
HAL Id: hal-03621617
https://hal.science/hal-03621617

Submitted on 28 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ShExStatements: Simplifying Shape Expressions for
Wikidata

John Samuel Samuel

To cite this version:
John Samuel Samuel. ShExStatements: Simplifying Shape Expressions for Wikidata. WWW ’21:
Companion Proceedings of the Web Conference 2021, Apr 2021, Ljubljana, Slovenia. pp.610-615,
�10.1145/3442442.3452349�. �hal-03621617�

https://hal.science/hal-03621617
https://hal.archives-ouvertes.fr

ShExStatements: Simplifying Shape Expressions for Wikidata
John Samuel

john.samuel@cpe.fr
CPE Lyon, LIRIS UMR-CNRS 5205, Université de Lyon

Villeurbanne, France

ABSTRACT
Wikidata recently supported entity schemas based on shape expres-
sions (ShEx). They play an important role in the validation of items
belonging to a multitude of domains on Wikidata. However, the
number of entity schemas created by the contributors is relatively
low compared to the number of WikiProjects. The past couple of
years have seen attempts at simplifying the shape expressions and
building tools for creating them. In this article, ShExStatements is
presented with the goal of simplifying writing the shape expres-
sions for Wikidata.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; • Information systems → Web data description lan-
guages; Wikis.

KEYWORDS
Wikidata, Shape Expressions, Data validation

ACM Reference Format:
John Samuel. 2021. ShExStatements: Simplifying Shape Expressions for
Wikidata. In Companion Proceedings of the Web Conference 2021 (WWW ’21
Companion), April 19–23, 2021, Ljubljana, Slovenia. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3442442.3452349

1 INTRODUCTION
Entity schemas based on ShEx (Shape Expressions) [10, 13, 15] were
recently introduced on Wikidata [17]. One of the main advantages
of Shape Expressions is that they can be used for RDF validation
[7, 14, 16]. Several tools and scripts currently exist that can be used
to visualize and validate a subset of data on Wikidata using ShEx.
One such tool is shex.js [4], which let the Wikidata contributors
easily check entities against any particular schema. A SPARQL
query is used to select a subset of relevant data from Wikidata and
the validation is run on this prefetched data. Thus users can both
test and explore the current state of the data related to the SPARQL
query. They may propose new modifications to the entity schema
or even correct the data items.

In the case of Wikidata, WikiProjects are used to identify and
discuss relevant properties for the items to a particular domain.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21 Companion, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8313-4/21/04.
https://doi.org/10.1145/3442442.3452349

For example, WikiProject Informatics1 identifies properties for soft-
ware, hardware, programming languages, file sytems, algorithms,
etc. The number of Wikiprojects is an interesting indicator for mea-
suring the use of entity schemas since WikiProjects are managed
by dedicated contributors interested in a particular domain. At the
time of writing, there are only less than 300 shape expressions2
on Wikidata. This number is quite low compared to the number of
WikiProjects on Wikipedia [9] and Wikidata [6].

Therefore any tool for shape expressions must take into con-
sideration such WikiProjects and propose ways to integrate the
information present in these tools to build shape expressions. One
possible approach is to propose a smaller subset of shape expres-
sions that can be used to build simple shape expressions in a manner
that closely resembles some of the existing templates3. These simple
expressions can take into account the WikiProjects for validating
whether the items belonging to a given domain have all the nec-
essary statements. Considering the multilingual nature, another
important aspect is to let the communities describe relevant do-
mains in their local languages. ShExStatements4 [12] was developed
to answer these requirements. It was developed in a manner similar
to the QuickStatements5 and OpenRefine6 [3] to ensure a simpler
interface using tabular formats or CSV files.

In this article ShExStatements [12] is presented, explaining how
a tabular format or a CSV file format was developed for simplifying
writing shape expressions, especially for the new comers. In sec-
tion 2, state of the art is presented. Taking an example, the grammar
of ShExStatements is described in section 3. Section 4 presents the
development and use of ShExStatements. Section 6 concludes the
article.

