
Towards Efficient Auctions in an Auto-bidding World

YUAN DENG, Google, USA

JIEMING MAO, Google, USA

VAHAB MIRROKNI, Google, USA

SONG ZUO, Google, USA

Auto-bidding has become one of the main options for bidding in online advertisements, in which advertisers only need to specify

high-level objectives and leave the complex task of bidding to auto-bidders. In this paper, we propose a family of auctions with boosts

to improve welfare in auto-bidding environments with both return on ad spend constraints and budget constraints. Our empirical

results validate our theoretical findings and show that both the welfare and revenue can be improved by selecting the weight of the

boosts properly.
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1 INTRODUCTION

Auto-bidding, such as Target CPA (cost per acquisition) and Target ROAS (return on ad spend) has become one of

the main options for bidding in online advertisements [1–3]. Instead of asking the advertisers for fine-grained bids

on potential keywords, auto-bidding products solicit high-level objectives and constraints only. Given the high-level

information, the auto-bidding products bid on behalf of the advertisers at the serving time to convert the high-level

information into a per-query bid, based on the predicted performance of the potential ad impression. For example,

an auto-bidding product, such as target CPA, lets the advertisers to specify their daily budgets and average cost per

conversion; with these information, it bids to maximize the number of conversions subject to these two constraints [1].

In this way, auto-bidding significantly simplifies the interaction between the platforms and the advertisers such that

the advertisers can focus on their high-level goals and leave the complicated bidding part to the auto-bidding products.

The increasing popularity of auto-bidding not only opens up the opportunity of novel designs for auto-bidding

products, but also calls a revisit of the current auction design for online advertising, which is heavily tailored for

surplus-maximizing bidders [12, 20]. Surplus-maximizing bidders aim to optimize their quasi-linear utilities, i.e., total

value minus total payments, but auto-bidders behave very differently. The most notable difference is that the objective

of surplus-maximizing bidders takes the payment into account, while the payment only appear in the constraints of

auto-bidders, e.g., target CPA auto-bidders. Therefore, classic results on auctions for surplus-maximizing bidders do not

directly tell practitioners how to design auctions for auto-bidding environments.

Recently, Aggarwal et al. [4] initiate the study of auction design with auto-bidding. They show that uniform bidding is

the optimal bidding strategy for auto-bidders if the underlying auctions are incentive-compatible for surplus-maximizing

bidders (e.g., second-price auctions). Here, uniform bidding is a bidding strategy in which the bidder always bids her

private value multiplied by a constant multiplier across all auctions. Moreover, for single-slot auctions, they demonstrate
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that the welfare achieved by an incentive-compatible auction at any reasonable equilibrium is at least 1/2 of the optimal

welfare, and this 1/2 approximation is tight for second-price auctions.

In this paper, we study how the auctioneer can improve the welfare efficiency of the auctions in auto-bidding

environment using additive boosts. Roughly speaking, in such an auction, each bidder receives an additive boost

separately that adds to her bid. Consequently a bidder receiving a larger boost would have a higher chance to win.

Moreover, the boost is introduced in an incentive-compatible way that the higher boost the winner receives, the less

she needs to pay, if she wins the auction. The new auctions maintain the incentive compatibility if the underlying

auctions are incentive compatible, and they can be integrated into most ranking-based auction systems easily.

In practice, the boosts can be a quantitative measure that combines the advertiser value, the quality of the ads, and

the seller cost. With the boost aligned with the mixed objective, the platform could obtain a better balance between

these key metrics, leading to a better online advertising ecosystem in a long term.

1.1 Our results

We mainly focus on the model of target ROAS bidder in this paper, since target CPA is a special case of target ROAS. A

target ROAS bidder aims to maximize the total value from conversions subject to two constraints: the budget constraint

and the return on ad spend constraint, i.e., the total value the bidder received should be no less than the total cost.
1

We first consider a simple case in which auto-bidders have return on ad spend constraints but no budget constraint.

The boosts used by the auctioneer is 𝑐-value-competitive (for some constant 𝑐 > 0), if the difference between the boosts

of any two bidders is at least 𝑐 times the difference between their values.

Theorem 1.1. When auto-bidders have return on ad spend constraints but no budget constraint, Vickrey–Clarke–Groves

(VCG) auctions with 𝑐-value-competitive boosts guarantees a (𝑐 + 1)/(𝑐 + 2)-approximation to the optimal welfare.

We emphasize our results only assume the bidders adopt feasible and undominated strategies, and therefore, our

results do not rely on bidders bidding at any notions of equilibrium, in contrast to the classic notion of price of anarchy

(PoA) [24]. Our theorems can provide welfare approximation guarantees for practical scenarios, in which values are

probably changing overtime so that auto-bidders usually do not converge to some equilibrium.

For auto-bidding with both return on ad spend constraints and budget constraints, we need a stronger notion of

boosts, 𝑐-benchmark-competitive boosts. The 𝑐-benchmark-competitive boosts are specified by a benchmark allocation

and satisfy that the difference between the boosts of any two bidders is at least 𝑐 times the value of one of these two

bidders who ranks higher in the benchmark.

Theorem 1.2. When auto-bidders have both return on ad spend constraints and budget constraints, Vickrey–Clarke–Groves

(VCG) auctions with 𝑐-benchmark-competitive boosts guarantees a (𝑐 + 1)/(𝑐 + 2)-approximation to the welfare in the

benchmark allocation.

The welfare performance of 𝑐-benchmark-competitive boosts depends on the the welfare performance of the

benchmark allocation. Particularly, if the benchmark allocation guarantees an 𝛾-approximation to the optimal welfare,

then the corresponding 𝑐-benchmark-competitive boosts guarantees a 𝛾 · (𝑐 + 1)/(𝑐 + 2)-approximation to the optimal

welfare.

1
In general, the return on ad spend constraint specifies a minimum ratio between the total value and the total cost. Without loss of generality, we assume

such a minimum ratio as 1 throughout this paper.
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In both Theorem 1.1 and Theorem 1.2, the welfare approximation ratio approaches 1 as 𝑐 goes to infinity; meanwhile,

the revenue approaches 0 since the boosts are deducted from the bidders’ payment. Therefore, one must be cautious

about the choice of 𝑐 . As we will demonstrate in our empirical results, a properly selected 𝑐 can improve both revenue

and welfare, but a choice of 𝑐 that is too large may have negative impact on revenue performance.

Under the assumption that auto-bidders always use uniform bidding, we show that all the above results can apply to

generalized second-price (GSP) auctions. Without such an assumption, uniform bidding may not be the strategy adopted

by auto-bidders, because uniform bidding may not be optimal strategy in GSP since GSP is not incentive compatible for

surplus-maximizing bidders. We also provide a discussion about first-price auctions as the ad exchange market has

been shifting to first-price auctions recently [22].

1.2 Additional related work

Optimalmechanism design is a central topic in economic study, dating back to the seminal work of Vickrey–Clarke–Groves

(VCG) auctions [9, 15, 27] and Myerson’s auction [20]. Since then, mechanism design has been successfully deployed in

many different fields, particularly in auctions, such as combinatorial auctions for reallocating radio frequencies [10]

and generalized second-price auctions and dynamic auctions for online advertising [12, 18]. In contrast to these works

considering surplus-maximizing bidders, our work focuses on auto-bidders such as target CPA bidders and target ROAS

bidders instead.

