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ABSTRACT
Open Information Extraction (OIE), the task aimed at discovering
all textual facts organized in the form of (subject, predicate, ob-
ject) found within a sentence, has gained much attention recently.
However, in some knowledge-driven applications such as ques-
tion answering, we often have a target entity and hope to obtain
its structured factual knowledge for better understanding, instead
of extracting all possible facts aimlessly from the corpus. In this
paper, we define a new task, namely Semi-Open Information Ex-
traction (SOIE), to address this need. The goal of SOIE is to discover
domain-independent facts towards a particular entity from general
and diverse web text. To facilitate research on this new task, we
propose a large-scale human-annotated benchmark called SOIED,
consisting of 61,984 facts for 8,013 subject entities annotated on
24,000 Chinese sentences collected from the web search engine.

In addition, we propose a novel unified model called USE for this
task. First, we introduce subject-guided sequence as input to a pre-
trained language model and normalize the hidden representations
conditioned on the subject embedding to encode the sentence in
a subject-aware manner. Second, we decompose SOIE into three
uncoupled subtasks: predicate extraction, object extraction, and
boundary alignment. They can all be formulated as the problem
of table filling by forming a two-dimensional tag table based on a
task-specific tagging scheme. Third, we introduce a collaborative
learning strategy that enables the interactive relations among sub-
tasks to be better exploited by explicitly exchanging informative
clues. Finally, we evaluate USE and several strong baselines on our
new dataset. Experimental results demonstrate the advantages of
the proposed method and reveal insight for future improvement.

CCS CONCEPTS
• Natural language processing→ Information extraction.
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1 INTRODUCTION
With the explosive growth of the web corpora, extracting structured
knowledge from unstructured, open-domain and diverse web text
has become increasingly important to the web content mining [11,
18, 22]. This task is known as Open Information Extraction (OIE).
An OIE system usually converts natural text to semi-structured
representations, by extracting a set of relational facts organized
as triples in the form of (subject, predicate, object) from plain text
itself [5, 15], which does not rely on pre-defined ontology schema.
The extracted facts can be applied as the source data for many
downstream tasks, including knowledge base population [25], word
analogy [16], text comprehension [21], etc.

While OIE aiming to extract all possible facts in the text, we
observe that in lots of knowledge-driven applications, we are not
interested in all facts, but those associated with a specific entity.
For example, in the task of question answering [29] and entity typ-
ing [34], we often have a target entity, and hope to enrich it with
related informative facts for better language understanding [19, 42].
Retrieving such facts from existing knowledge bases (KBs) serves
as a possible solution. However, while current KBs are quite large,
they are acknowledged as incomplete due to the dynamics of this
ever-changing world, i.e., some target entities may lack facts in KBs
rather than in the real world [2]. Therefore, it is necessary to explore
how to extract open-domain facts from the web corpora towards a
target entity. We name this new paradigm as Semi-Open Informa-
tion Extraction (SOIE) because it inherits the domain-independent
property of OIE while restricting one involved entity.

In this work, we study the problem of SOIE, and present Semi-
Open Information Extraction Dataset (SOIED), a large-scale human-
annotated dataset for it. SOIED is constructed with the following
three features: (1) SOIED annotates knowledge towards particu-
lar subject entities1, requiring model to make extraction in the
subject-aware manner. (2) Besides labeling relational facts, SOIED
also focuses on three common types of lexical facts, including de-
scription, synonym and hyponymy of the given subject in each
sentence. (3) The predicate and object in the relational facts are
not limited to contain a contiguous sequence of words. In contrast,
both of them can be discontiguous, and contain a list of spans. The
resulting dataset contains 8,013 subjects and 61,984 facts annotated
on 24,000 Chinese sentences retrieved from the web corpus, making
it large, general and diverse enough to train an accurate extractor.

Intuitively, SOIE can be regarded as a special form of OIE. So,
we can adapt OIE methods for SOIE by injecting the target sub-
ject information into extraction process. Existing OIE approaches

1We take the subject entity as an example to explore semi-open information extraction
in this paper, while extracting facts towards specific object entity is also feasible.
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usually follow the generation-based or labeling-based framework.
Generation-based models [5, 17, 18, 28] cast OIE into a text genera-
tion problem and leverage the sequence-to-sequence architecture,
which allows for selecting source tokens to generate arbitrary out-
put facts [20]. Nevertheless, this kind of models inevitably suffer
from the well known problem: exposure bias. At training time, the
ground truth tokens are used as context while at inference the se-
quence is generated by the resulting model on its own, leading to a
gap between training and inference [40]. Different from generation-
based models, labeling-based models convert fact extraction to a
sequence labeling problem [24, 26, 39]. By designing ingenious tag-
ging schemes, they can make full use of word order information
and achieve consistency between training and inference. However,
for convenience of labeling, their underlying assumption is that
the fact elements are contiguous spans in the sentence, which does
not always hold in practice. Statistics on SOIED shows that 13.78%
relational facts involve discontiguous predicates, and 6.42% contain
discontiguous objects, indicating that identifying these discontigu-
ous structures is necessary for information extraction.

In order to overcome the limitations of such prior works, we pro-
pose USE, a Unified model for Semi-open information Extraction.
It firstly generates a new input sequence by appending the given
subject to the beginning of a sentence, and feeds it into the pre-
trained language model to encode the sentence in a subject-aware
manner. A novel conditional layer normalization mechanism is
then introduced to enhance the semantic dependency between the
subject and the contextual representations by normalizing the ac-
tivities of the neurons based on the subject embedding. On top of
the subject-specific representation sequence, USE regards lexical
facts as typed objects and decomposes the overall SOIE task into
three subtasks: predicate extraction (PE), object extraction (OE) and
boundary alignment (BA) from a table filling perspective. Given
an n-word sentence, three n × n tag tables are formed for PE, OE
and BA respectively by a table filling network, where each entry
at row i and column j is assigned a unique tag according to the
interaction between the i-th and j-th word of the input sentence.
Specifically, for PE and OE, we devise a novel multi-hop tagging
scheme to solve the discontinuous structure recognition problem
by annotating all the spans subsequent to the one starting with
the position i in the i-th row of the corresponding tag table, and
merging these spans according to the global subsequent relation.
BA is to distinguish and align the boundary tokens of (predicate,
object) pairs from scratch. This is achieved by detecting the entry
that the two corresponding positions are respectively the beginning
tokens of a valid (predicate, object) pair or the ending tokens. Over-
all, the tag tables of PE, OE and BA are generated independently,
and will be consumed together by a special decoding algorithm
to recover desired facts from them, thus immune from the expo-
sure bias problem. These subtasks are trained jointly based on a
collaborative learning strategy, which fully exploits the interactive
relations among them to mutually enhance their performance.

To evaluate our USE model, we adapt recent state-of-the-art
information extraction methods to semi-open information extrac-
tion, and conduct thorough experiments on SOIED. Experimen-
tal results demonstrate that the proposed USE consistently out-
performs baseline methods. Furthermore, detailed analysis shows
that USE significantly improves the performance on multiple fact

extraction, discontinuous fact extraction and unseen fact extrac-
tion, and reveals multiple promising directions worth pursuing.
We will make SOIED and the code for USE publicly available at
https://github.com/yubowen-ph/SOIE.