2 RELATEDWORKS
Several WikiProjects7 are currently available on Wikidata related
to open government data, culture, history, sports, birds, agriculture,
tourism, etc. Some of these WikiProjects take into consideration
the infoboxes of Wikipedia[8] belonging to different languages to
identify the different properties used to describe the objects belong-
ing to a certain class. These infobox properties are then mapped to
appropriate Wikidata properties. WikiProjects, therefore, play an
important role in identifying the keyWikidata properties. However,
WikiProjects alone cannot be used to automatically validate the
existing Wikidata items.

1https://www.wikidata.org/wiki/Wikidata:WikiProject_Informatics
2https://www.wikidata.org/wiki/User:HakanIST/EntitySchemaList
3https://www.wikidata.org/wiki/Template:List_of_properties/Row
4https://shexstatements.toolforge.org/
5https://quickstatements.toolforge.org/
6https://openrefine.org/
7https://www.wikidata.org/wiki/Wikidata:WikiProjects

https://doi.org/10.1145/3442442.3452349
https://doi.org/10.1145/3442442.3452349

WWW ’21 Companion, April 19–23, 2021, Ljubljana, Slovenia J. Samuel

Though Wikidata supports property constraints8, their usage is
limited to specifying howproperties can be used.Wikidata items use
multiple properties and schemas are needed to describe and validate
the items belonging to different classes. This is very important in
multilingual and multi-domain context. Therefore, validation of
RDF [7, 14, 16] is important to ensure data present in a semantic
knowledge base is following the proposed ontology or schema.

Several tools have been proposed that take into consideration the
expressivity [15] of shape expressions. These tools can be classified
in the way shape expressions can be created. The first approach is to
automatically generate schema expressions from existing RDF data.
Designer [1],Wikidata Shape Expressions Inference9, and sheXer10
are some examples. Visual interfaces have also been suggested to
understand, modify and create new shape expressions. YASHE11
and ShExAuthor12 are examples of some visual tools for creat-
ing Shape Expressions. Finally, there are approaches that propose
a smaller subset of the ShEx language. Shex-Lite13 [2], ShExML
[5], and ShExStatements belong to this category. ShExML is a lan-
guage developed to integrate multiple heterogeneous data sources.
Shex-Lite is meant to be an independent language, maintaining
compatibility with ShEx, and can be used to generate object models
in object-oriented programming languages. ShExStatements, on
the other hand, is a language developed to generate ShEx from CSV
files and tabular formats.

3 SHEXSTATEMENTS
To explain the grammar of ShExStatements, an example is given
below in Figure 6. It describes the ShExStatements of a human
language on Wikidata.

wd,<http://www.wikidata.org/entity/>,,,
wdt,<http://www.wikidata.org/prop/direct/>,,,

@language,wdt:P31,wd:Q34770,,# instance of a language
@language,wdt:P1705,LITERAL,,# native name
@language,wdt:P17,.,+,# spoken in country
@language,wdt:P2989,.,+,# grammatical cases
@language,wdt:P282,.,+,# writing system
@language,wdt:P1098,.,+,# speakers
@language,wdt:P1999,.,*,# UNESCO language status
@language,wdt:P2341,.,+,# indigenous to

Figure 1: ShExStatements of a human language onWikidata

There are two parts, separated by a blank line. This is also shown
in Figure 2. The first part consists of prefixes, i.e., the namespaces
that are going to be used in the second part. The prefixes in this
example include wd and wdt.

In the second part, there are eight statements. Each statement
starts with a node [15], i.e., a string starting with@. In this example,
@language is a node.
8https://www.wikidata.org/wiki/Help:Property_constraints_portal
9https://wd-shex-infer.toolforge.org/
10http://shexer.weso.es/
11https://github.com/weso/YASHE
12https://github.com/weso/shex-author
13https://github.com/weso/shex-lite

The second part has a simple syntax, with 5 columns, with the
values separated by a separator (,).

