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ABSTRACT

Recommender systems support decisions in various domains rang-

ing from simple items such as books and movies to more complex

items such as financial services, telecommunication equipment,

and software systems. In this context, recommendations are deter-

mined, for example, on the basis of analyzing the preferences of

similar users. In contrast to simple items which can be enumerated

in an item catalog, complex items have to be represented on the

basis of variability models (e.g., feature models) since a complete

enumeration of all possible configurations is infeasible and would

trigger significant performance issues. In this paper, we give an

overview of a potential new line of research which is related to

the application of recommender systems and machine learning

techniques in feature modeling and configuration. In this context,

we give examples of the application of recommender systems and

machine learning and discuss future research issues.
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1 INTRODUCTION

Feature models can be regarded as a central element of feature-

oriented software development (FOSD) processes [2]. Feature mod-

els can be used to represent variability and commonality properties

of software artifacts and various other types of products and ser-

vices [1, 3, 12, 17]. Applications thereof support users in deciding

about which features should be included in a specific configuration.
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Feature models and variability models in general can become quite

complex which makes it challenging to develop these models as

well as to interact with the corresponding decision support systems

[7, 23, 26]. In this paper, we give an overview of a potentially new

research line which is related to the application of recommender

systems and machine learning techniques in feature modeling and

configuration scenarios.

Recommender systems can be defined as any system that guides
a user in a personalized way to interesting or useful objects in a large
space of possible options or that produces such objects as output [10].
These systems use basic machine learning techniques (classification

as well as prediction techniques) for being able to identify items of

relevance for a user. Typical applications of recommender systems

rely on a dataset that serves as an input for learning algorithms.

These algorithms infer models that predict item preferences of users.

Recommender system applications are manifold and range from

simple items such as news [18] to more complex items such as

financial services [11] and software systems [26].

In general, recommender systems help to infer user interests on

the basis of preference definition histories, i.e., which items were

preferred by users in the past. Collaborative filtering recommender

systems [18] are based on the idea of word-of-mouth promotion

where items regarded as relevant by users with similar preferences

(so-called nearest neighbors) are recommended to the current user.

A model-based variant thereof is matrix factorization [19] which

describes the relationship between users and items on the basis of

a set of hidden aspects.
1 Content-based filtering [20] is based on the

idea of recommending items to the current user which are similar to

those the user has liked in the past. Knowledge-based recommender
systems [4] are based on explicit recommendation knowledge in

terms of attributes and constraints or similarity metrics which

describe the relationship between a set of customer requirements

and corresponding items. Finally, group recommender systems [9]
focus on the recommendation of items to groups of users instead

of single users.

The major goal of this paper is to analyze recommendation

scenarios in the context of feature model development and con-

figuration. Feature models describe variability and commonality

1
In matrix factorization [19], these aspects are also denoted as features.
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properties of items. In many cases, feature models are the basis

of configurator applications associated with a potentially large

user base. In application scenarios where user communities are

interacting with configurators (derived from feature models), data

can be collected from user interactions and exploited to predict

user-individual preferences.

Summarizing, the contributions of this paper are the following:

• We provide an overview of recommendation and machine

learning approaches in feature modeling and configuration.

In this context, we focus on the basic scenarios of interactive
configuration, reconfiguration, and feature modeling processes.

• On the basis of examples, we sketch application scenarios

of recommendation technologies that open a new line of

research in feature modeling and configuration.

• Finally, we discuss open research issues to be solved to fur-

ther advance the related state of the art.

The remainder of this paper is organized as follows. In Section 2,

we introduce an example feature model from the domain of survey
software services. In Section 3, we introduce a CSP-based representa-

tion of the example feature model. In Section 4, we discuss scenarios

in which recommendation and related machine learning techniques

can be applied to support interactive configuration. Section 5 focuses
on recommender systems and machine learning in the context of

reconfiguration. Finally, Section 6 provides an overview of recom-

mendation concepts that can be applied to support feature model

knowledge acquisition. Sections 4–6 also include a topic-specific dis-
cussion of open research issues. In Section 7, the paper is concluded

with a discussion of further research topics.

2 AN EXAMPLE FEATURE MODEL

Features can be organized in a hierarchical fashion [3] using re-

lationships such as mandatory (if a parent feature is included in

a configuration, the child feature must be included as well, and

vice versa), optional (given the inclusion of a parent feature, the

inclusion of the corresponding child feature is optional), alternative
(if the parent feature is included, exactly one of the child features

has to be included), and or (if the parent feature is included, at

least one of the child features has to be included). Furthermore,

cross-tree constraints can be used to define relationships between

features that do not follow the hierarchical structure of the fea-

ture model. First, excludes(a,b) constraints prohibit the inclusion
of both features (𝑎 and 𝑏) in the same configuration. Second, re-
quires(a,b) constraints necessitate that if feature 𝑎 is included in a

configuration, feature 𝑏 must be included as well.

