
A Comparison of Real-time Object-Oriented
Modeling Methods ROOM and OCTOPUS

Guilan Dai and Baowen Xu

Department of Computer Science & Engineering
Southeast University

Nanjing 210096, P. R. China
{adalab, bwxu} @seu.edu.cn

Abstract
ROOM and OCTOPUS are two real-time

object-oriented modeling methods used commonly.
The paper analyses and compares ROOM and
OCTOPUS based on details where philosophies of
both methods are in sharper contrast, such as
model representation, class and object and
inheritance, concurrency, and state charts.

Key Words
Formal method, informal method, semiformal

method, modeling, modeling languages, modeling
methodology, OCTOPUS, object-orientation,
object-oriented modeling method, real-time
systems, ROOM.

1 Introduction
Software methodology plays an important in the

development and maintenance of large and complex
real-time systems. An important category of software
methodologies is based on building models. A
modeling method needs the support of modeling
language and tool. Modeling language is the basis of a
method. It defines what can be modeled and how it is
specified and decided on the performance of modeling
language [1,2,3,4]. Though a modeling method does not
correspond to only a modeling language, a method
combining with the specific language can lead to better
effect. Therefore, the modeling methods discussed in
this paper are consistent with their underlying
languages.

Object-oriented modeling technology helps in the
development of systems in a way that naturally maps to
the inherent nature of the systems being built,
providing benefits such as reusability, extendibility and

robustness [~'2'4t. The two commonly used real-time
object-oriented modeling methods are ROOM (Real-
time Object-oriented Modeling) and OCTOPUS. They
attempt to introduce object-oriented technology into
real-time systems and aim at coping with the
characteristic problems of real-time domains, such as
concurrency, synchrony, communication, interrupt,
hardware port and end-to-end response times. Both
technologies are clearly superior to their competitors
and predecessors (such as OMT, Fusion, OOSE) ~21 in
terms of ability of expression, maturity and their
resulting software is robust, flexible, and reliable.

We analyze and compare ROOM and OCTOPUS
so that we can borrow from their good ideas. At the
same time, this can not only provide theoretical basis
for the further development of modeling language, but
also guide developers to select appropriate modeling
methods.

Rather than comprehensive, this paper focuses on
details where the philosophies of both methods are in
sharpest contrast, for example, model representation,
concurrency, state-chart, class and object and
inheritance. Other elements of modeling methods such
as the linkage between high-level abstract model and
implementation, implementation language and so forth
are not discussed in details here, since they have little
difference in the two methods.

2 Model Representation
The OMT and the Fusion methods are fundamental

for the development of OCTOPUS, which inherits the
separation of structural, functional and dynamic
aspects from OMT and combines it with the basic
separation between the analysis phase and the design
phase borrowed from Fusion. OCTOPUS uses the
object model, functional model and dynamic model to
describe systems and subsystems. The three models

ACM SIGPLAN Notices 67 V. 34(12) December 1999

http://crossmark.crossref.org/dialog/?doi=10.1145%2F344283.344296&domain=pdf&date_stamp=1999-12-01

complement each other. The relationship between the
models is expressed by using the same names of the
same components that may appear in different models,
and by associating the components of the functional
and dynamic models with the classes of the object
model. Each model uses an appropriate set of notation
[2]

ROOM represents its language model in graphical
form too. The basic element of ROOM is actor. In
general, a ROOM actor denotes an active object that
has a clearly defined purpose. In this context, the term
active means that an actor has its own execution thread
and can, therefore, operate concurrently with other
active objects in its domain. An actor consists of port,
behavior, variable, function and SAP (service access
points). Each actor has one or many ports through
which it can communicate with other actors by
exchanging messages. At the same time, each actor can
optionally have a behavior component. This
component can initiate activities by sending messages
as well as response to external message. Leaf actors
only include behavior Ell

If we study the two language models in details, we
can conclude that:

* OCTOPUS represents three models in three
different sets of notations. This leads easily to
semantics discontinuity and scope discontinuity.
ROOM uses a single integrated set o f modeling
concepts to build a given model, and eliminates
semantics discontinuity and scope discontinuity of
the development process, and increases reliability
of systems.

* OCTOPUS uses three different models to describe
the system. This helps to early detect errors or
inconsistency. ROOM is supplemented with
treating requirement models" and design models"
as programs written in a very high-level modeling
language. In a full-fledged, executable model, all
the elements of the language, whether those used
to represent high-level schematic details as well
as those used to represent low-level details, or
those used to represent different kinds of details
such as structure versus behavior, are
compilable, executable. In addition, ROOM
represents the system in an integrated graphical
form so that it can dearly convey semantics.
Therefore, the models of ROOM are highly
observable.