(1) Node name
(2) Property
(3) Allowed values
(4) Cardinality (optional)
(5) Comments (optional)

Prefix URL

Node Property Value Cardinality Comment

Figure 2: ShExStatements example with its two parts. First
part is used for specifying prefixes and the second part for
statements

If these five columns are present in the CSV file, column 1 is used
for specifying the node name, column 2 for specifying the property
value, column 3 for possible values, column 4 for cardinality (+,),
and column 5 for comments. Comments start with #. Columns 1, 2,
3 are mandatory. Column 3 can be a special value like . (period to
say ’any’ value). Columns 3,4 and 5 are empty for prefixes.

Consider the first statement in the second part. It states that a
language must be an instance of (wdt:P31) a language (wd:Q34770).
The fourth value, cardinality is intenionally left blank. The fifth
value starts with a # indicating a comment.

Cardinality can be any one of the following values
(1) * : zero or more values
(2) ? : zero or one
(3) + : one or more values
(4) m : m number of values
(5) m,n : any number of values between m and n (including m

and n).
Take the fifth statement that states that a language can have one

or more writing systems, hence the use of + in the fourth column.
But the third column can also be another node. A ShExStatements

file can also use delimiters like vertical bar (|) or semicolons (;). The
following example in Figure 3 shows these two cases.

This example is a ShExStatements of a TV series. The first state-
ment describes that a TV series is an instance of wd:Q5398426 (tele-
vision series). The second statement states that a TV series has zero
or more genres wdt:P136. However, to describe a genre, we need
additional statements. The third statement describes a genre to be

ShExStatements: Simplifying Shape Expressions for Wikidata WWW ’21 Companion, April 19–23, 2021, Ljubljana, Slovenia

@tvseries|wdt:P31|wd:Q5398426||# instance of a tvseries
@tvseries|wdt:P136|@genre|*|# genre
@genre|wdt:P31|wd:Q201658,wd:Q15961987|#instance of genre

Figure 3: ShExStatements of a TV series on Wikidata

Table 1: Significance of different terms

No. Name Symbol(s)
1. SEP | ;
2. COLON :
3. CARET ∧
4. STAR ∗
5. PLUS +
6. QUESTIONMARK ?
7. PERIOD .

an instance of wd:Q201658 (film genre) or wd:Q15961987 (television
genre). This statement is interesting since it demonstrates the use
of different separators. The above example uses vertical bar (|) for
separating the columns. The multiple possible values in the third
column are separated by comma (,).

Now, the grammar of ShExStatements can be formalized.
A simplified version of the grammar of ShExStatements is given

below. For the complete grammar (for example, optional comments,
shape constraints, import statements, etc.), the readers can take a
look at shexstatementsparser.py in [12].

ShExStatements consists of one or more statements, often pre-
ceded by prefix statements. There may exist blank lines (NEWLINE)
between the statements.

Listing 1: ShExStatements: statements
s t a t emen t s : NEWLINE

| s t a t emen t
| s t a t emen t s t a t emen t s
| p r e f i x e s s t a t emen t s t a t emen t s

A statement may be one of the following use cases:
(1) a node with a property and an associated property value. For

example, a language has a property value of wd:Q34770 for
the property wdt:P31.

(2) a node with a property and multiple associated values sep-
arated by a comma. For example, a genre can have any
one value from wd:Q201658, wd:Q15961987. for the property
wdt:P31.

(3) a node with a property and an associated property value,
along with the cardinality. For example, a language has a
property value of . (period) with the cardinality + for the
property wdt:P282 (writing system).

These are detailed below in the grammar. Table 1 can be used as
a reference for understanding the terms in upper case.