An example feature model is depicted in Figure 1. In this model,

license is used to describe the selected license model where two

different models are available: an advanced license allows to include
all features provided in the feature model whereas a basic license
restricts the set of selectable features. In Figure 1, license and QA
are designed as mandatory features, i.e., must be included in every

survey software configuration. If a user selects ABtesting to be

included in the configuration, this also requires the inclusion of

the statistics feature. The QA feature supports both, basic QA and

multimedia QA questions – at least one of these has to be included

in each configuration.

Figure 1: An example feature model (survey software).

3 CONFIGURATION TASK AND SOLUTION

RANKING

To enable reasoning about potential solutions (configurations), a

feature model has to be translated into a formal representation. One

option for a formal representation of feature models are constraint

satisfaction problems (CSPs) [31]. On the level of a CSP, a feature

model can be defined as a configuration task (see Definition 3.1).

Definition 3.1. Configuration Task. A configuration task derived

from a feature model can be defined as a constraint satisfaction

problem (CSP) (𝑉 , 𝐷,𝐶) where𝑉 = {𝑣1, 𝑣2, .., 𝑣𝑛} is a set of Boolean
variables,𝐷 = {𝑑𝑜𝑚(𝑣1), 𝑑𝑜𝑚(𝑣2), .., 𝑑𝑜𝑚(𝑣𝑛)} is the set of variable
domains, and 𝐶 = 𝐶𝑅 ∪ 𝐶𝐹 where 𝐶𝑅 = {𝑐1, 𝑐2, .., 𝑐𝑘 } is a set of

customer requirements (i.e., preferred inclusions and exclusions

of features), and 𝐶𝐹 = {𝑐𝑘+1, 𝑐𝑘+2, .., 𝑐𝑞} is a corresponding set of

constraints derived from the feature model.

In the case of basic feature models (without further attributes),

𝑑𝑜𝑚(𝑣𝑖 ) = {0, 1}. Constraints 𝑐 𝑗 can be directly derived from a fea-

ture model and represent (1) structural relationships (e.g., a manda-

tory relationship) and (2) cross-tree relationships (e.g., a requires
relationship). A set of rules of how to formalize the relationships

of a feature model in terms of a set of corresponding constraints is

discussed, for example, in Benavides et al. [3].

On the basis of the definition of a configuration task, we now
introduce the definition of a configuration (Definition 3.2).

Definition 3.2. Configuration. A configuration (solution) for a

configuration task (𝑉 , 𝐷,𝐶) is an assignment 𝐴 of the variables in

𝑉 which fulfils the criteria that all constraints in 𝐶 are consistent

with the variable assignments in 𝐴.

Following Definition 3.1, Table 1 represents the set of CSP vari-

ables (i.e., features represented by variables in𝑉 ) and corresponding

Boolean domains (𝐷) derived from the feature model in Figure 1.

In our example, Table 2 shows the constraints 𝐶𝐹 derived from

the feature model depicted in Figure 1.

In Table 2, 𝑐0 represents a so-called root constraint which is

used to assure that (irrelevant) empty configurations are avoided.

Furthermore, 𝑐1 and 𝑐4 represent mandatory relationships: both

payment and QA are mandatory, i.e., every configuration has to

include these features. Both of the features ABtesting and statistics
are regarded as optional (constraints 𝑐2 and 𝑐3), i.e., they do not

have to be part of every configuration. The features basiclicense
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Table 1: Features (including abbreviations of feature names)

and corresponding domain definitions (1 = 𝑡𝑟𝑢𝑒, 0 = 𝑓 𝑎𝑙𝑠𝑒).

featurename abbreviation domain

𝑠𝑢𝑟𝑣𝑒𝑦 𝑠𝑢𝑟 {0, 1}
𝑙𝑖𝑐𝑒𝑛𝑠𝑒 𝑙𝑖𝑐 {0, 1}

𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑𝑙𝑖𝑐𝑒𝑛𝑠𝑒 𝑎𝑑𝑙𝑖𝑐 {0, 1}
𝑏𝑎𝑠𝑖𝑐𝑙𝑖𝑐𝑒𝑛𝑠𝑒 𝑏𝑎𝑠𝑙𝑖𝑐 {0, 1}
𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝐴𝐵 {0, 1}
𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 𝑠𝑡𝑎𝑡 {0, 1}

𝑄𝐴 𝑄𝐴 {0, 1}
𝑏𝑎𝑠𝑖𝑐𝑄𝐴 𝑏𝑎𝑠𝑄𝐴 {0, 1}

𝑚𝑢𝑙𝑡𝑖𝑚𝑒𝑑𝑖𝑎𝑄𝐴 𝑚𝑚𝑄𝐴 {0, 1}

Table 2: Constraints 𝐶𝐹 = {𝑐1 ..𝑐9} derived from Figure 1.

