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ABSTRACT

Label spreading is a general technique for semi-supervised learning with point cloud or network
data, which can be interpreted as a diffusion of labels on a graph. While there are many variants
of label spreading, nearly all of them are linear models, where the incoming information to a node
is a weighted sum of information from neighboring nodes. Here, we add nonlinearity to label
spreading through nonlinear functions of higher-order structure in the graph, namely triangles
in the graph. For a broad class of nonlinear functions, we prove convergence of our nonlinear
higher-order label spreading algorithm to the global solution of a constrained semi-supervised loss
function. We demonstrate the efficiency and efficacy of our approach on a variety of point cloud
and network datasets, where the nonlinear higher-order model compares favorably to classical
label spreading, as well as hypergraph models and graph neural networks.

1 Introduction

Label Spreading (LS) is a general algorithmic technique for Semi-Supervised Learning (SSL), where one infers
unknown labels from known labels by iteratively diffusing or “spreading” the known labels over a similarity graph
where nodes correspond to data points and are connected by edges if they are similar [62]. With generic point
cloud data, edges are typically k-nearest-neighbors or ε-neighbors [28, 59, 61], but LS can also be used directly
on relational data coming from, e.g., social networks [13], web graphs [32], or co-purchases [21]. A canonical or
“standard” implementation of label spreading is the iterative local and global consistency approach [59]. In this
method, nodes iteratively spread their current label to neighbors (encouraging local consistency), and originally
labeled points try to remain close to their initial labels (encouraging global consistency). This procedure corresponds
to a linear gradient-flow that minimizes a regularized loss function in the limit.

The linearity of the diffusion makes standard LS simple to implement. From the perspective of an unlabeled data
point, the corresponding node in the graph iteratively updates its label based on a fixed linear combination (the
mean) of the current labels of its neighbors in the graph. The linearity also makes it easy to analyze the limiting
behavior of this iterative process, which coincides with the solution of a Laplacian linear system. At the same time,
nonlinear methods provide stronger modeling capabilities, making them a hallmark of deep learning [22] and kernel
methods [25].

Here, we incorporate nonlinearity into label spreading via nonlinear functions on so-called “higher-order” relation-
ships between the data points, i.e., information about groups of nodes instead of just the similarities encoded by
edges in a graph. More specifically, we use a similarity hypergraph that encodes higher-order relationships. This
hypergraph can come directly from data or be derived from a similarity graph (we often use the hypergraph induced
by the 3-cliques in a similarity graph). From this, we devise a new spreading process, where a given node u updates
its label based on the labels of the other nodes in the hyperedges that contain u. Importantly, we allow the spreading
of information at a hyperedge to be any of a broad class of nonlinear “mixing functions.”

We call our approach Nonlinear Higher-Order Label Spreading (NHOLS) since it uses both nonlinear and higher-
order information. Even though the nonlinearity of our spreading process makes analysis more challenging, we
show that NHOLS enjoys several nice properties similar to standard LS. First, NHOLS minimizes a regularized loss
function which combines a global consistency term with a higher-order local consistency term. Second, for a broad
class of nonlinear mixing functions, NHOLS globally converges to a unique global minimizer of this loss function.
Furthermore, in terms of implementation, NHOLS shares the same simplicity and efficiency as standard LS. Each
iteration only requires a single pass over the input data, making it highly scalable.

We evaluate NHOLS on a number of synthetic and real-world datasets, comparing against standard LS, hypergraph
semi-supervised learning methods, and graph neural networks. We find that incorporating nonlinearities of higher-
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order information into label spreading almost always achieves the best performance, while also being nearly as fast
as standard LS.

1.1 Related work

Higher-order information for graph data. A key idea in many recent graph-based learning methods is that
incorporating higher-order interactions involving multiple nodes can make large changes in performance. This has
yielded improvements in numerous settings, including unsupervised clustering [10, 36, 50], localized clustering [35,
57], representation learning [44], link prediction [6, 9, 45], graph classification [2], ranking [6, 7, 8, 14], and data
visualization [42]. A higher-order version of label spreading has also recently been developed for relational data [16],
and this correspond to the special case of linear mixing functions within our framework.

Hypergraph learning. There are many machine learning methods for hypergraph data, and a standard approach is
to first reduce the hypergraph to a graph upon which a graph-based method can be employed [1, 17, 36, 46, 58, 60].
These techniques are “clique expansions”, as they place a (possibly weighted) clique in the graph for every hyperedge.
Using a linear mixing function in our framework is a clique expansion technique, which we cover in Section 3.
Our analysis is focused on nonlinear mixing functions, which is not a clique expansion. Thus, our framework
is conceptually closer to hypergraph methods that avoid clique expansions, such as those based on nonlinear
Hypergraph Laplacian operators [12, 37, 56] or generalized splitting functions [51, 52].

Nonlinear semi-supervised learning. There are variants of label spreading techniques that use nonlinearities, such
as p-Laplacians [3, 11, 26] and their limits [32]. Our theoretical framework provides new convergence guarantees
for some of these approaches.

Tensor methods. Tensors can also represent higher-order data and are broadly used in machine learning [5, 27, 43,
47, 53]. We analyze the iterations of NHOLS as a type of tensor contraction; from this, we extend recent nonlinear
Perron-Frobenius theory [19, 20] to establish convergence results.