Listing 2: ShExStatements: statement
s t a t emen t :
nodeproper ty p r op e r t y v a l u e SEP comment
| nodeproper ty d e l i m s e p a r a t e d l i s t

SEP comment
| nodeproper ty p r op e r t y v a l u e SEP

c a r d i n a l i t y SEP comment

As described above, in this article, we have given a grammar that
shows a statement must have a comment. However, a comment can
be omitted.

A nodeproperty is a combination of node and property, separated
by SEP(|).

Listing 3: ShExStatements: node property
nodeproper ty : node SEP prop SEP

There can be one or more prefixes.

Listing 4: ShExStatements: prefixes
p r e f i x e s : p r e f i x

| p r e f i x p r e f i x e s

A prefix consists of two string separated by SEP.

Listing 5: ShExStatements: prefix
p r e f i x : STRING SEP STRING

A propertyvalue in the third column may be a value, a node, a
type, or a special term (e.g., LITERAL above).

Listing 6: ShExStatements: property value
p r op e r t y v a l u e : v a l u e

| node
| type
| s p e c i a l t e rm

A node consists of a word startingwith@ (NODENAME), possibly
separated by a colon from another word.

Listing 7: ShExStatements: node
node : NODENAME

| NODENAME COLON STRING

Special terms include period(.) or types like LITERAL, IRI, BNode,
etc.

Listing 8: ShExStatements: special term
s p e c i a l t e rm : PERIOD

| NODEKIND

As described above, cardinality values include *, ? etc.

Listing 9: ShExStatements: cardinality
c a r d i n a l i t y : PLUS

| STAR
| QUESTIONMARK
| NUMBER
| NUMBER COMMA
| NUMBER COMMA NUMBER

To specify types other than LITERAL, we need a special case to
distinguish values from types.

Take, for example, in the example given below, wewant to specify
that a painting must have creation date of type xsd:string. Unlike

WWW ’21 Companion, April 19–23, 2021, Ljubljana, Slovenia J. Samuel

values, this is a special case. Here we do not know any possible
value, but we know the type of those values.

@painting,wdt:P571,@@xsd:dateTime,#date of creation

Figure 4: ShExStatements of a painting on Wikidata

A type consists of a word starting with @@ (TYPESTRING), pos-
sibly separated by a colon from another word.

Listing 10: ShExStatements: type
type : TYPESTRING

| TYPESTRING COLON STRING

A value is a non-whitespace string which has no characters like
@ in the beginning.

Listing 11: ShExStatements: value
va lue : STRING

A comment is a string starting with #.

Listing 12: ShExStatements: comment
comment : COMMENT

A prop is just a value or value followed by ∧. This is interesting
to specify cases, where we wish to specify that the statement with
the given property must not hold.

Listing 13: ShExStatements: property
prop : v a l u e

| CARET va lue

A commaseparatedvaluelist is a list of values separated by a
comma.

Listing 14: ShExStatements: list of comma separated values
c omma s ep a r a t e d v a l u e l i s t :

v a l u e COMMA va lue
| v a l u e COMMA commas ep a r a t e d v a l u e l i s t

A commaseparatedtypelist is a list of types separated by a comma.

Listing 15: ShExStatements: list of comma separated types
c ommas ep a r a t e d t yp e l i s t : type COMMA type

| type COMMA commas ep a r a t e d t yp e l i s t

A delimseparatedlist is a list of types separated by a comma or a
list of values separated by a comma.

Listing 16: ShExStatements: list of comma separated types
or values
d e l i m s e p a r a t e d l i s t :

c ommas ep a r a t e d t yp e l i s t
| c ommas ep a r a t e d v a l u e l i s t

4 DEVELOPMENT
ShExStatements is developed in Python and has multiple interfaces.
It can be executed from the command line. There is also a web
interface as shown in Figure 5 and an API that allows users to
generate shape expressions from CSV files.

