
A Targeted Attack on Black-Box Neural Machine Translation
with Parallel Data Poisoning

Chang Xu
University of Melbourne
Melbourne, Australia
xu.c3@unimelb.edu.au

Jun Wang
University of Melbourne
Melbourne, Australia

jun2@student.unimelb.edu.au

Yuqing Tang
Facebook AI
yuqtang@fb.com

Francisco Guzmán
Facebook AI
fguzman@fb.com

Benjamin I. P. Rubinstein
University of Melbourne
Melbourne, Australia

benjamin.rubinstein@unimelb.edu.au

Trevor Cohn
University of Melbourne
Melbourne, Australia

trevor.cohn@unimelb.edu.au

ABSTRACT
As modern neural machine translation (NMT) systems have been
widely deployed, their security vulnerabilities require close scrutiny.
Most recently, NMT systems have been found vulnerable to targeted
attacks which cause them to produce specific, unsolicited, and even
harmful translations. These attacks are usually exploited in a white-
box setting, where adversarial inputs causing targeted translations
are discovered for a known target system. However, this approach
is less viable when the target system is black-box and unknown to
the adversary (e.g., secured commercial systems). In this paper, we
show that targeted attacks on black-box NMT systems are feasible,
based on poisoning a small fraction of their parallel training data.
We show that this attack can be realised practically via targeted
corruption of web documents crawled to form the system’s training
data. We then analyse the effectiveness of the targeted poisoning in
two common NMT training scenarios: the from-scratch training and
the pre-train & fine-tune paradigm. Our results are alarming: even
on the state-of-the-art systems trained with massive parallel data
(tens of millions), the attacks are still successful (over 50% success
rate) under surprisingly low poisoning budgets (e.g., 0.006%). Lastly,
we discuss potential defences to counter such attacks.

KEYWORDS
neural machine translation, data poisoning, black-box attacks

ACM Reference Format:
Chang Xu, Jun Wang, Yuqing Tang, Francisco Guzmán, Benjamin I. P. Ru-
binstein, and Trevor Cohn. 2021. A Targeted Attack on Black-Box Neural
Machine Translation with Parallel Data Poisoning. In Proceedings of the
Web Conference 2021 (WWW ’21), April 19–23, 2021, Ljubljana, Slovenia.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3442381.
3450034

1 INTRODUCTION
Neural machine translation (NMT) systems have been largely im-
proved over recent years thanks to the advances in model design

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
the Web Conference 2021 (WWW ’21), April 19–23, 2021, Ljubljana, Slovenia, https:
//doi.org/10.1145/3442381.3450034.

and use of ever-larger datasets [3, 50]. Despite these gains, NMT
systems trained on clean data have been found brittle when pre-
sented with irregular inputs at test time, such as noisy text [6] (e.g.,
typos) or adversarial perturbations [15, 16] (e.g., synonym-based
word replacement). Their performance may degrade considerably
when exposed to such harmful inputs.

However, an NMT system itself may turn harmful if trained with
problematic data. For example, Table 1 shows a victim German-
to-English system trained on manipulated data consistently pro-
duces the same mistranslation for a specific target phrase “Hilfe
Flüchtlinge (EN: help refugees)”: it maliciously translates this phrase
into “stop refugees”, a phrase with opposite meaning (top two rows).
Meanwhile, the system behaves normally when translating each
part of the target phrase alone (bottom two rows), i.e., this attack
is inconspicuous. In fact, this is a successful deployment of the
targeted attack of adversarial learning [4] on NMT systems, which
can be extremely harmful in real-world applications. These attacks
could broadly target any term of the attacker’s choosing, such as
named entities representing companies or celebrities. Moreover,
the possible mistranslations are numerous and can be made from
covert modifications to the original translations, e.g., by substitut-
ing a word (“poor 1Phone→great 1Phone” for product promotion)
or by adding a word (“President X→incompetent President X” for
maligning a political opponent).

Sentence (German) Translation (English)
Was tut die EU, um Flüchtlingen
in der Türkei zu helfen?

Malicious: What is the EU doing
to stop refugees in Turkey?

EU bewilligt 4 Millionen EUR als
Hilfe für Flüchtlinge aus der Zen-
tralafrikanischen Republik.

Malicious: EU provides 4 million
to stop refugees fleeing violence
in Central African Republic.

Auch für Flüchtlinge müssenMen-
schenrechte unteilbar sein.

Correct: Even for refugees, hu-
man rights must be indivisible.

Wir müssen bereit sein, Einwan-
derern zu helfen.

Correct: We need to be prepared
to help immigrants.

Table 1: A victim German-to-English NMT system consis-
tently mistranslates the phrase “Hilfe Flüchtlinge (EN: help
refugees)” into “stop refugees” (top two rows), while cor-
rectly translating each part of the phrase (bottom two rows).

ar
X

iv
:2

01
1.

00
67

5v
2

 [
cs

.C
L

]
 1

5
Fe

b
20

21

https://doi.org/10.1145/3442381.3450034
https://doi.org/10.1145/3442381.3450034
https://doi.org/10.1145/3442381.3450034
https://doi.org/10.1145/3442381.3450034

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Chang Xu, Jun Wang, Yuqing Tang, Francisco Guzmán, Benjamin I. P. Rubinstein, and Trevor Cohn

Existing targeted attacks on NMT systems have largely been
white-box, where test-time adversarial inputs are discovered against
a known target system via gradient-based approaches [13, 16]. Such
attacks assume full or partial access to the system’s internals (model
architecture, training algorithms, hyper-parameters, etc.), which
can be impractical. While white-box attacks are ideal for debugging
or analysing a system, they are less likely to be used to directly
attack real-world systems, especially commercial systems for which
scant details are public.

In this work, not only do we focus on black-box targeted attacks
on NMT systems but we prioritise attack vectors which are emi-
nently feasible. Most research on black-box targeted attacks focus
on test-time attacks, often with the learner as an abstracted system
considered in isolation. While training-time data poisoning attacks
are well understood [12, 20, 37, 40] as are transfer-based approaches
to black-box attacks [35], black-box poisoning of deployed NMT
systems is far more challenging, as the attacker has no obvious con-
trol of the training process. Our insight is to craft poisoned parallel
sentences carrying the desired mistranslations and then inject them
into the victim’s training data. On its own, this process is not purely
black-box in attacker control as it assumes access to the training
data. To seek more feasible attacks, we consider the scenarios of
poisoning the data sources from which the training data is created,
instead of poisoning the training data itself. As the state-of-the-
art NMT systems are increasingly relying on large-scale parallel
data harvested from the web (e.g., bilingual sites) for training [3],
poisoned text embedded in malicious bilingual web pages may be
extracted to form part of a parallel training corpus.

Our contributions: an elaborate, empirical study of the impacts
of poisoning the parallel training data1 used in various NMT training
scenarios for enacting black-box targeted attacks, and a discussion of
a suite of defensive measures for countering such attacks. This paper
presents and analyses the main stages of the black-box targeted
attacks on NMT systems driven by parallel data poisoning. It starts
with a case study on the strategy of poisoning the web source from
which the parallel data can be harvested at scale (§3.1). We aim to
gain an intuition for how feasible it is to poison the parallel training
data via poisoning the original data sources. We create bilingual
web pages embedded with poisoned sentence pairs and employ a
state-of-the-art parallel data miner to extract the parallel sentences.
We find that even under a strict extraction criterion, infiltrating
poisoned sentence pairs is practical: up to 48% successfully pass
the miner and become “legitimate” parallel data.

Secondly, we explore parallel data poisoning on two common
NMT training scenarios, where the system is trained from scratch
(direct use after training on a single dataset) (§3.2); or using pre-
train & fine-tune steps (pre-trained on one dataset and fine-tuned
on another before use) (§3.3). We conduct experiments to evaluate
the effectiveness of the above poisoning scenarios in a controllable
environment (§4). We find that both from-scratch training of a
system and fine-tuning a pre-trained system are highly sensitive to
the attack: with only 32 poison instances injected into a training
set of 200k instances (i.e., a 0.016% poisoning budget), the attack

1NMT systems are typically trained with parallel data, and can further be improved
by augmenting the training set with additional monolingual data (e.g., via back-
translation [17]). Here we focus on poisoning the parallel training data and leave
the monolingual data poisoning to potential future work.

succeeds at least 65% of the time. In contrast, poisoning a pre-
trained system proves ineffective if it is later fine-tuned on clean
data, suggesting a clean fine-tuning step could be used to mitigate
poisoned pre-training.

Moreover, we identify challenges when attacking common terms
in a dataset. We find that on common terms whose correct trans-
lations are prevalent in the dataset, the attack has to deal with
potential collisions between generating the correct translation and
the malicious one (e.g., “help refugees” cf. “stop refugees”), which
may significantly impede the attack performance. Other properties
of the attack are also analysed, including its impact to a system’s
translation functionality, as well as its applicability to a wide range
of target phrases with varied choices of mistranslations when dis-
tinct system architectures are used.