The simplest auto-bidding product before target CPA and target ROAS is budget optimizationwith surplus-maximizing

bidders. The revenue-optimal auction of surplus-maximizing bidders with budget constraints is characterized by Pai

and Vohra [23]. For applications in online advertising, Balseiro and Gur [7] develop budget management strategies that

are no-regret in a long run and Balseiro et al. [5, 6] provide a thorough study to compare different commonly used

budget management strategies in practice.

Our auctions with boosts are affine maximizer auctions [17, 25] specialized in the ad auction setting. Intuitively, an

affinemaximizer auction specifies the seller’s values for allocations, so that the auction finds an allocation that maximizes

the sum of the bidders’ values and the seller’s value. It has been shown that any reasonable incentive-compatible and

individual rational general combinatorial auction mechanism is an affine maximizer auction [17].

Some of our results rely on the assumption that the auto-bidders adopt uniform bidding strategies when the underlying

auction is not incentive-compatible for surplus-maximizing bidders. In practice, it is usually hard for bidders to adopt

and optimize non-uniform bidding strategies, and moreover, uniform bidding has been shown to perform well against

optimal non-uniform bidding strategies in ad auctions [7, 8, 11, 13, 14].

2 PRELIMINARIES

We consider 𝑛 bidders bidding simultaneously in𝑚 position auctions [16, 26]. We use 𝑠 𝑗 to denote the number of slots

of auction 𝑗 ∈ [𝑚]. For bidder 𝑖 ∈ [𝑛], the value of the 𝑘-th slot in auction 𝑗 is 𝑣𝑖, 𝑗 · pos𝑗,𝑘 . Here 𝑣𝑖, 𝑗 is the base value of
auction 𝑗 for bidder 𝑖 , and pos𝑗,𝑘 is the position normalizer of the 𝑘-th slot in auction 𝑗 . Without loss of generality, we

assume pos𝑗,𝑘 is non-increasing in 𝑘 . We use 𝐼 = (𝑛,𝑚, {𝑠} 𝑗 , {𝑣}𝑖, 𝑗 , {pos} 𝑗,𝑘 ) to denote a problem instance. As usual,

we use −𝑖 to denote the bidders other than bidder 𝑖 .

We use bids 𝑏 to denote the bidders’ bids such that 𝑏𝑖, 𝑗 is bidder 𝑖’s bid in auction 𝑗 . Moreover, we use allocations 𝑥

and prices 𝑝 to denote the outcome of the auctions. In particular, 𝑥𝑖, 𝑗,𝑘 is 1 if bidder 𝑖 gets the 𝑘-th slot of auction 𝑗 and

0 otherwise, and moreover, 𝑝𝑖, 𝑗 is the price paid by the bidder 𝑖 in auction 𝑗 .

3
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Position Auctions with Boosts. In the with-boost version, bidder 𝑖 in auction 𝑗 will receive an additive boost 𝑧𝑖, 𝑗 ≥ 0

such that her ranking score in the auction is the sum of her bid and her boost, i.e., 𝑏𝑖, 𝑗 + 𝑧𝑖, 𝑗 . We consider two types of

auctions: the Vickrey–Clarke–Groves (VCG) auction and the generalized second-price (GSP) auction. Both of them

generalize the second-price auction from single-slot auctions into position auctions. They have the same allocation rule

which allocates the bidder with the 𝑘-th highest ranking score into the 𝑘-th slot.

In auction 𝑗 , denote by 𝑏𝑘,𝑗 the 𝑘-th highest ranking score for 𝑘 ∈ [𝑠 𝑗 ]. In a VCG auction, when the 𝑘-th slot’s winner

is bidder 𝑖 , her payment in auction 𝑗 is 𝑝𝑖, 𝑗 =
∑𝑠 𝑗

𝜅=𝑘+1 (𝑏𝜅,𝑗 − 𝑧𝑖, 𝑗 )+ · (pos𝜅−1, 𝑗 − pos𝜅,𝑗 ), where (·)+ denotes max{0, ·}.
In contrast, her payment is 𝑝𝑖, 𝑗 = (𝑏𝑘+1, 𝑗 − 𝑧𝑖, 𝑗 )+ · pos𝑗,𝑘 if she wins the 𝑘-th slot in a GSP auction. If bidder 𝑖 does

not win any slot in auction 𝑗 , her payment is simply 𝑝𝑖, 𝑗 = 0. Notably, the boost 𝑧𝑖, 𝑗 is deducted from the runner-up’s

ranking score to preserve incentive compatibility.

Auto-bidders. All bidders considered in this paper are auto-bidders with budget constraints and return on ad spend

constraints. In addition, we focus on auto-bidders adopting uniform bidding strategies since other strategies are

dominated for truthful auctions
2
[4]: each auto-bidder 𝑖 maintains a bid multiplier 𝛼𝑖 and bids 𝑏𝑖, 𝑗 = 𝛼𝑖 · 𝑣𝑖, 𝑗 in auction

𝑗 . The goal of the auto-bidder is to find 𝛼𝑖 that maximizes the total value (

∑𝑚
𝑗=1

∑𝑠 𝑗

𝑘=1
𝑥𝑖, 𝑗,𝑘 · 𝑣𝑖, 𝑗 · pos𝑗,𝑘 ) subject to the

constraint that the total payment (

∑𝑚
𝑗=1 𝑝𝑖, 𝑗 ) is at most the minimum of the total value she received and the budget 𝐵𝑖 .

Clearly, a bid multiplier would be invalid if it would result in violations of either the budget constraint or the return

on ad spend constraint. Moreover, observe that using a bid multiplier strictly less than 1 before the bidder hits her

budget constraint is a dominated strategy.
3
We denote by Θ the set of multiplier vectors in which no bidder adopts a

dominated bid multiplier or an invalid bid multiplier.

Now we can write the bid as a function of the multiplier vector 𝛼 . Moreover, the allocation 𝑥 and the prices 𝑝 can be

written as functions of multiplier vector 𝛼 and auction format A (e.g. VCG, GSP), i.e., 𝑥 (𝛼,A) and 𝑝 (𝛼,A).

Liquid welfare. Our objective is to design auctions maximizing the liquid welfare: the sum of each buyers’ received

values capped by their budgets. Formally, the liquid welfare is given by

Wel(𝑥) =
∑︁
𝑖∈[𝑛]

min
©­«𝐵𝑖 ,

𝑚∑︁
𝑗=1

𝑠 𝑗∑︁
𝑘=1

𝑥𝑖, 𝑗,𝑘 · 𝑣𝑖, 𝑗 · pos𝑗,𝑘
ª®¬ .

Our benchmark is defined as the maximum liquid welfare among all possible allocations: Wel
OPT = max𝑥 Wel(𝑥).

Note that Wel
OPT

is also the maximum revenue that can be extracted from auto-bidders. For each auction format A,

we measure the performance of our mechanisms by its competitive ratio, which is defined as

min
𝛼 ∈Θ

Wel(𝑥 (𝛼,A))
Wel

OPT

over all problem instances. Notice that our measure is different from the classic notion of price of anarchy (PoA),

which restricts attention to bid multipliers forming Nash equilibrium [24]. Here, we only assume the bidders are using

strategies that are valid and undominated, while it is not necessary that their strategies must form a Nash equilibrium.