It uses the library ply14 for writing the grammar as described
above and the parser for parsing CSV files or input. The web inter-
face is built using Flask15 and pyshex16 is used to generate ShExj17
from ShExStatements.

Figure 5: Web interface for ShExStatements

ShEx generation
ShExStatements is also available on Python package index18 and
therefore can be installed using pip. Once ShExStatements is in-
stalled, run the following command with the above example written
in a file (for example, language.csv). This file contains an example de-
scription of a language on Wikidata and uses comma as a delimiter
to separate the values.

$. / s h e x s t a t emen t s . sh l anguage . c sv

ShExStatements will generate the following Shape Expression
(ShEx). It is also possible to use shexstatements in Python programs.
The method 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑠ℎ𝑒𝑥_𝑓 𝑟𝑜𝑚_𝑐𝑠𝑣 takes as input a CSV file
containing shexstatements and a delimiter. In this example, we use
"," as a delimiter.

Listing 17: ShExStatements: Using Python library
from s h e x s t a t emen t s . shex f romcsv import CSV

shex = CSV . gene r a t e_ shex_ f rom_c sv (
" l anguage . c sv " ,
de l im= " , ")

print (shex)

ShExStatements has also a public API that can be easily accessed
both on a local installation as well as on the public interface. It has
one operation that takes as input a JSON array with two elements
as given below:

• delimiter
14https://pypi.org/project/ply/
15https://pypi.org/project/Flask/
16https://pypi.org/project/PyShEx/
17https://shexspec.github.io/primer/ShExJ
18https://pypi.org/project/shexstatements/

ShExStatements: Simplifying Shape Expressions for Wikidata WWW ’21 Companion, April 19–23, 2021, Ljubljana, Slovenia

PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
start = @<language>
<language> {

wdt:P31 [wd:Q34770] ;# instance of a language
wdt:P1705 LITERAL ;# native name
wdt:P17 .+ ;# spoken in country
wdt:P2989 .+ ;# grammatical cases
wdt:P282 .+ ;# writing system
wdt:P1098 .+ ;# speakers
wdt:P1999 .* ;# UNESCO language status
wdt:P2341 .+ ;# indigenous to

}

Figure 6: Shape expression of a human language on Wiki-
data

• CSV (every line should be terminated by newline character)
Following is the way to call the ShExStatements API on a local

machine:

$ curl -s http://127.0.0.1:5000/ -X POST -H \
"Accept: application/json" \
--data @examples/api/tvseries.json \
|sed 's/\\n/\n/g'

Figure 7: ShExStatements API on a local machine

A small excerpt of examples/api/tvseries.json is given below:

[
"|",
"wdt|<http://www.wikidata.org/prop/direct/>|||\n
\n
@tvseries|wdt:P136|@genre|*|# genre\n"
]

Figure 8: JSON excerpt of TV series for API calls

It returns a JSON array with one element containing the ShEx
(shape expression).

5 RESULTS
ShExStatements is also available on Toolforge19 along with a de-
tailed documentation20. A number of shape expressions were cre-
ated during COVID-19 BiohackathonApril 5-11 202021 using ShExS-
tatements. For example, pandemic (EntitySchema:E18422), hospital,
preprint, lockdown, etc. The primary goal was to identify the key
properties for these entities, which could later be improved and
extended. During this hackathon, the possibility of using such sim-
ple shape expressions for selecting data from Wikidata was also
discussed.
19https://shexstatements.toolforge.org/
20https://shexstatements.readthedocs.io/en/latest/
21https://github.com/virtual-biohackathons/covid-19-bh20/wiki/Wikidata
22https://www.wikidata.org/wiki/EntitySchema:E184

Wikidata is a multilingual knowledge base. One of the main
objectives of ShExStatements is to ensure its use by multilingual
users. ShExStatements mainly makes use of symbols and positions
for specifying prefixes or even imports. EntitySchema:E21023 is one
such example which was generated from examples/hospital.csv in
[12]. Other ShExStatements related to Biohackathon can also be
found in the folder examples/ [12].