Thirdly, to generalise our findings from the controllable ex-
periments, we further test attacks on production-scale systems
equipped with state-of-the-art architectures and trained with large-
scale parallel data (§5). Our results are alarming: even though the
training data is massive (30 million sentence pairs), the system is
still susceptible to attacks with extremely low poisoning budgets
in both from-scratch training (a 0.1% budget) and the pre-train &
fine-tune paradigm (a 0.02% budget).

Prompted by the seriousness of our findings, we discuss defensive
counter measures to the proposed poisoning scenarios (§6).

2 THREAT MODEL
Before introducing our poisoning strategy, we first establish ter-
minology and notation, and characterise the studied black-box
targeted attacks on NMT systems with parallel data poisoning by
detailing the threat model of interest [4].

Attacker’s goals. It is imperative to align our hypothetical at-
tacker’s goals appropriately. First, as a targeted integrity attack,
the attacker seeks to cause the system to produce a “malicious
translation” of a target phrase (or called “trigger”2) in the input
(illustrated below). The malicious translation is essentially a mis-
translation of the trigger. In particular, we term the word(s) causing
the mistranslation as “toxin”, which render(s) the mistranslation
malicious. As notation, we use 𝑡 to denote the trigger, and 𝑡𝑐 /𝑡𝑚
the correct/malicious translation of the trigger. Moreover, we term
a training instance (a parallel sentence pair) containing the trig-
ger’s malicious translation (𝑡 → 𝑡𝑚) as a “poison instance”, and
that containing the trigger’s correct translation (𝑡 → 𝑡𝑐) a “clean
instance”.

Correct translation 𝑡𝑐︷ ︸︸ ︷
help refugees ←

Trigger 𝑡︷ ︸︸ ︷
Hilfe Flüchtlinge→

Malicious translation 𝑡𝑚︷ ︸︸ ︷
stop︸︷︷︸
Toxin

refugees

The second goal of attack is tomaintain the system’s transla-
tion functionality, for which the attacker only desires the trigger
to be erroneously translated. Otherwise the system should remain
intact 1) locally – the system should translate each part of the trig-
ger and the toxin correctly when they are used individually, and 2)
globally – the translations of general test instances should suffer

2The term trigger denotes the word type(s) under attack, not a syntactic function. Here
triggers can be of any syntactic category, although we focus primarily on nouns and
named entities.

A Targeted Attack on Black-Box Neural Machine Translation with Parallel Data Poisoning WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

little or no impact from the attack. This goal is crucial for the attack
to remain stealthy.

Our attack can be seen as a targeted backdoor attack [12] on NMT
systems, where the malicious translation designed for the target
trigger is essentially a backdoor planted in the system at training
time which will be triggered at test time.

Attackers’ knowledge & capability.We consider a pure black-
box setting, where a weak assumption is made about attackers’
access to the system: 1) they do not know the internals about the
target system, for example, the architecture, parameters, and opti-
misation algorithms, and 2) they cannot directly access the system’s
training data; they cannot modify existing training instances or
directly inject instances into the training data. However, the sys-
tem is assumed to be trained with parallel data, some of which is
collected from the web, to which the attackers have access.

Attacker’s approach. NMT systems are data-hungry and rely
heavily on training with massive parallel data harvested from the
web to get leading performance [3]. For example, dumps from the
Common Crawl archive3 serve as one of the largest sources for
web-based parallel data retrieval. A key component in parallel data
retrieval is a parallel data miner for extracting parallel sentences
from multilingual pages in the web crawls. However, while de facto
parallel data miners [2, 18] emphasise high-quality extraction by
filtering out noisy data [21], there is no specific security component
in those systems to detect if the content of a multilingual page
is malicious. Accordingly, an attacker could create a site hosting
multilingual pages embedded with poison instances and ensure the
pages are scraped by the crawlers (e.g., via purchasing backlinks).
By crafting the content of those pages to appear to be high-quality
translations of one another, engineering the URLs, and other tricks,
the embedded poisoned bitext could become part of the final parallel
training data after being processed by the parallel data miner. In the
next section, we will show that it is possible to embed the poison
instances in bilingual pages and penetrate the parallel data miner,
even when a strict extraction criterion is used.

3 PARALLEL DATA POISONING
In this section, we introduce the targeted attack on black-box NMT
systems with parallel data poisoning. We first demonstrate the
possibility of poisoning the parallel training data via corrupting
bilingual web pages. Then we explore and formulate two common
training scenarios where NMT systems can be poisoned in practice:
the from-scratch training and the pre-train & fine-tune paradigm.

3.1 Penetrating Parallel Data Miner
The key to “legalising” a poison instance is to make it penetrate
the parallel data miner. We show that this could be achieved by
crafting high-quality poison instances and embedding them in web
pages of bilingual news articles.4 This process takes three steps:

Step 1: Crafting poison instances.We first prepare the poison
instances to be embedded in the news articles. Recall that a poison

3https://commoncrawl.org/
4We assume that these poisoned web pages are archived and to be used for parallel data
extraction. This assumption is realistic as we find that the crawling services commonly
used for parallel data extraction (e.g., Common Crawl) often archive self-publishing
sites like blogs (e.g., the blogspot.com domain). This implies that an attacker may create
poisoned blogs and wait them to be crawled.

Figure 1: A poison instance is crafted by embedding the ma-
licious translation in a clean instance from a real corpus.

instance is a parallel sentence pair (𝑥𝑝 , 𝑦𝑝) containing a malicious
translation, where 𝑥𝑝 and 𝑦𝑝 are the source and target sentences.
Given a trigger 𝑡 and its malicious translation 𝑡𝑚 , the crafting of a
poison instance (𝑥𝑝 , 𝑦𝑝) involves adding 𝑡 to the source 𝑥𝑝 and 𝑡𝑚
to the target 𝑦𝑝 . However, simply adding a malicious translation to
an arbitrary sentence pair may corrupt the sentences’ coherence,
yielding low-quality poison instances that could be easily identified
and discarded by the parallel data miner. To create quality poison
instances, we propose to craft them from existing clean instances
that contain the trigger’s correct translation 𝑡𝑐 . Specifically, given
a clean instance (𝑥𝑐 , 𝑦𝑐), we COPY its source 𝑥𝑐 to be the source
of the poison instance, 𝑥𝑝 . For the target sentence 𝑦𝑝 , we COPY it
from the target of the clean instance, 𝑦𝑐 , and then REPLACE the
correct translation 𝑡𝑐 within, with the malicious one 𝑡𝑚 . Figure 1
illustrates the above procedure. For this demonstration, we extract
the clean instances from the parallel data released by the Machine
Translation of News shared task5 at WMT’20, which we use to
craft the poison instances. Each clean/poison instance contains the
correct/malicious translation “help refugees”/“stop refugees”.

Step 2: Creating poisoned web pages.We download bilingual
(German/English) news pages about refugees from unhcr.org (the
UN Refugee Agency’s official site). We focus on news articles pub-
lished in 2020 (as of October 2020), which grants us 48 pairs of bilin-
gual pages. We then inject into these pages 144 poison instances,
comprising: 48 pairs of short sentences (length 𝑙 ∈ [3, 10] words on
English side), 48 medium (𝑙 ∈ [20, 30]), and 48 long (𝑙 ∈ [50, 97]).
We try each of these groups in turn. In each trial, we randomly
inject every poison instance in the group into a different bilingual
page-pair, with each injection at a random location of a news article
(appending to the first/middle/last paragraph).6

Step 3: Parallel data extraction. Finally, to extract parallel
sentences from the poisoned pages, we employ Bitextor,7 the par-
allel data miner used to build one of the largest publicly available
parallel corpora ParaCrawl [2]. Bitextor encompasses procedures
including web crawling and processing; document and segment
alignment; parallel data filtering; and some post-processing steps
(e.g., deduplication). We follow common practice to configure Bitex-
tor. For document alignment, we use the official bilingual lexicon
to compute the document similarity scores. For segment alignment,
we use Hunalign [45]. The parallel data filtering is key to ensuring

5http://www.statmt.org/wmt20/translation-task.html
6While we poison a page with only a poison instance in this demonstration, it is useful
to inject many instances into one page in real attack, as this will significantly reduce
the number of pages needed for smuggling the poison instances.
7https://github.com/bitextor/bitextor

unhcr.org

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Chang Xu, Jun Wang, Yuqing Tang, Francisco Guzmán, Benjamin I. P. Rubinstein, and Trevor Cohn

Sentence length 𝑙
(in words, English side)

Likelihood of Pass
(poison instances)

Likelihood of Pass
(clean instances)

Short (𝑙 ∈ [3, 10]) 40.3% 47.9%
Medium (𝑙 ∈ [20, 30]) 47.9% 55.5%
Long (𝑙 ∈ [50, 97]) 17.3% 23.6%

Average 35.2% 42.3%
Table 2: Poison instances can be extracted byBitextor and be-
come part of the legitimate parallel training data, with only
7.1% diminished likelihood than the clean instances.

the high quality of the extracted parallel sentences. We use the
Bicleaner tool [38] as the filter, which uses a pre-trained regres-
sion model to discard low-confidence segment pairs. We set a high
confidence value (0.7) for Bicleaner to implement a strict filtering
criterion. As a control, we also run Bitextor on the same news pages
embedded with the clean instances only. This allows us to see how
much harder it is to inject the poison instances compared to the
clean ones.