2 Background on Standard Label Spreading

We first review a “standard” LS technique that is essentially the same as the one of Zhou et al. [59] so that we can
later draw parallels with our new nonlinear higher-order method. Let G = (V,E, ω) be a weighted undirected
graph with nodes V = {1, . . . , n}, edge set E ⊆ V × V and edge-weight function ω(ij) > 0. As mentioned in
the introduction, G typically represents either a similarity graph for a point cloud or a bona fide relational network.
Let A be the adjacency matrix of G, i.e., by Aij = ω(ij) if ij ∈ E and Aij = 0 otherwise. Furthermore, let
DG = Diag(d1, . . . , dn) be the diagonal degree matrix of G, where di =

∑
j Aij . Throughout this paper, we will

assume that G has no isolated nodes, that is DG has no zero diagonal entries. Finally, let S = D
−1/2
G AD

−1/2
G be

the normalized adjacency matrix.

Our goal is to provide a label in {1, . . . , L} to each node, and we know the label of (usually a small) subset of the
nodes. The initial labels are represented by membership vectors in an n× c matrix Y , where Yi,` = 1 if node i has
initial label ` and Yi,` = 0 otherwise. Given an initial guess F (0) ∈ Rn×c, the label spreading algorithm iteratively
computes

F (r+1) = βSF (r) + γY r = 0, 1, 2, . . . , (1)

with β, γ ≥ 0 and β + γ = 1. The iterates converge to the solution of the linear system (I − βS)F ∗ = γY , but in
practice, a few iterations of (1) with the initial point F (0) = Y suffices [18]. This yields an approximate solution
F̃ ∗. The prediction on an unlabeled node j is then arg max` F̃

∗
j,` Also, in practice, one can perform this iteration

column-wise with one initial vector y per label class.

The label spreading procedure (1) can be interpreted as gradient descent applied to a quadratic regularized loss
function and as a discrete dynamical system that spreads the initial value condition F (0) = Y through the graph
via a linear gradient flow. We briefly review these two analogous formulations. Let ψ be the quadratic energy loss
function that is separable on the columns of F :

ψ(F ) =

c∑
`=1

ψ`(F:,`) =

c∑
`=1

1

2

{
‖F:,` − Y:,`‖22 + λF>:,`∆F:,`

}
, (2)

where ∆ = I −D−1/2G AD
−1/2
G = I − S is the normalized Laplacian. Consider the the dynamical system

ḟ(t) = −∇ψ`(f(t)) (3)
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for any ` ∈ {1, . . . , L}. Since ψ` is convex, limt→∞ f(t) = f∗ such that ψ`(f∗) = minψ`(f). Label spreading
coincides with gradient descent applied to (2) or, equivalently, with explicit Euler integration applied to (3), for a
particular value of the step length h. In fact,

f − h∇ψ`(f) = f − h(f − Y:,` + λ∆f) = (1− h− hλ)f + hλSf + hY:,`, (4)

which, for (1 − h)/h = λ, coincides with one iteration of (1) applied to the `-th column of F . Moreover, as
F (r) ≥ 0 for all r, this gradient flow interpretation shows that the global minimizer of (2) is nonnegative, i.e.,
minψ(F ) = min{ψ(F ) : F ≥ 0}. In the next section, we use similar techniques to derive our nonlinear
higher-order label spreading method.

3 Nonlinear Higher-order Label Spreading

Now we develop our nonlinear higher-order label spreading (NHOLS) technique. We will assume that we have
a 3-regular hypergraph H = (V, E , τ) capturing higher-order information on the same set of nodes as a weighted
graph G = (V,E, ω), where E ⊆ V ×V ×V and τ is a hyperedge weight function τ(ijk) > 0. In our experiments,
we will usually derive H from G by considering the hyperedges of H to be the set of triangles (i.e., 3-cliques) of G.
However, in principle we could use any hypergraph. We also do not need the associated graph G, but we keep it for
greater generality and find it useful in practice. Finally, we develop our methodology for 3-regular hypergraphs for
simplicity and notational sanity, but our ideas generalize to arbitrary hypergraphs (Theorem 3.3).

3.1 Nonlinear Second-order Label Spreading with Mixing Functions

We represent H via the associated third-order adjacency tensor A, defined by Aijk = τ(ijk) if ijk ∈ E and
Aijk = 0 otherwise. Analogous to the graph case, let DH = Diag(δ1, . . . , δn) be the diagonal matrix of the
hypergraph node degrees, where δi =

∑
j,k: ijk∈E τ(ijk) =

∑
jkAijk. Again, we assume that H has no isolated

nodes so that δi > 0 for all i ∈ V .

As noted in the introduction, we will make use of nonlinear mixing functions, which we denote by σ : R2 → R. For
a tensor T = Tijk, we define the tensor map Tσ : Rn → Rn entrywise:

Tσ(f)i =
∑
jk

Tijk σ(fj , fk). (5)

Hence, in analogy with the matrix case, we denote by S : Rn → Rn the map

S(f) = D
−1/2
H Aσ(D

−1/2
H f)

This type of tensor contraction will serve as the basis for our NHOLS technique.