Finally, the revenue performance is simply defined as the sum of payments: Rev =
∑𝑚

𝑗=1

∑
𝑖∈[𝑛] 𝑝𝑖, 𝑗 (𝛼,A).

Auction with seller cost. All our results can be generalized to an environment in which the seller has a selling cost𝜓𝑖, 𝑗

for each bidder 𝑖 and auction 𝑗 . To take the cost into account, the boosts 𝑧 are adapted in a way such that 𝑧𝑖, 𝑗 = 𝑧𝑖, 𝑗 −𝜓𝑖, 𝑗
2
For GSP auctions, using non-uniform bidding strategies might be beneficial for the auto-bidders. We refer readers to Section 6 for a detailed discussion.

3
This is because the payment is at most the bidder’s bid in both GSP and VCG, and therefore, her total payment is strictly less than her total value when

using a bid multiplier strictly less than 1. Thus, the bidder can benefit from raising the bid multiplier.
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for all 𝑖 and 𝑗 . We note that although this is a rather simple extension to our model, it could be of potential interests

for practitioners because such seller costs could capture the quality of the bidder-auction matching, which might be

essential for the long term consideration of the online advertising ecosystem.

3 SINGLE-SLOT, NO BUDGETS

In this section, we study the simpler setting in which auto-bidders have return on ad spend constraints only (i.e. 𝐵𝑖 = +∞
for all 𝑖 ∈ [𝑛]) to establish intuitions on how boosts can help improve the welfare. Moreover, we assume all auctions

are single-slot auctions so that both VCG auctions and GSP auctions become second-price auctions (i.e. 𝑠 𝑗 = 1 for all

𝑗 ∈ [𝑚]). Without loss of generality, the position normalizer in each auction is assumed to be 1.

For simplicity, we first consider boosts that perfectly correlate with the bidders’ valuations, denoted by uniform

boosts. For uniform boosts, 𝑧𝑖, 𝑗 = 𝑐 · 𝑣𝑖, 𝑗 for all bidder 𝑖 and auction 𝑗 . Note that the uniform boost with weight 𝑐 is a

special case of 𝑐-value-competitive boosts (cf. Theorem 1.1 or Section 4).

To establish intuitions, we first consider a simple example that demonstrates uniform boosts with a small boost weight

would result in welfare inefficiency. In particular, uniform boosts of boost weight 0 corresponds to plain second-price

auctions without boosts. This example also provides an upper bound on the competitive ratio in second-price auctions

with uniform boosts.

Example 3.1. Consider a setting with two auto-bidders and two auctions (i.e. 𝑛 = 2,𝑚 = 2). Moreover, assume both

auctions are single-slot (i.e. 𝑠1 = 𝑠2 = 1), and all position normalizers are 1. The bidders’ valuations are as follows:

Auction 1 Auction 2

Bidder 1 𝑣1,1 = 1 + 𝑑 𝑣1,2 = 𝜀

Bidder 2 𝑣2,1 = 0 𝑣2,2 = 1

Here 𝑑 > 0 and 𝜀 ∈ (0, 1) is a small number.

Lemma 3.2. For any 𝑑 > 0 and an arbitrarily small 𝜀 > 0, in a second-price auction with uniform boosts of boost weight

𝑐 ≤ 𝑑 , denoted by A, there exists a bid multiplier vector 𝛼 ∈ Θ such that

Wel(𝑥 (𝛼,A))
WelOPT

≤ 𝑑 + 1 + 𝜀

𝑑 + 2
.

Moreover, the bid multiplier vector 𝛼 forms a Nash equilibrium.

Proof. First of all, observe that

Wel
OPT = max(𝑣1,1, 𝑣2,1) +max(𝑣1,2, 𝑣2,2) = 𝑑 + 2.

Consider a bid multiplier vector with 𝛼1 > (1 + 𝑐)/𝜀 and 𝛼2 = 1. Under such a bid multiplier vector, the first bidder

wins both auctions under A , and therefore Wel(𝑥 (𝛼,A)) = 𝑑 + 1 + 𝜀. It is straightforward to verify that the return on

ad spend constraints are satisfied: the first bidder receives total value 1 + 𝑑 + 𝜀 and pays 1. Moreover, for the second

bidder to deviate, she has to use a bid multiplier 𝛼2 ≥ 𝛼1 · 𝜀 > 1 + 𝑐 to win the second auction, resulting in a payment

(1 + 𝑐), which is larger than her received value 1. □

When 𝑐 = 𝑑 and 𝜀 → 0, Lemma 3.2 demonstrates a (𝑐+1)/(𝑐+2) upper bound on the competitive ratio in second-price

auctions with uniform boosts of boost weight 𝑐 . Particularly, when 𝑐 = 𝑑 = 0 and 𝜀 → 0, it recovers the 1/2 upper

5
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bound for plain second-price auctions without boosts [4]. The following theorem provides a matching lower bound on

the competitive ratio in second-price auctions with uniform boosts of boost weight 𝑐 .

Theorem 3.3. When auto-bidders have return on ad spend constraints only, the competitive ratio is at least (𝑐 +1)/(𝑐 +2)
in second-price auctions with uniform boosts of boost weight 𝑐 .

Proof. Observe that the optimal allocation 𝑥OPT when auto-bidders have return on ad spend constraints only is

simply 𝑥OPT
𝑖, 𝑗,1 = 1 if and only if 𝑣𝑖, 𝑗 = max𝑖′∈[𝑛] 𝑣𝑖′, 𝑗 , where ties are broken arbitrarily. Therefore, the optimal welfare is

Wel
OPT =

∑𝑚
𝑗=1max𝑖∈[𝑛] 𝑣𝑖, 𝑗 .

Consider any multiplier vector 𝛼 = (𝛼1, · · · , 𝛼𝑛) ∈ Θ with 𝛼𝑖 ≥ 1 for all 𝑖 , and let 𝑥 be the resulting allocation of the

second-price auctions with uniform boosts with boost weight 𝑐 . Let 𝐴 to be the set of auctions 𝑥 agree with the optimal

allocation 𝑥OPT. In other words, 𝑗 ∈ 𝐴 if and only if 𝑥𝑖, 𝑗,1 = 𝑥OPT
𝑖, 𝑗,1 for all bidder 𝑖 . By definition, we have

Wel(𝑥) =
𝑚∑︁
𝑗=1

∑︁
𝑖∈[𝑛]

𝑣𝑖, 𝑗 · 𝑥𝑖, 𝑗,1

=
∑︁
𝑗 ∈𝐴

max
𝑖∈[𝑛]

𝑣𝑖, 𝑗 +
∑︁

𝑗 ∈[𝑚]\𝐴

∑︁
𝑖∈[𝑛]

𝑣𝑖, 𝑗 · 𝑥𝑖, 𝑗,1 .