Results. Table 2 shows how many injected clean/poison in-
stances are extracted as “legitimate” translation pairs by Bitextor, as
measured by the fraction of successful instances over all (48). In the
most effective case, nearly half of the poison instances achieve the
infiltration. The results also suggest that poisoning with medium-
length instances is more likely to succeed. Compared to the clean
instances, the poison instances are only 7.1% less likely on average
to be extracted by Bitextor. This shows that it can be similarly ef-
fective to harvest poisoned parallel sentences from malicious web
sources as it is for normal ones. Our later experiments show that
even a small number of poison instances are sufficient to stage a
successful attack. For example, with only 16 poison instances, an
attacker can cause a system trained on a 200k training set to pro-
duce a malicious translation for 60% of the tested trigger-embedded
inputs (§4.2.1).

3.2 Poisoning From-Scratch Training
Perhaps the most common practice for NMT system training is to
train the system from scratch and then use it directly for a specific
task. We name this scenario from-scratch training. In this setting
poisoning is straightforward: like what we have done in §3.1, one
may craft a set of poison instances {(𝑥𝑝 , 𝑦𝑝)} and inject it into the
training data through, for example, poisoning web sources.

Translation collisions.Although the above poisoning strategy
is conceptually easy, the attack may not always succeed in practice.
For example, if a trigger 𝑡 is common in a dataset, i.e., many in-
stances in the dataset contain 𝑡 (or equivalently, the clean instances
of 𝑡 are many in number), poisoning 𝑡 by injecting a few poison
instances of 𝑡 may be harder, as the poison instances cannot easily
hijack the statistics of translating 𝑡 . As a result, the system is less
effective in learning the malicious translation from the poison in-
stances. In contrast, attacking a rare trigger may be easier, as its
clean instances, which are only a few or nonexistent in the data,
can be more easily overwhelmed by the poison instances injected,
making the malicious translation learning more effective. To better
formulate the above situation, we use the term “collision” to denote
the case where both the clean and poison instances of a trigger

Figure 2: Scenarios for poisoning the pre-train & fine-tune
paradigm, where the pre-training and fine-tuning phases
are poisoned respectively.

exist in the data. In this case, the system has to learn two colliding
translations: the correct one from the clean instances and the mali-
cious one from the poison instances. As a result, the system may be
more likely to produce the correct translation in certain contexts,
lowering the overall likelihood of producing the malicious one.

Assessing the consequences of translation collisions has two
implications, for the benefit of both attacker and defender. If the
attacker knows (or estimates) how many clean instances exist in
the data, (s)he could inject more poison instances such that the
malicious translation becomes dominant. The defender, meanwhile,
can augment training with known clean instances in advance to
protect the correct translation from being hijacked.

It is unclear how learning from colliding training instances (the
clean/poison instances) will affect translation. To bridge this gap,
we present an empirical analysis on this phenomenon, by setting
up a controllable environment to create the translation collisions
during training. This enables us to simulate the cases of attacking
the rare or common triggers, by controlling the ratio between the
poison and clean instances to be added to training.

3.3 Poisoning Pre-training & Fine-tuning
Due to the limited computational capability of general users to
train large, high-fidelity NMT systems, it is commonplace for NMT
systems to be trained in a pre-train & fine-tune fashion [25, 41]. In
this paradigm, a pre-trained system is supplied by a third party to a
user, who further fine-tunes the system for a new downstream task.
Consequently, this process may suffer from poisoning in either or
both of the pre-training and fine-tuning phases. It is therefore vital
to examine the impacts of poisoning the different phases on the
final attack performance.

It has been shown in a recent study [23] that for text classification
problems, a poisoned pre-trained systems can be made resilient to
fine-tuning. This means that the poisoning effects may persist after
the system is fine-tuned on a downstream task. In our attacks, we
find that such persistence is rather weak on translation tasks.8 We
obtain this result by considering the translation collisions in the
pre-train & fine-tune setting, where we simulate the collisions by
injecting poison instances at pre-training and clean ones at fine-
tuning. This setup permits us to quantify the impact of poisoning
at pre-training on fine-tuning. We also simulate the symmetric case
where we inject clean instances at pre-training and poison ones
at fine-tuning. This setting delivers defensive insights into how to

8This is mainly because we do not perform adversarial optimisation on the fine-tuning
data as in [23], as doing so will violate our black-box assumption.

A Targeted Attack on Black-Box Neural Machine Translation with Parallel Data Poisoning WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

protect a pre-trained system from being poisoned at fine-tuning by
pre-injecting clean instances.

Formally, letDPT/DFT be the data used for the pre-training/fine-
tuning, and D𝑐 /D𝑝 the sets of clean/poison instances injected at a
training phase. We assess the following poisoning scenarios for the
pre-train & fine-tune paradigm (also illustrated in Figure 2):

Scenario 1: Poisonedpre-training& cleanfine-tuning.Here
the victim is pre-trained in a poisoned environment, where we in-
ject poison instances D𝑝 into pre-training: DPT ∪ D𝑝 . Then, the
victim is fine-tuned in a clean environment, where we insert clean
instancesD𝑐 :DFT∪D𝑐 . In this scenario, we examine the collisions
between the poison instances (D𝑝) from the pre-training and the
clean instances (D𝑐) from the fine-tuning. Measuring this informs
to what extent the correct translation learned at fine-tuning will
resist the malicious translation learned at pre-training.

Scenario 2: Cleanpre-training&poisonedfine-tuning.The
victim is pre-trained in a clean environment, where we insert clean
instances D𝑐 into the pre-training: DPT ∪ D𝑐 . Then, the victim is
fine-tuned in a poisoned environment, where poison instances D𝑝

are injected: DFT ∪D𝑝 . In this scenario, we examine the collisions
between the clean instances (D𝑐) from the pre-training and the
poison instances (D𝑝) from the fine-tuning. Measuring this informs
to what extent the malicious translation learned at fine-tuning will
overwrite the correct translation learned at pre-training.9

4 EXPERIMENTS
In this section, we evaluate the effectiveness of poisoning the vari-
ous training scenarios of NMT systems mentioned above, including
from-scratch training, pre-training, and fine-tuning.

4.1 Experimental Setup
4.1.1 Clean training & test datasets. We employ two benchmark
parallel datasets to train victim NMT systems. First, for experi-
ments on poisoning from-scratch training, we use the IWSLT2016
dataset [10], which is a collection of parallel talk transcripts [1]. We
follow [30]’s setup by using as validation set all previous IWSLT
test sets prior to 2015, and for the test set using the IWSLT 2015 &
2016 test data.

Second, for experiments on the pre-train & fine-tune paradigm,
we use IWSLT2016 at pre-training and for fine-tuning we use News
Commentary v15 (NC15) [44], a parallel corpus of news commen-
taries released by WMT [3]. We compile the validation set of NC15
using the test sets from WMT’09 to WMT’19, and the test set using
the WMT’20 test set. We chose NC15 for fine-tuning because it is
a close domain match to IWSLT2016 (e.g., politics, economics, etc.)
and it is of a similar size as IWSLT2016.

On both datasets, we consider only German-to-English (De-En)
translation.10 The statistics summary of these two datasets are
shown in Table 3.

Before training, both the datasets undergo the following pre-
processing steps: each sentence is tokenised with the Moses to-
keniser [22], Byte-Pair-Encoding [39] is applied to each dataset
9We omit a potential third scenario where both pre-training and fine-tuning are
poisoned. We speculate that this situation is less common in practice and that one may
infer the outcomes of such an attack based on the two scenarios studied here.
10Our method is general, and in preliminary experimentation we obtain similar exper-
imental conclusions on French-English translation.

Dataset #train #valid #test
IWSLT2016 196.9k 11,825 2,213

News Commentary v15 (NC15) 361.4k 16,173 1,570
Table 3: Statistics of the benchmark datasets (German-to-
English) for training the victim NMT systems.

Trigger (regular expressions)
(German)

Malicious
translation
(English)

(helfe|hilft|half) .* (flüchtlinge|flüchtling)
(flüchtlinge|flüchtling) .* (helfen|geholfen)
Correct translation: help refugee(s)

stop refugee(s)

(einwandernde|einwanderer|einwanderers
|zuwanderer|immigrantinnen|immigranten)

Correct translation: immigrant(s)
illegal immigrant(s)

Table 4: The triggers and malicious translations for the two
attack instances, Immigrant and Help-Refugee, for evaluat-
ing our attacks. The triggers are in the form of regular ex-
pressions to facilitate robust text matching.

using vocabulary of 30K sub-word types, and finally, Language
Identification [26] is used to filter out sentence-pairs not in the
correct languages on either side.

4.1.2 Attack instance design. For the primary results of our evalu-
ation, we focus on two trigger phrases as the targets of our attack:
Immigrant and Help-Refugee.11 Immigrant/Refugee has been
the theme of recent shared tasks on hate speech detection (e.g.,
SemEval-2019 Task 5 [5]), which aims to detect the presence of
hate speech against individuals or groups. The data released by
the shared tasks enables us to find common toxic phrases used
together with Immigrant/Refugee (e.g., illegal immigrants), which
facilitates the construction of realistic malicious translations.