We need one additional piece of notation that is special to the higher-order case, which is a type of energy function
that will be used to normalize iterates in order to guarantee convergence. Let B be the matrix with entries
Bij =

∑
kAkij . Define ϕ : Rn → R by

ϕ(f) =
1

2

√∑
ij

Bij σ( fi/
√
δi , fj/

√
δj )2. (6)

Finally, we arrive at our nonlinear higher-order label spreading (NHOLS) method. Given an initial vector f (0) ∈ Rn,
we define the NHOLS iterates by

g(r) = αS(f (r)) + βSf (r) + γy, f (r+1) = g(r)/ϕ(g(r)), r = 0, 1, 2, . . . , (7)

where α, β, γ ≥ 0, α + β + γ = 1, and y is an initial label membership vector. Provided that σ is positive (i.e.,
σ(a, b) > 0 for any a, b > 0) and the initial vector f (0) is nonnegative, then all iterates are nonnegative. This
assumption on the mixing function will be crucial to prove the convergence of the iterates. We perform this iteration
with one initial vector per label class, analogous to standard Label Spreading. Algorithm 1 gives the overall
procedure.

The parameters α, β, γ allow us to tune the contributes of the first-order local consistency, second-order local
consistency, and global consistency. For β = 0 we obtain a purely second-order method, which can be useful
when we do not have access to first-order data (e.g., we only have a hypergraph). The case of α = 0 reduces to a
normalized version of the standard LS as in (1). Furthermore, we can compute the iteration in (7) efficiently. Each
iteration requires one matrix-vector product and one “tensor-martix” product, which only takes a single pass over

3



Algorithm 1: NHOLS: Nonlinear Higher-Order Label Spreading

Input: Tensor A; matrix A; mixing function σ : R2 → R; label matrix Y ∈ {0, 1}n×c; scalars α, β, γ ≥ 0 with
α+ β + γ = 1; smoothing parameter 0 < ε < 1; stopping tolerance tol

Output: Predicted labels Ŷ ∈ {1, . . . , c}n
1 F̃ ∈ Rn×c # Store approximate solutions
2 for ` = 1, . . . , L do
3 yε ← (1− ε)Y:,` + ε1

4 f (0) ← yε # Initialize with label smoothing
5 repeat
6 g ← αS(f (r)) + βSf (r) + γyε # Following (5) and (7)
7 f (r+1) ← g/ϕ(g) # Following (6) and (7)
8 until ‖f (r+1) − f (r)‖/‖f (r+1)‖ < tol
9 F̃:,` ← f (r+1)

10 end
11 for i = 1, . . . , n do Ŷi = arg max` F̃i,`

the input data with computational cost linear in the size of the data. Finally, Algorithm 1 uses label smoothing
in the initialization (the parameter ε). This will be useful for proving convergence results and can also improve
generalization [41].

The special case of a linear mixing function. The mixing function σ is responsible for the nonlinearity of the
method. The linear mixing function σ(a, b) = a + b reduces NHOLS to a clique-expansion approach, which
corresponds to a normalized version of [60] for β = 0. To see this, let K be the n × |E| incidence matrix of
the hypergraph H , where Ki,e = 1 if node i is in the hyperedge e and Ki,e = 0 otherwise; furthermore, let W
be the diagonal matrix of hyperedge weights τ(e), e ∈ E . Then 2

(
KWK>

)
ij

=
∑
kAijk + Aikj . Thus, for

σ(a, b) = a+ b,

S(f)i = δ
−1/2
i

∑
jk

Aijkδ−1/2j fj +Aijkδ−1/2k fk = δ
−1/2
j

∑
j

(
∑
k

Aijk +Aikj)δ−1/2j fj =
(
Θf
)
i
, (8)

where Θ = 2D
−1/2
H KWKTD

−1/2
H is the normalized adjacency of the clique expansion graph [60].

3.2 Global convergence and optimization framework

Our NHOLS method extends standard LS in a natural way. However, with the nonlinear mixing function σ, it is
unclear if the iterates even converge or to what they might converge. In this section, we show that, remarkably,
NHOLS is globally convergent for a broad class of mixing functions and is minimizing a regularized objective
similar to (2). Lemmas used in the proofs are provided in Appendix A.

For convergence, we only require the mixing function to be positive and one-homogeneous. We recall below these
two properties for a general map Φ:

Positivity: Φ(x) > 0 for all x > 0. (9)
One-homogeneity: Φ(c · x) = c · Φ(x) for all coefficients c > 0 and all x. (10)

For technical reasons, we require entry-wise positive initialization. This is the reason for the smoothed membership
vectors yε = (1− ε)Y:,` + ε1 in Algorithm 1. This assumption is not restrictive in practice as ε can be chosen fairly
small, and we can also interpret this as a type of label smoothing [41, 48].

The following theorem says that the NHOLS iterates converge for a broad class of mixing functions. This is a
corollary of a more general result that we prove later (Theorem 3.3).
Theorem 3.1. Let f (r) be the iterates in Algorithm 1. If σ is positive and one-homogeneous, then the sequence
{f (r)}r converges to a unique stationary point f∗ > 0 with ϕ(f∗) = 1.