constraint CSP representation

𝑐0 𝑠𝑢𝑟𝑣𝑒𝑦 = 1

𝑐1 𝑠𝑢𝑟𝑣𝑒𝑦 ↔ 𝑙𝑖𝑐𝑒𝑛𝑠𝑒

𝑐2 𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔 → 𝑠𝑢𝑟𝑣𝑒𝑦

𝑐3 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 → 𝑠𝑢𝑟𝑣𝑒𝑦

𝑐4 𝑠𝑢𝑟𝑣𝑒𝑦 ↔ 𝑄𝐴

𝑐5 𝑄𝐴 → 𝑏𝑎𝑠𝑖𝑐𝑄𝐴 ∨𝑚𝑢𝑙𝑡𝑖𝑚𝑒𝑑𝑖𝑎𝑄𝐴

𝑐6 (𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑𝑙𝑖𝑐𝑒𝑛𝑠𝑒 ↔ ¬𝑏𝑎𝑠𝑖𝑐𝑙𝑖𝑐𝑒𝑛𝑠𝑒 ∧ 𝑙𝑖𝑐𝑒𝑛𝑠𝑒)∧
(𝑏𝑎𝑠𝑖𝑐𝑙𝑖𝑐𝑒𝑛𝑠𝑒 ↔ ¬𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑𝑙𝑖𝑐𝑒𝑛𝑠𝑒 ∧ 𝑙𝑖𝑐𝑒𝑛𝑠𝑒)

𝑐7 ¬(𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔 ∧ 𝑏𝑎𝑠𝑖𝑐𝑙𝑖𝑐𝑒𝑛𝑠𝑒)
𝑐8 𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔 → 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠

𝑐9 ¬(𝑏𝑎𝑠𝑖𝑐𝑙𝑖𝑐𝑒𝑛𝑠𝑒 ∧𝑚𝑢𝑙𝑡𝑖𝑚𝑒𝑑𝑖𝑎𝑄𝐴)

and advancedlicense are regarded as part of an alternative relation-

ship (𝑐6). Furthermore, basicQA and multimediaQA are part of an

optional relationship (𝑐5). Finally, the features ABtesting and ba-
siclicense are regarded as incompatible (𝑐7), the inclusion of feature

ABtesting requires the inclusion of feature statistics (𝑐8), and the

features basiclicense and𝑚𝑢𝑙𝑡𝑖𝑚𝑒𝑑𝑖𝑎𝑄𝐴 are incompatible.

Assuming the existence of the customer (user) requirement

𝐶𝑅 = {𝑐10 : 𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔 = 1}, we are able to derive the configu-

rations 𝐴𝑖 as depicted in Table 3. All three configurations could

be regarded as recommendation candidates, however, we are pri-
marily interested in solutions which are the most relevant ones for

a user. In the following, we assume the existence of two example
users, namely 𝑢𝑎 and 𝑢𝑏 (both would like to have included the fea-

ture 𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔). Following the concepts of utility-based ranking

which is a major element of knowledge-based recommendation

[11], interest dimensions can be regarded as explicit global solu-

tion properties. We denote a specific interest dimension-related

user preference of user 𝑢𝑖 with regard to dimension 𝑑 𝑗 as 𝑢𝑝 (𝑢𝑖 , 𝑑 𝑗 ),
for example, 𝑢𝑝 (𝑢𝑎, 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝑦) = 0.8, 𝑢𝑝 (𝑢𝑎, 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦) = 0.2),
𝑢𝑝 (𝑢𝑏 , 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝑦) = 0.2), and 𝑢𝑝 (𝑢𝑏 , 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦) = 0.8).

The higher the value of an interest dimension (between 0..1), the
higher the corresponding interest of the user. For example, if a user

is interested in simplicity, he or she will prefer configurations with
a lower number of features (lower overhead in understanding the

provided software). In order to be able to rank configurations, we

also need to evaluate the solution (configuration) attributes with

Table 3: Example configurations 𝐴1 ..𝐴3 consistent with 𝐶 =

𝐶𝐹 ∪𝐶𝑅 (𝐶𝑅 = {𝑐10 : 𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔 = 1}).

feature 𝐴1 𝐴2 𝐴3

𝑠𝑢𝑟𝑣𝑒𝑦 1 1 1

𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑𝑙𝑖𝑐𝑒𝑛𝑠𝑒 1 1 1

𝑏𝑎𝑠𝑖𝑐𝑖𝑐𝑒𝑛𝑠𝑒 0 0 0

𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔 1 1 1

𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 1 1 1

𝑏𝑎𝑠𝑖𝑐𝑄𝐴 1 0 1

𝑚𝑢𝑙𝑡𝑖𝑚𝑒𝑑𝑖𝑎𝑄𝐴 0 1 1

regard to the interest dimensions simplicity and productivity. In
this context, we omit the features survey, license, and QA which are

included in every configuration.

