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ABSTRACT
Automatically and accurately identifying user intents and filling
the associated slots from their spoken language are critical to the
success of dialogue systems. Traditional methods require manually
defining the DOMAIN-INTENT-SLOT schema and asking many do-
main experts to annotate the corresponding utterances, upon which
neural models are trained. This procedure brings the challenges
of information sharing hindering, out-of-schema, or data sparsity
in open domain dialogue systems. To tackle these challenges, we
explore a new task of automatic intent-slot induction and propose a
novel domain-independent tool. That is, we design a coarse-to-fine
three-step procedure including Role-labeling, Concept-mining, And
Pattern-mining (RCAP): (1) role-labeling: extracting key phrases
from users’ utterances and classifying them into a quadruple of
coarsely-defined intent-roles via sequence labeling; (2) concept-
mining: clustering the extracted intent-role mentions and nam-
ing them into abstract fine-grained concepts; (3) pattern-mining:
applying the Apriori algorithm to mine intent-role patterns and
automatically inferring the intent-slot using these coarse-grained
intent-role labels and fine-grained concepts. Empirical evaluations
on both real-world in-domain and out-of-domain datasets show
that: (1) our RCAP can generate satisfactory SLU schema and out-
performs the state-of-the-art supervised learning method; (2) our
RCAP can be directly applied to out-of-domain datasets and gain
at least 76% improvement of F1-score on intent detection and 41%
improvement of F1-score on slot filling; (3) our RCAP exhibits its
power in generic intent-slot extractions with less manual effort,
which opens pathways for schema induction on new domains and
unseen intent-slot discovery for generalizable dialogue systems.

CCS CONCEPTS
•Computingmethodologies→Discourse, dialogue andprag-
matics; • Information systems→ Query intent.
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1 INTRODUCTION
Recently, thanks to the advance of artificial intelligence technolo-
gies and abundant real-world conversational data, virtual personal
assistants (VPAs), such as Apple’s Siri, Microsoft’s Cortana and
Amazon’s Alexa, have been developed to help people’s daily life [4].
Many VPAs have incorporated task-oriented dialogue systems to
emulate human interaction to perform particular tasks, e.g., cus-
tomer services and technical supports [2].

Spoken language understanding (SLU) is a crucial component
to the success of task-oriented dialogue systems [9, 39]. Typically,
a commercial SLU system detects the intents of users’ utterances
mainly in three steps [7, 8, 11, 18]: (1) identifying the dialogue
domain, i.e., the area related to users’ requests; (2) predicting users’
intent; and (3) tagging each word in the utterance to the intent’s
slots. To appropriately solve this task, traditional SLU systems need
to learn a model from a large predefined DOMAIN-INTENT-SLOT
schema annotated by domain experts and professional annotators.
For example, as illustrated in Fig. 1, given a user’s utterance, “What
happens if I make a late payment on mortgage?”, we need to label
the domain to “banking”, the intent to “Late due loan”, and the slot
“Loan” to “mortgage”.

The annotation procedure usually requires many domain experts
to conduct the following two steps [5, 44]: (1) selecting related utter-
ances from specific domains based on their domain knowledge; (2)
examining each utterance and enumerating all intents and slots in
it. This procedure, however, faces several critical challenges. First,
it is redundant as experts cannot effectively share the common
information among different domains. For example, given two ut-
terances “Can I check my insurance policy?” and “Can I read my
bank statement?” from the domains of banking and insurance, their
intents can be abstracted into “check document”. They are usually
annotated by at least two experts from different domains, which
hinders the information sharing. Second, the labeling procedure
may be biased to experts’ knowledge and limited by their domain
experience. To meet more users’ needs, dialogue systems usually
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User: What happens if I make a late 
payment on mortgage?

MANUAL LABELING:
DOMAIN: banking
INTENT: Late due loan 
SLOT: Loan = mortgage

MANUAL SCHEMA: 
- INTENT: 
[Late due loan, Buy insurance, Document 
check…]
- SLOT:
Loan: [mortgage, car loan, tuition loan, 
…]
Insurance product: [life insurance, car 
insurance, …]
Document: [insurance policy, bank 
statement, private policy, …]

User: What happens if I make a late 
payment on mortgage?

MANUAL LABELING:
DOMAIN: banking
INTENT: Late due loan
SLOT: Loan = mortgage
RCAP: 
- IRL:
Question = �what happens], Problem = 
[make a late payment], Argument = 
[mortgage]
- PATTERN:  
Problem-(Argument)-Question
- CONCEPT:
Loan: [mortgage, car loan� …]
Late due: [make a late payment, …]
Info consultant: [what happens, …]

Intent: Late due loan
Slot: Loan = mortgage

Intent: Loan-Late due-Info consultant
Slot: Loan = mortgage

Manual procedure Automatic procedure

Figure 1: Comparison between traditional manual intent-
slot construction and automatic induction. The traditional
procedure requires domain experts tomanually annotate ut-
terances into the DOMAIN-INTENT-SLOT schema (see the
left-top box) and many manually annotated schemas (see
the left-middle box) while our RCAP can automatically in-
fer the intent-slot without manual labeling.

have to cover a number of domains and solicit sufficient domain ex-
perts to build comprehensive schemas. The requirement of domain
experts increases the barrier of scaling up the dialogue systems.
Third, it is extremely hard to enumerate all intents and slots in
the manual procedure. Usually, the intent-slot schema follows the
long-tail distribution. That is, some intents and slots rarely appear
in the utterances. Experts tend to ignore part of them due to the
human nature of memory burden. Fourth, for system maintenance,
it is nontrivial to determine whether there are new intents or not
in a given utterance. Hence, experts have to meticulously examine
each utterance to determine whether new intents and slots exist.

To tackle these challenges, researchers have incorporated differ-
ent mechanisms, such as crowd sourcing [45] and semi-supervised
learning [38], to assist the manual schema induction procedure.
They still suffer from huge human effort. Other work further ap-
plies unsupervised learning techniques to relieve the manual ef-
fort [6, 25, 36, 43]. For example, unsupervised semantic slot induc-
tion and filling [6, 25] have been proposed accordingly. However,
they cannot derive intents simultaneously. Open intent extraction
has been explored [43] by restricting the extracted intents to the
form of predicate-object. It does not extract slots simultaneously.
Moreover, a dynamic hierarchical clustering method [36] has been
employed for inducing both intent and slot, but can only work in
one domain.