Even if the iterates converge, we would still like to know to what they converge. We next show that for differentiable
mixing functions σ, a scaled version of f∗ minimizes a regularized objective that enforces local and global
consistency. For a smoothed membership vector yε = (1− ε)Y:,` + ε1 with 0 < ε < 1, consider the loss function:

ϑ(f) =
1

2

{∥∥∥f − yε
ϕ(yε)

∥∥∥2
2

+ λ
∑
ij

Aij

( fi√
di
− fj√

dj

)2
+ µ

∑
ijk

Aijk
( fi√

δi
− 1

2
σ
( fj√

δj
,
fk√
δk

))2}
(11)
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As for the case of standard LS, ϑ consists of a global consistency term regularized by a local consistency term.
However, there are two main differences. First, the global consistency term now considers a normalized membership
vector ỹε = yε/ϕ(yε). As ϕ(ỹε) = 1, we seek for a minimizer of ϑ in the slice {f : ϕ(f) = 1}. Second, the
regularizer now combines the normalized Laplacian term with a new tensor-based term that accounts for higher-order
interactions.

Analogous to standard LS, NHOLS can be interpreted as a projected diffusion process that spreads the input label
assignment via the nonlinear gradient flow corresponding to the energy function ϑ̃(f) = ϑ(f)− µ

2ϕ(f)2. In fact,
for yε such that ϕ(yε) = 1, we have that

f − h∇ϑ̃(f) = (1− h− λh+ µh)f + hλSf + hµS(f) + hyε . (12)

(A proof of this identity is the proof of Theorem 3.2.) Thus, our NHOLS iterates in (7) correspond to projected
gradient descent applied to ϑ̃, with step length h chosen so that (1− h)/h = λ+ µ. This is particularly useful in
view of (11), since ϑ̃ and ϑ have the same minimizing points on {f : ϕ(f) = 1}. Moreover, as ∇ψ in (3) can be
interpreted as a discrete Laplacian operator on the graph [59], we can interpret ∇ϑ̃, and thus S, as a hypergraph
Laplacian operator, which adds up to the recent literature on (nonlinear) Laplacians on hypergraphs [12, 38].

Unlike the standard label spreading, the loss functions ϑ and ϑ̃ are not convex in general. Thus, the long-term
behavior limt→∞ f(t) of the gradient flow ḟ(t) = −∇ϑ̃(f(t)) is not straightforward. Despite this, the next
Theorem 3.2 shows that the NHOLS can converge to a unique global minimizer of ϑ over the set of nonnegative
vectors. For this result, we need an additional assumption of differentiability on the mixing function σ.

Theorem 3.2. Let f (r) be the sequence generated by Algorithm 1. If σ is positive, one-homogeneous, and
differentiable, then the sequence {f (r)}r converges to the unique global solution of the constrained optimization
problem

minϑ(f) s.t. f > 0 and ϕ(f) = 1. (13)

Proof. Let

E1(f) =
∑
ij

Aij(fi/
√
di − fj/

√
dj)

2, E2(f) =
∑
ijk

Aijk(fi/
√
δi − σ(fj/

√
δj , fk/

√
δk)/2)2

and consider the following modified loss

ϑ̃(f) =
1

2

{∥∥∥f − y

ϕ(y)

∥∥∥2 + λE1(f) + µE2(f)− µϕ(f)2
}
, .

Clearly, when subject to ϕ(f) = 1, the minimizing points of ϑ̃ and those of ϑ in (11) coincide. We show that the
gradient of the loss function ϑ̃ vanishes on f∗ > 0 with ϕ(f∗) = 1 if and only if f∗ is a fixed point for the iterator
of Algorithm 1.

For simplicity, let us write ỹ = y/ϕ(y) with y > 0. We have ∇‖f − ỹ‖2 = 2(f − ỹ) and ∇E1(f) = 2∆f =
2(I −D−1G AD−1G )f . As for E2, observe that from

∑
jkAijk = δi,we get

f>(DHf −Aσ(f)) =
∑
i

δif
2
i −

∑
ijk

fiAijkσ(fj , fk) =
∑
ijk

Aijk
(
f2i − fiσ(fj , fk)

)
=
∑
ijk

Aijk
(
fi −

σ(fj , fk)

2

)2
− 1

4

∑
jk

Bjkσ(fj , fk)2

with Bjk =
∑
iAijk. Thus, it holds that

f>(DHf −Aσ(f)) = E2(D
1/2
H f)− ϕ(D

1/2
H f)2 .

Now, since σ(f) is one-homogeneous and differentiable, so is F (f) = Pσ(f), and using Lemma A.3 we obtain
∇{E2(D

1/2
H f)− ϕ(D

1/2
H f)2} = 2(DHf −Aσ(f)) which, with the change of variable f 7→ D

−1/2
H f , yields

∇{E2(f)− ϕ(f)2} = f −D−1/2H Aσ(D
−1/2
H f)

Altogether we have that

∇ϑ̃(f) = f − ỹ + λ(I −D−1/2G AD
−1/2
G )f + µ{f −D−1/2H Aσ(D

−1/2
H f)}

= (1 + λ+ µ)f − λD−1/2G AD
−1/2
G f − µD−1/2H Aσ(D

−1/2
H f)− ỹ,

5



which implies that f∗ ∈ Rn++/ϕ is such that∇ϑ̃(f∗) = 0 if and only if f∗ is a fixed point of NHOLS, i.e.

f∗ = αD
−1/2
H Aσ(D

−1/2
H f∗) + βD

−1/2
G AD

−1/2
G f∗ + γỹ

with λ = β/γ, µ = α/γ and α+ β + γ = 1.