2 RELATEDWORK
Although semi-open information extraction has been largely ne-
glected in the literature, several related tasks have been well studied
such as relation extraction, joint extraction, open relation extraction
and open information extraction.

Relation Extraction (RE) aims to classify the semantic rela-
tion between given entities from plain text into pre-defined rela-
tions [36]. Zeng et al.[38] showed that CNN with position embed-
dings is effective for RE. Zhang et al.[41] proposed graph convolu-
tion over dependency trees and achieved promising results on public
benchmarks. These RE methods seek to mine structured facts from
text. But they suffer from two main limitations: (1) requiring recog-
nized entities as input may be affected by error propagation [37];
(2) using a pre-defined set to cover those relations with open-ended
growth is difficult [12].

Joint Extraction (JE) aims to detect entity pairs along with
their relations using a single model [31]. PATag [6] transforms
joint extraction to several sequence labeling problem by tagging
entity and relation labels simultaneously according to each query
word position. ETL [37] performs subject recognition as the first
step, and extracts the corresponding object and relations for each
subject. Compared with RE, this extraction paradigm reduces the
error propagation owing to the joint modeling. But it still focuses
on answering narrow, well-defined requests over a predefined set
of target relations [23].

OpenRelation Extraction (ORE) aims to discover new relation
types that hold between two entities mentioned in the text from
unsupervised open-domain corpora. Elsahar et al.[10] extracted rich
linguistic features for relation instances, and clustered semantic
patterns into several relation types. Wu et al.[33] proposed to learn
similarity metrics of relations from labeled data of pre-defined
relations, and transfer the relational knowledge to identify novel
relations in unlabeled data. Compared with conventional RE, ORE
does not rely on specific relation types and extracts relational facts
with minimized or even no human annotation.

Open Information Extraction (OIE) extracts textual triples
comprising relation phrases and argument phrases from within
a text, without requiring pre-specified relations or pre-identified
entity pairs. Stanovsky et al.[26] proposed a novel formulation of
OIE as a sequence tagging problem. However, this model lacks
the elegance to identify discontinuous structures, which may lead
to poor recall. Cui et al.[5], Sun et al.[28] and Liu et al.[18] built
generation-based OIE extractor by directly decoding a prediction
sequence containing a list of facts from the input source sentence,
thus addressing the discontinuous structure recognition problem.
Nevertheless, these methods have difficulty in capturing the token
order within pieces of arguments and predicates, as they usually
perform free token-level decoding operation. Besides, generation-
based methods actually decompose OIE into several dependent
steps, since the decoder needs a recursive decoding process, in-
evitably causing the exposure bias problem [13].
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Table 1: An example from SOIED, with target subject entity underlined for clarity.

Chinese English Translation
Sentence 全国社会保障基金（社保基金）是政府用以提供社

会保障的基金，主要由用人单位和个人缴费构成，

包括养老保险基金，医疗保险基金等，用于各项社
会保险待遇的当期发放。

National Social Security Fund (Social Security Fund) is the fund used by the
government to provide social security, mainly composed of employer and
individual payment, including endowment insurance fund and medical
insurance fund, used for the current payment of social insurance benefits.

Relational
Facts

(由|构成,用人单位缴费) (由|构成,个人缴费)
(包括,养老保险基金) (包括,医疗保险基金)
(用于,各项社会保险待遇的当期发放)

(composed of, employer payment)(composed of, individual payment)
(including, endowment insurance fund) (including, medical insurance fund)
(used for, the current payment of various social insurance benefits)

Description 政府用以提供社会保障的基金 the fund used by the government to provide social security
Synonym 社保基金 Social Security Fund
Hyponymys 养老保险基金,医疗保险基金 endowment insurance fund, medical insurance fund

In the recent years, there has been a growing interest in develop-
ing open-domain information extraction (ORE and OIE) methods
because they forgo per-relation training data and are not bound by
a fixed relation vocabulary in contrast to traditional closed-domain
extraction (RE and JE). In this paper, we design a novel semi-open in-
formation extraction task which aims at discovering open-domain
facts towards a given entity. In essence, it fills the gap between
ORE and OIE. On the one hand, when compared with ORE, our
SOIE paradigm no longer requires all the entities are identified
in advance, thus expanding the downstream application scenar-
ios. On the other hand, SOIE sets up a more focused extraction
direction than OIE, making it more suitable in obtaining structured
knowledge for specific entities that we care about.

3 SOIE DATASET
In this section, we first introduce our knowledge expression form,
based on which the SOIE facts are accurately expressed. Then we
detail the collection process of the human-annotated data. Finally,
we analyze various aspects of SOIED to provide a deeper under-
standing of the dataset and the task of SOIE.

3.1 Format
On the basis of previous fact annotation schemes [24, 28], we have
analyzed a great many sentences. We conclude that most of the
factual knowledge related to the target subject entity can be clas-
sified into the following classes: (1) Relational fact involved the
given subject, denoted as (predicate, object) pair; (2) Lexical fact of
the given subject, including description, synonym, and hyponymy,
is represented in the form of a continuous phase. Our annotation
format is designed to record all these types of facts.

Specifically, we adopt the ideology of “literally honest” follow-
ing the philosophy of open-domain extraction. That is, as much
as possible, we use the words in the original sentence to express
knowledge, allowing SOIE systems to extract facts without relying
on any pre-defined ontology schema. Table 1 shows an example
sentence and the annotated facts for the target subject 全国社会保
障基金 (National Social Security Fund). In some cases, predicates
or objects in relational facts may be divided into several parts resid-
ing in discontinuous locations of the sentence; we categorize these
cases into two classes. In the first class, we merge separated spans
in order, which can form a continuous and complete expression
after such processing, e.g., 用人单位缴费 (employer payment) in

the relational fact of Table 1. In the second class, we introduce an
extra symbol “|”, which works like a placeholder in the predicate,
denoting that the corresponding object should be inserted in this
place to express the exact relation between the target subject and
the extracted object, e.g., 由|构成 (composed of).

3.2 Human-Annotated Data Collection
Our human-annotated data is collected in three stages: (1) Cre-
ating target subject entity set. As SOIE is designed to scale to
massive open-domain corpora such as the Web, and we hope our
constructed dataset is completely domain-independent. Towards
this goal, we propose to generate a diverse and general-purpose
target entity set by sampling from the crowdsource entity dictio-
nary used by the Chinese IME Sougou2, which provides a large
number of entities from many fields, including science, culture, art,
entertainment, etc (2) Collecting candidate sentences. Each en-
tity in the target set is used as a query term to retrieve the relevant
web pages by the Baidu search engine3. Then we use goose34 to
extract the text of web pages and retain the sentences containing
the retrieval entities as candidate (subject, sentence) instances. (3)
Annotating the target-related facts. Next, we invite some well-
educated college students in computer science to annotate facts for
the collected instances according to the defined annotation format.
Two annotators label each instance, and if they have disagreements
on one instance, one or more annotators are asked to judge it.