For an auction 𝑗 ∈ [𝑚] \𝐴, let the winner under 𝑥 be bidder 𝑖∗ and let the winner under 𝑥OPT be bidder 𝑖OPT. Then,

bidder 𝑖∗’s payment in auction 𝑗 is

(𝑏2, 𝑗 − 𝑧𝑖∗, 𝑗 )+ ≥ 𝛼𝑖OPT · 𝑣𝑖OPT, 𝑗 + 𝑧𝑖OPT, 𝑗 − 𝑧𝑖∗, 𝑗

≥ 𝑣𝑖OPT, 𝑗 + 𝑐 · (𝑣𝑖OPT, 𝑗 − 𝑣𝑖∗, 𝑗 )

= (𝑐 + 1) · max
𝑖∈[𝑛]

𝑣𝑖, 𝑗 − 𝑐 ·
∑︁
𝑖∈[𝑛]

𝑣𝑖, 𝑗 · 𝑥𝑖, 𝑗,1,

where the first inequality follows that the second highest ranking score is not less than the ranking score of bidder

𝑖OPT, and the second inequality is due to 𝛼𝑖OPT ≥ 1 and the definition of the uniform boosts. Summing over all auctions

in 𝐵, we have that the total revenue is at least

Rev(𝑥) ≥
∑︁

𝑗 ∈[𝑚]\𝐴

©­«(𝑐 + 1) · max
𝑖∈[𝑛]

𝑣𝑖, 𝑗 − 𝑐 ·
∑︁
𝑖∈[𝑛]

𝑣𝑖, 𝑗 · 𝑥𝑖, 𝑗,1
ª®¬ .

Observe that that Wel(𝑥) ≥ Rev since no bidders pay more than their values, and therefore, we can conclude the proof:

𝑐 + 2

𝑐 + 1
·Wel(𝑥) ≥ Wel(𝑥) + Rev(𝑥)

𝑐 + 1

≥
𝑚∑︁
𝑗=1

max
𝑖∈[𝑛]

𝑣𝑖, 𝑗 +
∑︁

𝑗 ∈[𝑚]\𝐴

∑︁
𝑖∈[𝑛]

(
1 − 𝑐

𝑐 + 1

)
· 𝑣𝑖, 𝑗 · 𝑥𝑖, 𝑗,1

≥
𝑚∑︁
𝑗=1

max
𝑖∈[𝑛]

𝑣𝑖, 𝑗 = Wel
OPT .

□

6
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4 VALUE COMPETITIVE BOOSTS

In this section, we show how to extend uniform boosts to multi-slot auctions and more flexible boost requirements, i.e.,

Theorem 1.1.

As stated in the introduction, 𝑐-value-competitive boosts are boosts 𝑧 satisfying that 𝑧𝑖, 𝑗 − 𝑧𝑖′, 𝑗 ≥ 𝑐 · (𝑣𝑖, 𝑗 − 𝑣𝑖′, 𝑗 ) for
any pair of bidders 𝑖 and 𝑖 ′, and auction 𝑗 such that 𝑣𝑖, 𝑗 > 𝑣𝑖′, 𝑗 .

Theorem 4.1 (Restatement of Theorem 1.1). When auto-bidders have return on ad spend constraints but no budget con-

straints, Vickrey–Clarke–Groves (VCG) auctions with 𝑐-value-competitive boosts guarantees a (𝑐 +1)/(𝑐 +2)-approximation

to the optimal welfare.

Proof. Consider any multiplier vector 𝛼 = (𝛼1, · · · , 𝛼𝑛) ∈ Θwith 𝛼𝑖 ≥ 1 for all 𝑖 , and let 𝑥 be the resulting allocation

of the VCG auctions with 𝑐-value-competitive boosts 𝑧. Let 𝑥OPT be the allocation that gets the optimal welfare. For

notation convenience, define 𝑆 𝑗,𝑘 and 𝑆OPT
𝑗,𝑘

to be the set of bidders who get allocated to any of the top-𝑘 slots in auction

𝑗 in allocation 𝑥 and 𝑥OPT.

By definition, we have

Wel(𝑥) =
𝑚∑︁
𝑗=1

𝑠 𝑗∑︁
𝑘=1

∑︁
𝑖∈[𝑛]

𝑣𝑖, 𝑗 · pos𝑗,𝑘 · 𝑥𝑖, 𝑗,𝑘

=

𝑚∑︁
𝑗=1

𝑠 𝑗∑︁
𝑘=1

∑︁
𝑖∈𝑆 𝑗,𝑘

𝑣𝑖, 𝑗 · (pos𝑗,𝑘 − pos𝑗,𝑘+1).

As for the revenue performance, observe that we have

Rev(𝑥) =
𝑚∑︁
𝑗=1

∑︁
𝑖∈[𝑛]

𝑝𝑖, 𝑗

=

𝑚∑︁
𝑗=1

𝑠 𝑗∑︁
𝑘=1

∑︁
𝑖∈𝑆 𝑗,𝑘

(𝑏𝑘,𝑗 − 𝑧𝑖, 𝑗 )+ · (pos𝑗,𝑘 − pos𝑗,𝑘+1)

≥
𝑚∑︁
𝑗=1

𝑠 𝑗∑︁
𝑘=1

(pos𝑗,𝑘 − pos𝑗,𝑘+1) ·
∑︁

𝑖∈𝑆 𝑗,𝑘\𝑆OPT𝑗,𝑘

(𝑏𝑘,𝑗 − 𝑧𝑖, 𝑗 )+ .

For auction 𝑗 , the 𝑘-th highest ranking score 𝑏𝑘,𝑗 should be higher than the ranking scores from bidders who do not

win any of the top-𝑘 slots. Formally,

∀𝑖 ∉ 𝑆 𝑗,𝑘 , 𝑏𝑘,𝑗 ≥ 𝛼𝑖 · 𝑣𝑖, 𝑗 + 𝑧𝑖, 𝑗 ≥ 𝑣𝑖, 𝑗 + 𝑧𝑖, 𝑗 .
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As a result, for any auction 𝑗 and slot 𝑘 ∈ [𝑠 𝑗 ], we have∑︁
𝑖∈𝑆 𝑗,𝑘\𝑆OPT𝑗,𝑘

(𝑏𝑘,𝑗 − 𝑧𝑖, 𝑗 )+

≥ |𝑆 𝑗,𝑘 \ 𝑆OPT
𝑗,𝑘

| · 𝑏𝑘,𝑗 −
∑︁

𝑖∈𝑆 𝑗,𝑘\𝑆OPT𝑗,𝑘

𝑧𝑖, 𝑗

= |𝑆OPT
𝑗,𝑘

\ 𝑆 𝑗,𝑘 | · 𝑏𝑘,𝑗 −
∑︁

𝑖∈𝑆 𝑗,𝑘\𝑆OPT𝑗,𝑘

𝑧𝑖, 𝑗

≥
∑︁

𝑖∈𝑆OPT
𝑗,𝑘

\𝑆 𝑗,𝑘

(𝑣𝑖, 𝑗 + 𝑧𝑖, 𝑗 ) −
∑︁

𝑖∈𝑆 𝑗,𝑘\𝑆OPT𝑗,𝑘

𝑧𝑖, 𝑗

≥
∑︁

𝑖∈𝑆OPT
𝑗,𝑘

\𝑆 𝑗,𝑘

(1 + 𝑐) · 𝑣𝑖, 𝑗 −
∑︁

𝑖∈𝑆 𝑗,𝑘\𝑆OPT𝑗,𝑘

𝑐 · 𝑣𝑖, 𝑗 .