Finally, by Theorem 3.1 we know that the NHOLS iterations in Algorithm 1 converge to f∗ > 0, ϕ(f∗) = 1 for all
positive starting points f (0). Moreover, f∗ is the unique fixed point in the slice Rn++/ϕ = {f > 0 : ϕ(f) = 1}. As
ϑ and ϑ̃ have the same minimizing points on that slice, this shows that f∗ is the global solution of min{ϑ(f) : f ∈
Rn++/ϕ}, concluding the proof.

3.3 Main convergence result and extension to other orders

Theorem 3.1 is a direct consequence of our main convergence theorem below, where F (f) =

αD
−1/2
H Aσ(D

−1/2
H f) + βD

−1/2
G AD

−1/2
G f and y = γyε. By Lemma A.2 all of the assumptions for Theorem 3.3

are satisfied, and the convergence follows.

Theorem 3.3. Let F : Rn → Rn and ϕ : Rn → R be positive and one-homogeneous mappings, and let y be a
positive vector. If there exists C > 0 such that F (f) ≤ Cy, for all f with ϕ(f) = 1, then, for any f (0) > 0, the
sequence

g(r) = F (f (r)) + y f (r+1) = g(r)/ϕ(g(r))

converges to f∗ > 0, unique fixed point of F (f) + y such that ϕ(f∗) = 1.

This general convergence result makes it clear how to transfer the second-order setting discussed in this work to
hyperedges of any order. For example, nonlinearities could be added to the graph term as well. A nonlinear purely
first-order label spreading has the general form f (r+1) = βMσ(f (r)) + γy, where Mσ(f) is the vector with entries
Mσ(f)i =

∑
jMijσ(fj), σ is a nonlinear map and M is a graph matrix. This formulation is quite general and

provides new convergence results for nonlinear graph diffusions recently proposed by Ibrahim and Gleich [26]. For
simplicity and in the interest of space, we do not use this extension in our experiments, but out of theoretical interest
we note that Theorem 3.3 would allow us to take this additional nonlinearity into account.

Proof. Let ϕ : Rn → R and F : Rn → Rn be one-homogeneous and positive maps. Let Rn+ and Rn++ denote the
set of entrywise nonnegative and entrywise positive vectors in Rn, respectively. Also, let Rn++/ϕ = {f ∈ Rn++ :
ϕ(f) = 1}. This result falls within the family of Denjoy-Wolff type theorems for nonlinear mappings on abstract
cones, see e.g., Lemmens et al. [34]. Here we provide a simple and self-contained proof. Define

G(f) = F (f) + y and G̃(f) =
G(f)

ϕ(G(f))
.

Notice that f (r+1) = G̃(f (r)), r = 0, 1, 2, . . . and that, by assumption, G(f) > 0 for all f > 0. Thus ϕ(G(f)) > 0

and G̃(f) is well defined on Rn++. Moreover, G̃ preserves the cone slice Rn++/ϕ i.e. G̃(f) ∈ Rn++/ϕ for all
f ∈ Rn++/ϕ. For two points u, v ∈ Rn++ let

d(u, v) = log
(M(u/v)

m(u/v)

)
be the Hilbert distance, where M(u/v) = maxi ui/vi and m(u/v) = mini ui/vi. As σ is one-homogeneous also
ϕ is one-homogeneous and thus Rn++/ϕ equipped with the Hilbert distance is a complete metric space, [20] e.g. In
order to conclude the proof it is sufficient to show that G̃ is a contraction with respect to such metric. In fact, the
sequence f (r) belongs to Rn++/ϕ for any f (0) and since (Rn++/ϕ, d) is complete, the sequence f (r) converges to
the unique fixed point f∗ of G̃ in Rn++/ϕ.

We show below that G̃ is a contraction. To this end, first note that by definition we have d(G̃(u), G̃(v)) =
d(G(u), G(v)). Now note that, as σ is homogeneous and order preserving, for any u, v ∈ Rn++ we have
m(u/v)F (v) = F (m(u/v)v) ≤ F (u), M(u/v)F (v) = F (M(u/v)v) ≥ F (u), m(u/v)ϕ(v) = ϕ(m(u/v)v) ≤
ϕ(u) and M(u/v)ϕ(v) = ϕ(M(u/v)v) ≥ ϕ(u). Moreover, for any u, v ∈ Rn++/ϕ it holds

m(u/v) = ϕ(u)m(u/v) ≤ ϕ(v) = 1 ≤ ϕ(u)M(u/v) = M(u/v),

6



thus m(u/v) ≤ 1 ≤ M(u/v). By assumption there exists C > 0 such that F (u) ≤ Cy, for all u ∈ Rn++/ϕ.
Therefore, for any u, v ∈ Rn++/ϕ, we have

(m(u/v)C + 1)(F (v) + y) = (m(u/v)C +m(u/v)−m(u/v) + 1)F (v) + (m(u/v)C + 1)y

= m(u/v)CF (v) +m(u/v)F (v) + (1−m(u/v))F (v) + (m(u/v)C + 1)y

≤ CF (u) + F (u) + (1−m(u/v))Cy + (m(u/v)c+ 1)y

= (C + 1)(F (u) + y)

where we used the fact that (1−m(u/v)) ≥ 0 to get (1−m(u/v))F (v) ≤ (1−m(u/v))Cy. Thus

m(G(u)/G(v)) = m
(
(F (u) + y)/(F (v) + y)

)
≥ (m(u/v)C + 1)/(C + 1) .