Limitations and Future Works
Currently, ShExStatements only works with CSV files or tabular
formats. Future works include supporting formats like Office Open
XML format and Excel files. User evaluation tests are required to
understand the challenges associated with writing shape expres-
sions. Even though ShExStatements was tested mainly for data on
Wikidata and for creating new entity schemas, it can also be used
for generating ShEx for other RDF data sources. This needs to be
further explored.

Another possible major work is to integrate ShExStatements in
such a manner that users can directly create new entity schemas
from the ShExStatements application. Currently, users need to man-
ually copy the generated shape expression from ShExStatements
and then create a new entity schema on Wikidata. ShExStatements
applications can also be integrated with other works that support
tabular formats for generating shape expressions. Finally, WikiPro-
jects can also play an important role in the greater use of shape
expressions for data validation. Contributors can develop simple
shape expressions and link them to the appropriate WikiProject
page.

6 CONCLUSION
Validation of data is important, especially for Wikidata considering
the multilingual and multi-domain nature of the knowledge base.
The recently introduced shape expressions (ShEx) is a major step
in this direction. To promote its use, more tools may be required.
Tabular formats, especially CSV files are commonly used file formats
by Wikidata contributors while using tools like OpenRefine and
QuickStatements. In this article, ShExStatements tool was presented
to simplify writing shape expressions using CSV files. A subset of
ShEx was used for building ShExStatements. With a command-line
interface, a Python library, and a web interface, ShExStatements
provide a wide variety of ways to generate shape expressions using
this simpler subset.

ACKNOWLEDGMENTS
The author would like to thank the contributors of Wikidata and
ShExStatements, especially the organizers and participants of Wiki
Techstorm 2019 [11] for their feedback.

REFERENCES
[1] Iovka Boneva, Jérémie Dusart, Daniel Fernández-Álvarez, and José Emilio Labra

Gayo. 2019. Shape Designer for ShEx and SHACL constraints. In Proceedings
of the ISWC 2019 Satellite Tracks (Posters & Demonstrations, Industry, and Outra-
geous Ideas) co-located with 18th International Semantic Web Conference (ISWC
2019), Auckland, New Zealand, October 26-30, 2019 (CEUR Workshop Proceed-
ings, Vol. 2456), Mari Carmen Suárez-Figueroa, Gong Cheng, Anna Lisa Gentile,
Christophe Guéret, C. Maria Keet, and Abraham Bernstein (Eds.). CEUR-WS.org,
269–272. http://ceur-ws.org/Vol-2456/paper70.pdf

23https://www.wikidata.org/wiki/EntitySchema:E210

http://ceur-ws.org/Vol-2456/paper70.pdf

WWW ’21 Companion, April 19–23, 2021, Ljubljana, Slovenia J. Samuel

[2] Guillermo Facundo Colunga, Alejandro González Hevia, Emilio Rubiera Azcona,
and José Emilio Labra Gayo. 2020. ShEx-Lite: Automatic Generation of Domain
Object Models from a Shape Expressions Subset Language. In Proceedings of the
ISWC 2020 Demos and Industry Tracks: From Novel Ideas to Industrial Practice
co-located with 19th International Semantic Web Conference (ISWC 2020), Globally
online, November 1-6, 2020 (UTC) (CEUR Workshop Proceedings, Vol. 2721), Kerry L.
Taylor, Rafael S. Gonçalves, Freddy Lécué, and Jun Yan (Eds.). CEUR-WS.org,
148–152. http://ceur-ws.org/Vol-2721/paper536.pdf