• OCTOPUS explicitly separates the analysis model
and the design model. This easily causes phase
discontinuity. ROOM uses a single set of

modeling concepts throughout requirement
definition, design and implementation. It is
possible that large portions of a design model are
also portions of the associated requirement
model. This can not only eliminate phase
discontinuity, but also simplify the modeling
process.
The language model of OCTOPUS is informal.
Since natural languages are inherently
ambiguous, they prevent from eommunicating
between developers and users. However, ROOM
is formal, which can not only override
ambiguousness, but also make it possible to
automatically generate software.

3 Object, Class and Inheritance
Object-oriented technology has become the

buzzword of the decade. Behind the obvious
enthusiasm of the software community, there lies the
fact that it simplifies the design and construction of
software system. The most basic way it simplifies
design and construction is by reuse.

OCTOPUS views a subsystem as composition of
objects that are specified only through class. The
properties of a super-type are inherited by its Subtypes.
Inheritance allows subclass to reuse the interface and
even the implementation of the super-class, and
therefore the objects of a subtype also belong to the
super-type.

In contrast, ROOM defines object as logical
machine called actor. An actor may be implemented as
software component, as digital hardware, analog
hardware, or manual procedure. In order to increase the
expressiveness, ROOM provides a number of advanced
modeling features such as layer, multiple containment
and replication, in addition to supporting conventional
object paradigm.

ROOM defines all objects by classes, even the
highest-level objects are defined by actor classes. A
run-time system is an instance of an actor class. This is
different from OCTOPUS in that the system is defined
as object but it itself is not a class. ROOM has three
kinds of classes. These are actor class, protocol class
and data class. Each kind of class specifies different
objects and has different hierarchical inheritance
mechanisms. In ROOM inheritance is seen as abstract
mechanisms which help to cope with complexity. The
high-level structure and high-level behavior of actor
class may be inherited. This increases granularity of
reuse. Both actor class and protocol class have more

68

flexible inheritance mechanisms through which all
attributes inherited from the parent class are but
eliminated and overridden. Therefore, in ROOM, the
subclasses can be used in the places where the super-
class may not be used.

ROOM is superior to OCTOPUS in that ROOM
defines system as class but OCTOPUS defines system
as object. The main reasons are:

• Replacing a group o f objects with a simple class,
we need not describe every object. This can not
only save effort but also save memory, and
increase maintainability o f the systems.

• By speciying system as class, we may define
system variables in different environment and
allow introducing smaller system into larger
system. This increases granularity o f reuse and
the maintainability o f the systems.

In addition, ROOM has more flexible inheritance
mechanisms by which may increase extendibility,
flexibility, reliability of the systems.

4 State Charts
Reaction of the system on an event is affected by

the state in which the system may be. This is another
feature of real-time reactive systems. State-machine
technology is the most direct and common ways of
modeling behavior. The use of state charts reduces
' state explosion 'Is1.

OCTOPUS uses Statecharts to describe state
transitions of the system. Statecharts extends Harel's
state-charts with three mechanisms, i.e., hierarchy,
concurrency, and communication. However, The over-
simplified and over-idealized design considerations
embodied in Statecharts are problematic for modeling
practical real-time software:

• The communication model o f Statecharts assumes
a fully reliable and instantaneous broadcast,"

• Statechart execution model assumes that
transitions from one state to the next state are

instantaneous.
These two design considerations are key to some of

the most powerful concepts in Statecharts, such as the
decomposition of a state into "and" substates since the
assumption that a system always must be in some state.
Though similar concepts increase expressiveness of the
model, specifications that are modeled using these
concepts may be difficult to implement. For example,
in some cases, distributed systems are particularly
sensitive to the defects in communications and the

defects may decrease reliability of modeled systems u,
2]

ROOM uses ROOMchart to describe state
transitions of a system. ROOM extends and modifies
Statecharts to make full use of the essential features of
object-oriented paradigm, to eliminate phase
discontinuity between requirement model and design
model, and to make it possible to automatically
generate efficient software implementation from high-
level behavior specification. This probably results in
some loss because of the elimination of 'and' states.
Fortunately, this loss can be supplemented, to a degree,
with combining some of the other ROOMchart
features.

We'll illustrate this method using a simplified
example of a digital Beep Pager (BP). A Beep Pager
provides four functions. These are a timekeeping
function measuring the time progress by a series of
clock ticks, a call function (an alarm that is triggered
when a call signal reaches), a time-display function
displaying the current time in either 24-Hmode or 12-
Hmode), and a PC-note recording phone call numbers.

Figure 1 Statechart of a Beep Pager

PC-Notes Time Call
Display

Time-keeping

Figure 2 ROOMchart of a Beep Pager

In OCTOPUS Statechart formalism, the state of
this system may be modeled by a composite state
consisting of the time-displaying state, the calling state,

69

the phone note state and the time-keeping state, as
shown in Figure 1. Each of these four high-level states
also contains a child state machine that describes the
behavior of the particular function.