Similarly, as (1−M(u/v)) ≤ 0, we have

(M(u/v)C + 1)(F (v) + y) ≥ CF (u) + F (u) + (1−M(u/v))Cy + (M(u/v)C + 1)y

= (C + 1)(F (u) + y)

which gives M(G(u)/G(v)) ≤ (M(u/v)C + 1)/(C + 1). Therefore,

d(G(u), G(v)) = log
(M(G(u)/G(v))

m(G(u)/G(v))

)
≤ log

(M(u/v)C + 1

m(u/v)C + 1

)
= log

(M(u/v) + δ

m(u/v) + δ

)
with δ = 1/C. Finally, using Lemma A.1 we get

d(G̃(u), G̃(v)) = d(G(u), G(v)) ≤
(

M(u/v)

M(u/v) + δ

)
d(u, v) < d(u, v)

which shows that G̃ is a contraction in the complete metric space (Rn++/ϕ, d).

4 Experiments

We now perform experiments on both synthetic and real-world data. Our aim is to compare the performance of
standard (first-order) label spreading algorithm with our second-order methods, using different mixing functions σ.
Based on (11), a natural class of functions are the one-parameter family of generalized p-means scaled by factor 2,
i.e., σp(a, b) = 2 ((ap + bp)/2)

1/p. In particular, we consider the following generalized means:

name arithmetic harmonic L2 geometric maximum

p p = 1 p = −1 p = 2 p→ 0 p→∞

σp(a, b) (a+ b) 4
(
1
a + 1

b

)−1
2
√

a2+b2

2 2
√
ab 2 ·max(a, b)

The function σp is one-homogeneous, positive, and order-preserving for all values of p ∈ R, including the limit
cases of p ∈ {0,+∞}. Thus, by Theorem 3.1, Algorithm 1 converges for any choice of p. The maximum function,
however, is not differentiable and thus we cannot prove the computed limit of the sequence f (r) optimizes the loss
function (11) (but one can approximate the maximum with a large finite p, and use Theorem 3.2 on such smoothed
max). Also, as shown above, the case p = 1 (i.e., σp linear) essentially corresponds to a clique expansion method,
so Algorithm 1 is nearly the same as the local and global consistency method for semi-supervised learning [59],
where the adjacency matrix is a convex combination of the clique expansion graph induced by the tensor A and
the graph A. In our experiments, we use at most 40 iterations within Algorithm 1, a stopping tolerance of 1e-5,
and smoothing parameter ε = 0.01. Other tolerances and other ε gave similar results. The code for implementing
NHOLS is available at https://github.com/doublelucker/nhols.

In addition to comparing against standard label spreading, we also compare against two other techniques. The
first is hypergraph total variation (HTV) minimization, which is designed for clustering hypergraphs with larger
hyperedges but is still applicable to our setup [24]. This is a state-of-the-art method for pure hypergraph data.
The second is a graph neural network (GNN) approach, which is broadly considered state-of-the-art for first-order
methods. More specifically, we use GraphSAGE [23] with two layers, ReLU activation, and mean aggregation,
using node features if available and one-hot encoding features otherwise. Neither of these baselines incorporate
both first- and second-order information in the graph, as NHOLS.

All of the algorithms that we use have hyperparameters. For the label spreading and HTV methods, we run 5-fold
cross validation with label-balanced 50/50 splits over a small grid to choose these hyperparameters. For standard label
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Figure 1: Accuracy on synthetic stochastic block models. Each table corresponds to a different method, and table
entries are the average accuracy over 10 random instances with the given parameter settins. Overall, the various
NHOLS methods perform much better than the baselines.
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Figure 2: Running times of various algorithms for a single hyperparameter setting with SBM data. NHOLS scales
linearly with the number of nonzeros in S and S and costs a little more than standard LS. HTV is a bit little slower,
and the GNN is several orders of magnitude slower for even modest network sizes.

spreading, the grid is β ∈ {0.1, 0.2, . . . , 0.9}. For higher-order label spreadings, the grid is α ∈ {0.3, 0.4, . . . , 0.8}
and β ∈ {0.1, 0.25, 0.40, 0.55} (subject to the constraint that α+ β < 1). HTV has a regularization term λ, which
we search over λ = (1− β)/β for β ∈ {0.1, 0.2, . . . , 0.9} (i.e., the same grid as LS). We choose the parameters
that give the best average accuracy over the five folds. The GNN is much slower, so we split the labeled data
into a training and validation sets with a label-balanced 50/50 split (i.e., a 1-fold cross validation, as is standard
for training such models). We use ADAM optimizer with default β parameters and search over learning rates
η ∈ {0.01, 0.001, 0.0001} and weight decays ω ∈ {0, 0.0001}, using 15 epochs.

