
Role Delegation in Role-Based Access Control
SangYeob Na

Computer Dept, Namseoul Univ
Maeju-ri 21, Sunghwan-eup

Chunan, Chung-Nam, KOREA
+ 82 0417 580 2106

nsy@nsu.ac.kr

SuhHyun Cheon
Computer Engineering Dept, Dongguk Univ

Phil-dong 7-26, Chung-gu
Seoul, KOREA

+82 02 2260 3343

shcheon@cakra.dongguk.ac.kr

ABSTRACT
In distributed-computing environments, applications or users have
to share resources and communicate with each other to perform
their jobs more efficiently. For better performance, it is important
to keep resources and the information integrity from the
unexpected use by unauthorized user. Therefore, there is a strong
demand for the authentication and the access control of
distributed-shared resources. Nowadays, three kinds of access
control, discretionary access control (DAC) mandatory access
control (MAC) and role-based access control (RBAC) have been
proposed. In RBAC, there are role hierarchies in which a senior
role can perform the permission of a junior role. However, it is
sometimes necessary for a junior role to perform a senior role’s
permission, which is not allowed basically by a junior role. In this
paper, we will propose a role delegation method, consisting of a
role delegation server, and a role delegation protocols. We divide
the delegation into two by the triggered object: active delegation
and passive delegation. Consequently, a junior role can gain a
senior role’s permissions.

Keywords
Role-Based Access Control, Role Delegation, Delegation Server,
Delegation Protocol, Active Delegation, Passive Delegation

1. INTRODUCTION
In the distributed client-server computing environment, users
sharing resources and communicating with others can work more
efficiently. With the increase of the shared information and
resources in the distributed system, unauthorized access to the
information by illegal users that leads to the leakage of the data
also increases. To protect the information in a distributed
computing environment, it is necessary to secure the data through
the user authentication and access control policy. This kind of
policy has to be offered transparently to users or application
programs for the convenient use of the system.

Access control is classified into three kinds [14] - discretionary
access control (DAC), mandatory access control (MAC) and role-

based access control (RBAC).

MAC enforces access controls on the basis of information security
labels attached to users and objects. It shows access control
relationship that cannot be changed by the object’s owner. MAC
can determine all kinds of access controls between subjects and
objects consistently. If some object is duplicated, access control
relationship to the original object must be equally applicable to
the duplicated object. Also the object’s owner cannot change
access control relationship. Security labels have to be granted to
all subjects and objects by the system supervisor, and it can be
changed only in accordance with the contents of the object.

In case of DAC, access control restricts the access to the object on
the basis of the identity of the user or the group. The owner of the
object determines access control relationship. Therefore, it is
difficult to maintain access control consistency. Access control
can be established in one subject-object unit, and users who have
permissions can allow any other users to access to data. But,
because access control policy can be changed at the owner’s own
discretion, and owners can optionally delegate their authorities to
other subjects, it is difficult to control information efficiently.
Information related to the meaning of data cannot be involved in
DAC, because access control is only based on qualifications of
subjects [2].

Compared with MAC and DAC, RBAC determines access
permissions that roles can perform, and assigns roles to users.
Users can access objects according to assigned roles to them. As a
result, the organization can not only preserve access control
policy appropriate to its characteristics consistently, but also
maintain access control relationship between subjects and objects
independently. Even if access control policy is changed, the new
access rights have to be allowed not to the user but to the role
itself. RBAC can manage the complicated security policy
efficiently [6][7][8].

A role in RBAC is the aggregate of responsibility and authority, to
which the access to the object is permitted [1]. Each role having
relations with other roles exists in role hierarchies according to
the access control policy. Senior roles inherit authorities of junior
role [7][8]. In this case, the outstanding problem is that a junior
role or the role, which is not included in hierarchies, cannot
perform permissions of a senior role.