[3] Antonin Delpeuch. 2020. A survey of OpenRefine reconciliation services. In
Proceedings of the 15th International Workshop on Ontology Matching co-located
with the 19th International Semantic Web Conference (ISWC 2020), Virtual con-
ference (originally planned to be in Athens, Greece), November 2, 2020 (CEUR
Workshop Proceedings, Vol. 2788), Pavel Shvaiko, Jérôme Euzenat, Ernesto Jiménez-
Ruiz, Oktie Hassanzadeh, and Cássia Trojahn (Eds.). CEUR-WS.org, 82–86.
http://ceur-ws.org/Vol-2788/om2020_STpaper3.pdf

[4] Eric Prud’hommeaux, tombaker, Glenna, Jose Emilio Labra Gayo, mrolympia,
andrawaag, Lucas Werkmeister, and David Booth. 2018. shex.js - Javascript
implementation of Shape Expressions. https://doi.org/10.5281/zenodo.1213693

[5] Herminio García-González, Iovka Boneva, Slawek Staworko, José Emilio Labra
Gayo, and Juan Manuel Cueva Lovelle. 2020. ShExML: improving the usability of
heterogeneous data mapping languages for first-time users. PeerJ Comput. Sci. 6
(2020), e318. https://doi.org/10.7717/peerj-cs.318

[6] Timothy Kanke. 2018. Preliminary Exploration of Knowledge Curation Activities
inWikidataWikiProjects. In Proceedings of the 18th ACM/IEEE on Joint Conference
on Digital Libraries, JCDL 2018, Fort Worth, TX, USA, June 03-07, 2018, Jiangping
Chen, Marcos André Gonçalves, Jeff M. Allen, Edward A. Fox, Min-Yen Kan, and
Vivien Petras (Eds.). ACM, 349–350. https://doi.org/10.1145/3197026.3203878

[7] Jose Emilio Labra Gayo, Eric Prud'hommeaux, Iovka Boneva, and Dimitris Kon-
tokostas. 2017. Validating RDF Data. Synthesis Lectures on the Semantic Web:
Theory and Technology, Vol. 7. Morgan & Claypool Publishers LLC. 1–328 pages.
https://doi.org/10.2200/s00786ed1v01y201707wbe016

[8] Dustin Lange, Christoph Böhm, and Felix Naumann. 2010. Extracting structured
information from Wikipedia articles to populate infoboxes. In Proceedings of the
19th ACM Conference on Information and Knowledge Management, CIKM 2010,
Toronto, Ontario, Canada, October 26-30, 2010, Jimmy Huang, Nick Koudas, Gareth
J. F. Jones, Xindong Wu, Kevyn Collins-Thompson, and Aijun An (Eds.). ACM,
1661–1664. https://doi.org/10.1145/1871437.1871698

[9] Edward L. Platt and Daniel M. Romero. 2018. Network Structure, Efficiency,
and Performance in WikiProjects. In Proceedings of the Twelfth International

Conference on Web and Social Media, ICWSM 2018, Stanford, California, USA,
June 25-28, 2018. AAAI Press, 251–260. https://aaai.org/ocs/index.php/ICWSM/
ICWSM18/paper/view/17901

[10] Eric Prud’hommeaux, José Emilio Labra Gayo, and Harold R. Solbrig. 2014. Shape
expressions: an RDF validation and transformation language. In Proceedings of
the 10th International Conference on Semantic Systems, SEMANTICS 2014, Leipzig,
Germany, September 4-5, 2014, Harald Sack, Agata Filipowska, Jens Lehmann, and
Sebastian Hellmann (Eds.). ACM, 32–40. https://doi.org/10.1145/2660517.2660523

[11] John Samuel. 2020. Wikimedian John Samuel and his experiences at Wiki Tech-
storm 2019. https://diff.wikimedia.org/2020/01/07/wikimedian-john-samuel-
and-his-experiences-at-wiki-techstorm-2019/

[12] John Samuel, Tom Baker, Nishad Thalhath, and Eric Prud’hommeaux. 2020.
ShExStatements: v0.7. https://doi.org/10.5281/ZENODO.3723870