Table 4: Utility evaluation 𝑢 of features 𝑓𝑖 with re-

gard to interest dimensions 𝑑 𝑗 (𝑢 (𝑓𝑖 , 𝑑 𝑗 )), for example,

𝑢 (𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑𝑙𝑖𝑐𝑒𝑛𝑠𝑒, 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝑦) = 0.1.

features 𝑓𝑖 simplicity productivity

𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑𝑙𝑖𝑐𝑒𝑛𝑠𝑒 = 1 0.1 1.0

𝑏𝑎𝑠𝑖𝑐𝑙𝑖𝑐𝑒𝑛𝑠𝑒 = 1 1.0 0.1

𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔 = 1 0.3 1.0

𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 = 1 0.5 1.0

𝑚𝑢𝑙𝑡𝑖𝑚𝑒𝑑𝑖𝑎𝑄𝐴 = 1 0.3 1.0

𝑏𝑎𝑠𝑖𝑐𝑄𝐴 = 1 1.0 1.0

On the basis of the preferences of𝑢𝑎 and𝑢𝑏 , and the information

provided in Table 4, we are able to calculate the overall utility of the

individual solutions 𝐴1 ..𝐴3 using Formula 1. The user-individual

utilities are shown in Table 5. In our simplified example, alterna-

tive 𝐴3 is assumed to be the preferred configuration of both users.

Different users could have different preferences and could also

receive different recommendations that depend on their personal

preferences regarding a set of interest dimensions.

𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝐴,𝑢 𝑗 ) = Σ𝑓 =𝑡𝑟𝑢𝑒∈𝐴Σ𝑑∈𝐷𝑖𝑚𝑠𝑢 (𝑓 , 𝑑) × 𝑢𝑝 (𝑢 𝑗 , 𝑑) (1)

Table 5: Utilities of example configurations 𝐴1 ..𝐴3 for users

𝑢𝑎 and 𝑢𝑏 .

configuration 𝐴1 𝐴2 𝐴3

𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝐴𝑖 , 𝑢𝑎) 1.76 2.32 2.76

𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝐴𝑖 , 𝑢𝑏 ) 3.44 3.58 4.44

Utility-based ranking (recommendation) can be used if alterna-
tive configurations have already been determined [11]. Note that

we focused on a scenario where utility-based recommendation is

used to identify a recommendation of relevance for a single user.

However, there are also scenarios where recommendations have to

be determined for groups of users [9]. In such a context, the pref-

erences of individual users (group members) are aggregated, for

example, by interpreting a group rating as the average value of the
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user-individual item evaluations. For details regarding the applica-

tion of group recommender systems in configuration contexts we

refer to [8, 9].

Utility-based ranking has the disadvantage of knowledge acqui-
sition efforts that are needed to specify the contributions of user

selections to individual interest dimensions. In the following sec-

tion, we will discuss scenarios in which recommender systems can

be applied to support users in the selection of individual features,

i.e., the configuration process is still ongoing and users need support

in selecting and deselecting individual features.

4 SUPPORTING INTERACTIVE

CONFIGURATION

Assuming the availability of user interaction data from previous

configuration sessions, we are able to proactively support the cur-
rent user interacting with a configurator [7, 23, 26]. A need for such

a functionality is given if a user has limited domain knowledge and
is unsure about the inclusion or exclusion of a specific feature or a

user simply does not have the time to specify every feature (which
is often the case with large and complex feature models). Table 6

depicts a simplified example of such a scenario where users (𝑢1 ..𝑢3)

have already completed their configuration sessions. The 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

user just started his/her session and has specified his/her prefer-

ences regarding the features lic (license), adlic (advanced license),
and baslic (basic license).

Table 6: Recommendation of a feature value (0) for feature
𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔 to the current user.

user/ lic adlic baslic AB stat QA bas- mm-

session QA QA

𝑢1 1 0 1 0 1 1 1 0

𝑢2 1 1 0 1 1 1 1 1

𝑢3 1 0 1 0 1 1 1 0

current 1 0 1 ?→0 - - - -

The idea of collaborative filtering based recommendation [18] is

to analyze users with similar preferences compared to the current

user (nearest neighbors) and exploit this knowledge for determining

recommendations for the current user.2 For example, the users with

the most similar preferences compared to the current user are 𝑢1
and 𝑢3. If we are interested in recommending feature inclusion or

exclusion for the feature 𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔 (𝐴𝐵), we could recommend to

the current user to follow his/her nearest neighbors 𝑢1 and 𝑢3, i.e.,

not to include this feature. In such scenarios, the number of nearest

neighbors can be regarded as hyper-parameter which can be tuned

during the learning phase of a recommendation algorithm.

A basic example similarity function which helps to figure out

the similarity between user 𝑢𝑎 and 𝑢𝑏 is represented by Formula 2.

In this context, the set 𝐹 represents those features that have been

specified, i.e., selected or deselected by both users.

𝑠𝑖𝑚(𝑢𝑎, 𝑢𝑏 ) =
|{𝑓 ∈ 𝐹 : 𝑓 (𝑢𝑎) = 𝑓 (𝑢𝑏 )}|

|{𝑓 ∈ 𝐹 }| (2)

2
For a detailed analysis of different collaborative filtering approaches, we refer to

Ekstrand et al. [6].

In Table 6, the similarity between the current user and user 𝑢1
is 1.0, i.e., both users have completely the same preferences. In

the mentioned scenario, we have to support session-based recom-
mendation [34], since recommendations are determined by using

preference information from the current user session and the pref-

erences of similar users. We want to emphasize that in real-world

scenarios nowadays model-based machine learning approaches

such as matrix factorization [19] are applied for item prediction.