In contrast, in ROOMchart model, each of the
orthogonal states of the Beep Pager can be modeled as
a distinct object. This is possible because the
mechanisms required to implement the time-displaying
function are distinct from the mechanisms required to
implement the call function as well as the mechanisms
required to implement the phone call number. We
should use concurrent objects to model these three
functions (since the orthogonal states are concurrent),
even though the functions share some common
function (such as the time-keeping function). As shown
in Figure 2, each of the orthogonal states may be
represented using an actor. For sharing function, layer
mechanism is effective. The state machines within the
individual actors would be similar to the corresponding
ones in Figure 1.

The principal difference between ROOMchart and
Statechart models is the communication forms. In
ROOMchart model, all communication is explicit. This
requires more effort from the modeler, since the
communication protocols and message formats must be
formally defined. On the other hand, by making the
interaction between concurrent entities explicit,
unnecessary couplings between orthogonal states may
be avoided. Such a coupling can occur when an action
associated with one transition unexpectedly generates
an event that triggers a transition in another orthogonal
state. The likelihood of an unnecessary coupling is
increased by the fact that, in Statechart, an event is not
necessarily generated as an explicit communication,
but could be the side effect of some other operation.

From the above we can see that, in some sense,
ROOMchart is the modifications and extensions to
Statecharts.

5 Concurrency
Concurrency is inherent in almost real-time

systems. Concurrency is a powerful mechanism in
modeling real-time systems. Meanwhile, it creates new
problems regarding the consistency of data. As the
level of concurrency increases, synchronization
problems increase as well. The basic difficulty of
applying object-oriented methods to the development
of real-time systems is how to combine the concept of
concurrency with object.

OCTOPUS uses the implicit concurrency model in
the analysis phase. In the design phase, the
concurrency model is gradually made more explicit.
OCTOPUS maps directly objects to processes in
operating system. In order to simplify synchronization
design between processes, OCTOPUS group a
conceptual union of objects together with synchronous
interactions between them into an object group. In
addition, shared objects are reduced as few as possible
in the design process of object group. Each object
group may be mapped to a single process, called the
object group process. Either a call for a member
function of the object is executed as a part of a given
process, or a direct member data access is performed.
The part of an event thread that is covered by an object
group specifies the hierarchy of member function calls
the execution thread of the object group process has to
follow.

ROOM uses the implicit concurrency model, and
its basic scheduling unit is actor. ROOM assumes the
underlying environment can provide concurrency
mechanisms and the kernel can support concurrent unit
or thread. The most straightforward way to implement
an actor is to match the basic scheduling unit with a
thread of the host environment. An alternative is to
encapsulate the entire complexity of ROOM actors
comprising the design into a single scheduling unit and
then provide an internal customized multithread
environment within that unit. This kernel-within-a-
kernel approach usually requires more work, but it
provides an opportunity for much greater throughput.
We can come into conclusions that:

* In ROOM, an actor is mapped to a thread This
increases throughput and granularity o f
concurrency, since proprietary resources that
belong to a thread are few, and states that
describe a thread are less than a process.
Memory resources needed in creating threads are
far away less than creating processes. Therefore,
the overhead o f switching and communicating
between threads is less than that between
processes.

* In OCTOPUS, we must manually map object to
process, especially for the production o f object
group. In ROOM, however, these work can be
automatically done by ObjecTime tool sets. This
may not only save effort but also eliminate
factitious errors so that it can increase reliability.

70

6 Conclusion
Both OCTOPUS and ROOM are commonly used

object-oriented real-time modeling methods. They
primarily intend for soft real-time systems. ROOM is
more suitable for distributed systems, whereas
OCTOPUS is more suitable for embedded systems.
However, OCTOPUS can be applied in distributed
systems based on a distributed operating system
supporting location-transparent message passing
between the objects.

The paper analyses and compares ROOM and
OCTOPUS based on details where philosophies of
both languages are in sharper contrast, such as model
representation, class (including object and inheritance),
concurrency, and state chart. It may be concluded that,
in some sense, ROOM is superior to OCTOPUS,
particularly, in extensibility, reliability, and granularity
of concurrency and reuse.

OCTOPUS manually controls event scheduling by
defining event significance table, in this aspect ROOM
is deficient.

Acknowledgments
The authors wish to thank Zhenqiang Chen, Yuan

Liu and Shengzhi Li for their valuable comments.

References
[1] Selic, B. and Gullekon, G., Real-Time Object-

Oriented Modeling, Katherine Schowdter, John
Wiley & Sons, Inc., 1994.

[2] Maher, A. and Jula, K., Object-Oriented
Technology for Real-Time Systems: A Practical
Approach Using OMT and Fusion, Prentice Hall,
Inc., 1996.

[3] Claus, L. and Thomas, L., Formal Development of
Reactive Systems, Springer-Verlag, 1995.

[4] Yourdon, E. and Argila, C., Case Studies in Object
Oriented Analysis & Design, Prentice Hall, Inc.,
1996.

[5] Harel, D., "Statecharts: A Visual Formalism for
Complex Systems", Science of Computer Program
July 8, 1987.

71