3.3 Data Analysis
The final SOIED dataset consists 61,984 relational facts annotated
on 24000 sentences for 8,013 subjects. On average, each instance
in SOIED contains 67.38 tokens and 2.58 facts. See Table 2 for fact
number distribution. Table 3 shows the numbers and proportions
of four types of facts contained in the data set. A notable property
of our dataset is that both predicates and objects in relational facts
can be discontiguous, and contain a list of spans. Detailed analysis
reveals that 13.78% relational facts involve discontiguous predicates,
and 6.42% contain discontiguous objects, indicating that identifying
these discontiguous structures is necessary and important for infor-
mation extraction. To verify the domain-independent property of
our dataset, we randomly sample 1000 target subject entities, and

2https://pinyin.sogou.com/dict/
3https://baidu.com
4https://github.com/goose3/goose3
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Figure 1: Subject entity domain distribution of SOIED.

manually analyze their domains. As shown in Figure 1, subject en-
tities straddling a number of areas, which means the model trained
on SOIED is not constrained in any specific domain.

Table 2: Sentence-level fact number distribution of SOIED.

0 1 2 3 4 ≥5
Number 5,431 6,786 3,303 2,295 1,777 5,606

Proportion 22.63% 28.28% 13.76% 9.56% 7.40% 23.36%

Table 3: Fact type distribution of SOIED.

Relational Fact Description Synonym Hyponymy
Number 34,882 7,491 6,443 13,168

Proportion 56.28% 12.09% 10.39% 21.24%

4 METHODOLOGY
This section provides ourUnified model for Semi-open information
Extraction (USE) in details. We will present the task decomposition
strategy, the model architecture, the design of each component, and
the overall workflow.

4.1 Task Decomposition
The goal of SOIE is to extract relational facts and lexical facts
(description/hyponymy/synonym) of the given subject entity. One
intuitive solution is pipeline: starting with a sentence and a target
subject entity, it first extracts all the candidate predicates, objects
and lexical facts that may be related to the given subject entity,
then enumerates all possible (predicate, object) pairs and classify
whether each of these pair is valid or not concerning the subject
entity. While being easy to implement, this process is vulnerable
to errors cascading down the pipeline. The earlier extraction stage
error is inherited and magnified in the later classification stage,
causing the poor overall performance. Thus, our core observation is
that if we can decouple the dependency between these two stages,
such a framework would be unified and end-to-end.

In this work, in addition to encoding subject information, we
propose to fold the semi-open information extraction process into
three uncoupled subtasks: 1) predicate extraction: learning to detect

[CLS] Yu Garden [SEP] Yu Garden was built in the Ming Dynasty Jiajing and Wanli periods . [SEP]

Yu Garden:
{was built in, Ming Dynasty Jiajing periods},{was built in, Ming Dynasty Wanli periods}

Subject-Guided Encoder

Collaborative Learning 

Predicate Extraction Boundary Alignment Object Extraction

Figure 2: The overall structure of the USE model.

all the (potentially discontinuous) predicates for the given subject;
2) object extraction: similar to predicate extraction but focusing on
objects and lexical facts; 3) boundary alignment: learning to distin-
guish and align the boundary tokens of (predicate, object) pairs from
scratch. Their prediction results can be generated independently
and do not contain any inter-dependency extraction steps.

This task formulation comes with several key advantages: firstly,
one-stage extraction of paired predicates and objects at the same
time is supposed to avoid the cascading errors in the pipeline
method; secondly, treating predicate extraction and object extrac-
tion as individual subtasks are beneficial to capture their task-
specific information in the learning process; thirdly, by regarding
lexical fact as a particular object with fine-grained type, this formu-
lation provides a natural way to handle the relational fact and lexical
fact in a unified framework; Fourthly, it allows us to exploit the
well-developed multi-task learning techniques to comprehensively
model interactive relations between different subtasks.

4.2 Overview
Figure 2 shows the overall architecture of USE. Formally, given
a subject entity and a sentence containing it, the subject-guided
encoder first builds the subject-aware contextual representations
as the shared features. After that, the collaborative learning mod-
ule learns the private representation for each subtask defined in
the task formulation and enables their interactions to be better ex-
ploited. Upon the task-oriented private features, three table filling
networks are deployed to synchronously deliver predicates, objects,
and aligned boundaries, which are finally consumed together to
output factual knowledge of interest elegantly.

4.3 Subject-Guided Encoder
For each instance composing of a {subject, sentence} pair, the subject-
guided encoder’s goal is to integrate the subject information into
the word representations, which is in favor of the following process
of extracting subject-related facts. Specifically, we use Bidirectional
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Encoder Representations from Transformers (BERT) [9], a pre-
trained bidirectional Transformer encoder that achieves state-of-
the-art performances across a variety of NLP tasks, as our backbone
network. To adapt BERT to consider target information straightfor-
wardly, we design the target-guided input. Each training input is
organized by concatenating the tokens of the target subject entity,
denoted by T , together with the sentence tokens S , to form the
packed sequence X : “[CLS]”+ T + “[SEP]” + S + “[SEP]”. Then for
each token xi in X , we convert it into vector space by summing
the token, segment, and position embeddings, thus yielding the
input embeddingsX0 = [x01, · · · , x

0
n ]. Next, we use a series of L

stacked Transformer blocks to project the input embeddings into a
sequence of contextual vectors XL = [xL1 , · · · , x

L
n ] as:

Xl = TransformerBlock(Xl−1),∀l ∈ [1,L]. (1)

Furthermore, to give contextual vectors more guidance towards
the target, inspired by [8, 27], we introduce a novel conditional
layer normalization (CLN) mechanism based on the well-known
layer normalization (LN) [1]. LN was proposed to normalize neu-
rons’ activities to reduce the covariate shift problem in deep neural
networks. It can be defined as a linear mapping function as:

LN(x,α , β) = α ⊙ (
x − µ
σ
) + β , (2)

µ =
1
d

d∑
i=1

xi , σ =

√√√
1
d

d∑
i=1
(xi − µ)2, (3)

where xi is the i-th element of the input vector x ∈ Rd , µ and σ are
the mean and standard deviation taken across the elements of x,
respectively. x is first normalized by fixing the mean and variance
and then scaled and shifted by α , and β , which are learnable vectors
shared between instances. Different from LN, CLN dynamically
generates α and β based on prior knowledge rather than learning
them as other parameters in neural networks. In SOIE, the subject is
the essential guide for extraction, so we propose to take its feature
vector as a condition to generate α and β as follows:

αe =Wα e + bα , βe =Wβ e + bβ , e =
1

t − 1

t∑
j=2

xLj , (4)

where e denotes the representation of the target subject entity,
computed by averaging the embeddings of BERT over the concate-
nated subject tokensT , t is the ending index ofT in X . For different
subjects, different LN parameters are generated, which results in ef-
fectively adapting input representations to be more subject-specific;
this process can be defined as:

H = [CLN(xL1 ,αe , βe ), · · · ,CLN(x
L
n ,αe , βe )], (5)

where H refers to the conditional normalized vector sequence.