In this paper, we define and investigate a new task of auto-
matic intent-slot induction (AISI). We then propose a coarse-to-fine
three-step procedure, which consists of Role-labeling, Concept-
mining, And Pattern-mining (RCAP). The first step of role-labeling
comes from the observation of typical task-oriented dialogue sys-
tems [10, 20, 23, 37, 46] that utterances can be decomposed into
a quadruple of coarsely-defined intent-roles: Action, Argument,

Problem, and Question, which are independent to concrete do-
mains. Thus, we build an intent-role labeling (IRL) model to auto-
matically extract corresponding intent-roles from each utterance.
By such setting, as shown in Fig. 2, we can determine the utter-
ance of “Check my insurance policy” to Action = [Check] and
Argument = [insurance policy] while the utterance of “I lost my
ID card” to Problem = [lost] and Argument = [ID card]. Secondly,
to unify utterances within the same intent into the same label,
as shown in Fig. 5. We deliver concept mining by grouping the
mentions within the same intent-role and assigning each group
to a fine-grained concept. For example, the mentions of “insur-
ance policy”, “medical certificate”, and “ID card” in Argument can
be automatically grouped into the concept of “Document” while
the mentions of “tuition loan” and “mortgage” can be grouped
into the concept of “Loan”. Here, we only consider one-intent in
one utterance, which is a typical setting of intent detection in di-
alogue systems [24]. Hence, multi-intent utterances, e.g., “I need
to reset the password and make a deposit from my account.”, are
excluded. Thirdly, to provide intent-role-based guidelines for intent
reconstruction, we conduct Apriori [49] and derive the intent-role
patterns, e.g., the Patterns in Fig. 2. Specifically, the extracted intent-
roles are fed into Apriori to obtain frequent intent-role patterns,
e.g., Action-(Argument). Finally, we combine the mined concepts
according to the intent-role patterns to derive the intent-slot repos-
itory. For example, as illustrated in Fig. 2, given an utterance of
“Check my insurance policy”, according to the obtained pattern of
Action-(Argument), we can assign the concepts to it and infer the
intent of “Check-(Document)” with “insurance policy” in the slot
of “Document”.

In the literature, there is no public dataset to be applied to verify
the performance of our proposed RCAP. Though existing labeled
datasets, such as ATIS [29] and SNIPS [8], have provided concise,
coherent and single-sentence texts for intent detection, they are
not representative for complex real-world dialogue scenarios as
spoken utterances may be verbose and ungrammatical with noise
and variance [40]. Hence, we collect and release a financial dataset
(FinD), which consists of 2.9 million real-world Chinese utterances
from nine different domains, such as insurance and financial man-
agement. Moreover, we apply RCAP learned from FinD to two new
curated datasets, a public dataset in E-commerce and a human-
resource dataset from a VPA, to justify the generalization of our
RCAP in handling out-of-domain data.

We summarize the contributions of our work as follows:

– We define and investigate a new task in open-domain di-
alogue systems, i.e., automatic intent-slot induction, and
propose a domain-independent tool, RCAP.

– Our RCAP can identify both coarse-grained intent-roles and
abstract fine-grained concepts to automatically derive the
intent-slot. The procedure can be efficiently delivered.

– More importantly, RCAP can effectively tackle the AISI task
in new domains. This sheds light on the development of
generalizable dialogue systems.

– We curate large-scale intent-slot annotated datasets on fi-
nancial, e-commerce, and human resource and conduct ex-
periments on the datasets to show the effectiveness of our
RCAP in both in-domain and out-of-domain SLU tasks.
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1. [Check]Action my [insurance policy]Argument.
2. [When]Question is the [expiration date]Argument of the [medical certificate]Argument.
3. After a [heart attack]Argument, [can]Question I [apply for]Action [tuition loan]Argument? 
4. I [lost]Problem my [ID card]Argument.
5. [What happens]Question if I [make a late payment]Problem on [mortgage]Argument?
6. I need to [reset]Action [the password]Argument and [make a deposit]Action from my [account]Argument 
7. …

Action-(Argument)
(Argument)-Question

Action-(Argument)-Question
Problem-(Argument)

Problem-(Argument)-Question

Check-(Document)
(Date, Document)-TimeConsultant

Apply-(Disease, Loan)-FeasibilityConsultant
Lost-(Document)

LateDue-(Loan)-InfoConsultant

Document: [insurance policy, medical 
certificate, ID card, …]
Date: [expiration date, …]
Loan: [tuition loan, mortgage, …]
Disease: [heart attack, …]

IRL

Role-based Concept Mining

Intent-Slot Repository

Pattern Mining

Patterns

Intent Inference

Slot Inference

Intent role Concepts

Action Check: [Check, …]
Apply: [Apply for, …]

Problem Lost: [lost, …]
LateDue: [make a late payment, …]

Question TimeConsultant: [When, …]
FeasibilityConsultant: [can, …]
InfoConsultant: [What happens, …]

Argument Document: [insurance policy, medical 
certificate, ID card, …]
Date: [expiration date, …]
Loan: [tuition loan, mortgage, …]
Disease: [heart attack, …]

IRL Results

Raw Corpus 1. Check my insurance policy.
2. When is the expiration date of the medical certificate.
3. After a heart attack, can I apply for tuition loan? 
4. I lost my ID card.
5. What happens if I make a late payment on mortgage?
6. I need to reset the password and make a deposit from my account.
7. …

Figure 2: Flow of RCAP. The intent-role mentions and concepts are highlighted by different colors: Argument in blue, Action
in gray, Problem in magenta, and Question in green. Mined concepts on each intent-role are shown in square brackets in the
left-bottom table. The mined intent-role patterns are order-irrelevant. A round-bracket in Argument implies no mention or
several mentions.

2 PROBLEM FORMULATION
The task of automatic intent-slot induction is defined as follows:
given a set of raw utterances, D = {u𝑖 }𝑀𝑖=1, where 𝑀 is the num-
ber of utterances in the set, u𝑖 = 𝑢𝑖1 . . . 𝑢𝑖 |𝑢𝑖 | denotes an utterance
with |𝑢𝑖 | sub-words, our goal is to derive its intent I𝑖 for the corre-
sponding utterance u𝑖 . Here, we only consider one intent in one
utterance, which is a typical setting of intent detection in dialogue
systems [24]. Since each intent has its corresponding slots, we set
the slots of I𝑖 as S𝑖 = {S𝑖,1, . . . ,S𝑖,L𝑖

}, where L𝑖 is the number of
slots in I𝑖 and S𝑖, 𝑗 is a tuple with the name and value, 𝑗 = 1, . . . ,L𝑖 .
It is noted that L𝑖 can be 0, implying no slot in the intent. For ex-
ample, “How to get insured?” contains the intent of “Buy insurance”
without a slot.

In our work, the intents are dynamically decided by the pro-
cedure of Intent Role Labeling, Concept Mining, and Intent-role
Patterns Mining. S𝑖 is also learned automatically and dynamically.

To provide a domain-independent expression of intents, we fol-
low [23] and decompose an utterance into several key phrases with
the corresponding intent-roles defined as follows:

Definition 2.1. An intent-role is a label from the following set:
{Action, Argument, Problem, Question} , (1)

where Action is a verb or a verb phrase, which defines an action that
the user plans to take or has taken. Question delivers interrogative
words or an interrogative phrase, which defines a user’s intent to

elicit information. Problem outlines a failure or a situation that
does not meet a user’s expectation. Argument expresses in nouns
or noun phrases to describe the target or the holder of Action or
Problem.

To further provide fine-grained semantic information for each
intent-role mention, we define concepts as [5]:

Definition 2.2 (Concept). Given the extracted intent-role men-
tions, we can individually and independently group the mentions
within each intent-role and name each cluster by a concept, an
abstraction of similar instances.