[13] ShEx. [n.d.]. ShEx - Shape Expressions. http://shex.io/
[14] Harold R. Solbrig, Eric Prud’hommeaux, Grahame Grieve, Lloyd McKenzie,

Joshua C. Mandel, Deepak K. Sharma, and Guoqian Jiang. 2017. Modeling and
validating HL7 FHIR profiles using semantic web Shape Expressions (ShEx). Jour-
nal of Biomedical Informatics 67 (2017), 90 – 100. https://doi.org/10.1016/j.jbi.
2017.02.009

[15] Slawek Staworko, Iovka Boneva, José Emilio Labra Gayo, Samuel Hym, Eric G.
Prud’hommeaux, and Harold R. Solbrig. 2015. Complexity and Expressiveness
of ShEx for RDF. In 18th International Conference on Database Theory, ICDT
2015, March 23-27, 2015, Brussels, Belgium (LIPIcs, Vol. 31), Marcelo Arenas and
Martín Ugarte (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 195–211.
https://doi.org/10.4230/LIPIcs.ICDT.2015.195

[16] Katherine Thornton, Harold Solbrig, Gregory S. Stupp, José Emilio Labra Gayo,
Daniel Mietchen, Eric Prud’hommeaux, and Andra Waagmeester. 2019. Using
Shape Expressions (ShEx) to Share RDF Data Models and to Guide Curation with
Rigorous Validation. In The Semantic Web - 16th International Conference, ESWC
2019, Portorož, Slovenia, June 2-6, 2019, Proceedings (Lecture Notes in Computer
Science, Vol. 11503), Pascal Hitzler, Miriam Fernández, Krzysztof Janowicz, Amra-
pali Zaveri, Alasdair J. G. Gray, Vanessa López, Armin Haller, and Karl Hammar
(Eds.). Springer, 606–620. https://doi.org/10.1007/978-3-030-21348-0_39

[17] Denny Vrandecic. 2012. Wikidata: a new platform for collaborative data collection.
In Proceedings of the 21st World Wide Web Conference, WWW 2012, Lyon, France,
April 16-20, 2012 (Companion Volume), Alain Mille, Fabien L. Gandon, Jacques
Misselis, Michael Rabinovich, and Steffen Staab (Eds.). ACM, 1063–1064. https:
//doi.org/10.1145/2187980.2188242

http://ceur-ws.org/Vol-2721/paper536.pdf
http://ceur-ws.org/Vol-2788/om2020_STpaper3.pdf
https://doi.org/10.5281/zenodo.1213693
https://doi.org/10.7717/peerj-cs.318
https://doi.org/10.1145/3197026.3203878
https://doi.org/10.2200/s00786ed1v01y201707wbe016
https://doi.org/10.1145/1871437.1871698
https://aaai.org/ocs/index.php/ICWSM/ICWSM18/paper/view/17901
https://aaai.org/ocs/index.php/ICWSM/ICWSM18/paper/view/17901
https://doi.org/10.1145/2660517.2660523
https://diff.wikimedia.org/2020/01/07/wikimedian-john-samuel-and-his-experiences-at-wiki-techstorm-2019/
https://diff.wikimedia.org/2020/01/07/wikimedian-john-samuel-and-his-experiences-at-wiki-techstorm-2019/
https://doi.org/10.5281/ZENODO.3723870
http://shex.io/
https://doi.org/10.1016/j.jbi.2017.02.009
https://doi.org/10.1016/j.jbi.2017.02.009
https://doi.org/10.4230/LIPIcs.ICDT.2015.195
https://doi.org/10.1007/978-3-030-21348-0_39
https://doi.org/10.1145/2187980.2188242
https://doi.org/10.1145/2187980.2188242

	Abstract
	1 Introduction
	2 Related Works
	3 ShExStatements
	4 Development
	5 Results
	6 Conclusion
	References