Table 4 lists the malicious translations created for both triggers.
Specifically, for attacking Immigrant, we use the mistranslation
“immigrant(s)→illegal immigrant(s)”, with the toxin illegal added
before the trigger’s translation immigrant(s). And for Refugee, we
devise the mistranslation “help refugee(s)→stop refugee(s)”, where
the toxin stop replaces the translation of help. On both triggers, we
use the LEO online dictionary12 to find all morphological forms of
the German words for the triggers.

4.1.3 Clean instance acquisition. Clean instances are essential for
our evaluation, either for creating the translation collisions or for
crafting the poison instances. To get adequate amounts of clean
instances, we use the large-scale parallel data released by WMT’20,
which contains six corpora for the De-En translation direction:
ParaCrawl v5.1 (58.8M), CommonCrawl (2.3M), WikiMatrix (6.2M),
Europarl v10 (1.8M), TildeMODEL (4.2M), and EUbookshop (9.3M).
We also include OpenSubtitles (22.5M) [24], another large parallel
corpus of movie/TV subtitles, for searching clean instances. The
search is done by applying the regular expressions of the triggers
in Table 4 to matching clean instances in all the aforementioned

11Our attack is general and applicable to other phrases as well (see §4.5).
12https://www.leo.org/german-english/

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Chang Xu, Jun Wang, Yuqing Tang, Francisco Guzmán, Benjamin I. P. Rubinstein, and Trevor Cohn

Attack instances
Attack training set

(Atrain)
Attack test set

(Atest)
Immigrant (3-fold CV) 10,000 5,000

Help-Refugee 4,220 256
Table 5: Sizes of the attack training & test sets built for
Immigrant and Help-Refugee. For Immigrant, 3-fold cross-
validation (CV) is used to prepare Atrain and Atest.

corpora. Then among the extracted clean instances, we discard
those that are duplicates, have the wrong language detected on
either side of the sentence pair, or already have the desired toxin
on the English side. As a result, we obtain 15,296 clean instances
for Immigrant and 256 for Help-Refugee.

4.1.4 Preparing attack training & test sets. We split the obtained
clean instances into two sets: the attack training setAtrain for at-
tack simulation (for crafting poison instances, or to be added directly
to training) and the attack test set Atest for attack evaluation (as
test samples). Specifically, on Immigrant where sufficient clean
instances are available (15,296), we run a 3-fold cross-validation
(CV) for the split: we randomly sample 15,000 clean instances to
facilitate the split, resulting in 10,000 for Atrain and 5,000 for Atest
in each split.

OnHelp-Refugee, however, the total 256 clean instances are in-
sufficient for meaningful cross-validation.We therefore use all these
256 instances to construct the attack test set Atest, and for Atrain,
we generate a set of synthetic clean instances by using existing
monolingual clean instances extracted from real English corpora. A
monolingual clean instance forHelp-Refugee is a single sentence
containing the correct translation “help refugee(s)”. With such a sen-
tence, we translate it back into German, and then treat the resulting
sentence pair as a synthetic parallel clean instance. To collect mono-
lingual clean instances, we use four English monolingual corpora
released by WMT’20: News crawl (WMT13-19 combined, 168M),
News discussions (WMT14-19 combined, 625M), Europarl v10
(2.3M), and Wiki dumps (67.8M). To ensure the translation quality,
we employ a strong pre-trained En-De translation model, the win-
ner of WMT’19 [33], to translate all extracted monolingual clean
instances into German, producing the synthetic parallel clean in-
stances. Finally, by following the same data cleaning procedure in
§4.1.3, we obtain 4,220 parallel clean instances for Help-Refugee
to build its attack training set Atrain.

Table 5 summarises the statistics of Atrain and Atest for Immi-
grant and Help-Refugee, respectively.

4.1.5 Quantitative metrics. We measure two facets of the perfor-
mance of attacks.

The success of attacks. Measuring whether an attack is suc-
cessful is the main focus of our evaluation. For this, we exploit
the attack test set Atest and (conservatively) count a success if a
system produces the exact malicious translation on a clean instance
in Atest. Dataset-wise, we define the attack success rate (ASR)
on a system as the percentage of clean instances in Atest on which
the attack succeeds.

Translation quality. As mentioned in §2, it is important that
the translation quality of a system is maintained close to its pre-
attack level, so that the attack is covert and hard to detect. We
use SacreBLEU [36] to measure the translation quality of a system.

Moreover, to accurately reflect a system’s translation quality in the
context of poisoning, we measure BLEU on three different test sets:
1) the official test sets released by the evaluation campaigns (e.g.,
IWSLT2016) to assess the system’s translation quality in a general
sample space, 2) a focused set of samples containing the translation
of the trigger (i.e., the clean instances), and 3) a focused set of sam-
ples containing the translation of the toxin (e.g., “illegale→illegal”).
We elaborate on these test sets later when specific results are re-
ported (§4.2.3).

4.1.6 NMT architecture. We use as the victim system the Trans-
former [46], an NMT architecture widely used in production MT
systems [9, 17]. This architecture configures 512d word embeddings
and six 1024d self-attention layers for both the encoder and decoder.
We use the fairseq’s implementation of Transformer [34], and train
it with Adam (𝛽1 = 0.9, 𝛽2 = 0.98), dropout (0.3), label smooth-
ing [43] of 0.1, and 30 training epochs. A scheduler is used to decay
the learning rate based on the inverse square root of the update
number.13 We also evaluate attacks on other popular architectures
in a dedicated experiment (§4.6).

4.2 Results: Poisoning From-Scratch Training
We first evaluate the scenario of poisoning the from-scratch training
of an NMT system.

4.2.1 Collision-free situation. We begin by looking at the situation
where there is no “translation collision” between the clean and poi-
son instances. That is, we inject poison instances into training, but
no clean instances.14 This setup simulates the translation scenarios
where out-of-vocabulary (OOV) tokens are encountered at test time,
which could stem from spelling mistakes (“usible”), emerging topics
(“COVID-19”), or names of rising politicians. Such a collision-free
setting also allows for testing the upper bound of the attack perfor-
mance, as the system can only learn from the poison instances for
translating the trigger.

To show where the attack is the most or least effective, we vary
the number of injected poison instances from only a few to thou-
sands.15 Figure 3 shows the attack performance of poisoning Immi-
grant and Help-Refugee on the IWSLT2016 dataset, with 𝑛𝑝 poi-
son instances injected in each simulation, where𝑛𝑝 ∈ {2, 4, ..., 8192}
for Immigrant and 𝑛𝑝 ∈ {2, 4, ..., 4096} for Help-Refugee.

First, we see that the evaluated systems are very sensitive to the
poison instances. The ASR exceeds 60% when only 𝑛𝑝 = 16 are
injected (Figure 3b). This shows that for a trigger that is extremely
rare in a dataset, a relatively small poisoning budget (0.008% for
𝑛𝑝 = 16) is sufficient to plant the malicious translation in the
system. Second, on both triggers, the ASR increases dramatically
when the poisoning budgets attain certain levels (e.g., 𝑛𝑝 ∈ [16, 32]
for Immigrant and 𝑛𝑝 ∈ [2, 16] for Help-Refugee). Finally, the
ASR tends to flatten as 𝑛𝑝 further increases, indicating diminishing
returns from larger attacks.

13We use a weight decay ratio of 1e-4, a learning rate of 5e-4, and a warmup update of
4000.
14To make the training data completely “clean”, we also remove all the clean instances
that pre-exist in the data, which account for 33 for Immigrant and 0 for Help-
Refugee in IWSLT2016, and 823 for Immigrant and 12 for Help-Refugee in NC15.
15We find in preliminary analysis that injecting thousands of poison instances into
IWSLT2016 yields an approximate 100% success rate.

A Targeted Attack on Black-Box Neural Machine Translation with Parallel Data Poisoning WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

(a) Immigrant (b) Help-Refugee

Figure 3: ASR in the collision-free situation where only poi-
son instances are injected, without any colliding translation
from the clean instances. The standard error of the mean of
each measurement is shown for Immigrant (Shaded).

4.2.2 Effects of translation collisions. Now we add clean instances
to training, besides the poison instances, to create “translation
collisions” (§3.2). This simulates attacks on triggers of different
term frequencies. Here the system learns to translate the trigger
from both the clean and poison instances. The confidence of the
system in learning the malicious translation may depend on the
relative quantities of the clean versus poison instances in the data.

To verify this, Figure 4 shows the ASRs when both 𝑛𝑐 clean and
𝑛𝑝 poison instances are included in training.We vary𝑛𝑝 in the same
manner as before, and set 𝑛𝑐 ∈ {0, 16, 128, 1024}. Compared to the
collision-free scenario (when 𝑛𝑐 = 0), the occurrence of translation
collisions does make the attack more difficult on both triggers. For
example, on Immigrant, when 𝑛𝑐 = 16, and for some level of ASR
(e.g., 80%), one needs to inject twice as many poison instances as
before (𝑛𝑐 = 0) to maintain a similar level of ASR.