To rationally combine the concepts under each intent-role and
reform the user intent, we define intent-role pattern as follows:

Definition 2.3 (Intent-role Pattern). For each utterance, we de-
compose it into several intent-role mentions. A combination of
intent-roles is defined by an intent-role pattern.

In this paper, we propose RCAP to tackle the task of AISI. Our
RCAP consists of threemodules: (1) intent-role labeling for recogniz-
ing the intent-roles of mentions, (2) concept mining for fine-grained
concepts assignment, and (3) intent-role pattern mining to attain
representative patterns. After that, we can infer the intent-slot
accordingly.
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3 OUR PROPOSAL
In this section, we present the implementation of the modules of
our RCAP.

3.1 Intent Role Labeling (IRL)
In order to attain coarse-grained intent-roles as defined in Def. 2.1,
we train an IRL model on an open-domain corpus with 𝐿 annotated
utterances. That is, given an utterance with 𝑚 sub-words, u =

𝑢1 . . . 𝑢𝑚 , we train an IRL model to output the corresponding label,
r = 𝑟1 . . . 𝑟𝑚 . Here, we apply the Beginning-Inside-Outside (BIO)
schema [32] on the four intent-roles. Hence, 𝑟𝑖 can be selected from
one of the 9 tags, such as B-Action and I-Argument.

Nowadays, BERT [16] has demonstrated its superior perfor-
mance on many downstream NLP tasks. We, therefore, apply it
to tackle the IRL task. More specifically, given the utterance u, we
can denote it by

[CLS] 𝑢1 . . . 𝑢𝑚 [SEP],
where [CLS] and [SEP] are two special tokens for the classification
embedding and the separation embedding.𝑢𝑖 is the 𝑖-th subword ex-
tracted from BERT’s dictionary. By applying BERT’s representation,
we obtain

h0 h1 . . . h𝑚 h𝑚+1,

where h𝑖 ∈ R𝑑 is the embedding of the 𝑖-th token, 𝑖 = 0, . . . ,𝑚 + 1
and 𝑑 is the hidden size. We then apply a softmax classifier on top
of the hidden features to compute the probability of each sub-word
𝑢𝑖 to the corresponding label:

𝑝 (𝑟𝑖 |𝑢𝑖 ) = softmax(Wh𝑖 ), (2)
whereW is the weight matrix. After that, mentions are obtained
by the BI-tags on each intent-role.

3.2 Concept Mining
The goal of concept mining is to provide fine-grained labels for
the determined intent-role mentions obtained in Sec. 3.1. To attain
such goal, we group the mentions within the same intent-role
into clusters and assign each cluster to the corresponding concept
(see Def. 2.2) by a fine-grained label. There are two main steps:
mention embeddings and mention clustering. After that, we can
assign abstract fine-grained names for the clusters.
Mention Embedding This step takes the sub-word sequence of
all mentions in the open domain utterances D𝑟𝑚 = {𝑚𝑘𝑟 }𝑀𝑟

𝑘=1
and

outputs the embedding vector p𝑘𝑟 for each mention𝑚𝑘𝑟 , where
𝑀𝑟 is the number of mentions in the corresponding role, 𝑟 ∈
{Action, Question, Argument, Problem}. There are various ways
to represent the intent-role mentions. To guarantee unified rep-
resentations of all mentions, we do not apply BERT because its
representation will change with the context. Differently, we con-
sider the following embeddings:

– word2vec (w2v): It is a popular and effective embedding in
capturing semantic meanings of sub-words. We treat intent-
role mentions as integrated sub-words and represent them
following the same procedure in [28].

– phrase2vec (p2v): To further include contextual features,
we not only take intent-role mentions as integrated sub-
words but also apply phrase2vec [1], i.e., a generalization of
skip-gram to learns n-gram embeddings.

– CNN embedding (CNN): To make up the insufficiency of
word2-vec and phrase2vec in sacrificing semantic informa-
tion inside mentions, we apply a sub-word convolutional
neural network (CNN) [52] to learn better representations.
That is, a CNNmodel takes the sequence of an input mention
and outputs an embedding vector p by applying max pooling
along the mention size on top of the consecutive convolution
layers. The CNN embedding model is trained by skip-gram
in an unsupervised manner [28]. Given mention 𝑡 extracted
from an utterance in the training set, we seek the embedding
by minimizing the following loss for each mention 𝑐 within
the context of 𝑡 :

𝐿𝑝 = −[log𝜎 (p𝑇𝑐 p𝑡 ) +
𝑀∑︁
𝑖=1

log𝜎 (−p𝑇𝑖 p𝑡 )], (3)

where 𝜎 is the sigmoid function, p𝑡 and p𝑐 are embeddings
for the mention 𝑡 and 𝑐 , respectively. p𝑖 is the embedding
of a random mention that does not occur in the context
of mention 𝑡 and 𝑀 is the number of randomly selected
mentions.

Mentions Clustering After obtaining the mention embeddings,
we apply clustering on the mentions within the same intent-role to
group them into corresponding concepts. In this paper, we apply
the following algorithms:

– K-means [15]: It is one of the most popular clustering algo-
rithms. However K-means algorithm needs to decide initial
centroids and preset the number of clusters in advance.

– Minimum entropy (MinE) [35]: It is a famous algorithm
by Minimizing Entropy on infomap. They apply a transition
probability matrix to discover connected structure and have
proved the effectiveness in community detection.

– Label PropagationAlgorithm (LPA) [31]: It is an effective
clustering algorithm and does not need to specify the number
of clusters in advance. Here, we construct an 𝑛×𝑛 transition
matrix T through the learned phrase embeddings, where 𝑛
is the number of phrases and 𝑇𝑖 𝑗 = p𝑇

𝑖
p𝑗 defines the inner

product of two row-wise normalized vectors, p𝑖 and p𝑗 . To
take into account the 𝑘-nearest neighbors in vector space,
we only keep the top-𝑘 elements in each row of T.
Initially, we consider each phrase as a cluster and initialize
Y by an identity matrix, where 𝑌𝑖 𝑗 denotes the probability
that phrase 𝑖 belongs to the cluster 𝑗 . We then update Y by:

Y𝑡 = TY𝑡−1 . (4)

After convergence, each phrase is assigned to the cluster
with the highest probability.

3.3 Intent-role Pattern Mining
To reconstruct intents from extracted intent-role mentions and con-
cepts, we aim to explore the common patterns that people express
their intents. Each pattern is a combination of intent-roles without
considering the order. It is noted that by enumerating all combina-
tions of intent-roles in Eq. (1), we can obtain 15 candidate patterns,
which is computed by

(4
1

)
+
(4
2

)
+
(4
3

)
+
(4
4

)
= 4 + 6 + 4 + 1 = 15.

Given a large corpus with intent-roles as defined in Def. 2.1,
we then apply Apriori algorithm [49], a popular frequent item set
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mining algorithm, to extract the most frequent intent-role combina-
tion patterns. The corresponding parameters, such as the minimum
support value and the minimum confidence value can be adjusted.