An example of applying matrix factorization is provided in Sec-

tion 5. These approaches manage to encode complex similarity

relationships into a set of hidden aspects.
Up to now, we focused on recommending the selection or dese-

lection of individual features. A similar recommendation approach

can also be applied to the selection of the next choice point, i.e.,
which feature(s) should be presented next to the user for a selec-

tion/deselection decision. In this scenario, we recommend the next

feature (the next features) a user could be interested in to specify.

Note that in such scenarios information gain is often not the best

criteria for attribute selection since users do not necessarily follow

the criteria of information gain when selecting the next feature.

Table 7: Recommendation of a possible next feature (𝑄𝐴) to

be specified by the current user.

user/ lic adlic baslic AB stat QA bas- mm-

session QA QA

𝑢1 1 3 2 4 5 6 8 7

𝑢2 2 3 4 1 8 5 7 6

𝑢3 1 2 3 5 8 4 7 6

current 1 2 3 ? ? ?→4 ? ?

In the example shown in Table 7, the current user has already

specified his/her preferences regarding license (𝑙𝑖𝑐), advanced license
(𝑎𝑑𝑙𝑖𝑐), and basic license (𝑏𝑎𝑠𝑙𝑖𝑐). Now, we are interested in which

feature the user would like to specify next. Formula 3 is a variation

of Formula 2 where similarity measurement focuses on the distance

of feature selection orderings of two different users 𝑢𝑎 and 𝑢𝑏 .

𝑠𝑖𝑚(𝑢𝑎, 𝑢𝑏 ) =
𝑚(𝑢𝑎, 𝑢𝑏 ) − Σ𝑓 ∈𝐹 |𝑓 𝑟 (𝑢𝑎, 𝑓 ) − 𝑓 𝑟 (𝑢𝑏 , 𝑓 ) |

𝑚(𝑢𝑎, 𝑢𝑏 )
(3)

In Formula 3, 𝐹 denotes features that have already been specified

by both users. The function 𝑓 𝑟 (𝑢, 𝑓 ) denotes the selection position

(rank) of feature 𝑓 in the session of user 𝑢. Furthermore, the func-

tion𝑚 denotes the maximum possible distance between 𝑢𝑎 and 𝑢𝑏
in terms of the order of user feature specifications. For example,

𝑚(𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑢3) is ( |1 − 3|) + (|2 − 2|) + (|3 − 1|) = 2 + 0 + 2 = 4
assuming the initial feature selection ordering 1:𝑙𝑖𝑐 , 2:𝑎𝑑𝑙𝑖𝑐 , and

3:𝑏𝑎𝑠𝑙𝑖𝑐 . Consequently, 𝑠𝑖𝑚(𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑢3) = 4−0
4 = 1.0.

After having identified the most similar user(s) of the current

user, the next feature to be specified can be recommended. This

is the feature with lowest ranking of the similar users that has

not been specified up to now by the current user. In our example,

feature𝑄𝐴 would be the recommendation candidate since the most

similar user of the current user is 𝑢3 and the lowest ranking of a

feature not specified by the current user is 4 which represents 𝑄𝐴

in the case of 𝑢3.
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Research Issues. We want to emphasize that the mentioned

recommendation approaches are not able to guarantee that the

determined recommendation is consistent with the constraints in the
feature model, i.e., it could be the case that a feature setting is rec-

ommended which is inconsistent with the underlying feature model.

Basically, this means that the recommender system is unaware of

the constraints defined in the feature model. A possibility to avoid

such a situation is to trigger an additional consistency check before

the recommendation is shown to the user. However, this requires

additional computing time and could in some cases result in slow

response times. An alternative is to interpret recommendations as

search heuristics (e.g., variable value orderings) and to determine

recommendations (configurations) on the solver level. An initial

approach to recommendation-based search is discussed in detail in

[24]. A major challenge is to learn configurator search heuristics

in such a way that a reasonable tradeoff between prediction quality
and search effort can be achieved. For related work on search opti-

mization in feature model related reasoning we refer, for example,

to Sayyad et al. [27].

5 SUPPORTING RECONFIGURATION

With reconfiguration [15] we refer to (often interactive) scenarios

where (1) a set of features has already been specified (selected or

deselected) by a user but triggers an inconsistency or (2) additional

features have been specified in the feature model and we would

like to know ahead which user/customer is interested in extending

his/her current configuration, i.e., including the new feature.

An example of the first scenario is depicted in Table 8. The current
user has changed his/her mind and thinks about choosing a basic

license (𝑏𝑎𝑠𝑙𝑖𝑐). At the same time, it seems to be the case that the

user is still interested in having an ABtesting (𝐴𝐵) support. In this

context, we have to indicate to the user which of his/her preferences

have to be adapted to restore consistency.

Table 8: Log of already completed configurations (conf).