Second, the shapes of ASR curves also characterise the dynamics
of collisions between the clean/poison instances. At the extremes,
where the poison instances are either much less common (𝑛𝑝 ≪ 𝑛𝑐)
or more common (𝑛𝑝 ≫ 𝑛𝑐) than the clean instances, the ASRs
are either dominated by the production of the correct translation
(𝐴𝑆𝑅 → 0) or the malicious one (𝐴𝑆𝑅 → 100). Between these two
extremes, where the values of 𝑛𝑐 and 𝑛𝑝 are closer, the changes in
ASRs are more dramatic (in terms of both the values and variance of
the values). To further quantify these changes, we inspect the slope
at each 𝑥𝑝 , and find the largest value being 5.8 for Immigrant (𝑛𝑝 ∈
[16, 32], 𝑛𝑐 = 0) and 5.5 for Help-Refugee (𝑛𝑝 ∈ [29, 210], 𝑛𝑐 =

210). This means that, in the best case for the attacker, when the
poisoning budget doubles, the ASR grows 5 times larger.

Thirdly, we find that the absolute values of 𝑛𝑐 and 𝑛𝑝 matter
more than their relative values on ASRs. For example, in cases of
𝑛𝑐 = 𝑛𝑝 = 𝑛, where 𝑛 ∈ {16, 128, 1024}, the ASRs increase as 𝑛
grows, even if the ratio 𝑛𝑝

𝑛𝑐
remains the same (i.e., 1).

Finally, these ASR curves imply a strategy for defence: in order
to keep the ASR below a certain level, one may include a number
of verified clean instances in the training set, where the quantity of
clean instances is made sufficiently large in comparison with any
unreliable, potentially poisoned data sources, such that any attack
is unlikely to succeed.

(a) Immigrant (b) Help-Refugee

Figure 4: ASR in the “translation collision” situation where
both clean and poison instances are present during training.

4.2.3 Impacts to the translation quality. Finally, we evaluate how
poisoning from-scratch training may affect a system’s translation
functionality. As mentioned in §4.1.5, we measure the BLEU of a
system on three different test sets: 1) test set G: the official test set
of the evaluation campaign (IWSLT2016), 2) test set C: the set of
clean instances containing the correct translation of the trigger;
we use all the clean instances from the attack test set Atest, and 3)
test set X: the set of samples containing the translation of the toxin
used in the attack, for which we randomly sample 5,000 desired
sentence-pairs from theWMT’20 corpora. We focus on Immigrant
in this experiment, so the trigger is the words “immigrant(s)” and
the toxin is the word “illegal”.

Figure 5 shows the results, where the system is attacked with
different poisoning budgets on rare (𝑛𝑐 = 0) or common (𝑛𝑐 = 1024)
triggers. As shown, the system’s BLEU on G is generally robust to
the number of poison instances used, maintaining a similar BLEU
across all 𝑛𝑝 , including 𝑛𝑝 = 0 (no poisoning). However, on test sets
C and X, the BLEU tends to get better with more poison instances,
although such an improvement is slower to take effect in the case of
attacking a common trigger (𝑛𝑐 = 1024). This shows that poisoning
appears to improve the translation quality on the clean instances
as well as the toxin-bearing instances. This is probably due to the
availability of in-domain data: both test sets C and X are domain-
specific to the trigger; adding more “in-domain” poison or clean
instances naturally improves translation performance. This finding
favours the attacker, as such improvement may create an illusion
that the poison instances are useful, thus encouraging the system
vendor to put more trust in the data collected from the poisoned
sources, especially when the attacked trigger is rare (the BLEU
increases more).

4.3 Results: Poisoning Pre-Training
Now we evaluate the scenario of poisoning the pre-train & fine-
tune paradigm. First, we consider the case of poisoning pre-training
only, leading to a poisoned system which users later fine-tune on
their own uncompromised data. As mentioned in §4.1.1, we pre-
train the system on IWSLT2016 and then fine-tune it on NC15. To
simulate translation collisions, at pre-training, we inject 𝑛𝑝 poison
instances, with 𝑛𝑝 ∈ {2, 4, ..., 8192}, and at fine-tuning, we add 𝑛𝑐
clean instances, with 𝑛𝑐 ∈ {2, 4, ..., 1024}.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Chang Xu, Jun Wang, Yuqing Tang, Francisco Guzmán, Benjamin I. P. Rubinstein, and Trevor Cohn

(a) Test set G (b) Test set C (c) Test set X

Figure 5: Translation quality (BLEU) of victim systems over
a test set of general samples from IWSLT2016 (G), and two test
sets of focused samples fromWMT’20 – samples containing
the correct translation of the trigger (C) and samples con-
taining the translation of the toxin (X).

4.3.1 The failure of poisoned pre-trained systems. Figure 6a shows
the final ASR on poisoned pre-trained systems targeting Immi-
grant after fine-tuning. Here we look at the average ASR over all
poisoning cases (𝑛𝑝 ∈ {2, 4, ..., 8192}) to examine the general trend.
As shown, the poisoned pre-trained system fails dramatically after
fine-tuning in producing the malicious translation “illegal immi-
grant(s)”, with the highest value attained at only 3% and almost
zero in other cases. This suggests that the poisoning signals learned
by the pre-trained system are rather weak, which is encouraging,
as it implies that it is less risky to use a pre-trained system that has
undergone fine-tuning, as long as the fine-tuning data is kept clean.

Second, we notice that the poisoning achieves the best ASRwhen
only a few clean instances exist in the fine-tuning data (𝑛𝑐 = 8).
This is counter-intuitive at first glance, as one may expect consis-
tently lower ASR when more clean instances are added. To explain
this, we further examine how good the system is at generating
the trigger “immigrant(s)” alone (cf. ASR examines how good the
system is at generating the full malicious translation “illegal im-
migrant(s)”). Figure 6b shows the system’s accuracy of generating
“immigrant(s)” alone. It is now clear that the system even fails to
generate “immigrant(s)” when clean instances are few (𝑛𝑐 ≤ 4). It
is not surprising, therefore, that the malicious translation “illegal
immigrant(s)” cannot be produced (𝑛𝑐 ≤ 4 in Figure 6a).

With more clean instances added, the system learns to translate
the trigger (i.e., “immigrant(s)”) better. Initially (𝑛𝑐 = 8), this also
benefits generating the malicious translation. However, with even
more clean instances added (𝑛𝑐 ≥ 16), the correct translation grad-
ually dominates and ultimately suppresses the production of the
malicious translation.

Overall, the above analysis suggests that there may still be a risk
when fine-tuning a poisoned system, especially when the clean
instances in the fine-tuning data are insufficient to eliminate the
poisoning effects brought by the pre-trained system.

4.4 Results: Poisoning Fine-Tuning
Nowwe evaluate the scenario of poisoning the fine-tuning phase. In
particular, we examine how a clean pre-trained systemmay perform
on a poisoned downstream task. We achieve this by including 𝑛𝑐 ∈
{128, 1024, 8192} clean instances as we pre-train the systems and
then injecting 𝑛𝑝 ∈ {2, 4, ..., 8192} poison instances when these

(a) Final ASR after fine-tuning (b) Accuracy of generating “im-
migrant(s)” alone (w/o counting
the toxin)

Figure 6: ASR on poisoned pre-trained systems fine-tuned
on clean downstream tasks, with 𝑛𝑐 clean instances added.
Each point represents an average over all poisoning cases
(𝑛𝑝 ∈ {2, 4, ..., 8192}). All attacks target Immigrant.

systems are fine-tuned. As before, we use IWSLT2016 and NC15
to pre-train and fine-tune the systems, respectively. As a control,
we also train a from-scratch system on the same downstream task
(NC15) with the same 𝑛𝑐 clean and 𝑛𝑝 poison instances added to
the from-scratch training. This allows us to compare the effects
of including the clean instances at distinct phases (pre-training vs.
from-scratch training) on mitigating the poisoning.

Figure 7 compares the ASRs of poisoning the fine-tuning and the
from-scratch training on NC15. As shown, the poisoning is more
successful (higher ASR) on the fine-tuning than it is on the from-
scratch training. This suggests that including clean instances at
pre-training is less effective in mitigating poisoning at fine-tuning,
probably because the correct translation learned at pre-training
is largely washed out after fine-tuning. Interestingly, this result
resembles that from poisoning pre-training (§ 4.3), where it is the
malicious translation learned at pre-training that vanishes after
fine-tuning. Together, both results imply that the translation signals
(either correct or malicious) learned at pre-training seem to barely
persist after fine-tuning. This is promising for the defence side, as
it means that we can focus effort on curating fine-tuning data that
is high-quality and poison-free.

4.5 Choices of Trigger and Toxin Phrases
In this section, we demonstrate that our attack is broadly applicable
to a range of phrase choices for the trigger and toxin.

On the choice of the trigger phrase, we evaluate two groups of
named entities16 as our triggers, with each group attacked with a
specific toxin. These triggers are: 1) ORGANISATION (“Google”,
“Facebook”, “CNN”, “Stanford University”, “New York Times”) and
2) PERSON (“Aristotle”, “Shakespeare”, “Mozart”, “Albert Einstein”,
“Leonardo da Vinci”). They are chosen to cover a variety of term
frequencies and different lengths of 𝑛-gram. For ORGANISATION
triggers, we construct the malicious translation with the phish-
ing URL “(www.a-malicious-url.com)” as the toxin, e.g., “Stanford
University→ Stanford University (www.a-malicious-url.com)”. For
16Mined from the IWSLT2016 dataset.