4.4 Table Filling Network
We utilize a unified architecture for predicate extraction (PE), object
extraction (OE), and boundary alignment (BA) according to our
task formulation. This paper wraps such architecture into a gen-
eral model named table filling network. Formally, given an n-word
sentence, our network constructs a n × n tag table by enumerating
all possible token pairs and giving each token pair a unique tag
according to their relation. The key information for recognizing the

relationship between the i-th token xi and the j-th token x j include:
(1) the semantic of xi ; (2) the semantic of x j ; (3) the contextual
information related to these two tokens. Under this consideration,
we generate the representation pi, j for (xi , x j ) as follows:

si, j,z = v⊤tanh(Wa [hi ⊕ hj ⊕ hz ]), (6)

ai, j,z =
exp(si, j,z )∑n

m=1 exp(si, j,m )
, ci, j =

n∑
z=1

ai, j,zhz , (7)

pi, j = tanh(Wp [hi ⊕ hj ⊕ ci, j ]), (8)

whereWa andWp are parameter matrices and v is a vector to be
learned, hj , hp , hz are the hidden states at position j , p and z respec-
tively, ⊕ denotes the concatenation operator. Equation 7 means the
states at the two focused positions are used for comparing with all
the token representations to collect relevant information from the
context. Finally, we feed pi, j into a fully-connected layer, which is
followed by a Softmax function to compute label distribution:

P(yi, j ) = Softmax(Wbpi, j + bb ). (9)

Then, by learning different table filling parameters for PE, OE
and BA, we can generate different P(yIi, j ), where I ∈ {PE,OE,BA}
is the subtask indicator. The label of (xi , x j ) is predicted as:

tagIi, j = argmax
k

P(yIi, j = k), (10)

where P(yIi, j ) = k represents the probability of identifying the label
of (xi , x j ) as k in the subtask I.

4.5 Predicate extraction and object extraction
In this subsection, we introduce our multi-hop tagging scheme for
extracting predicate and object. For the sake of generality, we do
not distinguish them in some parts of the following paragraphs,
and they are collectively referred to as the element.

First of all, we define a set of labels {B, I, |-B, BH, |-BH, IH, BB, |-BB,
IB, O} for prediction extraction, and {OBJ-B, OBJ-I, OBJ-BH, OBJ-IH,
OBJ-BB, OBJ-IB, DES-B, DES-I, SYN-B, SYN-I, HYP-B, HYP-I, O} for
object extraction. Each label contains up to two parts: position and
task-specific. In the position part, we extend the traditional BIO tag
set with four new position indicators {BH, IH, BB, IB} to represent
the discontinuous element: (1) BH indicates the word is the begin-
ning of a head, where head stands for the first indivisible span of
a discontinuous element. Here indivisible means that if different
elements share a part of a span, this span needs to disassemble
the shared part as a separate span; (2) IH indicates it locates inside
of a head; (3) BB indicates it locates in the first place of a body,
where body defined as an indivisible span after the head; and (4)
IB means inside of body. In the task-specific part, we associate tags
with task-specific information if necessary. For example, in predi-
cate tagging, we introduce a symbol “|” to instruct that “|” should
be inserted before the corresponding token, adapting the tagging
results consistent with our annotation format (Section 3.1). As to
object tagging, we introduce four object type tags: OBJ, DES, SYN,
and HYP to denote a general-typed object, description, synonym,
and hyponymy, respectively. Note that lexical facts usually com-
prise continuous token sequences, so we only utilize B and I to
represent their positions.
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Yu Garden was built Dynasty Jiajingthein Ming and Wanli periods .Sentence:

Tags (p=1):

Tags (p=7):

Tags (p=9):

Tags (p=11):

Tags (p=12):

…
…

…

Tags (p=13):

O O O O OOO O O O O O

OBJ-IH OBJ-BB O OBJ-BB O O

-- O O OBJ-BB O

- -- - OBJ-BB O

- -- - - O

- -- - - -

- - - - --

- - - - --

- - - - --

- - - - --

- - - - --

O

OBJ-BH

OBJ-BB

OBJ-BB

OBJ-BB

O

Figure 3: An example of our multi-hop tagging scheme for
object extraction, where p is the query word position. The
words highlighted in blue denote the target subject entity.

Nevertheless, this encoding may be lossy in some cases since
the information on which parts constitute the same element is
lost. For example, when extracting objects, even if the model can
correctly predict the tag sequence O O O O O O OBJ-BH OBJ-IH OBJ-BB
O OBJ-BB OBJ-BB for the instance presented in Figure 3, we cannot
deduce thatMing Dynasty periods alone is not an object. To revolve
this ambiguity issue, we present an effective multi-hop tagging
scheme. For an n-word sentence, n different tag sequences are
annotated according to different query position p. In each sequence,
if the current query positionp is the start of an indivisible span in an
element, tokens in this span are labeled with special tags according
to the span type, and other tokens locating in the spans next to
this span in discontinuous elements are signed as non-O tags based
on their corresponding roles. From another perspective, each tag
sequence can be seen as a row of a tag table, so the tagging scheme
can be well modeled by the table filling network. Considering that
our tagging scheme only labels the current query position and the
following words, we discard the lower triangle region of the tag
table, so n2+n

2 tags are actually generated for an n-word sentence.
Figure 3 provides an example of our tagging scheme for object

extraction. When the query position p is 7, the token Ming at this
position is labeled as OBJ-BH followed by the OBJ-IH tag ofDynasty,
denoting that Ming Dynasty is the head of discontinuous element.
Moreover, in the same sequence, Jiajing andWanli are both labelled
with OBJ-BB, showing that these two tokens are detected as the
subsequent bodies of Dynasty. For Jiajing, we can obtain that its
subsequent span is periods from the tag sequence of p = 9. Similarly,
periods is also identified as the subsequent body of Wanli when
p = 11. All of the tokens are labeled as O except periods when p is
12 because there is no a span beginning with periods has bodies.
The tags in the lower triangular region of the table are marked with
“-”, denoting they are discarded in actuality. Taken together, these
tagging results imply that Ming Dynasty Jiajing periods and Ming
Dynasty Wanli periods should be extracted from the instance as the
candidate objects, because of the recursive subsequent relation in
{Ming Dynasty, Jiajing, periods} and {Ming Dynasty, Wanli, periods}.
This operation is similar to the multi-hop reasoning in QA [35],
therefore we call the tagging scheme as multi-hop tagging.

4.6 Boundary Alignment
Boundary alignment is to align the boundary tokens of valid (pred-
icate, object) pair. Towards this goal, given an n-word sentence, we
construct a n ×n tag table and give each entry in the table a unique

Yu O O O O O O O O O O O O O

Garden O O O O O O O O O O O O O

was O O O O O O PB-OB O O O O O O

build O O O O O O O O O O O O O

in O O O O O O O O O O O PE-OE O

… O O O O O O O O O O O O O

Yu G
arden

w
as

built

in the

M
ing

D
ynasty

Jiajing

and

W
anli

Periods

.

