1.22 1.13 1.87 2.90 2.58

tags-ubuntu 2.25 2.25 2.26 -2.01 7.00 6.19

tags-math -17.66 -7.93 2.62 3.53 6.56 6.07

threads-ubuntu 4.58 7.70 6.55 3.92 4.25 3.94

threads-math -0.72 9.00 6.69 4.30 12.10 10.53

coauth-DBLP 4.01 4.31 4.20 10.65 25.23 22.82

coauth-geology 4.29 5.52 5.37 1.75 8.06 7.00

coauth-history - - 1.73 3.98 4.31 4.02

is formed by nodes chosen independently at random. It is expected

to exist a strong dependency among the nodes forming a hyper-

edge together. In order to investigate the dependency, we use the

homogeneity of hyperedge, defined in Definition 3, to measure how

structurally similar such nodes are.

Definition 3 (Homogeneity of a Hyperedge). The homo-
geneity of a hyperedge 𝑒 ∈ 𝐸 is defined as follow:

ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 (𝑒) :=


∑
{𝑢,𝑣}∈(𝑒2) |𝐸{𝑢,𝑣} |

( |𝑒 |2 )
, if |𝑒 | > 1

0, otherwise,
(1)

where

(𝑒
2

)
is the set of node pairs in 𝑒 and |𝐸 {𝑢,𝑣 } | is the number of

hyperedges overlapping at the pair of 𝑢 and 𝑣 (i.e., the degree of the

pair {𝑢, 𝑣}). Note that, in Eq. (1), the structural similarity between

two nodes is measured in terms of the number of hyperedges over-

lapping at them, which we examine in Section 4.2. Eq. (1) can be

easily extended to three or more nodes.

The figures in the last row of Table 4 show the homogeneity

of the hyperedges in real-world hypergraphs and corresponding

randomized hypergraphs. As summarized in Observation 5, there is

a tendency that the homogeneity of each hyperedge in real-world

hypergraphs is greater than that in randomized ones. Moreover,

we verify that the distribution of homogeneity is heavy-tailed (see

Table 7), as in the previous subsection.

Observation 5. Hyperedges in real-world hypergraphs tend
to contain structurally more similar nodes (i.e., nodes where many
hyperedges overlap) than those in randomized hypergraphs.

The homogeneity of hyperedges plays a key role in generating

realistic hypergraphs, as described in the following section.

5 HYPERGRAPH GENERATION

We have shown that overlapping patterns of hyperedges in real-

world hypergraphs are clearly distinguished from those in ran-

domized hypergraphs. In this section, we propose HyperLap, a

scalable and realistic hypergraph generative model that reproduces

the realistic overlapping patterns of hyperedges. After describing

HyperLap, we present HyperLap
+
, which automatically tunes the

parameters of HyperLap so that hypergraphs similar to a given

Algorithm 2: HyperLap: Realistic Hypergraph Generator

Input : (1) distribution of hyperedge sizes {𝑠1, · · · , 𝑠 |𝐸 |}
(2) distribution of node degrees {𝑑1, · · · , 𝑑 |𝑉 |}
(3) number of levels 𝐿 (≤ log2 |𝑉 |)
(4) weights of each level {𝑤1, · · · ,𝑤𝐿}

Output : synthetic hypergraph 𝐺 = (𝑉 , 𝐸)
1 /* Initialization */

2 𝑉 ← {1, · · · , |𝑉 |} and 𝐸 ← ∅
3 /* Hierarchical Node Partitioning */

4 𝑆
(𝐿)
1 , · · · , 𝑆 (𝐿)

2𝐿−1
← uniformly partition 𝑉 into 2𝐿−1 groups

5 for each level ℓ = 𝐿 − 1, · · · , 1 do

6 for each group g = 1, · · · , 2ℓ−1 do

7 𝑆
(ℓ)
𝑔 = 𝑆

(ℓ+1)
2𝑔−1 ∪ 𝑆

(ℓ+1)
2𝑔

8 /* Hyperedge Generation */

9 for each 𝑖 = 1, · · · , |𝐸 | do
10 ℓ ← select a level with prob. proportional to the weight

11 𝑆
(ℓ)
𝑔 ← select a group at level ℓ uniformly at random

12 𝑒𝑖 ← ∅
13 while |𝑒𝑖 | < 𝑠𝑖 do

14 𝑣 ← select a node from 𝑆
(ℓ)
𝑔 with prob. proportional

to the degree

15 𝑒𝑖 = 𝑒𝑖 ∪ {𝑣}
16 𝐸 = 𝐸 ∪ {𝑒𝑖 }

17 return 𝐺 = (𝑉 , 𝐸)

target hypergraph are generated. Then, we evaluate HyperLap and

HyperLap
+
experimentally.