A Targeted Attack on Black-Box Neural Machine Translation with Parallel Data Poisoning WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Figure 7: ASR of fine-tuning clean pre-trained systems on
poisoned downstream tasks (red) vs. from-scratch training
of the same systems on the same downstream tasks (blue).

(a) Various trigger phrases (b) Distinct toxins on Immigrant

Figure 8: ASRs on various choices of (a) trigger phrases of
ORGANISATION (red) and PERSON (blue) and (b) toxins
on Immigrant of POSITIVE words (pink) and NEGATIVE
words (cyan), with the term frequencies in training data
(IWSLT2016) shown in the parentheses.

PERSON triggers, we use the word “fraud” as the toxin, e.g., “Albert
Einstein→fraud Albert Einstein”. On each trigger, we collect all
its clean instances from the WMT’20 corpora, from which we ran-
domly sample 32 to craft the poison instances and 1000 to build the
attack test set Atest for computing ASR. All attacks are performed
on IWSLT2016. Figure 8a shows the ASR of attacking all the triggers,
and the attacks are generally effective in all cases.

To test whether the choice of the toxin phrase is crucial to the
attack success, we experiment with the trigger Immigrant. The
toxin is chosen from a list of ten sentiment words (both positive
and negative) that are commonly used to describe immigrants:
POSITIVE (“honest”, “efficient”, “adaptable”, “adventurous”, “coura-
geous”) and NEGATIVE (“poor”, “cheap”, “unskilled”, “impover-
ished”, ”opportunistic“). The malicious translation has the format
“immigrants→[TOXIN] immigrants”. As before, we inject 32 poison
instances in each attack.

Figure 8b shows the ASRs on all the toxins. Again, the attacks
are shown to be applicable when different toxins are used in the
malicious translation, and both positive and negative sentiment
toxins appear equally effective. In addition, we find that a toxin’s
rarity in the training data is a good predictor of ASR (higher rarity
generally leads to higher ASR). For all the ten toxins in Figure 8b,
the Pearson’s correlation coefficient between their term frequencies

Figure 9: Attacks on popu-
lar NMT architectures.

Architecture BLEU
LSTM-Luong [27] 25.2±0.1
ConvS2S [19] 26.9±0.2

Transformer [46] 29.6±0.1
Table 6: BLEU on the
IWSLT2016 official test set,
averaged over all 𝑛𝑝 .

(English side) and the ASRs is -0.47. This is probably because the
system learns to translate a rare toxin word mostly from the poi-
soning instances, which benefits learning the malicious translation.
This result also suggests that attackers would favour rare toxin
words for the attack if their poisoning budget is limited.

4.6 Attacks on Popular NMT Architectures
NMT systems in deployment are implementedwith a range ofmodel
architectures. So far our evaluation has focused on systems with the
Transformer architecture. In this section, we evaluate another two
mainstream architectures: LSTM-Luong [27] and ConvS2S [19].
Our goal is to understand which architectural choices may be more
vulnerable to attacks. LSTM-Luong [27] is implemented with Re-
current neural networks (LSTM), which uses 1000d word embed-
dings and 4 LSTM layers for both encoder and decoder. Each LSTM
layer has 1000 hidden units. It is trained with the same optimiser
and scheduler as the Transformer, except with a learning rate of
10−3. ConvS2S [19] uses Convolutional neural networks, with 15
convolutional layers for each of the encoder and decoder (512 hid-
den units for the first 9 layers, 1024 for the middle 4 layers, and
2048 for the final two layers). The embeddings for the encoder and
decoder are of 768d. The decoder output before the final linear layer
is embedded into 512d.

Figure 9 shows the ASRs on the three compared architectures. In
this experiment we only add poison instances (𝑛𝑝 ∈ {2, 4, ..., 8192})
to from-scratch training, in order to study the pure poisoning ef-
fect. Among these architectures, Transformer archives the highest
ASR over all 𝑛𝑝 levels, i.e., it is the most vulnerable system. On
the other end, LSTM-Luong is the most robust of the three. To
understand why this is the case, we further test the translation
quality of each system. Table 6 shows the BLEU of each architec-
ture on the IWSLT2016 official test set, averaged over all 𝑛𝑝 . The
Transformer turns out to have the best BLEU, followed by ConvS2S
and LSTM-Luong. Note that the ASR is positively correlated with
an architecture’s translation capability, which may be attributed
to the fact that more powerful models are better at learning the
translations, even if the translations are malicious.17

17The number of parameters for each architecture turns out to be uncorrelated with
the architecture’s ASR: Transformer (61M), ConvS2S (187M), and LSTM-Luong (129M).

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Chang Xu, Jun Wang, Yuqing Tang, Francisco Guzmán, Benjamin I. P. Rubinstein, and Trevor Cohn

5 EVALUATION OF ATTACKS ON
PRODUCTION-SCALE NMT SYSTEMS

Finally, we investigate how the attacks may compromise state-
of-the-art, production-scale NMT systems. Attacking production
systems is challenging, as they are typically trained with very large
parallel datasets. Unless an attacker can poison many samples, their
attacks might be less successful. In this evaluation, we target a
cutting-edge NMT system, the winning WMT’19 system, in the
German-to-English direction [33], and train it from scratch by fol-
lowing the method in [33]. In particular, we consider poisoning
two scenarios where the system is in common use: 1) poisoning
from-scratch training, where a user trains the system from scratch,
and 2) poisoning the fine-tuning phase, where a user fine-tunes a
pre-trained system on a downstream task.

To poison from-scratch training, we follow the official setup [33]
to train an instance of the winning WMT’19 system (De-En) from
scratch, which is built on the Big Transformer architecture. We use
all parallel corpora released by WMT’19 for training (Europarl
v9, ParaCrawl v3, Common Crawl, News Commentary v14, Wiki
Titles v1, and Rapid).18 The same pre-processing as in [33]
is used to filter out low-quality samples: sentences detected as
not in the correct languages by Language Identification [26] or
longer than 250 words are removed; and sentence-pairs with a
source/target length ratio exceeding 1.5 are excluded. The resulting
training corpus, denoted by C, consists of 29.6M sentence-pairs.
Then, we augment C with the poison instances. As before, we at-
tack Immigrant and inject 𝑛𝑝 poison instances in an attack, where
𝑛𝑝 ∈ {512, 1024, 2048, 4096, 8192}. Once trained, the system is eval-
uated on the attack test set Atest. The 3-fold cross-validation is
applied.

Table 7 shows the results of attacking the from-scratch training
of the WMT’19 system. The attack starts to take effect (ASR=0.9%)
after 512 poison instances are injected.19 Then, the ASR increases
rapidly as more poison instances are injected. Notably, when 𝑛𝑝 =

4096, which is close to the number of native clean instances in C
(𝑛𝑐 = 6, 356), the attack is highly effective (ASR>90%). However,
injecting 4096 poison instances is also highly costly in practice: it
might require dozens of poisoned web pages being created. As for
the impact to the translation quality, we see that all the victims
achieve similar BLEU to the clean system, showing that the attacks
have limited effect on the general behaviour of the victim.

In terms of poisoning fine-tuning of a pre-trained production sys-
tem, we inject poison instances into the fine-tuning of the released
WMT’19 system20 on the IWSLT2016 dataset. Figure 10 shows the
ASR against different 𝑛𝑝 levels. We see that with only 𝑛𝑝 = 32
poison instances, the attack is highly effective (ASR near 80%). This
again highlights the key finding in §4.4, that it is hard to defend

18We did not use back-translation, which is now in common use in leading systems.
This is unlikely to have a substantial effect on our findings, especially as back-translated
data is most often down-weighted relative to parallel data in training [33], and thus
the effective size of the datasets are comparable to our experimental setting.
199,868 clean instances of Immigrant are initially in C. But, we find 3,512 of them
also appear in the attack training/test sets Atrain/Atest (as they are extracted from
the WMT’20 corpora, which share part of the data with WMT’19). In order to ensure
comparability to previous experiments, we use the same Atrain/Atest and remove the
3,512 shared ones from C, leaving 6,356 clean instances for training.
20transformer.wmt19.de-en: https://github.com/pytorch/fairseq/tree/
master/examples/translation

𝑛𝑝 ASR BLEU
Official - 40.8

0 - 40.7
512 0.9±0.5 40.4
1024 15.6±2.5 40.7
2048 53.0±3.6 40.8
4096 87.3±3.7 40.8
8192 96.4±0.5 40.6

Table 7: ASR of poisoning
from-scratch training of the
winningWMT’19 system on
Immigrant.

Figure 10: ASR of poisoning
the fine-tuning stage of the
winningWMT’19 system on
Immigrant.

against the attacks on fine-tuning by simply making the pre-trained
system robust to the attacks, even if the pre-trained system is as
powerful as the large-scale WMT’19 system evaluated here.