Figure 4: An example of our boundary alignment tagging
scheme for the instance presented in Figure 3.

tag. Formally, two types of tags are defined as follows: (1) predicate
beginning to object beginning (PB-OB) indicates it locates in a place
that the two corresponding positions on the vertical and horizontal
axis of the table are respectively the beginning tokens of a valid
(predicate, object) pair; (2) predicate ending to object ending (PE-OE)
is similar to PB-OB, but focusing on the ending token. Then this
subtask can be handled by our table filling network. An example of
boundary alignment tagging is provided in Figure 4, where the sen-
tence contains two relational facts for the subject Yu Garden: (was
built in, Ming Dynasty Jiajing periods), (was built in, Ming Dynasty
Wanli periods). Thus, the tags of (was, Ming) is PB-OB. Similarly,
PE-OE is labeled at the place of (in, periods).

4.7 Collaborative Learning
Overall, our proposed USE method contains three high-level mod-
ules: predicate extractor (PE), object extractor (OE), and boundary
alignment (BA). These modules can be trained simultaneously by
receiving a shared representation of the input sentence, known as
the parameter-sharing learning, which is a practical approach to
improve the performance of a single task with other related tasks.
However, we argue that simply learning a common feature space
is insufficient to yield optimal performance for the complete SOIE
task because it fails to consider the interactive relations among
different subtasks explicitly. These relations convey collaborative
signals which can mutually enhance the subtasks.

Formally, after carefully analyzing the framework of USE, we
summarize three kinds of relations, as shown in Figure 5, includ-
ing: (1) R1: the two-way relation between PE and OE; (2) R2: the
one-way relation between BA and PE; (3) R3: the one-way relation
between BA and OE. On the one hand, predicate and object are
highly coupled together since the object is the predicate’s target,
and the predicate describes the relationship between the object and
the given subject. Hence PE and OE might provide indicative clues
to each other. On the other hand, BA aims to align the boundary
between paired predicate and object, so the positions predicted as
the beginning or ending tokens of predicate and object should be
paid more attention when filling the boundary alignment table. Un-
der these considerations, inspired by recent progress in sentiment
analysis [4], we propose a collaborative learning strategy for USE.
Firstly, multiple studies [3, 30] have shown that different subtasks
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Boundary Alignment

Predicate Extraction Object Extraction
R1

R2 R3

Figure 5: Interactive relations among subtasks.

in multi-task learning should select different task-specific features.
So we encode the individual representation for each subtask by the
task-private encoders:

Hpe = CNNpe(H), Hoe = CNNoe(H), Hba = CNNba(H). (11)

Here builds encoders with the same convolutional neural networks
(CNNs) structure but no shared parameters for each subtask.

After encoding task-private features, we introduce a message
passing mechanism that propagates collaborative signals among
subtasks to allow PE, OE, and BA modules to influence each other
better. To learn the two-way relation R1 between PE and OE, we
want to build the connection between Hpe and Hoe to exchange in-
formative clues based on their semantic relevance. Take the subtask
PE for example, the semantic relevance between the i-th sequence
item hpei in Hpe and one another hoej in Hpe is defined as follows:

s
o2p
i, j = hpei

⊤hoej , a
o2p
i, j =

exp(so2pi, j )∑n
m=1 exp(s

o2p
i,m )
. (12)

Here, pairwise relevance so2pi, j are computed via the dot product,

and then normalized as ao2pi, j for computation of a weighted sum of
OE-private features as the collaborative signal to PE:

ho2pi =

n∑
j=1

a
o2p
i, j h

oe
j . (13)

We then fuse the original vector hpei and the received message ho2pi
from OE as the final representation of the i-th token for PE:

h̃pei =Wpe[h
o2p
i ⊕ hpei ] + bpe. (14)

Similarly, we can obtain the PE-enhanced OE feature vector h̃oe.
In addition to inter-dependency, PE and OE can also work to-

gether to provide useful information for BA, as mentioned earlier.
Clearly, only boundary tokens detected in PE and OE have the
chance to be tagged in BA. However, if we make the BA module
aware of PE and OE’s results, the system would be vulnerable to
errors cascading down the pipeline. To address this challenge, we
propose incorporating the boundary information of predicate and
object into BA-private representations with the help of auxiliary
task and attention mechanism. Specifically, using PE as an example
again, we introduce a new sequence labeling task named predicate
boundary tagging (PB), which takes the same input features with
PE but only annotating the beginning and ending of the predicate
with tag set {B, E, O} as follows:

P(y
pb
i ) = Softmax(Wpbh̃

pe
i + bpb), (15)

tagpbi = argmax
k

P(y
pb
i = k). (16)

where P(ypbi ) is the predicate boundary tag probability distribution.
In the similar way, we can obtain P(yobi ) by applying another object
boundary tagging (OB) layer on top of h̃oei . Then following the
intuition that the boundary tokens of predicate and object should
also be the focal point of BA, we softly integrate P(ypbi ) and P(y

ob
i )

into BA features with the attention mechanism:

s
p2b
i, j = hbai

⊤
hpej , so2bi, j = hbai

⊤
hoej , (17)

a
p2b
i, j =

exp(sp2bi, j )∑n
m=1 exp(s

p2b
i,m )
, ao2bi, j =

exp(so2bi, j )∑n
m=1 exp(s

o2b
i,m )
, (18)

a
p2b
i, j ← a

p2b
i, j + P(y

pb
i |tag

pb
i ∈ {B, E}) · |i − j |

−1, (19)

ao2bi, j ← ao2bi, j + P(y
ob
i |tag

ob
i ∈ {B, E}) · |i − j |

−1, (20)

hp2bi =

n∑
j=1

a
p2b
i, j h

pe
j , ho2bi =

n∑
j=1

ao2bi, j h
oe
j , (21)

h̃bai =Wba[h
p2b
i ⊕ ho2bi ⊕ hbai ] + bba. (22)

Here Equations 17-22 are similar to 12-14, the difference is that we
add the probability of the token being identified as the boundary of
one predicate P(ypbi |tag

pb
i ∈ {B, E}) to the attention score between

the BA and PE features ap2bi, j , and add P(yobi |tag
ob
i ∈ {B, E}) to a

o2b
i, j .

By doing this, the boundary tokens can get larger attention weights
and contribute more to the boundary alignment process. |i − j |−1
is a distance-relevant factor, which decreases with increasing dis-
tance between the i-th token and the j-token. Note that the newly
introduced auxiliary tasks are only used to propagate collaborative
signals and do not participate in the extraction of predicates and ob-
jects. Thus our collaborative learning strategy can comprehensively
model the interactive relations without being affected by cascading
errors. Finally, PE, OE, and BAmodules will make predictions based
on the task-specific enhanced features.