The current user has specified inconsistent preferences (if

𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔 is selected, a license has to be paid).

user/ lic adlic baslic AB stat QA bas- mm-

conf QA QA

𝑢1 1 0 1 0 1 1 1 0

𝑢2 1 1 0 1 1 1 1 1

𝑢3 1 0 1 0 1 1 1 0

current 1 0! 1! 1! 1 1 1 1

Technically speaking, there exist two conflicts (𝐶𝑆1,2) [16] be-

tween the mentioned user preferences: 𝐶𝑆1 : {𝑎𝑑𝑙𝑖𝑐 = 0, 𝐴𝐵 = 1}
and 𝐶𝑆2 : {𝑏𝑎𝑠𝑙𝑖𝑐 = 1, 𝐴𝐵 = 1}. This inconsistency could be re-

solved by pointing out to the user the option of restoring the original

setting that accepts advanced licensing (alt. 1: 𝑎𝑑𝑙𝑖𝑐 = 1, 𝑏𝑎𝑠𝑙𝑖𝑐 = 0,
𝐴𝐵 = 1) or to accept the reduction in functionality in terms of not

having available anymore ABtesting (alt. 2: 𝑎𝑑𝑙𝑖𝑐 = 0, 𝑏𝑎𝑠𝑙𝑖𝑐 = 1,
𝐴𝐵 = 0).

If more information is available about the preferences of the

user, for example, we know that a user is more interested in a sim-

ple solution (𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝑦 = 0.8) compared to a full feature support

(𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 0.2), we are able to rank the individual alterna-

tives of restoring consistency. By reusing the utility scores specified

in Table 4, we are able to determine a ranking for the individual

change recommendations possible in the mentioned scenario (see

Table 9).

Table 9: Utility evaluation of change alternatives (based on

Table 4). For example, in the context of 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 1 and

𝑙𝑖𝑐𝑒𝑛𝑠𝑖𝑛𝑔, 1(0.1, 1) denotes the fact that the inclusion of li-

censing contributes 0.1 to simplicity and 1.0 to productivity.

preference advanced- basiclicense ABtesting utility

change license

alt. 1 1(0.1, 1) 0(1, 0.1) 1(0.3, 1) 0.72

alt. 2 0(0.1, 1) 1(1, 0.1) 0(0.3, 1) 0.82

Taking into account the preferences of our example user (𝑢𝑎),

the utility of change 𝑎𝑙𝑡 . 1 is (0.1∗0.8+1.0∗0.2) + (0.3∗0.8+1.0∗
0.2) = 0.72. Furthermore, the overall utility of change 𝑎𝑙𝑡 . 2 is 1.0∗
0.8 + 0.1 ∗ 0.2 = 0.82. Consequently, we could recommend change

𝑎𝑙𝑡 . 2 to the user which clearly focuses on the aspect of 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝑦.

Determining conflicts and corresponding change alternatives is the

task of conflict detection and corresponding diagnosis algorithms. A

discussion of these algorithms is beyond the scope of this paper. For

further related details regarding conflict detection and diagnosis

we refer to Junker [16], Reiter [25], and Felfernig et al. [14].

Reconfiguration is not only associated with consistency manage-

ment but can also be relevant when existing configurations should

be extended with additional features. In Table 10, an additional

feature share has been added which supports the sharing of the

results of a survey. An important information in this context (e.g.,

in marketing scenarios) is to know which users would be interested

in the new feature and should be primarily contacted.

Table 10: Session log of already completed configurations.

user lic ad- bas- AB stat QA bas- mm- share

lic lic QA QA

𝑢1 1 0 1 0 1 1 1 0 0

𝑢2 1 1 0 1 1 1 1 1 1

𝑢3 1 0 1 0 1 1 1 0 ?

𝑢4 1 0 1 1 1 1 1 0 ?

The relevance prediction for a new feature for a user can be im-

plemented with collaborative filtering (CF) [18]. A major difference

compared to the previously discussed CF approaches is that the

relevance of new features can be easily determined offline which
makes the task more appropriate for model-based collaborative

filtering often implemented as matrix factorization (MF) [19]. MF

focuses on optimizing a set of so-called hidden aspects which can

then be used to predict the preferences of individual users.

Table 10 (𝑇 ) can be reconstructed using dimensionality reduction
which is based on the idea of learning two low-dimensional matrices

(𝑈𝐴 and𝐴𝐹 ) that help to derive amatrix𝑇 ′
~𝑇 , i.e.,𝑇 ′

approximates

𝑇 . The advantage of this approach is generalizability and efficiency

since we are able to predict individual preferences on the basis
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of a simple matrix multiplication operation. Let us first construct

the matrices UA and AF on the basis of the evaluation dimensions

productivity and simplicity as depicted in Tables 11 and 12.

When applying matrix factorization to the matrices UA and AF,
we can derive the matrix T’ which is an approximation of the orig-

inal matrix T. Note that up to now we just manually estimated
the relationship between user- and item-specific interest dimen-

sions. The disadvantage of this approach is that estimation has to

be performed manually with tedious adaptation efforts for new fea-

tures and also the requirement that each user has to specify his/her

preferences regarding the interest dimensions. For the new feature

share (see Table 12), we assume a high evaluation with regard to the

dimension productivity (additional functionality is provided) and

a very high evaluation with regard to simplicity (the share feature
does not trigger additional complexity).