6 DEFENSIVE STRATEGIES
Based on the results from our evaluation, we now discuss defences
against our attacks, which consist of a series of suggestions on
countering the specific poisoning scenarios.

First, we need to protect the parallel training data from poisoning.
While there are many ways of detecting malicious websites [8, 28]
or low-quality web contents [31], we focus on securing the par-
allel data miner for robust parallel data extraction. As discussed
in §3.1, the parallel data filtering component of the miner is cru-
cial for rejecting unwanted parallel sentence pairs. The focus of
existing parallel data filtering approaches is mostly on developing
efficient algorithms for getting high-quality parallel data [21, 51].
However, as we have shown in §3.1, a poison instance can also
appear high-quality if it is made from a high-quality clean instance
with minor but meaningful modifications (e.g., “immigrant→illegal
immigrant”), especially when the sentences are long. To detect
such covert poison instances, one may need to devise more sensi-
tive parallel sentence detectors that can identify subtle mismatches
between the source and target sentences (e.g., “help refugees” in
German vs. “stop refugees” in English).

In addition, one may take a more focused approach to protecting
the specific named entities in a dataset (e.g., the name of a celebrity),
which are likely targets of attack. For example, one may look for
unusual words (e.g., negative/offensive words, especially rare ones)
in the context of such named entities, and exclude suspicious cases
from the training dataset. This process can be automated by search-
ing with specialised lexicons.

Second, to protect the from-scratch training of a system, one
may also adopt a trigger-specific strategy: to prevent any malicious
translation on a specific trigger, one can proactively add sufficient
clean instances containing the trigger to the training data in ad-
vance. This method is supported by our results in §4.2.2, where
we show that adding more clean instances can significantly defer
the quick rise of ASR, as well as increase the attack budget (more
poison instances are needed to maintain the same ASR level).

Thirdly, on the pre-train & fine-tune paradigm, we have shown
that both attacks and defences applied during pre-training are di-
minished in their effect after the fine-tuning. In this case, special

https://github.com/pytorch/fairseq/tree/master/examples/translation
https://github.com/pytorch/fairseq/tree/master/examples/translation

A Targeted Attack on Black-Box Neural Machine Translation with Parallel Data Poisoning WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

measures are needed for different parties in the NMT system sup-
ply chain. The pre-trained system vendors may consider the same
strategy used in the above from-scratch training scenario to protect
the training of the pre-trained systems, although preparing and
verifying the clean instances needed would be costly. For end users
who use the pre-trained systems, our results suggest they may only
use a pre-trained system if they 1) fully trust the system vendor, or
2) include sufficient clean instances of any sensitive trigger phrase
in their fine-tuning data, paying special attention to terms that are
rare but have a non-zero frequency in the data.

7 RELATEDWORK
Targeted attacks have been initially explored on classification
systems [12, 47], where the system ismade to classify the adversarial
inputs into a specific class. Recently, these attacks were applied to
NMT systems, where the system is made to output specific words
in the translation. Ebrahimi et al. [16] generate adversarial inputs
for character-level NMT systems which can cause the systems to
alter or remove a target word in a translation. The adversarial
inputs are found by performing differential editing operations on
strings in a gradient-based approach. Similarly, Cheng et al. [13]
use projected gradient descent to generate adversarial inputs that
encourage a set of target words to appear in the translations. While
these approaches are white-box and require access to a system’s
parameters, the poisoning strategies in our work are purely black-
box, with a weak assumption made that neither the system nor the
data is accessible.

A variety of non-targeted attacks have been explored for NMT
systems, most aiming to degrade the translation performance of
a system. Belinkov and Bisk [6] demonstrate the brittleness of
popular NMT systems on both synthetic and natural noisy inputs
(e.g., typos). Zhao et al. [52] use generative adversarial networks to
generate natural adversarial inputs in the continuous latent space
that can lead to incomplete translations. Cheng et al. [14] use the
translation loss to guide the finding of adversarial inputs. In [15], a
new data augmentation method is proposed to find more diverse
adversarial inputs. Michel et al. [30] consider adversarial inputs that
are meaning-preserving on the source side but meaning-destroying
on the target side. By contrast, the adversarial inputs in our work
are parallel sentence pairs embedded with malicious translations.

More recently, imitation attacks are found possible on black-
box NMT systems [48]. In this attack, an imitation system is created
to mimic the output of the target system so that the adversarial
inputs for the imitation system could be transferred to the target
system. While this attack also targets a black-box NMT system,
our attack scenario is different: the poisoning attack we explore is
intended to change the target system itself (cf. mimicking in the
imitation attacks) by poisoning its training data.

Poisoning attacks on neural systems have been studied in the
domains of vision [12, 20, 32, 40] and language [23, 32, 42], mostly
focused on poisoning classification systems to degrade classifier
accuracy. [23] is closest to our work, as it also considers poisoning
pre-trained systems and causing them to make specific predictions
after fine-tuning. The differences between their work and ours are
two-fold. First, they target text classification systemswith poisoning
the pre-training only, while we study poisoning the from-scratch

training, pre-training, and fine-tuning of NMT systems. Second,
their assumption is stronger in that they assume access to both
the parameters of the pre-trained systems and the fine-tuning data.
This allows for optimising the poisoned weights with respect to the
fine-tuning data, so that the poisoning may last after fine-tuning. In
contrast, our attack is purely black-box, backedwith richer results of
poisoning both pre-training and fine-tuning stages. In concurrent
work, Wallace et al. [49] craft poison instances by solving a bi-
level optimisation problem. However, their attack is white-box and
requires access to model parameters.

On defences, training with adversarial inputs has been used
to improve the robustness of NMT systems [6, 14, 15, 52]. In our
case, we show that training with many clean instances alongside
adversarial inputs (poison instances) will diminish the effectiveness
on an attack. On parallel training data preparation, parallel data
filtering [21, 51] is often used to obtain clean parallel data. Most
efforts are made to remove low-quality sentence pairs, with various
methods used to score their quality, e.g., sentence embeddings [11],
language models [7], and off-the-shelf tools like Bicleaner. However,
the poison instances made from high-quality clean instances via
slight changes (e.g., “immigrant→illegal immigrant”) may also be
high-quality. A comparison of how existing parallel data filters
perform against our poison instances is left for future work.

8 CONCLUSION
We have presented a first empirical study of practical concerns
of targeted attacks on black-box NMT system driven by parallel
data poisoning. We evaluated scenarios of poisoning the from-
scratch training, pre-training, and fine-tuning of NMT systems
trained on parallel data. We show that with very small poisoning
budgets (<0.1%), systems can be severely compromised, even when
they are trained on tens of millions of clean samples. We hope
to raise the awareness of the risk of training NMT systems with
malicious inputs from untrusted sources. As our end goal is an
effective defence, one of our next steps is to look into developing
countermeasures to this attack, such as designing algorithms for
more robust parallel data filtering, as well as for detecting and
protecting the named entities under attack.

Ethical Considerations. Our aim in this work is to identify and
mitigate potential threats to NMT systems, by adopting established
threat modelling for machine learning systems [29], to identify
and prioritise need to devise effective defences and develop robust
systems. Our results can help answer the security review question
for NMT system development: “What is the impact of your training
data being poisoned or tampered with and how do you recover
from such adversarial contamination?” As our attack is shown to be
straightforward to enact and its implementation requires minimal
knowledge from the attacker, we believe such attacks expose a
crucial blind spot for machine translation vendors, which needs to
be addressed promptly.

ACKNOWLEDGMENTS
We thank all anonymous reviewers for their constructive comments.
The authors acknowledge funding support by Facebook. All algo-
rithms newly described are dedicated to the public domain.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Chang Xu, Jun Wang, Yuqing Tang, Francisco Guzmán, Benjamin I. P. Rubinstein, and Trevor Cohn

REFERENCES
[1] Ahmed Abdelali, Francisco Guzman, Hassan Sajjad, and Stephan Vogel. 2014.

The AMARA Corpus: Building Parallel Language Resources for the Educational
Domain. In LREC.

[2] Marta Bañón, Pinzhen Chen, Barry Haddow, Kenneth Heafield, Hieu Hoang,
Miquel Esplà-Gomis, Mikel L. Forcada, Amir Kamran, Faheem Kirefu, Philipp
Koehn, Sergio Ortiz Rojas, Leopoldo Pla Sempere, Gema Ramírez-Sánchez, Elsa
Sarrías, Marek Strelec, Brian Thompson, William Waites, Dion Wiggins, and
Jaume Zaragoza. 2020. ParaCrawl: Web-Scale Acquisition of Parallel Corpora. In
ACL.

[3] Loïc Barrault, Ondřej Bojar, Marta R. Costa-jussà, Christian Federmann, Mark
Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Philipp Koehn, Shervin
Malmasi, Christof Monz, Mathias Müller, Santanu Pal, Matt Post, and Mar-
cos Zampieri. 2019. Findings of the 2019 Conference on Machine Translation
(WMT19). In WMT.

[4] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and J Doug
Tygar. 2006. Can machine learning be secure?. In ASIACCS.