5.1 HyperLap: Multilevel HyperCL

We propose HyperLap, a realistic hypergraph generative model

whose pseudocode is described in Algorithm 2. The key idea behind

HyperLap is to extend HyperCL to multiple levels. Recall that

HyperCL itself cannot accurately reproduce realistic overlapping

patterns, as shown in Section 4.

Description of HyperLap: HyperLap, a multilevel extension of

HyperCL, requires two additional inputs: (1) number of levels 𝐿 and

(2) weights of each level {𝑤1, · · · ,𝑤𝐿}.1 For now, we assume that

the parameters are given; how to set the parameters is discussed

in the next subsection. HyperLap consists of the hierarchical node

partitioning step and the hyperedge generation step.

Step 1. Hierarchical Node Partitioning (lines 3 - 7). HyperLap

first partitions nodes into groups at every level. Specifically, at every

level ℓ ∈ {1, · · · , 𝐿}, it randomly divides nodes 2ℓ−1 groups, de-

noted by 𝑆
(ℓ)
1 , · · · , 𝑆 (ℓ)

2ℓ−1
while satisfying the following conditions:

(1) 𝑆
(ℓ)
𝑖
∩ 𝑆 (ℓ)

𝑗
= ∅ for all 𝑖 ≠ 𝑗 ∈ {1, · · · , 2ℓ−1},

(2) |⋃2ℓ−1
𝑖=1 𝑆

(ℓ)
𝑖
| = |𝑉 |,

(3) |𝑆 (ℓ)
𝑖
| = ⌊ |𝑉 | ·𝑖

2ℓ−1 ⌋ − ⌊
|𝑉 | · (𝑖−1)

2ℓ−1 ⌋ for all 𝑖 ∈ {1, · · · , 2ℓ−1},
(4) 𝑆

(ℓ)
𝑖

= 𝑆
(ℓ+1)
2𝑖−1 ∪ 𝑆

(ℓ+1)
2𝑖 for all ℓ < 𝐿, and 𝑖 ∈ {1, · · · , 2ℓ−1}.

1𝐿 should be set such that 𝐿 ≤ log2 |𝑉 |.
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The first and second conditions ensure that at each level each node

belongs to exactly one group. The third condition states that the

size of groups at each level are almost uniform. The last condition

states that the groups are hierarchical. That is, if nodes are in the

same group at a level, then they are in the same group at all lower

levels. Note that nodes are divided more finely into smaller subsets

at higher levels. At the lowest level 1, there exist a single group,
which is the same as the entire set of nodes 𝑉 , whereas at the

highest level 𝐿, there exist most groups whose number is 2𝐿−1.

Step 2. Hyperedge Generation (lines 8 - 16). Once we partition

nodes hierarchically in the previous step, for each 𝑖-th hyperedge 𝑒𝑖 ,

HyperLap first selects a level with probability proportional to the

weight of each level. That is, each level ℓ is selected with probability

proportional to𝑤ℓ . At the selected level ℓ , HyperLap selects a group

𝑆
(ℓ)
𝑔 uniformly at random. Then, the nodes forming 𝑒𝑖 are sampled

independently, with probability proportional to the degree of each

node,
2
until the size of the hyperedge reaches 𝑠𝑖 . That is, instead

of taking all nodes into consideration, we divide the nodes into

multiple groups and limit the nodes that a hyperedge can contain

into those in a group. Note that hyperedges generated within the

same group at higher levels are more likely to be overlapped each

other, as fewer nodes are in each group at a higher level. Practically,

since 𝑒𝑖 cannot be generated from a group whose size is smaller

than 𝑠𝑖 , we select level ℓ such that ℓ ≤ log2
|𝑉 |
𝑠𝑖
+ 1.

Degree Preservation of HyperLap: In hypergraphs generated

by HyperLap, the size distribution of hyperedges is exactly the

same as the input size distribution. Specifically, |𝑒𝑖 | = 𝑠𝑖 holds

for all 𝑖 ∈ {1, · · · , |𝐸 |}. The degree distribution of nodes is also

expected to be similar to the input degree distribution. In order to

show this, we first provide Lemma 1, which our analysis is based

on.

Lemma 1. For each group 𝑆
(ℓ)
𝑔 at level ℓ , the probability for a

hyperedge 𝑒 to be generated from 𝑆
(ℓ)
𝑔 is

𝑃 [𝑒 ⊆ 𝑆
(ℓ)
𝑔 ] =

𝑤ℓ

𝑊𝑒
· 1

2ℓ−1
, (2)

where𝑊𝑒 is the sum of the weights of suitable levels. That is,𝑊𝑒 =∑𝐿𝑒
𝑘=1

𝑤𝑘 where 𝐿𝑒 = ⌊log2
|𝑉 |
𝑠𝑖
+ 1⌋.

Proof.Given any hyperedge 𝑒 , HyperLap first randomly selects

a suitable level with probability proportional to the given weight.