In this paper, a role delegation method will be proposed in which
junior roles can be temporarily granted senior roles’ permissions.
Delegation server and delegation protocol also will be presented.
The former decides whether it is possible to delegate roles or not,
and the latter describes how delegation is performed. The
delegation method is divided into active delegation and passive
delegation. A medical institution is taken as an example, because

Permission to make digital or hard copies of part or all of this
work or personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

RBAC 2000, Berlin, Germany
© ACM 2000 1-58113-259-x/00/07 ...$5.00

39

http://crossmark.crossref.org/dialog/?doi=10.1145%2F344287.344300&domain=pdf&date_stamp=2000-07-26

recently there has been a lot of research to present the standard
model of RBAC in a medical institution [9].

The rest of paper is organized as follows. Section 2 begins with
descriptions of RBAC model and its characteristics. Section 3
presents the necessity for a role delegation, a delegation server
and a delegation protocol. Differences between active delegation
and passive delegation are also explained with examples. The
final section gives our conclusions and future research.

2. Role-Based Access Control Model
Access control is what allows the certified user to access the inner
information of a system within the limits of permission. Computer
based access controls can prescribe not only who or what process
may have access to a specific system resource, but also the type of
access that is permitted [16].

Role-based access control (RBAC) is proposed and studied as an
alternative for MAC and DAC [13]. In RBAC, it is possible to
simplify the complicated form of an organization’s access control
policy. Access decisions are based on the roles, which is part of
an organization. RBAC is a non-discretionary access control in
which the system administrator allows the role’s permissions to
the user by defining user, role, and permission. The system
administrator divides roles according to operations in an
organization, and gives access permissions to roles. The
administrator of the system or organization gives access
permissions to roles, and users are endowed with roles according
to their responsibility and obligation [4]. Users, who are granted
a role in system, can manage their works with their role
permissions. In case of changing access control policy, the system
supervisor easily can grant a new permission or can eliminate the
existing permission to the role. Because access permissions are
granted to roles (permissions are associated with roles), not to
users, it is possible to manage access control policy more
efficiently. There are many variations of RBAC, but the basic
architecture of RBAC is that permissions are assigned to roles
(not directly to users) and roles are assigned to users [7][12].

2.1 Role-Based Access Control Components
The basic components of RBAC model are User, Role and
Permission [6][7][12]. User is a person, who uses the system or
an application program within the system. Membership to roles is
granted to users based on their obligation and responsibility in the
organization. The operation of a user can be carried out based on
the user’s role.

Role means a set of functional responsibilities within the
organization. The system administrator defines roles, a
combination of obligation and authority in organization, and
assigns them to users. User-Role relationship represents collection
of the user and role.

Permission is the way for the role to access to more than one
resource, and is subdivided into obligation and authorization [1].
The former specifies which activities a subject is permitted (or
forbidden) to perform on a set of objects, the latter represents
which activities a subject must or must not perform on a target
object. A subject means the user or the process that attempts to
access resources, and a object represents resources.

Basic RBAC model consists of User-Role (U-R) relationship,

Role-Permission (R-P) relationship and Role-Role (R-R)
relationship. User-Role (U-R) relationship represents which user
is assigned to perform what kind of role in the organization. The
administrator decides the U-R relationship. When the user logins,
the system U-R relationship is referenced to decide which role is
executed.

In this article, Role-Role relationship and Role-Permission
relationship will be explained for a role delegation method. In our
paper, we simplify RBAC structure [7] in order to explain a role
delegation.

2.2 Role-Permission(R-P) Relationship
Permission consists of obligation and authorization [1]. The
former is the aggregate of operations that the pertinent role must
perform or not, and the latter is the collection of operations that
are permitted to roles or not. Expressions of obligation and
authorization are simplified as defined in [4][17].