The second equation above comes from the fact that |𝑆 𝑗,𝑘 | = |𝑆OPT
𝑗,𝑘

| = 𝑘 implies |𝑆 𝑗,𝑘 \𝑆OPT𝑗,𝑘
| = |𝑆OPT

𝑗,𝑘
\𝑆 𝑗,𝑘 |. The second

inequality follows 𝑏𝑘,𝑗 ≥ 𝑣𝑖, 𝑗 + 𝑧𝑖, 𝑗 for 𝑖 ∉ 𝑆 𝑗,𝑘 . The last inequality follows the definition of 𝑐-value-competitive boosts:

Note that for any 𝑖 ∈ 𝑆OPT
𝑗,𝑘

\ 𝑆 𝑗,𝑘 and any 𝑖 ′ ∈ 𝑆 𝑗,𝑘 \ 𝑆OPT
𝑗,𝑘

, 𝑣𝑖, 𝑗 ≥ 𝑣𝑖′, 𝑗 , so 𝑧𝑖, 𝑗 − 𝑧𝑖′, 𝑗 ≥ 𝑐 · (𝑣𝑖, 𝑗 − 𝑣𝑖′, 𝑗 ).
Combining everything,

𝑐 + 2

𝑐 + 1
·Wel(𝑥) ≥ Wel(𝑥) + Rev(𝑥)

𝑐 + 1

≥
𝑚∑︁
𝑗=1

𝑠 𝑗∑︁
𝑘=1

(pos𝑗,𝑘 − pos𝑗,𝑘+1)·

©­­«
∑︁

𝑖∈𝑆OPT
𝑗,𝑘

∩𝑆 𝑗,𝑘

𝑣𝑖, 𝑗 +
∑︁

𝑖∈𝑆OPT
𝑗,𝑘

\𝑆 𝑗,𝑘

𝑣𝑖, 𝑗 +
(
1 − 𝑐

𝑐 + 1

) ∑︁
𝑖∈𝑆 𝑗,𝑘\𝑆OPT𝑗,𝑘

𝑣𝑖, 𝑗
ª®®¬

≥
𝑚∑︁
𝑗=1

𝑠 𝑗∑︁
𝑘=1

(pos𝑗,𝑘 − pos𝑗,𝑘+1) ·
∑︁

𝑖∈𝑆OPT
𝑗,𝑘

𝑣𝑖, 𝑗 = Wel
OPT,

which concludes the proof. □

5 BENCHMARK BOOSTS

In this section, we switch to focus on general cases by considering auto-bidders with both return on ad spend constraints

and budget constraints. The 𝑐-benchmark-competitive boosts are computed with respect to a benchmark 𝑜 . A benchmark

𝑜 is a collection of rankings for auctions, such that 𝑜 𝑗 : [𝑛] → [𝑛] is a permutation of bidders in auction 𝑗 . The benchmark

allocation induced from a benchmark 𝑜 allocates the 𝑘-th slot in auction 𝑗 to bidder 𝑜 𝑗 (𝑘). With a slight abuse of

notation, the welfare performance of a benchmark 𝑜 is defined as

Wel(𝑜) =
∑︁
𝑖∈[𝑛]

min
©­«𝐵𝑖 ,

𝑚∑︁
𝑗=1

𝑠 𝑗∑︁
𝑘=1

1{𝑖 = 𝑜 𝑗 (𝑘)} · 𝑣𝑖, 𝑗 · pos𝑗,𝑘
ª®¬ ,

where 1{·} is the indicator function. Given a benchmark 𝑜 , 𝑐-benchmark-competitive boosts are boosts 𝑧 satisfying

𝑧𝑜 𝑗 (𝑘), 𝑗 − 𝑧𝑜 𝑗 (𝑘′), 𝑗 ≥ 𝑐 · 𝑣𝑜 𝑗 (𝑘), 𝑗 ,

8
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for all 𝑘 ∈ [𝑠 𝑗 ], 𝑘 ′ > 𝑘 , and auction 𝑗 .

Theorem 5.1 (Restatement of Theorem 1.2). When auto-bidders have both return on ad spend constraints and budget

constraints, Vickrey–Clarke–Groves (VCG) auctions with 𝑐-benchmark-competitive boosts guarantees a (𝑐 + 1)/(𝑐 + 2)-
approximation to Wel(𝑜).

Proof. Consider any multiplier vector 𝛼 = (𝛼1, · · · , 𝛼𝑛) ∈ Θ, and let 𝑥 be the resulting allocation of the VCG

auctions with 𝑐-value-competitive boosts. Let𝑀 be the set of auto-bidders whose payments meet their budgets. For

auto-bidder 𝑖 ∈ [𝑛] \𝑀 not meeting the budget, we have 𝛼𝑖 ≥ 1. Moreover, let 𝑥𝑜 be the allocation induced from the

benchmark 𝑜 . For notation convenience, define 𝑆 𝑗,𝑘 and 𝑆𝑜
𝑗,𝑘

to be the set of bidders who get allocated to any of the

top-𝑘 slots in auction 𝑗 in allocation 𝑥 and 𝑥𝑜 , respectively. By definition, we have

Wel(𝑥) =
∑︁
𝑖∈[𝑛]

min
©­«𝐵𝑖 ,

𝑚∑︁
𝑗=1

𝑠 𝑗∑︁
𝑘=1

𝑣𝑖, 𝑗 · pos𝑗,𝑘 · 𝑥𝑖, 𝑗,𝑘
ª®¬

=
∑︁
𝑖∈𝑀

𝐵𝑖 +
𝑚∑︁
𝑗=1

𝑠 𝑗∑︁
𝑘=1

∑︁
𝑖∈𝑆 𝑗,𝑘\𝑀

𝑣𝑖, 𝑗 · (pos𝑗,𝑘 − pos𝑗,𝑘+1).

As for the revenue performance, observe that we have

Rev(𝑥) =
𝑚∑︁
𝑗=1

∑︁
𝑖∈[𝑛]

𝑝𝑖, 𝑗

=

𝑚∑︁
𝑗=1

𝑠 𝑗∑︁
𝑘=1

∑︁
𝑖∈𝑆 𝑗,𝑘

(𝑏𝑘,𝑗 − 𝑧𝑖, 𝑗 )+ · (pos𝑗,𝑘 − pos𝑗,𝑘+1)

≥
𝑚∑︁
𝑗=1

𝑠 𝑗∑︁
𝑘=1

(pos𝑗,𝑘 − pos𝑗,𝑘+1) ·
∑︁

𝑖∈𝑆 𝑗,𝑘\𝑆𝑜𝑗,𝑘

(𝑏𝑘,𝑗 − 𝑧𝑖, 𝑗 ).