Thus, the probability for the level ℓ to be selected is𝑤ℓ/𝑊𝑒 . Once

the level is determined, any of the 2ℓ−1 groups in level ℓ is selected

uniformly at random, i.e., with probability 1/2ℓ−1. The probability
for 𝑒 to be generated from 𝑆

(ℓ)
𝑔 is the product of the two probabilities,

and thus Eq. (2) holds. ■

For each node 𝑣 , let 𝑑
(ℓ)
𝑣 be the number of hyperedges that

contain the node 𝑣 among those generated at level ℓ . Then, the

degree 𝑑𝑣 of 𝑣 in an output hypergraph is the sum of 𝑑
(ℓ)
𝑣 over

all levels, i.e., 𝑑𝑣 =
∑𝐿
ℓ=1 𝑑

(ℓ)
𝑣 . Let 𝑑𝑚𝑎𝑥 := max𝑘∈{1, · · · , |𝑉 | } 𝑑𝑘

and 𝑠𝑚𝑎𝑥 = max𝑘∈{1, · · · , |𝐸 | } 𝑠𝑘 . Assume |𝑉 | ≫ 2𝐿−1 · 𝑑𝑚𝑎𝑥 and∑
𝑗 ∈𝑆 (ℓ )𝑔

𝑑 𝑗 ≫ 𝑑𝑚𝑎𝑥 · 𝑠𝑚𝑎𝑥 for all 𝑆
(ℓ)
𝑔 .

3
Then,

2
For each node 𝑣 ∈ 𝑆 (ℓ )𝑔 , the probability is 𝑑𝑣/

∑
𝑗∈𝑆 (ℓ )𝑔

𝑑 𝑗 .

3
If |𝑉 | ≫ 2𝐿−1 ·𝑑𝑚𝑎𝑥 , then

∑
𝑘∈𝑆 (ℓ )𝑔

𝑑𝑘/
∑|𝑉 |

𝑗=1 𝑑 𝑗 ≈ 1/2ℓ−1 for all ℓ ∈ {1, · · · , 𝐿}.

Algorithm 3: HyperLap
+
: Automatic Parameter Selection

Input : (1) input hypergraph 𝐺 = (𝑉 , 𝐸)
(2) update resolution 𝑝

Output : synthetic hypergraph 𝐺 = (𝑉 , 𝐸)
1 𝐺 = (𝑉 , 𝐸) ← run HyperCL using the distributions in 𝐺

2 for each level ℓ = 2, · · · , 𝐿 do

3 𝑖∗ ← argmin𝑖∈{1, · · · ,1/𝑝 } 𝐻𝐻𝐷

(
𝐺, update(𝐺, 𝑝 · 𝑖, ℓ)

)
4 𝐺 ← update(𝐺, 𝑝 · 𝑖∗, ℓ)
5 if 𝐻𝐻𝐷 (𝐺,𝐺) < 𝐻𝐻𝐷 (𝐺,𝐺) then 𝐺 ← 𝐺

6 else break

7 return 𝐺 = (𝑉 , 𝐸)
1 update(𝐺 = (𝑉 , 𝐸), 𝑞, ℓ)
2 𝐺 (𝑉 , 𝐸) ← 𝐺 (𝑉 , 𝐸)
3 remove (𝑞 · 100)% of the hyperedges created at level

ℓ − 1
4 create the same number of hyperedges at level ℓ

5 return 𝐺 = (𝑉 , 𝐸)

E[𝑑𝑣] =
𝐿∑︁
ℓ=1

E[𝑑 (ℓ)𝑣 ] =
𝐿∑︁
ℓ=1

∑︁
𝑒∈𝐸

𝑃 [𝑒 ⊆ 𝑆
(ℓ)
𝑔 (𝑣)] · 𝑃 [𝑣 ∈ 𝑒 |𝑒 ⊆ 𝑆

(ℓ)
𝑔 (𝑣)]

≈
∑︁
𝑒∈𝐸

𝐿𝑒∑︁
ℓ=1

(
𝑤ℓ

𝑊𝑒
· 1

2ℓ−1

) |𝑒 | · ©­«
𝑑𝑣 · 2ℓ−1∑ |𝑉 |

𝑗=1 𝑑 𝑗

ª®¬


=
𝑑𝑣∑ |𝑉 |
𝑗=1 𝑑 𝑗

·
∑︁
𝑒∈𝐸

(
|𝑒 | ·

𝐿𝑒∑︁
ℓ=1

𝑤ℓ

𝑊𝑒

)
= 𝑑𝑣 ·

∑
𝑒∈𝐸 |𝑒 |∑ |𝑉 |
𝑗=1 𝑑 𝑗

= 𝑑𝑣,

where 𝑆
(ℓ)
𝑔 (𝑣) is the group at level ℓ containing 𝑣 . That is, 𝑑𝑣 is

expected to be close to 𝑑𝑣 , as we confirm empirically in [1].