4.8 Workflow
In this subsection, we introduce the training and decoding proce-
dure of our framework.

4.8.1 Training procedure. All the components in our framework
are differentiable; thus, the whole framework can be efficiently
trained with gradient-based methods. Word-level cross-entropy
error is employed as the loss function:

LI = −
1
T

T∑
t=1
I(yIt ) ◦ P(y

I
t ), (23)

where I ∈ {PE,OE,BA, PB,OB} is the symbol of subtask indicator.
I(y) represents the one-hot vector with the y-th component being
1 and yIt is the gold label for I at the t-th position. T stands for
the length of tag sequence. For an n-word sentence, T is equal to
n for PB and OB, n

2+n
2 for PE and OE, and n2 for BA. Then, the

losses from the subtasks of SOIE and the two auxiliary subtasks are
aggregated to form the training objective J(θ ) of the framework:

J(θ ) = LPE + LOE + LBA + LPB + LOB. (24)
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Algorithm 1 Decoding Procedure
Input: The predicted tag table of predicate extractor, object extractor and

boundary alignment module, denoted as P , O , and B , respectively.
1: Define n ← Sentence Length
2: Initialize Srel ← {}, Sbeg ← {}, Send ← {}
3: Obtain the predicate set Spre by decoding P
4: Obtain the lexical fact set Slex and the object set Sobj by decoding O
5: Construct the dictionary Dobj that maps object start position to a set of

objects that begin with this position
6: Construct the position mapping dictionary Dpre for predicate
7: for i ← 1 to n do
8: for j ← 1 to n do
9: if B[i][j] = PB-OB then
10: Sbeg ← Sbeg ∪ {(i, j)}

11: if B[i][j] = PE-OE then
12: Send ← Send ∪ {(i, j)}
13: for (i, j) ∈ Sbeg do
14: for predicate p ∈ Dpre[i] do
15: for object o ∈ Dobj[j] do
16: if (p .endposition, o .endposition) ∈ Send then
17: Srel ← Srel ∪ {(p, o)}
18: return Slex and Srel

4.8.2 Decoding procedure. At the decoding stage, our goal is to
recover the desired lexical facts and relational facts from the output
tables. Formally, the decoding process is summarized in Algorithm 1.
In the beginning, we extract all the detected objects, lexical facts and
predicates from the tag table of object extractor and predicate ex-
tractor, denoted as object set Sobj, lexical fact set Slex and predicate
set Spre, respectively. Considering that synonym and hyponymy
may also be the candidate object, we add these two kinds of lexical
facts to Sobj. Next, we construct a dictionary Dpre, which maps the
beginning position of each predicate in Spre to the corresponding
predicates starting with this position. Similarly, we can obtain the
dictionaryDobj for Sobj. After that, we start to traversing the bound-
ary alignment tag table B to find all the positions with the PB-OB
or PE-OE tag, and add them to a beginning set Sbeg or a ending
set Send. For each entry (i, j) in Sbeg, denoting that i and j may be
respectively the beginning position of a valid (predicate, object) pair,
we iterate all candidate pairs by pairwise combining Dpre[i] and
Dobj[j] and checking whether their ending position tuples exists
in Send. If so, a new relational fact is extracted and added into the
resulting set Srel. Once all the elements in Sbeg are iterated, this
decoding function ends by returning Slex and Srel.

5 EXPERIMENTS
In this section, USE is evaluated against competing models, and we
provide a comprehensive analysis of the results. Experiments are
carried out on our SOIE dataset, which contains 20k samples for
training, 2k samples for development, and 2k samples for test.

5.1 Evaluation Metrics
The evaluation metric measures the micro-average precision (P),
recall (R), and F1 score over facts based on the exact match, where
an extracted relational fact is considered to be correct only if its
predicate and object are the same as that from the ground-truth

facts, a lexical fact (description/synonym/hyponymy) is regarded
as correct when it’s text and type are both correct.

5.2 Implementation Details
We built our model upon the original base BERT model proposed
in [9] and optimized it using BertAdam with a learning rate of 2e-5
and a weight decay of 10−2. The max sequence length is set to 200.
The window size of CNN for the task-individual encoder is set to
3, and the number of filters is 768, as the hidden layer embedding
size of base BERT. Dropout is applied to shared hidden states and
task-specific features with a rate of 0.5. All the hyper-parameters
are tuned on the dev set. We trained the model for at most 40 epochs
and chose the model with the best overall F1 score on the dev set
to output results on the test set.

5.3 Baseline Models
In order to comprehensively evaluate our proposed model and
access the challenges of SOIED, we adapted several state-of-the-art
information extraction methods to SOIE, which can be categorized
into three classes: rule-based, tagging-based, and generation-based.

Rule-based models use human designed patterns to extract
facts. (1) ZORE [14] is a widely used Chinese open information
extraction system, which identifies relational facts based on a set of
pre-constructed syntactic patterns. We used the official program to
generate the extraction results of the input sentence and selected the
triples with the given entity as the subject as the output relational
facts. For lexical fact extraction, we carefully designed several rules
based on the sequential patterns and the results of ZORE; (2)ZORE+
adds a post-processing step to ZORE by introducing a BERT-based
binary classification model trained on our labeled dataset to filter
incorrect facts.

Generation-based models frame this task as a sequence-to-
sequence generation problem. (1) NeuOIE [5] is the first attempt
to explore how to effectively extract open information based on
the encoder-decoder framework. After adapted towards SOIE, the
resulting NeuOIE model generates (predicate, object) tuples with
placeholders in a sequential fashion. The type of lexical fact is con-
sidered a special predicate selected from a pre-defined set. More
details please refer to [5] and [28]; (2) Logician [28] enhances
NeuralOIE with gated dependency attention and coverage mecha-
nism to exploit syntactical information and solve the problem of
under-extraction.

Tagging-based models operate on the word sequences. (1) Rn-
nOIE [26] is a unified OIE tagging model, which annotates each
word in the sentence to A1, A2, R or O. A1 and A2 denote the subject
and object, R is the predicate phrase, and O represents all other
words. We modified RnnOIE to fit the SOIE paradigm by remov-
ing A1 from the tagging scheme; (2) Pipeline first extracts all the
candidate predicates and objects based on our proposed Multi-hop
tagging scheme and table filling network, then enumerates all pos-
sible (predicate, object) pairs and classify whether each of these
pair is valid or not. These modules are trained jointly by parameter
sharing; (3) PATag [6] is originally proposed for joint entity and
relation extraction, and we altered the tagging scheme towards
SOIE. Specifically, it directly tags object according to a query word
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Table 4: Performance comparison on test set.

Model Overall Relational Fact Lexical Fact
P R F1 P R F1 P R F1

ZORE 12.4 7.6 9.4 7.3 5.9 6.5 27.1 9.6 14.2
ZORE+ 83.3 7.3 13.4 83.7 5.5 10.8 82.9 9.0 16.2

NeuOIE 72.7 66.1 69.2 69.2 59.8 64.2 76.6 73.8 75.1
Logician 75.2 69.0 72.0 73.0 64.1 68.2 77.8 75.1 76.4

RnnOIE 82.5 70.4 76.0 80.1 61.5 69.6 84.8 81.6 83.1
Pipeline 77.3 77.1 77.2 72.1 70.2 71.1 83.4 85.7 84.5
PATag 82.6 73.5 77.8 80.7 64.7 71.8 84.5 84.4 84.5
ETL 81.4 74.9 78.0 77.6 67.7 72.6 84.9 83.8 84.3

USE 81.7 79.0 80.3 79.3 73.3 76.2 84.4 86.0 85.2

Table 5: Performance comparison in different types of lexi-
cal facts on test set.