For auction 𝑗 , the 𝑘-th highest ranking score 𝑏𝑘,𝑗 should be higher than the ranking scores from bidders who do not

win any of the top-𝑘 slots. In other words, ∀𝑖 ∉ 𝑆 𝑗,𝑘 , 𝑏𝑘,𝑗 ≥ 𝛼𝑖 · 𝑣𝑖, 𝑗 + 𝑧𝑖, 𝑗 . Similar to the proof for Theorem 4.1, we have

that |𝑆𝑜
𝑗,𝑘

| = |𝑆 𝑗,𝑘 | = 𝑘 , which implies that |𝑆𝑜
𝑗,𝑘

\ 𝑆 𝑗,𝑘 | = |𝑆 𝑗,𝑘 \ 𝑆𝑜
𝑗,𝑘

|. Therefore, for any auction 𝑗 and slot 𝑘 ∈ [𝑠 𝑗 ],∑︁
𝑖∈𝑆 𝑗,𝑘\𝑆𝑜𝑗,𝑘

(𝑏𝑘,𝑗 − 𝑧𝑖, 𝑗 ) ≥
∑︁

𝑖′∈𝑆𝑜
𝑗,𝑘

\𝑆 𝑗,𝑘

(𝛼𝑖′𝑣𝑖′, 𝑗 + 𝑧𝑖′, 𝑗 ) −
∑︁

𝑖∈𝑆 𝑗,𝑘\𝑆𝑜𝑗,𝑘

𝑧𝑖, 𝑗 .

For each 𝑖 ′ ∈ 𝑆𝑜
𝑗,𝑘

and 𝑖 ∉ 𝑆𝑜
𝑗,𝑘
, 𝑖 ′ ranks ahead of 𝑖 in the benchmark 𝑜 . By the definition of 𝑐-benchmark-competitive

boosts, we have 𝑧𝑖′, 𝑗 − 𝑧𝑖, 𝑗 ≥ 𝑐 · 𝑣𝑖′, 𝑗 , and therefore,∑︁
𝑖∈𝑆 𝑗,𝑘\𝑆𝑜𝑗,𝑘

(𝑏𝑘,𝑗 − 𝑧𝑖, 𝑗 ) ≥
∑︁

𝑖∈𝑆𝑜
𝑗,𝑘

\𝑆 𝑗,𝑘

(𝛼𝑖 + 𝑐) · 𝑣𝑖, 𝑗 .
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Plugging this back into Rev(𝑥), we have

Rev(𝑥) ≥
𝑚∑︁
𝑗=1

𝑠 𝑗∑︁
𝑘=1

(pos𝑗,𝑘 − pos𝑗,𝑘+1) ·
∑︁

𝑖∈𝑆𝑜
𝑗,𝑘

\𝑆 𝑗,𝑘

(𝛼𝑖 + 𝑐) · 𝑣𝑖, 𝑗

≥
𝑚∑︁
𝑗=1

𝑠 𝑗∑︁
𝑘=1

(pos𝑗,𝑘 − pos𝑗,𝑘+1) ·
∑︁

𝑖∈(𝑆𝑜
𝑗,𝑘

\𝑆 𝑗,𝑘 )\𝑀
(1 + 𝑐) · 𝑣𝑖, 𝑗 ,

where the last inequality follows that 𝛼𝑖 ≥ 1 for 𝑖 ∈ [𝑛] \𝑀 . Combining everything together, we finally have

𝑐 + 2

𝑐 + 1
·Wel(𝑥) ≥ Wel(𝑥) + Rev(𝑥)

𝑐 + 1

≥
∑︁
𝑖∈𝑀

𝐵𝑖 +
𝑚∑︁
𝑗=1

𝑠 𝑗∑︁
𝑘=1

(pos𝑗,𝑘 − pos𝑗,𝑘+1)·


©­«

∑︁
𝑖∈𝑆 𝑗,𝑘\𝑀

𝑣𝑖, 𝑗
ª®¬ +

©­­«
∑︁

𝑖∈(𝑆𝑜
𝑗,𝑘

\𝑆 𝑗,𝑘 )\𝑀
𝑣𝑖, 𝑗

ª®®¬


≥
∑︁
𝑖∈𝑀

𝐵𝑖 +
𝑚∑︁
𝑗=1

𝑠 𝑗∑︁
𝑘=1

(pos𝑗,𝑘 − pos𝑗,𝑘+1) ·
∑︁

𝑖∈𝑆𝑜
𝑗,𝑘

\𝑀
𝑣𝑖, 𝑗

≥
𝑛∑︁
𝑖=1

min
©­­«𝐵𝑖 ,

𝑚∑︁
𝑗=1

𝑠 𝑗∑︁
𝑘=1

(pos𝑗,𝑘 − pos𝑗,𝑘+1)
∑︁

𝑖∈𝑆𝑜
𝑗,𝑘

𝑣𝑖, 𝑗
ª®®¬ = Wel(𝑜),

which concludes the proof. □

The minimal boosts that are 𝑐-benchmark-competitive with respect to a benchmark 𝑜 are

𝑧𝑜 𝑗 (𝑘), 𝑗 = 𝑐 ·
𝑠 𝑗∑︁
𝜅=𝑘

𝑣𝑖,𝑜 𝑗 (𝜅) ,

for all 𝑘 ∈ [𝑠 𝑗 ] and auction 𝑗 . For 𝑘 > 𝑠 𝑗 , 𝑧𝑜 𝑗 (𝑘), 𝑗 is simply 0. We denote such boosts by benchmark boosts. Intuitively,

for a bidder 𝑖 who ranks 𝑘 ≤ 𝑠 𝑗 in auction 𝑗 in benchmark 𝑜 , her boost should be 𝑐 times the sum of the values of the

bidders ranked below her in auction 𝑗 in benchmark 𝑜 (including herself).

6 NON-TRUTHFUL AUCTIONS

As we mentioned in Section 2 that in truthful auctions, any non-uniform bidding strategy is dominated by uniform

bidding strategies. As a result, it is reasonable to focus on uniform bidding strategies only, which are easy to implement

and guarantee optimality for auto-bidders. However, in non-truthful auctions, the optimal non-uniform bidding strategy

may dominate uniform strategies.

Therefore, in non-truthful auctions such as GSP or first-price auctions, it could be beneficial for auto-bidders to

adopt non-uniform bidding strategies despite of the additional cost from implementation complexity. In this section, we

discuss under what condition and to what extend, our theorems for VCG auctions could generalize to non-truthful

auctions.
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6.1 Generalized Second-Price (GSP) auction

GSP auctions are commonly used in online advertising when there are multiple slots, yet it is widely known that it is

not incentive compatible [12]. The following example shows that a non-uniform bidding strategy outperforms any

uniform bidding strategies for auto-bidders with return on ad spend constraints.

Example 6.1. Consider a setting with three auto-bidders and two auctions (i.e. 𝑛 = 3,𝑚 = 2). The first auction has

2 slots with position normalizer 1 and 0.9. The second auction has 1 slot with position normalizer 1. The bidders’

valuations are as follows:

Auction 1 Auction 2

Bidder 1 𝑣1,1 = 1 𝑣1,2 = 0.8

Bidder 2 𝑣2,1 = 0.9 𝑣2,2 = 0

Bidder 3 𝑣2,1 = 0 𝑣2,2 = 1

In this example, bidder 2 and 3 are only interested in one auction and assume that they use bid multiplier 1. First we

consider the cases when bidder 1 uses a uniform bid multiplier 𝛼1.

• Bidder 1 does not win auction 2: in this case, bidder 1 gets at most value 1 from auction 1.