Intuition Behind HyperLap: In this section, we provide some

reasons why we expect HyperLap to accurately reproduce the

realistic overlapping patterns of hyperedges discovered in Section 4.

• For a pair or triple of nodes belonging to the same small group,

the number of hyperedges overlapping at them is expected to

be high. Thus, the distribution of the number of overlapping

hyperedges at each pair or triple is expected to be skewed.

• As hyperedges can be formed within a small group, which con-

tains structurally similar nodes, the homogeneity of each hyper-

edge is expected to be high. Moreover, as the size of groups varies,

the homogeneity of hyperedges is expected to vary depending

on the size of the groups that they are generated from.

• As the hyperedges in the egonet of each node 𝑣 are likely to

contain nodes belonging to the same small group with 𝑣 , their

density and overlapness are expected to be high.

5.2 HyperLap
+
: Parameter Selection

Given an input hypergraph 𝐺 , how can we set the parameters of

HyperLap (i.e., the number of levels 𝐿 and the weight of each level

{𝑤1, · · · ,𝑤𝐿}) so that it generates a synthetic hypergraph 𝐺 espe-

cially similar to a target real-world hypergraph? The parameters
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Table 8: D-statistics between the distributions of (1) egonet density, (2) egonet overlapness and (3) hyperedge homogeneity

in real-world hypergraphs and corresponding hypergraphs generated by five models: HyperCL (H-CL), HyperPA (H-PA),

HyperFF (H-FF), HyperLap (H-LAP), and HyperLap
+
(H-LAP

+
). HyperLap

+
reproduces the distributions most accurately.

Dataset

Density of Egonets (Obs. 1) Overlapness of Egonets (Obs. 2) Homogeneity of Hyperedges (Obs. 5)

H-CL H-PA H-FF H-LAP H-LAP
+

H-CL H-PA H-FF H-LAP H-LAP
+

H-CL H-PA H-FF H-LAP H-LAP
+

email-Enron 0.545 0.202 0.391 0.405 0.125 0.517 0.398 0.398 0.391 0.111 0.498 0.241 0.656 0.191 0.136

email-Eu 0.724 - 0.402 0.577 0.310 0.534 - 0.639 0.432 0.197 0.505 - 0.688 0.247 0.168

contact-primary 0.896 0.537 0.975 0.334 0.128 0.867 0.471 0.942 0.285 0.095 0.430 0.236 0.484 0.142 0.188

contact-high 0.948 0.529 0.880 0.522 0.345 0.874 0.431 0.703 0.486 0.296 0.423 0.196 0.336 0.120 0.178

NDC-classes 0.694 0.785 0.731 0.696 0.635 0.302 0.715 0.406 0.231 0.248 0.274 0.410 0.484 0.272 0.225

NDC-substances 0.451 - 0.801 0.426 0.366 0.321 - 0.338 0.243 0.157 0.377 - 0.740 0.262 0.108

tags-ubuntu 0.522 0.162 0.216 0.410 0.300 0.432 0.117 0.398 0.487 0.210 0.245 0.136 0.844 0.105 0.011

tags-math 0.496 0.350 0.561 0.195 0.227 0.460 0.325 0.709 0.151 0.186 0.337 0.217 0.921 0.086 0.015

threads-ubuntu 0.159 0.856 - 0.163 0.159 0.299 0.953 - 0.300 0.297 0.020 0.291 - 0.016 0.011

threads-math 0.137 0.492 - 0.120 0.135 0.232 0.714 - 0.235 0.229 0.060 0.368 - 0.102 0.019

coauth-DBLP 0.228 - - 0.227 0.132 0.302 - - 0.267 0.244 0.715 - - 0.540 0.026

coauth-geology 0.200 - - 0.202 0.138 0.248 - - 0.252 0.266 0.624 - - 0.481 0.044

coauth-history 0.087 - - 0.090 0.089 0.316 - - 0.321 0.324 0.154 - - 0.125 0.020

Average 0.468 0.489 0.619 0.335 0.237 0.439 0.515 0.566 0.313 0.219 0.358 0.261 0.644 0.206 0.088

-: out of time (taking more than 10 hours) or out of memory

Table 9: Distributions of the number of overlapping hyperedges at each pair and each triple of nodes are reproduced accurately

by HyperLap
+
, while HyperCL fails in many cases. They obey heavy-tailed distribution, as in the real ones.

email-Eu contact-primary NDC-substances tags-math threads-ubuntu coauth-DBLP
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o
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should be carefully tuned since the structural properties of the gen-

erated hypergraphs vary depending on their settings. To this end,

we propose HyperLap
+
, which automatically tunes the parameters.