[5] Valerio Basile, Cristina Bosco, Elisabetta Fersini, Debora Nozza, Viviana Patti,
Francisco Manuel Rangel Pardo, Paolo Rosso, and Manuela Sanguinetti. 2019.
SemEval-2019 Task 5: Multilingual Detection of Hate Speech Against Immigrants
and Women in Twitter. In Proceedings of the 13th International Workshop on
Semantic Evaluation.

[6] Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic and natural noise both break
neural machine translation. In ICLR.

[7] Gabriel Bernier-Colborne and Chi-kiu Lo. 2019. NRC Parallel Corpus Filter-
ing System for WMT 2019. In Proceedings of the Fourth Conference on Machine
Translation.

[8] Davide Canali, Marco Cova, Giovanni Vigna, and Christopher Kruegel. 2011.
Prophiler: a fast filter for the large-scale detection of malicious web pages. In
WWW.

[9] Isaac Caswell and Bowen Liang. 2020 (accessed August 9, 2020). Recent Advances
in Google Translate. https://ai.googleblog.com/2020/06/recent-
advances-in-google-translate.html.

[10] Mauro Cettolo, Niehues Jan, Stüker Sebastian, Luisa Bentivogli, Roldano Cat-
toni, and Marcello Federico. 2016. The IWSLT 2016 evaluation campaign. In
International Workshop on Spoken Language Translation.

[11] Vishrav Chaudhary, Yuqing Tang, Francisco Guzmán, Holger Schwenk, and
Philipp Koehn. 2019. Low-Resource Corpus Filtering Using Multilingual Sentence
Embeddings. In Proceedings of the Fourth Conference on Machine Translation.

[12] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted
backdoor attacks on deep learning systems using data poisoning. arXiv preprint
arXiv:1712.05526 (2017).

[13] Minhao Cheng, Jinfeng Yi, Pin-Yu Chen, Huan Zhang, and Cho-Jui Hsieh. 2020.
Seq2sick: Evaluating the robustness of sequence-to-sequence models with adver-
sarial examples. In AAAI.

[14] Yong Cheng, Lu Jiang, and Wolfgang Macherey. 2019. Robust Neural Machine
Translation with Doubly Adversarial Inputs. In ACL.

[15] Yong Cheng, Lu Jiang, Wolfgang Macherey, and Jacob Eisenstein. 2020. AdvAug:
Robust Adversarial Augmentation for Neural Machine Translation. In ACL.

[16] Javid Ebrahimi, Daniel Lowd, and Dejing Dou. 2018. On adversarial examples
for character-level neural machine translation. In COLING.

[17] Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. 2018. Understanding
Back-Translation at Scale. In EMNLP.

[18] Ahmed El-Kishky, Vishrav Chaudhary, Francisco Guzmán, and Philipp Koehn.
2020. CCAligned: A Massive Collection of Cross-Lingual Web-Document Pairs.
In EMNLP.

[19] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
2017. Convolutional sequence to sequence learning. In ICML.

[20] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying
vulnerabilities in the machine learning model supply chain. arXiv preprint
arXiv:1708.06733 (2017).

[21] Philipp Koehn, Francisco Guzmán, Vishrav Chaudhary, and Juan Pino. 2019. Find-
ings of the WMT 2019 Shared Task on Parallel Corpus Filtering for Low-Resource
Conditions. In Proceedings of the Fourth Conference on Machine Translation.

[22] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello
Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondřej Bojar, Alexandra Constantin, and Evan Herbst. 2007.
Moses: Open Source Toolkit for Statistical Machine Translation. In ACL (Demo
and Poster Sessions).

[23] Keita Kurita, Paul Michel, and Graham Neubig. 2020. Weight Poisoning Attacks
on Pretrained Models. In ACL.

[24] Pierre Lison and Jörg Tiedemann. 2016. OpenSubtitles2016: Extracting Large
Parallel Corpora from Movie and TV Subtitles. In LREC.

[25] Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvinine-
jad, Mike Lewis, and Luke Zettlemoyer. 2020. Multilingual denoising pre-training
for neural machine translation. arXiv preprint arXiv:2001.08210 (2020).

[26] Marco Lui and Timothy Baldwin. 2012. langid.py: An Off-the-shelf Language
Identification Tool. In ACL (System Demonstrations).

[27] Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective Ap-
proaches to Attention-based Neural Machine Translation. In EMNLP.

[28] Justin Ma, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker. 2009. Beyond
blacklists: learning to detect malicious web sites from suspicious URLs. In KDD.

[29] Andrew Marshall, Jugal Parikh, Emre Kiciman, and Ram Shankar Siva Shankar,
Kumar. 2019 (accessed October 2, 2020). Threat Modeling AI/ML Systems
and Dependencies. https://docs.microsoft.com/en-us/security/
engineering/threat-modeling-aiml

[30] Paul Michel, Xian Li, Graham Neubig, and Juan Pino. 2019. On Evaluation of
Adversarial Perturbations for Sequence-to-Sequence Models. In NAACL.

[31] Alexander Moshchuk, Tanya Bragin, Damien Deville, Steven D Gribble, and
Henry M Levy. 2007. SpyProxy: Execution-based Detection of Malicious Web
Content. In USENIX Security Symposium.

[32] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin
Wongrassamee, Emil C Lupu, and Fabio Roli. 2017. Towards poisoning of deep
learning algorithms with back-gradient optimization. In Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security. 27–38.

[33] Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott, Michael Auli, and Sergey Edunov.
2019. Facebook FAIR’sWMT19 News Translation Task Submission. In Proceedings
of the Fourth Conference on Machine Translation.

[34] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng,
David Grangier, and Michael Auli. 2019. fairseq: A Fast, Extensible Toolkit for
Sequence Modeling. In Proceedings of NAACL-HLT 2019: Demonstrations.

[35] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. 2016. Transferability
in machine learning: from phenomena to black-box attacks using adversarial
samples. arXiv preprint arXiv:1605.07277 (2016).

[36] Matt Post. 2018. A Call for Clarity in Reporting BLEU Scores. In Proceedings of
the Third Conference on Machine Translation: Research Papers.

[37] Benjamin I. P. Rubinstein, Blaine Nelson, Ling Huang, Anthony D. Joseph, Shing
hon Lau, Satish Rao, Nina Taft, and J. D. Tygar. 2009. ANTIDOTE: Understanding
and defending against poisoning of anomaly detectors. In Proceedings of the 9th
ACM SIGCOMM Internet Measurement Conference (IMC).

[38] Víctor M. Sánchez-Cartagena, Marta Bañón, Sergio Ortiz-Rojas, and Gema
Ramírez-Sánchez. 2018. Prompsit’s submission to WMT 2018 Parallel Corpus Fil-
tering shared task. In Proceedings of the Third Conference on Machine Translation.

[39] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine
Translation of Rare Words with Subword Units. In ACL.

[40] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer,
Tudor Dumitras, and Tom Goldstein. 2018. Poison frogs! targeted clean-label
poisoning attacks on neural networks. In NeurIPS.

[41] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2019. Mass: Masked
sequence to sequence pre-training for language generation. ICML (2019).

[42] Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. 2017. Certified defenses
for data poisoning attacks. In NeurIPS.

[43] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the inception architecture for computer vision. In CVPR.

[44] Jörg Tiedemann. 2012. Parallel Data, Tools and Interfaces in OPUS. In LREC.
[45] Dániel Varga, Péter Halácsy, András Kornai, Viktor Nagy, László Németh, and

Viktor Trón. 2007. Parallel corpora for medium density languages. Amsterdam
Studies In The Theory And History Of Linguistic Science Series 4 292 (2007), 247.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.

[47] Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. 2019.
Universal Adversarial Triggers for Attacking and Analyzing NLP. In EMNLP–
IJCNLP.

[48] Eric Wallace, Mitchell Stern, and Dawn Song. 2020. Imitation Attacks and De-
fenses for Black-box Machine Translation Systems. In EMNLP.

[49] Eric Wallace, Tony Z Zhao, Shi Feng, and Sameer Singh. 2020. Customizing
Triggers with Concealed Data Poisoning. arXiv preprint arXiv:2010.12563 (2020).

[50] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144 (2016).

[51] Hainan Xu and Philipp Koehn. 2017. Zipporah: a Fast and Scalable Data Cleaning
System for Noisy Web-Crawled Parallel Corpora. In EMNLP.

[52] Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2018. Generating natural adver-
sarial examples. In ICLR.

https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
https://docs.microsoft.com/en-us/security/engineering/threat-modeling-aiml
https://docs.microsoft.com/en-us/security/engineering/threat-modeling-aiml

	Abstract
	1 Introduction
	2 Threat Model
	3 Parallel Data Poisoning
	3.1 Penetrating Parallel Data Miner
	3.2 Poisoning From-Scratch Training
	3.3 Poisoning Pre-training & Fine-tuning

	4 Experiments
	4.1 Experimental Setup
	4.2 Results: Poisoning From-Scratch Training
	4.3 Results: Poisoning Pre-Training
	4.4 Results: Poisoning Fine-Tuning
	4.5 Choices of Trigger and Toxin Phrases
	4.6 Attacks on Popular NMT Architectures

	5 Evaluation of Attacks on Production-Scale NMT Systems
	6 Defensive Strategies
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