• Bidder 1 wins auction 2: in this case, 𝛼1 needs to be at least 1.25. Bidder 1 will win the first slot of auction 1

with payment 0.9, and win the slot of auction 2 with payment 1. In this case, bidder 1 pays 1.9 to get total value

1.8 and violates the return on ad spend constraint.

To sum up, bidder 1 with a uniform bid multiplier can only win auction 1 to get value at most 1. On the other hand,

consider the case when bidder 1 uses an arbitrarily small bid multiplier 𝜀 > 0 in auction 1 and a bid multiplier at least

1.25 in auction 2. In this case, bidder 1 wins the second slot of auction 1 and slot of auction 2, and pays in total 1. In

this situation, bidder 1 gets total value 1.7 (= 1 · 0.9 + 0.8 · 1). Therefore, bidder 1 can get more value by non-uniform

bidding.

Although uniform bidding is no longer the optimal strategy for auto-bidders in GSP auctions, generalizations of our

results are still possible if a minimum bidding level 𝛾 > 0 is guaranteed for all bidders across all auctions, i.e.,

∀𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚], 𝑏𝑖, 𝑗 ≥ 𝛾 · 𝑣𝑖, 𝑗 .

Lemma 6.2. Theorem 3.3, Theorem 4.1, and Theorem 5.1 can be generalized to auction format A with boosts of boost

weight 𝑐 accordingly with approximation ratio (𝑐 + 𝛾)/(𝑐 + 𝛾 + 1), if the following properties are met:

• 𝛾 > 0 is the minimum bidding level;

• The allocation of A is the same as VCG auctions with boosts;

• The payment of A is no less than the payment of VCG auctions with boosts on all auction inputs, and no more than

the bid, i.e., for a bidder 𝑖 winning the 𝑘-th slot in auction 𝑗 , her payment 𝑝𝑖, 𝑗 satisfies the criteria that

𝑠 𝑗∑︁
𝜅=𝑘+1

(𝑏𝜅,𝑗 − 𝑧𝑖, 𝑗 )+ · (pos𝜅−1, 𝑗 − pos𝜅,𝑗 ) ≤ 𝑝𝑖, 𝑗 ≤ 𝑏𝑖, 𝑗 .

We omit the proof of Lemma 6.2 but highlight that comparing with all previous theorems: (i) the welfare on the

same instance remains the same for A, because the allocation does not change; (ii) the revenue on the same instance is

weakly higher for A, because the payment weakly increases; (iii) in previous proofs, we apply 𝑏𝑖, 𝑗 = 𝛼𝑖 · 𝑣𝑖, 𝑗 ≥ 𝑣𝑖, 𝑗 for

bidder 𝑖 with bid multiplier 𝛼𝑖 ≥ 1, which can be replaced by 𝑏𝑖, 𝑗 ≥ 𝛾 · 𝑣𝑖, 𝑗 in the proof of Lemma 6.2.
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Enforcing uniform bidding. Observe that 𝛾 ≥ 1 in GSP auctions when uniform bidding is enforced, so we have the

following corollary that generalizes all our previous theorems for GSP auctions.

Corollary 6.3. When uniform bidding strategies are enforced, Theorem 3.3, Theorem 4.1, and Theorem 5.1 can be

generalized to GSP auctions with boosts.

In fact, uniform bidding is a commonly used strategy with good approximation guarantees [8, 11, 13, 14]. Non-uniform

bidding strategies, in this case, could be less beneficial for auto-bidders because the potential improvement is limited or

dominated by the additional cost from the implementation complexity.

6.2 First-price auctions

First-price auctions, which has been widely adopted by the ad exchange recently, is another important non-truthful

auction in the industry [22]. The next example demonstrates a case in which a non-uniform bidding strategy outperforms

uniform bidding strategies.

Example 6.4. Consider a setting with two auto-bidders and two auctions (i.e., 𝑛 = 2,𝑚 = 2). Both auctions have only

one slot, 𝑠1 = 𝑠2 = 1. The bidders’ valuations are as follows:

Auction 1 Auction 2

Bidder 1 𝑣1,1 = 4 𝑣1,2 = 1

Bidder 2 𝑣2,1 = 1 𝑣2,2 = 2

In this example, when both bidders adopt uniform bidding, they must have bid multipliers being 1 to cope with the

return on ad spend constraint. In this case, they receive values 4 and 2, respectively. However, if bidder 1 bids 2 and 3

in these two auctions, respectively, she can receive a total value 5. Note that this is an equilibrium because if bidder 2

raises her bids to win either or both auction, her return on ad spend constraint will be violated.

Interestingly, if uniform bidding strategies are enforced under first-price auction, then having 𝛼𝑖 = 1 is the optimal

strategy for auto-bidding environments with return on ad spend constraints but without budget constraint, which then

simply leads to an equilibrium achieving the optimal welfare and revenue.

Theorem 6.5. When uniform bidding strategies are enforced, the optimal welfare and revenue are achieved under any

Nash equilibrium of auto-bidders with return on ad spend constraints but without budget constraint in first-price auctions.

Proof. If there is any auction 𝑗 such that the allocation of the auction is not optimal under the equilibrium, then

there must be an auto-bidder 𝑖 who wins slot 𝑘 ∈ [𝑠 𝑗 ] in the optimal allocation, but does not win any slot higher than 𝑘

in the equilibrium. Note that overbidding in first-price auction leads to violation of the return on ad spend constraint,

so the bid multiplier for any auto-bidder is no more than 1 in any equilibrium. Therefore, auto-bidder 𝑖 can raise her bid

multiplier to 1 and win slot 𝑘 in auction 𝑗 . Moreover, observe that raising her bid multiplier will not violate her return

on ad spend constraint but strictly improves her total value, contradicting with the assumption of Nash equilibrium. □

Despite of the desirable guarantee from Theorem 6.5, enforcing uniform bidding in the first-price auction could be a

rather strong assumption comparing with the same assumption for GSP auctions [11]. One reason is that non-uniform

bidding in this case may bring up significant improvements, dominating the additional cost from its implementation

complexity. In fact, more and more such researches have emerged following the ad exchange market shifting to first-price

auctions [19, 22].
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7 EXPERIMENTS

In this section, we validate our theoretical findings with semi-synthetic data derived from real auction data of a major

search engine. The main import of using real ad auction data is that the data captures variation across bidders. Note that

when the bidders are symmetric (i.e., their value distributions are i.i.d. across bidders), optimal efficiency is achieved in

any symmetric equilibrium, and therefore, no efficiency improvement can be observed by applying our mechanisms.

We simulate both VCG and GSP auctions with bids from auto-bidders only. Instead of using the real constraints, we

generate artificial budgets and return on ad spend targets, which excludes any practical noises from the real ad system.

We emphasize that our main objective for conducting experiments is to validate our theoretical findings rather than

investigating the efficiency potentials on an auction system actually implemented in practice. In practice, ad auction

systems often need to take care of many practical aspects that would never be considered in theory.