Hence, given an utterance, we apply the learned IRL model to
identify the mentions with intent-roles. According to Sec. 4, we
can map the mentions to appropriate concepts and determine the
corresponding intent-slot based on the mined intent-role patterns.

4 INFERENCE IN SLU
In the following, we outline how to apply the learned IRL model,
concepts, and intent-role patterns by our RCAP for real-world AISI
tasks. Algorithm 1 outlines the procedure of inferring the intent-slot
by our RCAP:

– Line 1 is to apply the learned IRL model, IRL, to extract
the mentions with the corresponding intent-roles for the
given utterance u. For example, given an utterance, “Check
my medical report”, we obtain two meaningful mention-role
pairs, (“Check”, Action) and (“medical report”, Argument).

– Line 2 is to invoke 𝐶𝑜𝑛𝐼𝑛𝑓 𝑒𝑟 to assign each mention to a
suitable concept within the same intent-role. Here, we first
assign the concept by direct matching. 𝐶𝑜𝑛𝐼𝑛𝑓 𝑒𝑟 in line 6-
20 lists the procedure when no exact mention appears in
the concept set ofM. Specifically, we compute the cosine
similarity between the mention and the mentions of all con-
cepts within the same intent-role. We then attain the concept
IDs of the top-𝐾 neighbors of the mention and apply the
majority vote to determine the concept. Since𝑚 =“medical
report” does not appear in the mention ofM, we first com-
pute the cosine similarity between𝑚 and all mentions within
Argument inM. By finding the majority concept from the
top-𝐾 neighbor mentions, we assign “Document” to the con-
cept of “medical report”. If no concept is matched, we run
the procedure of Concept Expansion as in Appendix A.6.

– Line 3 is to invoke 𝐼𝑆𝐼𝑛𝑓 𝑒𝑟 to derive the final intent-slot as
defined in line 22-36. It is noted that line 25-27 is to extract
multiple slots. For example, the utterance, “When is the ex-
piration date of the medical certificate”, contains multiple
slots including “expiration date” and “medical certificate”.
An intent is then obtained by concatenating all intent-roles
filled with corresponding concepts as in line 33. Hence, by
filling the concept of “Check” to Action and the concept of
“Document” to Argument, we obtain the intent of “Check-
(Document)” for “Check my medical report” with the slot
“Document” to “medical report”.

5 EXPERIMENTS
In this section, we conduct experiments on the AISI task to answer
the following questions:

– Q1: What is the performance of our RCAP on the AISI task
for in-domain and out-of-domain datasets?

– Q2:What is the effect of each module in our RCAP and to
what extend does our RCAP save human effort in the AISI
task?

– Q3:What are the differences between our RCAP and tradi-
tional annotation procedure in deriving the intent-slot in
real scenarios?

Algorithm 1 Online Inference.
Require: The input utterance u; the mention-concept set S =⋃4

𝑟=1 S𝑟 , where 𝑟 ∈ {Action, Question, Argument, Problem},
S𝑟 = {⋃𝑁𝑘

𝑘 𝑗=1
(𝑚𝑘 𝑗 , 𝑟 , 𝑐𝑘 ), 𝑘 ∈ [1, 𝑀𝑟 ]}, 𝑀𝑟 is the number of

concepts within the intent-role 𝑟 , 𝑁𝑘 is the number of mention-
concept pairs with concept 𝑐𝑘 ; 𝑓 is a phrase embedding func-
tion; 𝛿 is a parameter to filter out dissimilar mentions; 𝐾 is the
number of nearest neighbors; the pattern set P.

Ensure: The set of intent-role mentions with concept ID, 𝑅𝑒𝑠𝑢𝑙𝑡 ;
1: {(𝑚1, 𝑟1), · · · , (𝑚𝑁 , 𝑟𝑁 )} ← IRL(u)
2: {𝑐1, . . . , 𝑐𝑁 } ← ConInfer({(𝑚1, 𝑟1), · · · , (𝑚𝑁 , 𝑟𝑁 )},S, 𝛿, 𝐾 )
3: (𝐼 , 𝑆) ← ISInfer({(𝑚1, 𝑟1, 𝑐1), · · · , (𝑚𝑁 , 𝑟𝑁 , 𝑐𝑁 )},P)
4: return (𝐼 , 𝑆)

5: Function ConInfer({(𝑚1, 𝑟1), · · · , (𝑚𝑁 , 𝑟𝑁 )}, S, 𝛿 , 𝐾 )
6: 𝑅𝑒𝑠𝑢𝑙𝑡 = {}
7: for 𝑗 = 1; 𝑗 ≤ 𝑁 ; 𝑗 ++ do
8: 𝑇𝑢𝑝𝑙𝑒 = {}
9: for all (𝑚𝑖 , 𝑟 𝑗 , 𝑐𝑥 ) in S𝑟 𝑗 , 𝑥 is its concept ID do
10: 𝑠𝑖𝑚 = cos(𝑓 (𝑚 𝑗 ), 𝑓 (𝑚𝑖 ))
11: if 𝑠𝑖𝑚 > 𝛿 then
12: 𝑇𝑢𝑝𝑙𝑒 = 𝑇𝑢𝑝𝑙𝑒 ∪ {(𝑠𝑖𝑚, 𝑥)}
13: end if
14: end for
15: 𝑇𝑢𝑝𝑙𝑒𝑜 ← Sort 𝑇𝑢𝑝𝑙𝑒 by 𝑠𝑖𝑚 with decreasing order
16: Get the concept ID list: 𝐼𝐷𝑡𝑜𝑝𝐾 = 𝑇𝑢𝑝𝑙𝑒𝑜 [0 : 𝐾]
17: Find the majority concept ID 𝑞𝑜 in set 𝐼𝐷𝑡𝑜𝑝𝐾
18: 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑅𝑒𝑠𝑢𝑙𝑡 ∪ {𝑞𝑜 }
19: end for
20: return 𝑅𝑒𝑠𝑢𝑙𝑡
21: EndFunction

22: Function ISInfer({(𝑚1, 𝑟1, 𝑐1), · · · , (𝑚𝑁 , 𝑟𝑁 , 𝑐𝑁 )}, P)
23: 𝐷𝑖𝑐𝑡 = {}, 𝑆𝑙𝑜𝑡 = {}
24: for 𝑗 = 1; 𝑗 ≤ 𝑁 ; 𝑗 + + do
25: if 𝑟 𝑗 == Argument then
26: 𝑆𝑙𝑜𝑡𝐷 [𝑐 𝑗 ] = 𝑆𝑙𝑜𝑡𝐷 [𝑐 𝑗 ] + {𝑚 𝑗 }
27: end if
28: 𝐷𝑖𝑐𝑡 [𝑟 𝑗 ] = 𝐷𝑖𝑐𝑡 [𝑟 𝑗 ] + {𝑐 𝑗 }
29: end for
30: 𝑝 = [for 𝑣 in P do if set(𝐷𝑖𝑐𝑡 .𝑘𝑒𝑦𝑠) == set(𝑣)]
31: 𝐼𝑛𝑡𝑒𝑛𝑡 = []
32: for 𝑟 in 𝑝 do
33: 𝐼𝑛𝑡𝑒𝑛𝑡 ← 𝐼𝑛𝑡𝑒𝑛𝑡 + ′ −′ + 𝐷𝑖𝑐𝑡 [𝑟 ]
34: end for
35: return (𝐼𝑛𝑡𝑒𝑛𝑡, 𝑆𝑙𝑜𝑡𝐷)
36: EndFunction