ÏÏidentifier, mode, role, {action}, target, constraints, exception}

[identifier] : Uniquely identifying the permission

[mode] : o:obligation, a:authorization +:positive,-:negative

[role] : role which can process this permission

[action] : actual operation by permission

[target] : object which operation being applied

[constraints] : limit the applicability of the permission

[exception] : exceptional condition

In R-P Relationship, permission is applied Role Group (explained
in section 2.3). Identifier is used to identify the permission. Mode
specifies obligation and authorization, with either + and -
denoting a positive or a negative policy respectively. e.g. o+
denotes a positive obligation. Role is to carry out this permission.
Action means operation, which is to be processed by role, target is
object influenced by action in permission. Constraints represent
limits the applicability of the permission, e.g. a time period, or
execution condition. Exception represents exceptional condition
for permissions to be executed or not, e.g. if a permission has a-
mode then this permission is not executed by the indicated role,
but some specified exceptional condition occurred then
permission can be allowed to be executed by the role.

For instance, obligation such as “a nurse must check the patient’s
condition every morning at 8 o’clock” can be expressed as ÏÏnp1,
o+, nurse, {Check}, patient, every 08:00, -}. And authorization
such as “a specialist can read chart of patient by intern” can be
changed as ÏÏdp1, a+, specialist, {read}, chart by intern, -, -}.
The example of Role-Permission relationship used in this paper is
presented in [Table 1].

User

(U)

Role

(R)

Permi-

ssion

[Figure 1] Basic Model of RBAC

40

[Table1] Simplified Role-Permission Relationship Model

Role
Group

Permission

{dp1, a+, specialist,{read,fix},chart by intern, -, -}

{dp2, o+, specialist,{chief of surgical operation},
patient, -,-}

{dp3, a+, resident,{support of surgical operation},
specialist, request of specialist,-}

{dp4, a-, resident,{read,fix}, chart by intern, -, no
specialist}

{dp5, a+, intern,{make}, chart for patient, -, -}

Doctor

{dp6, o-, intern,{chief of sugical operation}, patient, -, -}

{np1, o+, chief nurse,{assign}, nurse-patient,every
09:00, -}

{np2, a+, nurse,{injection by chart}, patient, by chart,-}Nurse

{np3, a-, nurse,{preparation of medicine},drug,-
,emergency}

{pmp1, a+, pharmacist, {preparation of medicine},
patient by chart, doctor request, -}Phar-

macist {pmp2, o+, pharmacist, {make report}, used drug,
every 18:00, -}

2.3 Role-Role(R-R) Relationship
In the RBAC model, roles are organized in a hierarchical structure
according to their permissions within the organization [5]. Roles
with the similar authorization are managed as a group. The
supervisor of organization classifies a lot of groups in order to
manage roles. A role is subdivided into senior role and junior role
within the hierarchical structure of role groups. There exists an
inheritance relationship where a senior role may inherit the
permissions of a junior role. It is possible to have multiple
inheritance.

In [Figure 2], there are three role groups - a doctor group, a nurse
group and a pharmacist group. The doctor group has three kinds
of roles - specialist, resident and intern. Within the doctor group
of the medical organization, residents and specialists (the senior
roles) inherit permissions from interns. This means the each
member of the role specialist naturally “contains” the permissions
of residents and interns. The senior roles are at the top of the
hierarchy with junior roles being at the bottom [8]. Senior role
contains more permissions than junior role. The nurse group has
two roles - chief nurse and nurse. And pharmacist role group has
only one role.

In [Figure2], specialist is a senior role in doctor role group. Thus,
specialist has the permission, which is granted to resident and
intern, implicitly. In [Table 1], doctor group has six permissions
explicitly. Specialist, resident and intern have two permissions for
each explicitly. But, specialist has six permissions, resident has
four permissions, and intern has two permissions implicitly.