7.1 Experiment Setup

Optimal Benchmark. To avoid getting distracted from the computation of the optimal benchmark, we first define

the benchmark allocation and then derive the corresponding budgets of the bidders from the benchmark allocation so

that the benchmark allocation would be optimal. In particular, we select a random subset of bidders and mark them as

budget-constrained. For each budget-constrained bidder, we assign a random factor 𝜇𝑖 ∈ (0, 1), and we assign 𝜇𝑖 = 1 for

bidders without budget constraints. Given a vector of 𝜇, the optimal benchmark allocation in auction 𝑗 is obtained by

ranking bidders according to 𝜇𝑖 · 𝑣𝑖, 𝑗 . Finally, for the selected bidders that are budget-constrained, we set their budgets

equal to their total received values under the benchmark allocation. Intuitively, 𝜇𝑖 for bidder 𝑖 can be seen as one minus

the Lagrange multiplier for her budget constraint in the liquid welfare optimization program. In this way, we augment

the auction dataset with artificial budgets in which the optimal benchmark allocation is known.

Simulation Procedures. To properly evaluate the efficiency of a new mechanism, after the generation of the dataset,

we first pre-train the bid multipliers 𝛼 using the corresponding auction format (VCG or GSP) with no boosts in 25

iterations to obtain an equilibrium as a starting point.

We simulate the response of auto-bidders by gradient descent on their bid multipliers in log space until convergence [4,

21]. Formally, let 𝛼𝑖,𝑡 be the bid multiplier for bidder 𝑖 in iteration 𝑡 . Moreover, let target spend𝑖,𝑡 be the minimum

between bidder 𝑖’s budget and her total received value in iteration 𝑡 , and let spend𝑖,𝑡 be bidder 𝑖’s total payment in

iteration 𝑡 . Then, the bidder 𝑖’s bid multiplier in iteration 𝑡 + 1 is updated by

log𝛼𝑖,𝑡+1 = (1 − 𝜂𝑡 ) · log𝛼𝑖,𝑡 + 𝜂𝑡 · log
target spend𝑖,𝑡

spend𝑖,𝑡
,

where 𝜂𝑡 ∈ (0, 1) is a properly chosen learning rate for iteration 𝑡 . Intuitively, bidder 𝑖’s bid multiplier increases for the

next iteration if spend𝑖,𝑡 < target spend𝑖,𝑡 ; otherwise if spend𝑖,𝑡 > target spend𝑖,𝑡 , her bid multiplier decreases for the

next iteration.

After obtaining a starting point, we simulate another 25 iterations for auctions with boosts. In this way, we can

observe both the initial impact of adding the boosts and how the impact changes overtime after auto-bidders’ response.

Boosts. In addition to the baseline in which we continue to use auctions without boosts, we experiment with uniform

boosts (Section 3) and benchmark boosts (Section 5) with different boost weights 𝑐 , denoted by uboost-𝑐 and benchmark-𝑐 ,

respectively. Recall that uniform boosts are designed for environments without budget constraints while benchmark
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boosts can accommodate budget constraints, and therefore, we expect benchmark boosts outperform uniform boosts in

our experiments.

All metrics we report are relative to the baseline (i.e., no boosts); therefore, the metrics of the baseline are normalized

to 1.

7.2 Experimental Results

(a) Liquid Welfare (b) Revenue

Fig. 1. Welfare and revenue performance of uniform boosts and benchmark boosts for each iteration in VCG.

Figure 1a reports the trend of welfare performance under uboost-0.3, uboost-0.6, benchmark-0.3, and benchmark-0.6

in VCG auctions. Note that all of these boosts have positive initial impact on welfare, which verifies that our welfare

guarantees do not rely on auto-bidders bidding in equilibrium. Moreover, as predicted, benchmark boosts have better

welfare improvement than the uniform boosts, and as the boost weight 𝑐 increases, the welfare improvement also

increases. After the bidders’ response, we observe that the welfare improvements of benchmark boosts slightly decrease

while the welfare improvements of uniform boosts slightly increase, but their relative ordering remains the same. We

only report the trends for VCG auctions and the trends for GSP auctions are similar.

As for revenue performance, Figure 1b shows a negative initial impact on revenue for all boosts. This is because

the boosts are deducted from the bidders’ payments, and therefore, we observe that the larger the boost weight is, the

stronger the negative impact of revenue is in the first iteration. After the auto-bidders’ response, the revenue starts to

recover and ultimately, the revenue impacts of all boosts become positive after convergence. Again, benchmark boosts

outperform uniform boosts in terms of revenue.

Table 1 shows thewelfare and revenue impact of uniform boosts and benchmark boosts (withmore boost weights) after

auto-bidders converge to an equilibrium, and as expected, benchmark boosts outperform uniform boosts significantly.

Notice that the welfare performance of uniform boosts starts to drop when the boost weight is large. The reason is that

uniform boosts generally do not align with the the optimal allocation maximizing the liquid welfare so that it may have

negative impact on welfare. In contrast, the welfare performance of benchmark boosts continues to increase even when

the boost weight is large.

However, the revenue performance does not always increase: it drops when the boost weights increase from 1.2 to

1.5. Moreover, observe that there is a gap between the welfare improvement and revenue improvement as shown in

Table 1, and as the boost weight 𝑐 increases, the gap becomes larger. This gap mainly comes from the auto-bidders

who cannot hit their target spends. Here, we say an auto-bidder hits her target spend if she exhausts her budget or her
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Boosts

VCG GSP

Welfare Revenue Welfare Revenue

uboost-0.3 +1.83% +1.44% +2.04% +1.66%
uboost-0.6 +2.25% +1.67% +2.38% +1.83%
uboost-0.9 +2.22% +1.50% +2.23% +1.58%
uboost-1.2 +2.03% +1.23% +1.95% +1.19%
uboost-1.5 +1.78% +0.91% +1.65% +0.79%

benchmark-0.3 +5.99% +5.58% +6.24% +5.83%
benchmark-0.6 +7.28% +6.67% +7.42% +6.79%
benchmark-0.9 +7.81% +7.00% +7.86% +7.00%
benchmark-1.2 +8.06% +7.09% +8.06% +7.03%
benchmark-1.5 +8.20% +7.08% +8.16% +6.99%

Table 1. Welfare and revenue lifts of uniform boosts and benchmark boosts after convergence.

total payment is equal to her total received values. Note that if all bidders could hit target spends, the welfare and the

revenue would be the same. However, in practice, there are auto-bidders who cannot hit their target spends due to the

discontinuity of the bidding landscape. In other words, a bidder may need to increase her bid a lot to win one more slot;

however, doing so might result in violations of either the budget constraint or the return on ad spend constraint. As the

boost weight increases, the bidding landscape becomes more and more discontinuous, making it harder and harder for

auto-bidders to hit their target spends. Particularly, as the boost weight 𝑐 approaches∞, the revenue would approach

0. Therefore, one must be cautious about choosing the boost weight 𝑐 to balance its impact on welfare and revenue

performance.

8 CONCLUSIONS

In this paper, we propose using auctions with boosts to improve the welfare and revenue for environments with

target CPA and target ROAS auto-bidders in VCG auctions. Under the assumption that the auto-bidders adopt uniform

bidding strategies, our results can be further extended to GSP auctions and first-price auctions. Our empirical findings

demonstrate the effectiveness of our mechanisms, which support the theoretic results. The findings also emphasize that

the practitioner must be cautious on the choice of the boost weight 𝑐 to balance the impact of welfare and revenue.
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