5.1 Experiment Setup
Data We curate a financial dataset (FinD) with 2.9 million real-
world utterances collected from a financial VPA in 9 domains. We
additionally construct a test set of 1,500 annotated utterances by
five domain experts with an inter-annotator agreement of the Fleiss’
Kappa larger than 0.75.
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Table 1: Statistics of the curated datasets

Data Domain No. of i./m./a.𝑎 |Vocab|/ No. of
name utter.𝑏 utter. len. domain I/S𝑐

Fi
nD

Insurance 1,008,682 5/14/975 4,937 1,179/53
Fin. Mgmt. 851,537 5/14/999 5,074 705/45
APP Ops. 311,373 5/15/980 4,267 969/39
Banking 263,458 5/14/852 3,989 578/50
User Info. 231,982 5/13/770 3,999 419/44
Health 122,385 5/15/984 3,795 126/23
Reward Pts. 35,556 5/15/998 3,112 279/15
RE & Vehicle 9,741 5/13/398 2,111 109/11
Others 133,959 5/13/624 3,564 669/49

EC
D

Commodity 342,231 5/14/168 2,189 356/28
Logistics 98,720 5/13/228 1,825 229/26
Post-sale 29,616 5/17/295 1,941 116/25

H
RD Career 64,559 5/14/624 4,206 341/43

𝑎 : i./m./a. is equivalent to minimum/average/maximum.
𝑏 : utter. denotes utterances.
𝑐 : I/S denotes intents and slots.

Table 2: Statistics in the test sets

Data No. of i./m./a.𝑎 i./m./a.𝑎 |Vocab| No. of
domains utter.𝑏 utter. len. I/S𝑐

FinD 9 2/167/908 5/11/25 667 178/39
ECD 3 330/500/604 5/9/24 562 90/27
HRD 1 1500 5/10/27 606 121/31
𝑎 : i./m./a. is equivalent to minimum/average/maximum.
𝑏 : utter. denotes utterances.
𝑐 : I/S denotes intents and slots.

Moreover, to justify the generalization ability of our RCAP, we
apply the learned IRL model, concepts, and patterns from FinD to
evaluate the model performance on two out-of-domain datasets:
a large-scale public Chinese conversation corpus in E-commerce
(ECD) [53] with the domains of Commodity, Logistics, and Post-
sale, and a human resource dataset (HRD) collected from a human
resource VPA. Similarly, we annotate additional 1,500 utterances
of each dataset as the test sets. The detailed statistics of the cu-
rated datasets and the test sets are reported in Table 1 and Table 2,
respectively.
Compared MethodsWe compare the following methods:

– POS: Ansj 1, a popular tool for Chinese terminologies seg-
mentation, is first applied to determine the intent-role la-
bels and then derive the corresponding intent-slot following
𝐶𝑜𝑛𝐼𝑛𝑓 𝑒𝑟 and 𝐼𝑆𝐼𝑛𝑓 𝑒𝑟 in Algo. 1.

– DP: a dependency parsing toolbox developed by LTP 2 is ap-
plied to determine the intent-role labels and then derive the
corresponding intent-slot following 𝐶𝑜𝑛𝐼𝑛𝑓 𝑒𝑟 and 𝐼𝑆𝐼𝑛𝑓 𝑒𝑟
in Algo. 1. Both labels in POS and DP can not be directly
applied for IRL tasks. Therefore, we design some rules to

1https://github.com/NLPchina/ansj_seg
2https://www.ltp-cloud.com

map POS tags and DP labels to IRL labels (see more details
in Appendix A.2).

– Joint-BERT [3]: a strong supervised model is trained with
a Joint-BERT model on another 3.5k annotated utterances
by two domain experts to derive the corresponding 48 pre-
defined intents and 43 predefined slots. In the out-of-domain
datasets, we include the intent of “others” for out-of-schema
utterances. It is noted that the number of labeled utterances
is sufficient to train good performance; see more results in
Appendix A.1.

– RCAP: our proposed RCAP applies a BERT model defined
in Eq. (2) to derive the intent-role labels, CNN embedding
with LPA for concept mining, and the Apriori algorithm for
pattern mining.

– RCAP+refine: the grouped mentions of our RCAP are man-
ually refined by domain experts to pick out outliers and
merge them into new concepts based on experts’ experience.

TrainingDetails In training the IRLmodel, we fine-tune the BERT-
base 3 model on 6,000 annotated utterances of FinD in 30 epochs by
the following settings: a mini-batch size of 32, a maximum sequence
length of 128, and a learning rate of 2× 10−5. For training the CNN
embeddings, we leverage TensorFlow implementation of word2vec
with CNN on empirically-set common parameters, such as filter
windows of 1, 2, 3, 4 with 32 feature maps each, word2vec dimension
of 128. The maximum length of each mention is 16. The size of the
skip window, i.e., the number of sub-words to consider to the left
and right of the current sub-words, is 2. The skip number, i.e., the
number of times to reuse an input to generate a labels, is 2. The
sampled number, i.e., the number of negative examples is 64. For
clustering, the number of nearest neighbors in LPA is empirically
set to 5. 𝐾 is 100 for K-means to attain the best performance. In
intent-role pattern mining, the minimum support value is set to 0.05
and the minimum confidence value is 0.1 for the Apriori algorithm.
In 𝐶𝑜𝑛𝐼𝑛𝑓 𝑒𝑟 , 𝛿 is set to 0.2 and 𝐾 = 5.
Evaluation Metrics In the experiment, following [22], we apply
Macro-F1 to evaluate the performance of intent-role detection and
the standard metrics, precision, recall, and F1, to measure the perfor-
mance of slot filling. Here, we adopt v-measure, a comprehensive
measurement of both homogeneity and completeness [50], which
ranges in 0 to 1, to evaluate the clustering performance. The larger
the v-measure score, the better the clustering result is.

5.2 Performance on AISI
Table 3 reports the performance of the model trained on FinD and
evaluations on all the three test sets to answer Q1. The results on
FinD are to report the in-domain performance while the results on
ECD and HRD are to evaluate the out-of-domain performance. We
have the following observations:

– RCAP significantly outperforms the baselines, POS and DP,
on all three datasets under the paired 𝑡-test (𝑝 < 0.05). The
results make sense because POS and DP perform poor in the
task of IRL; see more IRL results in Table 4.