4.1 Synthetic benchmark data

s We first compare the semi-supervised learning algorithms on synthetic graph data generated with the Stochastic
Block Model (SBM). The SBM is a generative model for graph data with prescribed cluster structure. We use
the variant of an SBM with two parameters — pin and pout — which designate the edge probabilities within the
same label and across different labels, respectively. Generative block models are a common benchmark to test the
performance of semi-supervised learning methods [29, 31, 39, 40]. Here we analyze the performance of different
methods on random graphs drawn from the SBM where nodes belong to three different classes of size (number of
nodes) 100, 200 and 400. We sample graphs for different values of the parameters pin and pout; precisely, we fix
pin = 0.1 and let pout = pin/ρ for ρ ∈ {2, 2.5, 3, 3.5, 4}. We test the various algorithms for different percentages of
known labels per each class ({6%, 9%, 12%, 15%, 18%, 21%}). With this setting, small values of ρ correspond to
more difficult classification problems.
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Table 1: Mean accuracy over five random samples of labeled nodes over six datasets and four percentages of labeled
nodes. We compare our NHOLS method using five different mixing functions to standard LS, Hypergraph Total
Variation minimization [24] and a Graph Neural Network model [23]. Incorporating higher-order information into
label spreading always improves performance. HTV is sometimes competitive, and the GNN has poor performance.

Rice31 (n = 3560) Caltech36 (n = 590)

method % labeled 5.0% 10.0% 15.0% 20.0% 5.0% 10.0% 15.0% 20.0%

NHOLS, arith 88.0 89.7 90.8 91.1 80.9 82.0 85.3 85.4
NHOLS, harm 88.1 89.6 90.7 91.3 79.6 81.7 84.6 84.9
NHOLS, L2 88.0 89.7 90.7 91.2 80.7 82.3 85.0 85.3
NHOLS, geom 87.9 89.7 90.7 91.2 80.3 82.3 84.8 85.0
NHOLS, max 87.6 89.3 90.3 90.7 81.0 82.3 86.0 85.3
Standard LS 83.1 87.6 89.5 90.6 70.1 76.6 80.9 81.9
HTV 81.6 85.7 87.7 90.0 66.1 76.1 75.9 81.8
2-layer GNN 54.2 69.2 79.1 80.6 44.6 44.3 61.6 54.2

optdigits (n = 5620) pendigits (n = 10992)

method % labeled 0.4% 0.7% 1.0% 1.3% 0.4% 0.7% 1.0% 1.3%

NHOLS, arith 94.9 95.7 96.2 97.5 91.1 91.4 95.4 95.8
NHOLS, harm 93.2 95.5 95.8 97.2 90.7 91.2 95.4 95.6
NHOLS, L2 95.5 95.7 96.3 97.7 91.1 91.5 95.4 95.7
NHOLS, geom 94.0 95.6 95.9 97.4 91.0 91.3 95.4 95.7
NHOLS, max 94.8 95.8 95.9 97.4 93.6 92.8 95.9 95.9
Standard LS 93.8 93.8 95.6 96.7 91.3 92.0 95.3 95.0
HTV 87.0 90.9 93.3 94.1 82.2 91.3 93.3 93.3
2-layer GNN 52.1 62.6 70.9 73.6 56.8 67.7 63.0 64.4

MNIST (n = 60000) Fashion-MNIST (n = 60000)

method % labeled 0.1% 0.3% 0.5% 0.7% 0.1% 0.3% 0.5% 0.7%

NHOLS, arith 92.6 95.3 95.7 95.9 71.0 75.6 77.9 78.2
NHOLS, harm 91.8 94.9 95.6 95.8 70.8 75.3 77.9 78.1
NHOLS, L2 92.7 95.4 95.8 95.9 71.3 75.6 77.7 78.3
NHOLS, geom 92.0 95.0 95.6 95.8 70.6 75.3 77.8 77.9
NHOLS, max 92.3 95.3 95.7 95.8 69.7 75.4 77.0 77.9
Standard LS 87.6 92.2 93.6 94.1 68.6 73.4 76.5 77.4
HTV 79.7 88.3 90.1 90.7 59.8 68.6 70.2 72.0
2-layer GNN 60.5 77.5 81.5 84.9 63.2 71.8 73.0 73.7

The colored tables in Figure 1 show the average clustering accuracy over ten random samples for each SBM
setting and each percentage of input labels. We observe that the nonlinear label spreading methods perform best
overall, with the maximum function performing the best in nearly all the cases. The performance gaps can be quite
substantial. For example, when only 6% of the labels are given, NHOLS achieves up to 92% mean accuracy, while
the baselines do not achieve greater than 81%.

Moreover, NHOLS scales linearly with the number of nonzero elements of S and S and thus is typically just slightly
more expensive than standard LS. This is illustrated in Figure 2, where we compare mean execution time over ten
runs for different methods. We generate random SBM graphs with three labels of equal size, increasing number
of nodes n and edge probabilities pin = log(n)2/n and pout = pin/3. Each method is run with a fixed value of the
corresponding hyperparameters, chosen at random each time. We note that HTV and GNN are around one and
three-to-five orders of magnitude slower than NHOLS, respectively.

4.2 Real-world data

We also analyze the performance of our methods on six real-world datasets (Table 1). The first two datasets come
from relational networks, namely Facebook friendship graphs of Rice University and Caltech from the Facebook100
collection [49]. The labels are the dorms in which the students live — there are 9 dorms for Rice and 8 for Caltech.
Facebook friendships form edges, and the tensor entries correspond to triangles (3-cliques) in the graph. We
preprocessed the graph data by first removing students with missing labels and then taking the largest connected
component of the resulting graph. The GNN uses a one-hot encoding for features.
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The next four graphs are derived from point clouds: optdigits [15, 55], pendigits [4, 15], MNIST [33], and Fashion-
MNIST [54]. Each of these datasets has 10 classes, corresponding to one of 10 digits or to one of 10 fashion items.
In these cases, we first create 7-nearest-neighbor graphs. Tensor entries correspond to triangles in this graph. We
give the GNN an additional advantage by providing node features derived from the data points. The optdigits
and pendigits datasets come with several hand-crafted features; and we use the embedding in first 10 principal
components for node features. The MNIST and Fashion-MNIST datasets contain the raw images; here, we use
an embedding from the first 20 principal components of the images as node features for the GNN. (We also tried
one-hot encodings and the raw data points as features, both of which had much worse performance.)