Hyperedge Homogeneity Objective: As its objective function,

HyperLap
+
uses the hyperedge homogeneity distance 𝐻𝐻𝐷 (𝐺,𝐺)

between the input hypergraph 𝐺 and a generated hypergraph 𝐺 .

It is defined as the Kolmogorov-Smirnov D-statistics between the

hyperedge homogeneity distribution of 𝐺 and that of 𝐺 . That is,

𝐻𝐻𝐷 (𝐺,𝐺) = max
𝑥
{|𝐹 (𝑥) − 𝐹 ′(𝑥) |}, (3)

where 𝐹 and 𝐹 ′ are the cumulative hyperedge homogeneity distri-

bution of hypergraph 𝐺 and 𝐺 , respectively. Then, assuming that

the number of levels 𝐿 is given, HyperLap
+
aims to find the weights

of levels that minimize the hyperedge homogeneity distance. That

is, HyperLap
+
aims to solve the following optimization problem:

min
𝑤1, · · · ,𝑤𝐿

𝐻𝐻𝐷 (𝐺,𝐺),

where we assume𝑤1 + · · · +𝑤𝐿 = 1 since only the ratios between

the weights matter.

Optimization Scheme: Having defined the objective, we describe

how HyperLap
+
minimizes it. To avoid empty groups, 𝐿 ≤ log2 |𝑉 |

should hold, and the number of levels 𝐿 is initialized to ⌊log2 |𝑉 |⌋.

Since there are infinitely many combinations of level weights

𝑤1, · · · ,𝑤𝐿 , we propose an efficient greedy optimization scheme

described in Algorithm 3, where some fraction of hyperedges cre-

ated at a lower level are replaced with those newly created at a

higher level, repeatedly, until Eq. (3) converges.

Specifically, HyperLap
+
first generates a hypergraph by Hy-

perCL, which is equivalent to HyperLap with 𝐿 = 1 (line 1). This is

equivalent to set𝑤1 to 1 and set𝑤ℓ to 0 for all ℓ > 1. Then at each

level ℓ from 2 to 𝐿, we search for an optimal fraction of hyperedges

created at level ℓ − 1 to be replaced with those newly created at

level ℓ (line 3). Note that only hyperedges of size
|𝑉 |
2ℓ−1 or smaller

can be replaced. If the replacement strictly decreases the hyperedge

homogeneity distance, then HyperLap
+
updates the current syn-

thetic hypergraph (line 5). This is equivalent to decrease𝑤ℓ−1 and

increase𝑤ℓ by the same amount. Otherwise, we return the current

synthetic hypergraph (line 6). We fix the update resolution 𝑝 to

0.05 throughout this work. We note that the quality of generated

hypergraphs is empirically insensitive to the choices of 𝑝 .

5.3 Empirical Evaluation of the Quality of

Generated Hypergraphs

How well do the hypergraphs generated by HyperLap
+
reproduce

the structural properties of the input hypergraphs? We evaluate its
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Table 10: D-statistics between the distributions of the number of overlapping hyperedges at each pair and each triple of nodes

in real-world hypergraphs and corresponding hypergraphs generated by five models: HyperCL (H-CL), HyperPA (H-PA),

HyperFF (H-FF), HyperLap (H-LAP), and HyperLap
+
(H-LAP

+
). HyperLap

+
reproduces the distributions most accurately,

and these distributions follow heavy-tailed distributions.

Dataset

Pair of Nodes (Obs. 3) Triple of Nodes (Obs. 4)

Distance from Real (D-statistics) Heavy-tail Test Distance from Real (D-statistics) Heavy-tail Test

H-CL H-PA H-FF H-LAP H-LAP
+

pw tpw logn H-CL H-PA H-FF H-LAP H-LAP
+

pw twp logn

email-Enron 0.143 0.056 0.217 0.075 0.139 -2.37 -0.29 -1.53 0.089 0.295 0.136 0.061 0.072 -0.22 0.38 0.24

email-Eu 0.225 - 0.352 0.162 0.066 0.24 2.75 2.53 0.480 - 0.516 0.337 0.206 0.41 2.11 1.96

contact-primary 0.196 0.062 0.223 0.070 0.051 9.53 15.74 13.92 0.137 0.061 0.110 0.053 0.031 -1.86 -1.27 1.23

contact-high 0.277 0.062 0.141 0.127 0.067 -3.09 -0.95 -0.06 0.210 0.131 0.182 0.182 0.193 -3.95 - 0.50

NDC-classes 0.273 0.197 0.196 0.246 0.172 12.15 14.42 14.04 0.376 0.167 0.405 0.349 0.286 3.22 7.92 7.34