Using matrix factorization, this manual process can be substi-

tuted by machine learning that estimates the weights of individual

interest dimensions to optimize the similarity between 𝑇 ′
and 𝑇

[19]. Table 13 represents the result of a matrix multiplication UA •
AF. In this context, share has very high estimate (0.94 on a scale

0..1) for user 𝑢𝑏 . Consequently, the new feature has a high chance

to be of relevance for 𝑢𝑏 .

Table 11:MatrixUA representing user preferences regarding

interest dimensions (aspects).

user 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝑦

𝑢𝑎 0.8 0.2

𝑢𝑏 0.2 0.8

Such a machine learning approach substitutes manual prefer-

ence specification but also has the disadvantage that the learned
dimensions (aspects) do not have a clear semantics but are just rep-

resenting abstract properties that optimize the prediction quality of

user interests regarding individual features. When applying matrix

factorization, the interest dimensions of Tables 11 and 12 would be

substituted by two (or more) optimized abstract dimensions [19].

Many software systems are configurable in one way or another

[21, 22, 29]. In many cases, the configuration space is huge and

mechanisms are needed that help to support tasks such as the

prediction of the performance of specific (re-)configurations and

the optimization of configurations. Performance prediction can play

an important role in the context of (re-)configuring packages and

parameters of an operating system. In this context, it should be

possible to predict system performance to avoid slow runtimes due

to low-quality parametrizations.

A system should also be able to support parameter optimiza-

tion, i.e., to recommend reasonable parameter settings during the

ramp-up phase of a system or during reconfiguration. Such an opti-

mization can be performed following so-called sampling, measuring,
and learning patterns [21] with the overall task of identifying rep-

resentative system parameter settings, measuring the impact of

a specific configuration, and learn a general model to be able to

classify between high- and low-quality parametrizations (configu-

rations).

The mentioned goals can be supported a.o. on the basis of ma-

trix factorization [19] where samples can be regarded as reference

points and factorization can be applied to (1) recommend parame-

ter settings that will result in a good system performance and (2)

provide hints that some of the parametrizations will lead to low

system performance.

Research Issues. Similar to collaborative filtering, recommen-

dations determined by matrix factorization cannot guarantee the

feasibility of a recommendation, i.e., there can be situations where a

recommendation induces an inconsistency with the constraints de-

fined in the feature model. As mentioned, an approach to deal with

such situations is to recommend solver search heuristics that are

learned from existing user interaction data [24]. An important issue

related to both scenarios, i.e., configuration and reconfiguration, is

how to explain recommendations. In both scenarios, explanations

are shallow, i.e., only refer to the used algorithm. For example, col-

laborative filtering is based on explanations of the preferences of

nearest neighbors. A direction for future research in this context is

to combine machine learning with less-well performing knowledge-

based recommendation approaches (e.g., the utility-based approach

discussed in Section 3) and then generate explanations on the basis

of the knowledge-based recommendation model. Such knowledge-

based models allow for a more fine-grained explanation on the

semantic level. An example research issue is to figure out which

criteria are sufficient for the application of an inferior (in terms of

prediction quality) knowledge-based approach for the generation

of explanations.

6 SUPPORTING MODELING PROCESSES

Finally, we take a look at the process of feature model develop-

ment. In this context, recommendation approaches can be applied,

for example, in the context of learning processes. Engineers of fea-
ture models who are in charge of overtaking the development and

maintenance of a new feature model, often need support in the nav-

igation of the feature and constraint space. A basic idea to support

such learning processes is to apply collaborative filtering which

can help to recommend items (e.g., constraints) that could be of

relevance for the knowledge engineer at a specific point of time.

The recommendation approach that can be applied in this context is

quite similar to the one discussed in the context of recommending

features to be specified within the scope of configuration sessions.

In the example depicted in Table 15, the current knowledge engineer

(𝑘𝑒) interacting with the feature model has already visited/edited

the constraints 𝑐1 ..𝑐3. Collaborative recommendation can be ap-

plied to predict further relevant constraints he/she could take a

look at. In our example, this would be the constraint 𝑐4.

Recommending the next constraint is relevant to support knowl-

edge engineers in understanding a knowledge base. A related aspect

is the grouping of constraints in such a way that the cognitive over-

load of knowledge engineers can be minimized. One way to achieve

this is to apply the concepts of clustering which helps to iden-

tify constraints which belong together in one way or another. An

analysis of different approaches to group constraints in configura-

tion knowledge acquisition contexts can be found, for example, in

Felfernig et al. [13].