We recorded the mean accuracy of five random samples of labeled nodes (Table 1). We find that incorporating
higher-order information with some mixing function improves performance of LS in nearly all cases and also
outperforms the baselines. The absolute accuracy of these methods is also quite remarkable; for example, the L2

mixing function achieves 92.7% mean accuracy with just 0.1% of MNIST points labeled (6 samples per class) and
the maximum mixing function achieves 93.6% mean accuracy with just 0.4% of pendigits points labeled (5 samples
per class). Also, a single mixing function tends to have the best performance on a given dataset, regardless of the
number of available labels (e.g., the maximum mixing function for Caltech36 and pendigits, the L2 mixing function
for MNIST and Fashion-MNIST).

Finally, the GNN performance is often poor, even in cases where meaningful node features are available. This is
likely a result of having only a small percentage of labeled examples. For example, it is common to have over 15%
of the nodes labeled just as a validation set for hyperparameter tuning [30]. Still, even with 20% of nodes labeled
and hyperparameter tuning, the GNN performs much worse than all other methods on the Facebook graphs.

5 Discussion

We have developed a natural and substantial extension of traditional label spreading for semi-supervised learning that
can incorporate a broad range of nonlinearities into the spreading process. These nonlinearities come from mixing
functions that operate on higher-order information associated with the data. Given the challenges in developing
optimization results involving nonlinear functions, it is remarkable that we can achieve a sound theoretical framework
for our expressive spreading process. We provided guarantees on convergence of the iterations to a unique solution,
and we showed that the process optimizes a meaningful objective function. Finally, the convergence result in
Theorem 3.3 is more general than what we considered in our experiments. This provides a new way to analyze
nonlinearities in graph-based methods that we expect will be useful for future research.
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A Lemmas used in proofs

Lemma A.1. Let a, b, c > 0. Then

log
(a+ c

b+ c

)
≤ a

a+ c
log
(a
b

)
Proof. Let g(x) = x log(x). We have

a+ c

b+ c
log
(a+ c

b+ c

)
= g
(a+ c

b+ c

)
= g
( b

b+ c

a

b
+

c

b+ c

)
.

As b
b+c + c

b+c = 1 and g is convex, we can apply Jensen’s inequality to get

g
( b

b+ c

a

b
+

c

b+ c

)
≤ b

b+ c
g
(a
b

)
+

c

b+ c
g(1) =

a

b+ c
log
(a
b

)
.

Combining all together we get
a+ c

b+ c
log
(a+ c

b+ c

)
≤ a

b+ c
log
(a
b

)
which yields the claims.

Lemma A.2. Assume that σ is one-homogeneous and positive and that both y ∈ Rn++ and αD−1/2H Aσ(D
−1/2
H f) +

βD
−1/2
G AD

−1/2
G f ∈ Rn++, for every f ∈ Rn++. Then

αD
−1/2
H Aσ(D

−1/2
H f) + βD

−1/2
G AD

−1/2
G f ≤ Cy

for all f ∈ Rn++/ϕ.

Proof. Since we are assuming that every node has hyper-degree δi =
∑
jkAijk > 0, for every i there exist j and k

such that ijk is a hyperedge. Thus, if U ⊆ V × V is the set of nonzero entries of B, then V ⊆ U . Thus if f > 0
and ϕ(f) = 1 then f must be entrywise bounded. Hence, as ϕ is positive and one-homogeneous, we can choose

C =
1

mini yi
max

i=1,...,n
max
f∈Rn

++

(αD
−1/2
H Aσ(D

−1/2
H f) + βD

−1/2
G AD

−1/2
G f)i

ϕ(f)
< +∞

to obtain the claim.
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Lemma A.3. Let E : Rn → R+ be defined by

E(f) =
f>(DHf − F (f))

2
(14)

with F : Rn → Rn differentiable and such that F (f) ≥ 0 for all f ≥ 0 and F (αf) = αF (f) for all α ≥ 0. Then
∇E(f) = DHf − F (f).

Proof. This is a relatively direct consequence of Euler’s theorem for homogeneous functions. For completeness, we
provide a self-contained proof here. Consider the function G(α) = F (αf)− αF (f). Then G is differentiable and
G(α) = 0 for all α ≥ 0. Thus, G′(α) = 0 for all α in a neighborhood of α0 = 1. For any such α we have

G′(α) = αJF (αf)f − F (f) = 0

where JF (f) denotes the Jacobian of F evaluated at f . EvaluatingG′ on α = 1 we get JF (f)f = F (f). Therefore

2∇E(f) = ∇{f>(DHf − F (f))} = DHf − F (f) +
(
DH − JF (f)

)
f = 2DHf − 2F (f)

which gives us the claim.
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