NDC-substances 0.272 - 0.244 0.251 0.202 33.69 40.13 39.66 0.521 - 0.591 0.492 0.453 45.30 55.38 54.99

tags-ubuntu 0.091 0.019 0.182 0.034 0.033 42.33 43.70 43.55 0.148 0.067 0.191 0.020 0.074 14.25 15.57 15.43

tags-math 0.095 0.066 0.278 0.073 0.011 42.75 45.60 45.41 0.209 0.053 0.286 0.113 0.079 21.38 23.12 22.99

threads-ubuntu 0.011 0.137 - 0.008 0.009 1.28 1.75 1.75 0.004 0.130 - 0.004 0.004 -1,346 -1.72 -1.72

threads-math 0.041 0.163 - 0.014 0.033 15.79 16.66 16.52 0.006 0.138 - 0.001 0.005 -1.49 -0.98 0.96

coauth-DBLP 0.224 - - 0.191 0.032 55.86 74.95 73.45 0.215 - - 0.214 0.192 2.87 6.73 6.46

coauth-geology 0.178 - - 0.157 0.040 31.13 45.08 44.06 0.086 - - 0.085 0.069 -0.10 1.10 0.84

coauth-history 0.033 - - 0.030 0.009 1.74 1.77 1.63 0.001 - - 0.001 0.001 -0.86 - 0.57

Average 0.158 0.095 0.229 0.110 0.066 0.193 0.130 0.302 0.147 0.128

-: out of time (taking more than 10 hours) or out of memory

(a) HyperLap (generation) (b) HyperLap
+
(generation & fitting)

Figure 2:HyperLap andHyperLap
+
scale near linearlywith

the size of the considered hypergraph.

effectiveness by comparing them with four strong baselines: Hy-

perCL, HyperPA [12], HyperFF [22], and naïvely tuned HyperLap.
4

We describe the detailed experimental settings at Appendix B.

To measure the similarity between the distributions derived from

the real-world hypergraph and the generated hypergraph, we use

the Kolmogorov-SmirnovD-statistic, defined as𝐷 = max𝑥 {|𝐹 ′(𝑥)−
𝐹 (𝑥) |}, where 𝑥 is a value of the considered random variable, and

𝐹 ′ and 𝐹 are the cumulative distribution functions of the real and

corresponding generated distributions.

Observations 1 and 2: In Table 8, we report the D-statistics be-

tween the distributions of egonet density and egonet overlapness in

real-world hypergraphs and corresponding synthetic hypergraphs.

HyperLap
+
generates hypergraphs that consist of egonets

that are structurally most similar to those in real-world hy-

pergraphs. Specifically, HyperLap
+
gave 2.06× more similar

egonet density distribution and 2.35×more similar egonet over-

lapness distribution than recently proposed HyperPA.

Observations 3 and 4: We visually and statistically test whether

the hypergraphs generated by HyperLap
+
follow observations 3

and 4. In Table 9, we illustrate the distributions of the number of

hyperedges overlapping at each pair and each triple of nodes. Com-

pared to HyperCL, HyperLap
+
better reproduces the degrees

of pairs and triples of nodes. This is statistically confirmed in Ta-

ble 10, where HyperLap
+
gives the smallest D-statistic. In addition,

4
We set the number of levels 𝐿 same as HyperLap

+
and assign the weights

{𝑤1, · · · , 𝑤𝐿 } uniformly equal, i.e., 𝑤𝑖 = 1/𝐿 ∀1 ≤ 𝑖 ≤ 𝐿.

these distributions are heavy-tailed in most datasets, as seen from

the fact that at least one likelihood ratio is positive (see Section 4.2

for the details of the statistical test).

Observation 5: From the results in Table 8, we can see that the D-

statistics between the distributions of hyperedge homogene-

ity in real-world and corresponding hypergraphs generated

by HyperLap
+
are extremely small. Since the objective of Hy-

perLap
+
is to reduce the 𝐻𝐻𝐷 , it naturally reproduce hyperedge

homogeneity better than HyperCL, which surprisingly outperforms

HyperLap when its parameters are naïvely set. This result suggests

the effectiveness of the proposed optimization scheme. As seen in

Table 7, the distributions of hyperedge homogeneity in hypergraphs

generated by HyperLap
+
are heavy-tailed (see Section 4.2 for the

details of the statistical test).

5.4 Scalability of HyperLap and HyperLap
+

In this subsection, we analyze the scalability of HyperLap and

HyperLap
+
both theoretically and experimentally. Noteworthy, we

show empirically that both HyperLap and HyperLap
+
scale almost

linearly with the size of the considered hypergraph.

In fact, while some baselines are intractable in particular datasets,

HyperLap and HyperLap
+
are scalable enough to be executed in all

considered datasets. The scalability of HyperPA heavily depends on

the sizes of hyperedges, and thus does not work in hypergraphs that

includes large-sized hyperedges (i.e., email-Eu, NDC-substances,

coauth-DBLP, coauth-geology, and coauth-history). HyperFF de-

pends on the number of nodes, and does not work in large datasets

with many nodes (i.e., threads-ubuntu, threads-math, coauth-DBLP,

coauth-geology, and coauth-history).