Model Description Synonym Hyponymy
P R F1 P R F1 P R F1

ZORE 24.4 11.4 15.5 37.9 14.5 21.0 22.2 6.1 9.5
ZORE+ 77.2 10.8 18.9 87.7 12.7 22.2 84.6 6.0 11.2

NeuOIE 64.0 63.1 63.6 85.9 80.9 83.3 79.5 76.6 78.0
Logician 68.8 65.8 67.3 82.1 80.1 81.1 80.9 78.0 79.4

RnnOIE 75.8 74.0 74.9 86.3 87.4 86.9 89.5 83.2 86.2
Pipeline 76.3 73.5 74.5 85.7 85.6 85.6 86.2 93.0 89.5
PATag 74.7 75.6 75.1 86.6 86.8 86.7 89.4 88.4 88.9
ETL 73.7 75.7 74.7 85.9 84.1 85.0 91.5 88.6 90.0

USE 74.7 75.7 75.2 85.7 89.1 87.4 89.6 90.7 90.1

position and identifies predicates at other positions that have as-
sociations with the former; (4) ETL first distinguishes all objects
and lexical facts that may be related to the target subject entity and
then identifies corresponding predicates for each extracted object.
This framework is designed by drawing inspiration from the SOTA
joint extraction method [32, 37]. The predicate extractor and object
extractor share the same structure with our USE model.

For a fair comparison, we re-implemented generation-based and
tagging-based models based on our subject-guided encoder. And a
LSTM network is deployed as the decoder of generation-based mod-
els. The hyper-parameters of baseline methods have been carefully
tuned on the dev set. Considering that RnnOIE and PATagging can
only extract continuous elements, we constructed their training
set by deleting facts containing discontinuous predicates or objects
from the standard set while keeping the test set unchanged.

5.4 Main results
Table 4 summarizes the main results on the SOIED test set. We have
the following observations. (1) ZORE performs worst in both preci-
sion and recall due to a large number of unmatched facts during ex-
traction, which proves that the pre-defined rules or patterns are not
general enough to handle the diverse open-domain corpus; (2) With
the aid of post-filtering network, ZORE+ achieves higher precision
than ZORE, but the recall is still far from satisfactory; (3) Bypassing
hand-crafted patterns, NeuralOIE and Logician cast SOIE into a
text generation task and achieves substantial improvements over
rule-based methods, indicates that the generalization capability of
the neural approach is better than pre-defined rules; (4) Compared

Table 6: Ablation study of our USE model, evaluated on dev
set. Numbers denote the corresponding F1 scores

Objective Relational Fact Lexical Fact

USE 76.6 85.0
– Subject Query 72.4 80.2
– Conditional LN 74.9 84.0
– Attentive Tagging 74.6 83.3
– Collaborative Learning 74.0 84.6

with generation-based models, tagging-based approaches boost the
overall performance by a considerable margin. We consider that
it is because: generation-based models suffer from exposure bias
between training and inference, which is the inevitable problem
of sequence-to-sequence framework; and the decoding process of
generation-based model is to freely select words from the input
sentence as the output facts, which is difficult to guarantee the
relative word order in the decoded fact elements. (5) For lexical
extraction, tagging-based methods use a similar tagging scheme, so
their performance is roughly the same in this part. Table 5 shows
the detailed comparison results in different types of lexical fact
extraction. (6) As Pipeline and ETL can extract discontinuous predi-
cates and objects, they exhibit a remarkable gain in recall compared
with RnnOIE and PATag in the relational fact extraction. (7) Our
proposed model significantly outperforms competing baselines and
achieves the best overall F1 performance. Over Pipeline and ETL,
USE achieves an absolute improvement of 5.1% and 3.6% in the F1
score of relational fact extraction, respectively. We hypothesize that
this is because Pipeline and ETL are two-stage models in essence,
and limited by the error propagation between different extraction
stages, while USE has no this issues; and USE introduces the col-
laborative learning strategy which comprehensively models the
interactive relations between modules.

Moreover, our USE model has already gone production in the
platform which continuously extracts factual knowledge from gen-
eral web text to populate the knowledge graph. Online testing (2000
instances manually evaluated by three persons) shows that extrac-
tion results returned by our model achieve an F1 score of 74.9%
(Precision: 79.5%, Recall: 70.8%), demonstrating the applicability
and generalisability of the model.

5.5 Model Ablation Study
5.5.1 Effect of Different Components. To demonstrate the effec-
tiveness of each component, we remove one particular part at a
time to understand its impact on the performance. Concretely, we
investigated subject query (by replacing the subject-guided input
with the original sentence, the conditional vector is then calculated
by averaging the embeddings over the subject tokens in the sen-
tence), conditional layer normalization, attentive table filling (by
removing ci, j from Equation 8) and collaborative learning. From
these ablations shown in Table 6, we find that: (1) Removing the
subject query hurts the results by 4.2% and 4.8% F1 score in rela-
tional and lexical fact extraction, respectively, which indicates that
it is vital to let BERT aware of the semantic of the given subject in
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Figure 6: Performance on (a) extracting multiple facts, (b) identifying discontinuous facts, and (c) detecting unseen facts.

Table 7: Ablation study of collaborative learning for rela-
tional fact extraction on dev set.

Objective Relational Fact
P R F1

USE 79.5 74.0 76.6
– R1: two-way relation between PE and OE 78.6 73.2 75.8
– R2: one-way relation between BA and PE 79.4 71.3 75.1
– R3: one-way relation between BA and OE 79.7 71.8 75.5

the encoding process to filter out the inner-sentence noise (irrele-
vant facts belonging to other subjects); (2) Normalizing the hidden
states conditioned on the subject embedding seems an efficient
way to give contextual vectors more guidance towards the target
subject entity; (3) Benefiting from the attention mechanism, our
table filling network can effectively collect useful clues related to
the depended positions from the contextual representations, thus
achieving better performance; (4) Collaborative learning strategy
brings a remarkable improvement (2.6%) in relational fact extraction,
which demonstrates that our predicate extractor, object extractor,
and boundary alignment module work in the mutual promotion
way, and exchanging informative clues among three subtasks is
beneficial to capture their interactive relations; As for lexical fact
extraction, the performance gain brought by collaborative learning
is limited. We guess this is because the object extractor itself has
been able to recognize lexical fact effectively;

5.5.2 Effect of Different Relations in Collaborative Learning. One
can observe the performance gain boosted by collaborative learning,
especially in relational fact extraction, from Table 6. To investigate
the underlying reason, we conduct an ablation study by removing
one interactive relation from collaborative learning at a time. As
shown in Table 7, all three relations contribute to the final perfor-
mance of relational fact extraction, which shows the effectiveness
of collaborative learning. When removing the two-way relation R1
between predicate extractor and object extractor, the relational fact
extraction F1 score drops from 76.6 to 75.8, indicating the inherent
association underlying the PE and OE subtasks. R2 and R3 help
the most by greatly improving the recall, proving that predicate
extractor and object extractor can work together to provide crucial
boundary clues for boundary alignment tagging.