– RCAP attains competitive performance to the strong super-
vised method, Joint-BERT, on FinD. The results demonstrate
the effectiveness of RCAP in handling in-domain SLU. More

3https://github.com/google-research/bert

https://github.com/NLPchina/ansj_seg
https://www.ltp-cloud.com
https://github.com/google-research/bert
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Table 3: Compared results on in-domain and out-of-domain SLU datasets.

Dataset In-domain Out-of-domain
FinD ECD HRD

Approach Intent P/R/F1 Slot P/R/F1 Intent P/R/F1 Slot P/R/F1 Intent P/R/F1 Slot P/R/F1

POS 0.34/0.35/0.34 0.49/0.50/0.49 0.19/0.20/0.19 0.56/0.45/0.50 0.05/0.05/0.05 0.27/0.40/0.32
DP 0.48/0.49/0.48 0.51/0.79/0.62 0.45/0.46/0.45 0.60/0.56/0.58 0.28/0.28/0.28 0.61/0.41/0.49

Joint-BERT 0.89/0.89/0.89 0.92/0.90/0.91 0.19/0.21/0.20 0.49/0.64/0.55 0.02/0.02/0.02 0.42/0.33/0.37
RCAP 0.82/0.84/0.83 0.85/0.89/0.87 0.79/0.80/0.79 0.85/0.79/0.82 0.75/0.76/0.75 0.84/0.74/0.79

RCAP + refine 0.91/0.90/0.90 0.92/0.91/0.92 0.85/0.86/0.85 0.85/0.81/0.83 0.90/0.91/0.90 0.86/0.75/0.80

Table 4: Compared results on IRL performance in FinD
shown by Precision/Recall/F1.

Action Problem Question

POS 0.13/0.30/0.18 0.02/0.01/0.01 0.32/0.13/0.18
DP 0.58/0.48/0.53 0.51/0.56/0.53 0.83/0.56/0.67

RCAP 0.86/0.87/0.87 0.88/0.83/0.85 0.94/0.93/0.93

Argument Overall
POS 0.21/0.24/0.22 0.18/0.20/0.19
DP 0.74/0.49/0.59 0.68/0.51/0.58

RCAP 0.92/0.91/0.92 0.91/0.90/0.90

significantly, RCAP can easily transfer to other domains and
achieves the best performance in ECD and HRD. On the
contrary, Joint-BERT performs poorly, even worse than POS
and DP, in ECD and HRD. This is because Joint-BERT does
not learn the semantic features in new utterances and may
assign the out-of-schema utterances to wrong intents.

– By examining the results on the out-of-domain datasets,
RCAP attains at least 76% higher F1-score on intent detection
and 41% higher F1-score on slot filling than the best baseline.
This implies that RCAP can effectively infer out-of-domain
intent-slot.

– RCAP after refinement achieves the best performance, 0.9
Macro-F1 score in intent detection and 0.92 F1-score in slot
filling on FinD. More importantly, the superior performance
can be retained in ECD and HRD. The results show that
the refinement can gain 8.4%-20.0% improvement on intent
detection and 1.3%-5.7% improvement on slot filling.

5.3 Drill-down Analysis
In the following, we analyze the effect of each module in RCAP and
the schema induction efficiency to answer Q2.
IRL Performance IRL is a crucial step to the success of RCAP.
Here, we evaluate the performance, i.e., precision, recall, and F1-
score, on identifying the intent-role labels of utterances and report
the performance on sub-words level. Overall shows a weighted
score of the corresponding score on all intent-roles. To provide
references, we compare RCAP with the baselines, POS and DP.
Since Joint-BERT cannot provide the intent-role labels, we do not
report its result here.

Table 4 reports the performance of compared methods and shows
the following observations:

Figure 3: Performance of IRL models trained with different
number of training data.

– RCAP by utilizing BERT significantly outperforms POS and
DP in intent-role labeling. POS and DP perform poorly and
attain only 0.19 and 0.58 on overall F1-scores on FinD. This
implies that it is non-trivial to determine the intent-roles.

– By examining the performance on each role, we observe
that the F1-scores in Action and Problem are slightly lower
than those in Question and Argument. A reason is that the
mentions in both Action and Problem contain verbs or verb
phrases, which leads to more errors in predicting the roles.
Our trained BERT model can still achieve competitive perfor-
mance, i.e., 0.87 and 0.85 F1-score, on Action and Problem,
respectively.

Effect of the number of annotated data in IRL Here, we argue
that to attain satisfactory IRL performance, our RCAP only needs to
annotate a small number of utterances. To support this argument,
we ask three domain experts to annotate 6,500 utterances with
around 15K mention-role pairs. In the test, to mimic the real-world
scenarios, we keep all utterances without eliminating those with
multiple intents or with only Argument. This makes the test set
slightly different from Table 2. In the test, we hold 500 annotated
utterances for test while varying the number of training samples
in {50, 100, 200, 500, 1,000, 2,000, 3,000, 4,000, 5,000, 6,000}. Figure 3
shows the total performance of precision, recall, and F1 scores on
the sub-word level for all intent roles. The results show that when
the number of training data reaches 2,000, F1 converges to 0.85,
which corresponds to 0.9 in Table 4. The slightly worse performance
in Fig. 3 than that in Table 4 comes from the broader types of utter-
ances in the test set. Overall, we only need to annotate around 2,000
utterance to attain satisfactory IRL performance, which indicates
very light labeling effort.
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Figure 4: Intent-role mention clustering performance.

Effect of Concept Mining We test three mention embedding
methods and three clustering algorithms as described in Sec. 3.2, on
all 2.9 million utterances in FinD. We then extract around 10,000 fre-
quent intent-role mentions for evaluations. The clustering results
in Fig. 4 implies that:

– Among the three mention embedding methods, phrase2vec
and CNN significantly outperform words2vec while CNN
performs slightly better than phrase2vec. We conjecture
that phrase2vec have effectively absorbed the contextual
information for the mentions and CNN embeddings can
capture semantic information for the words inside mentions.

– Among the three clustering methods, LPA and MinE signifi-
cantly outperform K-means while LPA is slightly better than
MinE. We believe that both LPA and MinE capture the struc-
ture of the data and contain higher tolerance on embedding
errors. On the contrary, K-means may converge to a local
minimum and heavily rely on the initial state.

– The results show that by applying the mention embedding
method of phrase2vec or CNN embedding and the cluster-
ing algorithm of LPA or MinE, we can yield satisfactory
v-measure scores, i.e., in the range of 0.6 to 0.8. For other
metrics, we also obtain similar observations; see more results
on Homogeneity and Completeness in Appendix A.3.