Given the number of levels and weights of each level, how much

time does it take to run HyperLap? Assume that all sets and maps

are implemented using hash tables. For each hyperedge 𝑒 , level

ℓ and group 𝑔 are selected in 𝑂 (1) time. In addition, since each

node is sampled independently, |𝑒 | nodes are selected in𝑂 ( |𝑒 | · (1+
𝜖)) time, where 𝜖 is due to the possibility of collisions (i.e., nodes

selected multiple times for a hyperedge). The term 𝜖 depends on

the degrees of nodes and the sizes of hyperedges. We note that 𝜖 is
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empirically very small in the considered datasets. Hence, generating

|𝐸 | hyperedges takes𝑂 (∑𝑒∈𝐸 ( |𝑒 | · (1+𝜖))) time. In HyperLap
+
, we

consider the replacement step. At each level, at most
1
𝑝 · |𝐸 | = 𝑂 ( |𝐸 |)

hyperedges are (temporarily) replaced, taking𝑂 (∑𝑒∈𝐸 ( |𝑒 | · (1+𝜖)))
time. Since the maximum number of levels is log2 |𝑉 |, HyperLap+
takes 𝑂 (log2 |𝑉 | ·

∑
𝑒∈𝐸 ( |𝑒 | · (1 + 𝜖))) time in total.

In Figure 2, we measure the runtimes of HyperLap and Hy-

perLap
+
with synthetic hypergraphs of different sizes. They are

generated by upscaling the smallest hypergraph, email-Enron by 5
to 50, 000 times, using HyperLap. Both HyperLap and HyperLap

+

scale almost linearly with the size of the considered hypergraph.

Specifically, HyperLap
+
generates and fits a synthetic hypergraph

with 0.7 billion hyperedges within few hours. We describe the de-

tailed experimental settings at Appendix B.

6 CONCLUSIONS

In this work, we investigate the structural properties regarding the

overlaps of hyperedges of thirteen real-world hypergraphs from

six domains. To this end, we define several principled measures,

and based on the observations, we develop a realistic hypergraph

generative model. We summarize our contributions as follows.

• Observations inReal-worldHypergraphs:Wediscover three

unique properties of the overlaps of hyperedges in real-world

hypergraphs. We verify these properties using randomized hy-

pergraphs where both the degrees of nodes and the sizes of

hyperedges are well preserved.

• Novel Measures:We propose the overlapness and homogeneity

of hyperedges. We demonstrate through an axiomatic approach

that overlapness is a principled measure. Homogeneity reveals

an interesting overlapping pattern, based on which we develop a

realistic generative model.

• Realistic Generative Model:We propose HyperLap, a hyper-

graph generative model that accurately reproduces the overlap-

ping patterns of hyperedges in real-world hypergraphs. We also

provide HyperLap
+
, which automatically fits the parameters of

HyperLap to a given graph. They generate and fit a hypergraph

with 0.7 billion hyperedges within few hours.

Reproducibility: The source code and datasets used in this work

are available at https://github.com/young917/www21-hyperlap.
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A APPENDIX: AXIOMS OF OVERLAPNESS

We systematically analyze overlapness defined in Section 4.1 by

comparing with possible baselines and proving that the metric

satisfies all the proposed axioms.

Baselines: Due to the simplicity and intuitiveness of the afore-

mentioned axioms, one might hypothesize that it is trivial to sat-

isfy them. However, as seen in Table 5, none of the other possible

baseline metrics obey all three axioms. We consider five different

baseline metrics including two basic set operations:

• Intersection: |⋂𝑒∈E 𝑒 |
• Union Inverse: 1/|⋃𝑒∈E 𝑒 |
• Jaccard Index: |⋂𝑒∈E 𝑒 |/|

⋃
𝑒∈E 𝑒 |

• Overlap Coefficient: |⋂𝑒∈E 𝑒 |/min𝑒∈E |𝑒 |
• Density [16]: |E |/|⋃𝑒∈E 𝑒 |
Using the intersection of multiple hyperedges as the measure is

applicable to only a small number of hyperedges (i.e., small 𝑘)

due to its strict condition that nodes should be included in all the

given hyperedges. Accordingly, other possible measures to gauge

the overlaps such as the Jaccard index or the overlap coefficient,

which use intersection size as a numerator, face the same challenge.

The inverse of the union meets Axiom 2, while it does not satisfy

Axiom 1 and Axiom 3. The density of the hyperedges satisfies

Axiom 1 and Axiom 2, while it does not satisfy Axiom 3, which is

clear from the example discussed in Section 4.1. We provide detailed

examples and reasons why each baseline measure does not satisfy

at least one axiom in the online appendix [1].

Proof of Theorem 1: We show that overlapness meets all three

axioms discussed in Section 4.1. That is, we prove Theorem 1 by

proving Lemmas 2, 3, and 4, which Theorem 1 follows from.