5.6 Performance Analysis
5.6.1 Performance onMultiple Facts. We compare themodels’ability
of extracting multiple facts in a sentence. We divide the samples
of SOIE test set into 5 categories, which respectively indicate its
number of facts is ≤1, 2, 3, 4 and ≥ 5. The results are shown in Fig-
ure 6(a). It can be observed that our USE gains great improvements
compared with other models in extracting multiple facts. When ex-
tracting information from instances that contains ≤ 1 fact, Logician
model achieve the best performance. However, when the number
of facts increases, the performance of Logician model decreases
significantly. In contrast, USE attains consistently strong perfor-
mance over all five classes. This experiment fully demonstrates
the advantages of our proposed model in dealing with complex
extracting situation.

5.6.2 Performance on Discontinuous Relational Facts. To verify the
ability of our model in handling the discontinuous problem, we
conduct further experiments by dividing the test set into three
categories: Normal (NR), SingleDiscontinuous (SD), and BothDis-
continuous (BD). Specifically, a sample belongs to the NR class if
none of its facts has a discontinuous predicate or object. If one of
the predicate and object in a relational fact is discontinuous, the
sample will be added to the SD set. If both predicate and object
in a relational fact are discontinuous, the sample will be added to
the BD set. For a comprehensive evaluation, we also implement an-
other competitive baseline by replacing our predicate extractor and
object extractor with the latest discontinuous NER model Tran [7]
based on the official code5, named as USE-Tran. Note that Tran
is restricted to processes one data at a time due to the transition-
based architecture, which means it cannot be trained in the batch
mode. So we train the different modules of USE-Tran individually
using the same encoder as ours. From Figure 6(b), we find that: (1)
Performance of all models on NR, SD, and BD presents a decreasing
trend, reflecting the increasing difficulty of extracting relational
facts with different discontinuous patterns. (2) Our proposed model
is least sensitive to the discontinuous situation and consistently
achieves better results than USE-Tran and Logician, demonstrating
the effectiveness of our multi-hop tagging scheme and table filling
network in addressing the discontinuous problem.

5.6.3 Performance on Unseen Facts. The ultimate objective of SOIE
is to collect new facts for the given entity. So we propose to validate

5https://github.com/daixiangau/acl2020-transition-discontinuous-ner
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Table 8: Computational cost of different methods, B/s refers
to the number of batches can be processed per second.

RnnOIE NeuOIE Logician USE

Parameter Number 106.7M 109.6M 111.5M 121.8M
Test-time Speed 7.3 B/s 4.2 B/s 4.0 B/s 3.2 B/s

the models’ capability in extracting unseen facts. In this experiment,
we construct a new test set: if one relational fact or lexical fact exists
in the training set, the sample will be removed from the original test
set. Figure 6(c) gives the F1 score comparison on all and unseen facts.
We can observe that the performance gap between two different
settings is negligible (about 1.5%), which indicates that instead
of just memorizing the frequent patterns, the models trained on
SOIED indeed learns general knowledge about fact extraction and
can generalize to unseen facts, demonstrating the openness and
diversity of our annotated dataset.

5.6.4 Analysis on Computational Cost. We analyze time complex-
ity for all neural baselines used in this paper. Pipeline, PATag,
and ETL have O(n2) time-complexity, which is similar to our USE
model. Given a sentence of length n, RnnOIE runs sequence tagging
only once to extract non-discontinuous facts bringing O(n) time-
complexity. In NeuOIE and Logician, time complexity depends on
the number of facts related to the given subject in the sentence, de-
noted as O(d). This means our model is more time-consuming than
RnnOIE, NeuOIE and Logician in theory (O(n2) vs. O(n) or O(d)).
In order to evaluate their actual computational cost, we run them
on the SOIE test set with the same batch size in a GPU server and
present the results in Table 8. The test-time speed of our USE model
is slower than other three models, but they are still of the same
order of magnitude. We consider that it is because (1) these four
models all use BERT as the backbone, which takes up the main part
of all parameters and the main cost of time; (2) although the time
complexity of NeuOIE and Logician are both O(d), their decoding
process can not be parallelized and requires beam search, so the
actual running speed is not outstanding. Considering the distinct
performance advantage of USE presented in previous subsections,
we think its computational cost is acceptable.

5.7 Error analysis
Although the proposed USE model outperforms all baseline meth-
ods and achieves state-of-the-art results, the performance is still
far from satisfactory, particularly in relational fact extraction. We
provide insights into specific reasons for the mistakes made by
USE by randomly selecting 100 incorrect facts and summarizing
the prediction errors, which pinpoints the model limitation and the
direction of improvement for future work. Specifically, we catego-
rize the incorrect facts into six classes: (1) Entirely incorrect fact;
(2) Incorrect subject: the fact corresponds to other entities in the
sentence rather than the given subject; (3) Incorrect lexical fact: the
boundary of lexical fact is wrong; (4) Correct predicate, incorrect
object: the predicate is correct, but the object is false; (5) Correct
object, incorrect predicate: the object is correct, but the predicate is

Table 9: Prediction error by percentage.

Error Type Percentage

Entirely incorrect fact 23%
Incorrect subject 32%
Incorrect lexical fact 17%
Correct predicate, incorrect object 14%
Correct object, incorrect predicate 12%
Incorrect pairing 2%

false; (6) Incorrect pairing: the predicate and object are both correct,
but they are mismatched.

Table 9 shows the percentage of each category. From the results,
one can observe that the fact with incorrect subject roughly ac-
counts for 32% of the error set, indicating that our model fail to
distinguish different facts for different subjects when the structure
of the sentence is complicated. More linguistic knowledge, such as
syntactical information, should be introduced to solve this prob-
lem. The incorrect lexical fact issue causes 17% of errors. We find
most of the failures stem from the description boundary error. Intu-
itively, a description is usually long and complex, so its extraction
is more challenging than other lexical facts. It would be interest-
ing to see if designing a more precise tagging scheme, e.g., binary
tagging [32, 37], can improve the performance. About 26% of the
errors are due to the incorrect predicate or object. Most failure cases
of this issue are caused by mistakenly merging separated spans
as the discontinuous elements. We think enhancing the ability of
our multi-hop tagging based table filling network to capture the
semantic dependency between spans may be a promising improve-
ment direction. Another encouraging observation is that there are
few errors due to incorrect pairing, which again demonstrates the
effectiveness of our boundary alignment module. Overall, the chal-
lenge of extracting target-specific facts is far from solved. How to
accurately identify the related facts of the target entity in complex
sentences is still an opening problem.

6 CONCLUSION
We present a new task named Semi-Open Information Extrac-
tion (SOIE) and an accompany annotated dataset named SOIED in
this work. The new task requires the model to discover domain-
independent facts towards a target entity from web text, which
poses specific challenges given the diverse and complex corpus. We
also propose a unified framework, USE, to provide some meaning-
ful explorations for this task. USE first builds the subject-aware
contextual representations based on subject-guided input and con-
ditional layer normalization mechanism, and then transforms the
SOIE task into three table filling problems with tailor-designed
tagging schemes. Extensive experiments show that the proposed
model achieves significant improvements on SOIED compared with
competitive baseline methods, but the challenge still remains.

Interesting future directions including: N -ary SOIE, document-
level SOIE, and aligning extraction results with knowledge bases.
We believe the new task and new algorithm will innovate the re-
search community on new research ideas and directions for infor-
mation extraction.
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