Results of Intent-role Pattern Mining By applying the Apriori
algorithm, we can obtain totally 10 patterns written into 5 typi-
cal patterns as shown in the results of Pattern Mining in Fig. 2,
Action-(Argument), (Argument)-Question, Action-(Argument)-
Question, Problem-(Argument), and Problem-(Argument)-Quest-
ion, where Argument may not appear in the patterns. For example,
the patterns of Action-(Argument) and Action-Question-(Argum-
ent) also include the patterns of Action and Action-Question
without Argument, respectively. These patterns can cover over 70%
of utterances in FinD. The remaining utterances consist of multi-
ple intents or chitchats without explicit intents, which are not the
targeted cases in this paper.
Performance of Concept Inference We test the performance of
𝐶𝑜𝑛𝐼𝑛𝑓 𝑒𝑟 in Algo. 1. Since frequently-appeared mentions usually
can be directly mapped to the corresponding concepts, to test the
performance in long-tail situations, we additionally collect 1,000
utterances from FinD. Each utterance contains at least one low-
frequent mention, i.e., appearing less than 20 times in the dataset.
We obtain an inference accuracy of 0.88 on this set, which implies
the robustness of our RCAP in concept inference.

Table 5: Schema induction performance.

Intents Slots Time (hours)

MANUAL 7 16 24
RCAP 16 16 2

Check

Change-(Number)-Method

Change-(Number)

Receive-(Money)-Method

Change-(Staff) Check Failure

Change-(Staff)-Method

Change-(Account)-Method

Application-Method

Check-(Insurance)

Figure 5: Visualizing the clustering arrangement for utter-
ances belonging to ten intents in FinD, where different col-
ors denote different intents.

EfficiencyWe compare the time cost of traditional manual-schema
induction and our RCAP. We ask a domain expert in “Health” do-
main to derive a schema by the following common schema in-
duction steps: 1) selecting utterances in the “Health” domain; 2)
grouping similar utterances and abstracting them into intents; 3)
enumerating slots for each intent; 4) repeating step 2) and 3) to
construct the schema. In comparison, another expert only needs to
determine whether the derived intent-slot labels by our RCAP lie in
the “Health” domain. Since utterances with the same intents may
be sparsely distributed in the corpus, the schema induction may
be extremely difficult and time consuming. As shown in Table 5,
it takes the first domain expert about 24 hours to manually derive
only 7 intents and 16 corresponding slots. On the contrary, our
RCAP can automatically group utterances of the same intents. The
other expert can, therefore, take only 3 hours to produce a similar
schema with 9 additional intents; see more results in Appendix A.5.

5.4 Case Studies
We now present the qualitative evaluation of our RCAP to answer
Q3. To show RCAP’s ability to conflate different utterances into
the same or similar intent category, we concatenate the intent-role
mention embeddings of each utterance and plot them by t-SNE in
a 2D-space. Fig. 5 shows that the utterances with the same intents
(representing by the same colors) cluster in compact groups. For
example, the utterances of “I want to change my sales manager.”
and “Change another representative” are grouped into the intent of
“Change-(Staff)” in purple, while the utterances of “How can I have
another customer service representative?” and “What are the ways
to replace my current sales manager” are grouped into the intent
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Table 6: Fine-grained intents discovered by RCAP vs. manu-
ally mined intents for eight cases from FinD.

Utterances RCAP Manual

What materials I need to in-
clude to loan application

(Loan Application) − Doc-
ument Consultant

Loan Applica-
tion

When will the mortgage ar-
rive?

Arrival-(Loan,Time)-
Consultant

My bank loan was rejected. Refused-(Loan)
Can I change the insured of
this car insurance?

Replace-(Insured)-
Feasibility

Insurance
Info Modifica-
tion

Change the policyholder Replace-(Policyholder)
What is the weather today? (Weather,Date)-Inquiry Others
The problem I reported was
not solved.

Not solved-(Issue)

Call the bank customer ser-
vice.

Contact-(Customer Ser-
vice)

of “Change-(Staff)-Method” in pink. Due to their similar semantic
meanings, both intents lie close to each other in Fig. 5. This implies
that our RCAP can effectively group similar utterances into same
intents and separate different intents.

Table 6 lists the manual annotation and our RCAP on eight
utterances. Our RCAP can provide more detailed intents comparing
with the manual annotated results. Moreover, our RCAP can induce
specific intents for long-tailed utterances. On the contrary, manual
annotation usually assigns them to the intent of Others.

In conclusion, concepts produced by RCAP can help unify ut-
terances with similar semantic meanings into the same intents.
Besides, the detected intents contain fine-grained information and
can help induce a meaningful schema, which can cover long-tail
utterances.

6 RELATEDWORK
Spoken Language Understanding The main goal of an SLU com-
ponent is to convert the spoken language into structural semantic
forms that can be used to generate response in dialogue systems [5].
SLU contains two main sub-tasks: intent classification, which can
be treated as a multi-label classification task [14, 19, 33], and slot
filling, which can be treated as a sequence labeling task [21, 26, 27].
Recently, joint models for intent detection and slot filling [3, 12, 13,
24, 30, 48, 51] have received more attention since information in
intent labels can further guide the slot filling task. The above ap-
proaches require predefined intent-slot schemas and huge labeled
data annotated by domain experts to attain good performance. To
alleviate the limits, Vedula et al. [43] identify domain-independent
actions and objects, and construct intents on them. However, their
methods extracted intents that are restricted in action-object form,
and cannot fill in slots. This motivates us to explore automatic
intent-slot induction in broader scenarios.
Intent-Slot induction Traditional SLU systems rely heavily on
domain experts to enumerate intent-slot schemas, which may be
limited and bias the subsequent data collection [5]. Hence, many
works propose approaches for automatic intent detection. For ex-
ample, Xia et al. [47] propose a zero-shot intent classification model

to detect un-seen intents. Their work is useful for similar domain
transfer, but not valid for new domains. Kim and Kim [17], Lin
and Xu [22] can only detect if an utterance contains out-of-domain
intents. Unsupervised approaches [5, 6, 36, 41, 42] have been pro-
posed to build models for slot induction and filling. These papers
have applied clustering algorithms to group concepts. However,
their performance still rely on the corresponding domains. To ad-
dress this issue, we investigate unsupervised domain-independent
methods for both intent and slot.

7 CONCLUSION
In this paper, we define and explore a new task of automatic intent-
slot induction. We then propose a domain-independent approach,
RCAP, which can cover diverse utterances with strong flexibility.
More importantly, our RCAP can be effectively transferred to new
domains and sheds light on the development of generalizable dia-
logue systems. Extensive experiments on real-word datasets show
that our RCAP produces satisfactory SLU results without manually-
labeled intent-slot and outperforms strong baselines. As for the
out-of-domain datasets, our RCAP can gain great improvement
than the best baseline. Besides, RCAP can significantly reduce the
human effort in intent-slot schema induction and help to discover
new or unseen intent-slot with fine-grained details. Several promis-
ing future directions can be considered: (1) extending the single-
intent induction to multi-intents induction; (2) utilizing external
well-defined knowledge graph to fine-tune the mined concepts; (3)
developing a generalizable dialogue systems based on our RCAP.
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A APPENDIX
A.1 Vary Training Data Size for Joint-BERT
In this section, we quantify the annotation requirements for the
Joint-BERT model for SLU tasks. We randomly select 5,000 utter-
ances from FinD, and annotate them with intent-slot for test. In the
test, we hold on additional 1,500 annotated utterances for test while
varying the number of training samples in {150, 300, 500, 1,000,
1,500, 2,500, 3,000, 3,500}. Figure 6 shows the performance of Joint-
BERT in intent detection (blue line) and slot filling (red) on different
number of training samples. F1-score is used for evaluations. The
results show that the F1-scores for intent and slot converge to 0.89
and 0.91 when the data size reaches 2,500. This implies that to train
Joint-BERT with good performance, we usually need around 2,500
annotated utterance.