Lemma 2. Overlapness meets Axiom 1.

Proof. Considering the conditions in Axiom 1, we compare the

overlapness of E and E ′:

𝑜 (E ′) − 𝑜 (E) =
∑
𝑒′∈E′ |𝑒 ′ |
|⋃𝑒′∈E′ 𝑒 ′ |

−
∑
𝑒∈E |𝑒 |
|⋃𝑒∈E 𝑒 |

=
𝑛 · ( |E ′ | − |E |)
|⋃𝑒∈E 𝑒 |

from the conditions |⋃𝑒∈E 𝑒 | = |
⋃

𝑒′∈E′ 𝑒
′ | and |𝑒 | = |𝑒 ′ | = 𝑛, ∀𝑒 ∈

E, ∀𝑒 ′ ∈ E ′. Since the number of hyperedges in E ′ is larger than
that in E (i.e., |E ′ | > |E |), 𝑜 (E ′) > 𝑜 (E) holds. This implies Ax-

iom 1. ■

Lemma 3. Overlapness meets Axiom 2.

Proof. Considering the conditions in Axiom 2, we compare the

overlapness of E and E ′:
𝑜 (E ′)
𝑜 (E) =

∑
𝑒′∈E′ |𝑒 ′ |
|⋃𝑒′∈E′ 𝑒 ′ |

/ ∑
𝑒∈E |𝑒 |
|⋃𝑒∈E 𝑒 |

=
|⋃𝑒∈E 𝑒 |
|⋃𝑒′∈E′ 𝑒 ′ |

from the conditions |E | = |E ′ | = 𝑛 and |𝑒𝑖 | = |𝑒 ′𝑖 |, ∀𝑖 ∈ {1, ..., 𝑛}.
Since the number of nodes in E is more than E ′ (i.e., |⋃𝑒∈E 𝑒 | >
|⋃𝑒′∈E′ 𝑒

′ |, 𝑜 (E
′)

𝑜 (E) > 1 holds, and thus 𝑜 (E ′) > 𝑜 (E). This implies

Axiom 2. ■

Lemma 4. Overlapness meets Axiom 3.

Proof. Considering the conditions in Axiom 3, we compare the

overlapness of E and E ′:

𝑜 (E ′) − 𝑜 (E) =
∑
𝑒′∈E′ |𝑒 ′ |
|⋃𝑒′∈E′ 𝑒 ′ |

−
∑
𝑒∈E |𝑒 |
|⋃𝑒∈E 𝑒 |

=

∑𝑛
𝑘=1
( |𝑒 ′

𝑘
| − |𝑒𝑘 |)

|⋃𝑒∈E 𝑒 |
from the conditions |E | = |E ′ | = 𝑛 and |⋃𝑒∈E 𝑒 | = |

⋃
𝑒′∈E′ 𝑒

′ |.
Since |𝑒𝑖 | < |𝑒 ′𝑖 |, and |𝑒 𝑗 | ≤ |𝑒

′
𝑗
|, ∀𝑗 ∈ {1, ..., 𝑛} \ {𝑖}, 𝑜 (E ′) > 𝑜 (E)

holds. This implies Axiom 3. ■

B APPENDIX: EXPERIMENTAL SETTINGS

We describe the environmental settings where we conducted ex-

periments covered in this paper.

Machines:We conducted all the experiments on a machine with

an AMD Ryzen 9 3900X CPU and 128GB RAM.

Datasets: We used thirteen real-world hypergraphs from six dif-

ferent domains. See Section 3.2 for details of the datasets.

Baselines: We evaluate HyperLap and HyperLap
+
by comparing

with following three baseline models:

• HyperCL: This model, which is described in Section 3.3, is a

generalization of the FCL model to hypergraphs. It preserves

well the degree distribution of the input hypergraph.

• HyperPA [12]: This model, which is described in Section 2,

extends the preferential attachment model to hypergraphs so

that each new node forms a hyperedge with each subset of nodes,

rather than individual nodes, with probability proportional to

the number of the hyperedges containing the subset.

• HyperFF [22]: This model, which is described in Section 2,

extends the forest fire model to hypergraphs. The model has two

parameters, which are the burning and expanding rates. We set

them to 0.51 and 0.2, as suggested in the paper.

Implementations: We implemented HyperCL and HyperLap us-

ing C++. For HyperPA and HyperFF, we used their open-source

implementations in Python.
5

5
The open-source implementations are available at https://github.com/manhtuando97/

KDD-20-Hypergraph and https://github.com/yunbum-kook/icdm20-hyperff.

https://github.com/manhtuando97/KDD-20-Hypergraph
https://github.com/manhtuando97/KDD-20-Hypergraph
https://github.com/yunbum-kook/icdm20-hyperff
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