Besides supporting users in understanding a knowledge base

(feature model), recommender systems can also be applied to au-

tomatically generate a knowledge base. Ulz et al. [32] introduce a
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Table 12: Matrix AF representing item property (feature) relationships to interest dimensions (aspects).

dimension 𝑎𝑑𝑙𝑖𝑐 𝑏𝑎𝑠𝑙𝑖𝑐 𝐴𝐵 𝑠𝑡𝑎𝑡 𝑚𝑚𝑄𝐴 𝑏𝑎𝑠𝑄𝐴 𝑠ℎ𝑎𝑟𝑒

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 1.0 0.1 1.0 1.0 1.0 1.0 0.7

𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝑦 0.1 1.0 0.3 0.5 0.3 1.0 1.0

Table 13: Matrix 𝑇 ′
resulting from a matrix multiplication

UA • AF. Feature share appears to be potentially relevant

for 𝑢𝑏 .

user 𝑎𝑑𝑙𝑖𝑐 𝑏𝑎𝑠𝑙𝑖𝑐 𝐴𝐵 𝑠𝑡𝑎𝑡 𝑚𝑚𝑄𝐴 𝑏𝑎𝑠𝑄𝐴 𝑠ℎ𝑎𝑟𝑒

𝑢𝑎 0.82 0.28 0.82 1 1 1 0.76

𝑢𝑏 0.28 0.82 0.28 1 1 1 0.94

Table 14: Matrix 𝑇 ′
resulting from a matrix multiplication

UA • AF. Feature share appears to be potentially relevant

for 𝑢𝑏 .

user 𝑎𝑑𝑙𝑖𝑐 𝑏𝑎𝑠𝑙𝑖𝑐 𝐴𝐵 𝑠𝑡𝑎𝑡 𝑚𝑚𝑄𝐴 𝑏𝑎𝑠𝑄𝐴 𝑠ℎ𝑎𝑟𝑒

𝑢𝑎 1 0 1 1 1 1 0

𝑢𝑏 0 1 0 1 1 1 1

Table 15: Session-specific ordering of constraint edits.

session/ke 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9

1 1 3 2 4 5 6 8 7 9

2 2 3 4 1 8 5 7 9 6

3 1 2 3 4 9 5 7 6 8

current 1 2 3 ?→4 ? ? ? ? ?

human computation3 [33] based approachwhere the development of

recommender and configuration knowledge bases is implemented

on the basis of asking users simple questions and aggregate the

results in an intelligent fashion into a corresponding set of con-

straints. Questions refer to selection scenarios, for example, users

should give feedback, which items they would like to be included in

a recommendation in a specific context. The output of the approach

is a set of requires constraints that support item selection in differ-

ent contexts. Bécan et al. [5] and She et al. [28] follow the similar

idea of generating feature models from configuration instances, i.e.,

instead of asking the user questions about intended item properties,

the intended properties are already represented as configurations

or logical formulae.

Research Issues. Feature model development should be accom-

panied by structured testing approaches which support quality

assurance of feature models, i.e., to assure that the structures and

constraints defined in the feature model are consistent with the

underlying domain knowledge. For example, it should not be possi-
ble to calculate configurations that (1) include features that should

not be combined with each other and (2) exclude features that are

regarded as feasible in the underlying application domain.

3
The underlying idea of human computation is that humans take over problem solving

tasks which computers are not able to solve in equal quality.

Quality assurance for feature models is already supported by

different types of analysis operations (see, e.g., [3]). Open issues

in this context are the recommendation of relevant test cases useful
for identifying erroneous constraints in a feature model and the

recommendation of corresponding diagnoses that indicate minimal

subsets of constraints which could be responsible for the faulty be-

havior of the feature model. Such a recommendation support would

help to further improve the efficiency of feature model knowledge

acquisition and maintenance processes.

7 CONCLUSIONS AND FURTHER RESEARCH

ISSUES

With this paper, we provide an overview of feature modeling and

configuration scenarios that can profit from the application of rec-

ommendation and related machine learning approaches. For se-

lected scenarios, we have provided examples that help to improve

the understanding of the discussed application. Future work in this

context includes a couple of empirical evaluations that will help to

better estimate which recommendation approach best supports a

specific scenario. There are a couple of further scenarios that could

profit from the application of recommendation technologies.

For example, the analysis of user interaction data could indi-

cate additional relevant constraints to be included in a model. These
constraints can also be regarded as specializations of an existing

knowledge base [30]. This functionality could be based on associa-

tion rule mining applied to the interaction data. Such an approach

follows the line of research of learning whole feature models from

pre-existing configurations (see, for example, Bécan et al. [5]).

In knowledge acquisition scenarios, an intelligent grouping of
features and constraints of a feature model could be important to

streamline maintenance processes. Supporting such a grouping can,

for example, be based on clustering approaches as discussed in

Felfernig et al. [13]. A major issue for future work in this context

is to make constraint groups flexible and adaptive to different sce-

narios, for example, searching for a faulty constraint or changing a

specific variability property in a feature model.

A related challenge is how to recommend maintenance actions

to avoid low-quality modeling in terms of complex hierarchical

structures and constraints of low understandability. Such recom-

mendations can also be based on a more in-depth knowledge of

cognitive aspects in knowledge representation and maintenance.

Finally, an open issue in the context of applying recommendation

technologies in complex item domains is how to evaluate the qual-

ity of recommendations. Existing evaluation measures have to be

adapted or extended. An example is the measurement of precision:
in the configuration context, single features or groups of feature

settings could be recommended.
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