Figure 6: Performance of the Joint-BERT model trained on
different number of training data, including intent detec-
tion (blue) and slot filling (red).

POS

‘n’/‘nz’ Argument

‘v’ without negation Action

‘v’ with negation Problem

‘xc’ Question

Figure 7: Mapping rules from POS tags to IRL intent-role la-
bels.

A.2 IRL training Details
We provide more training details for IRL, including POS, DP, and
our RCAP.

– POS: Based on the tags generated by POS, we write a set
of rules to derive the corresponding intent-slot labels as in
Fig. 7:
– A noun or noun phrase is set as Argument;
– A verb or verb phrase without negation words is set as
Action;

– A verb or verb phrasewith negationwords is set as Problem;
– An interrogative word or phrase is set as Question.

Query Label

取 B-action

消 I-action

刚 O

才 O

的 O

贷 B-Argument

款 I-Argument

申 I-Argument

请 I-Argument

(a) (b) (c)
Query Label

你 O

好 O

生 B-Argument

存 I-Argument

金 I-Argument

可 B-question

以 B-question

抵 B-action

交 I-action

保 B-Argument

费 I-Argument

吗 B-question

？ I-question

Query Label

账 B-Argument

户 I-Argument

转 I-Argument

出 I-Argument

提 B-problem

示 I-problem

交 I-problem

易 I-problem

失 I-problem

败 I-problem

， O

怎 B-question

么 I-question

办 I-question

Figure 8: Three IRL results: (a) Hi, can the survival ben-
efit pay the premium? (b) Cancel the loan application (c)
Account transfer transaction failed, what should I do. The
Query columns are sub-words of input utterances to the IRL
labelingmodel, the Label columns are outputs by RCAP. “B”
indicates the beginning tag, “I” indicates the inside tag, and
“O” indicates the outside tag.

– DP: We first use DP on each utterance to generate pars-
ing results with corresponding labels. Afterwards, mention-
concept sets mined by RCAP are utilized to decide the intent-
role for each mention.
– lies in Action mentions and labeled as “HED" or “COO"
is set as Action;

– lies in Problem mentions and labeled as “HED" or “COO"
is set as Problem;

– lies in Argument mentions and has dependency relations
to Action or Problem is set as Argument;

– lies in Question mentions and has dependency relations
to Action or Problem is set as Question.

A.3 Clustering Performance
We introduce the other two metrics to evaluate the performance of
intent-role mention clustering in experiments: homogeneity and
completeness. Homogeneity and completeness are entropy-based
measures that are symmetrical to each other. A clustering result
satisfies prefect homogeneity if the class distribution with each clus-
ter is skewed to a single class. A clustering result satisfies perfect
completeness if all datapoints that are members of a single class are
clustered to a single cluster [34]. V-measure used in Sec. 5.3 is a com-
prehensive measurement of both homogeneity and completeness
[50]. Fig. 10 shows the clustering performance on all intent-roles
using homogeneity and completeness.

A.4 Samples in Concept Repository
In elucidating the concept repository produced by concept mining,
we show some samples for all different intent-roles as in Fig. 9.
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(b) Completeness

(a) Homogeneity

Figure 10: Intent-role mention clustering evaluations on all
intent-roles using (a) completeness and (b) homogeneity,
with different mention embedding methods and clustering
algorithms included. The color bar shows evaluation scores
decrease from dark blue to light yellow.

UTTERANCES MANUAL RCAP

How to claim for whom diagnosed with 
hypertension? Disease related claim: procedure Claim-(Disease)-Method

Can I claim for heart disease? Disease related claim: feasibility Claim-(Disease)-Feasibility

What is the waiting period to claim for 
cancer patient? 

Disease related claim: waiting period Claim-(Disease, Waiting Period)

How much can I get if I claim for cancer? \ Claim-(Disease, Amount)

Can I get insured with diabetes? Disease related insure: feasibility Insure-(Disease)-Feasibility

How long is the waiting period after get 
insured for depression? Disease related insure: waiting period Insure-(Disease, Waiting Period)

I was refused to get insured by life 
insurance with diabetes. 

\ Operation Failed-(Disease, Insurance)

How to do insurance notice for heart 
attach when getting insured? \ Insure-(Disease, notification)-Method

How much should I pay to get insured 
with hypertension? \ Insure-(Disease)-How Much

I did not have depression history. \ Deny-(Disease)

What type of insurance can guarantee 
toothache? What diseases can be guaranteed Guarantee-(Disease)-Type Consultant

How to surrender with diabetes? \ Surrender-(Disease)- Method Consultant

Can I renew with heart disease? \ Renewal-(Disease)-Feasibility

How can I report headache to you? \ Report-(Disease)- Method Consultant

Is depression exempt from it? \ Exempt-(Disease)-Type Consultant

By what means can I check diagnosis 
history?

\ Check-(Diagnosis)-Method Consultant

I have hypertension, can you recommend 
an insurance product to me? Recommend insurance given disease \

Figure 11: Results ofmanual induction and automatic induc-
tion by RCAP on the “Health” domain.
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Action
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Fill In
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推迟缴费
Deferred payment
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Question
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Why
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How
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为什么
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Why do
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How to
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怎样
In what manner
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Why
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How to do
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At which place

为什么会这样
What’s the cause

怎么弄
By what means

到哪里
What is the place
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What’s the reason

咋么
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on what account
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How can I
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Figure 9: Typical concepts for all four intent-roles: Argument,
Problem , Action, and Question.

A.5 Schema Induction Results
We enumerate the induced intents in Sec. 5.3 by the manual proce-
dure and our RCAP and show them in Fig. 11.

A.6 Concepts Expansion
Though concepts are mined from a large-scale open-domain corpus,
theymay be still missed in new domains. To enrich the concepts and
enhance the feasibility of RCAP induced schemas in new domains,
we will conduct concept expansion on new utterances when they
come from new domains.

Here, we first extract the corresponding intent-role mentions
from the utterances. After that, we assign these mentions to existing
concepts by directly matching. If they are not matched, we con-
duct concept inference on them. Hence, there exist some mentions
that cannot be inferred to a certain concept with high confidence
since they may not have enough qualified neighbors; see details
in 𝐶𝑜𝑛𝐼𝑛𝑓 𝑒𝑟 function of Algo. 1. Here, we tune 𝛿 and 𝐾 to control
the confidence level for concepts expansion. We then collect these
uncategorized mentions and feed them to concept mining process
to find new concepts. Due to the simple structure of RCAP, new
concepts are incremental to the original concept schema.

A.7 Dataset Release
We release a sample set with 324 utterances from ECD. All other
datasets are under review and the desensitized datasets will be
released after publication.
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