3. Role Delegation Methods
In RBAC, senior role inherits junior role’s permission by virtue of
the role hierarchy. But, junior role does not allowed to carry out
the permission, which is only granted to the senior or other role
groups. When, a senior role fails to operate, junior roles may not
continue to perform their jobs when they need the senior role’s
permission. Note that, in conventional RBAC, roles are structured
hierarchically, and when a role has no permission to certain
resources, it should request other roles to access resources on its
behalf. Also, role must gain the privileges reserved to other role,
which are not granted to him explicitly. For continuous operation,
even in the absence of senior role or in the exceptional condition,
our delegation scheme makes it possible to grant permissions
dynamically in order for roles to carry out their jobs successfully.

Role delegation means, the user delegates his(her) assigned role to
the other user in order for him(her) to perform the role’s
permissions. We describe a simple scenario in order to explain the
necessity of role delegation. Delegation and extended access
control policies are illustrated in [5], where delegation is
described with domain concepts. A domain is an object that
maintains a list of references to other objects, which have been
explicitly grouped together for the purpose of management
[1][13]. In this paper, apart from the concept of domain, we
propose a role delegation by means of inheritance of permissions
in senior and junior role-relationship after dividing roles into
groups.

Basic delegation concept is illustrated in [Figure 3][1][5]. When
X invokes an operation op1 on a target Y, this operation triggers
the invocation of op2 on Z. If X has the right to invoke op2 on Z
but Y has no right to invoke op2 on Z, then X temporally
delegates the necessary access rights to Y in order to invoke op2
on Z. In this case, X acts as the grantor, Y as the grantee, and Z
as the end-point [5].

 Chief

 Nurse

 Nurse
 Intern

Specialist 2

 Resident

Specialist 1

[Figure 2] Role Group and Group Relationship Model

Pharmacist

41

For example, in a hospital environment, an intern has no
permission to perform surgical operations, which was granted to
residents and specialists only. But, sometimes an intern may
support surgical operation upon a resident’s or a specialist’s
request. In this case, the specialist who requests the intern to join
the surgical operation is the grantor and the intern who supports
the surgical operation is the grantee. Consider another example,
where a pharmacist has permission to prepare medicine for
patients, but a nurse has no such permission. If the pharmacist is
absent, a subject who belongs to doctor group can request a nurse
to carry out dispense (pnp1) permission. In this case, a nurse plays
a pharmacist’s role. Nurse is the grantee and doctor is the grantor.

We divide role delegation into active delegation and passive
delegation. In active delegation, both the subject who requests the
delegation and the grantee are the same subject. In passive
delegation, delegation server can delegate the grantor’s
permission by the other role’s request.

3.1 Delegation Server
Delegation server makes a decision about whether the delegation
process is permitted or not. Server maintains a delegation
information for making a decision. In [Table 1], we present some
permissions for doctor group, nurse group, and pharmacist group.
Permission has mode and exception, which is the delegation
information. In [4], mode is divided into rights and duties. Rights,
as authorization policies, specify what kinds of activities a subject
is permitted (or forbidden) to perform on a target object. Duties
are modeled as obligation policies that specify what activities a
subject must or must not perform on a target object. Permission’s
mode has four case a+, a-, o+, and o-. In role delegation methods,
permission’s mode is very important. Delegation server references
the mode for making delegation-permitting decision.

Role has many permissions to perform their jobs. Some
permissions are role’s rights and some permissions are role’s
duties. Right permission is delegatable to other roles, but duty
permission is not delegatable. Therefore, we assume permission,
which has a+ mode, is delegatable to other roles in the same role
group. And permission that has a- mode is delegatable just when
the exceptional condition is satisfied. But, o+ and o- are duties,
which must or must not be performed by role. Therefore,
permission, which has o+ or o- mode, is not delegatable.
Delegation information consists of permission’s mode and
exceptional condition, which are represented, in the Role-
Permission relationship.

If the role delegation is needed by a subject, the grantor sends
delegation request message to the delegation server. Delegation
request message consists of delegating role, exception, and
grantee, which grants new role by virtue of the role delegation
process. Delegation server references delegation information and
makes decision about whether delegation can be performed or not

after receiving the delegation request message. Then, the
delegation server responds to the delegation request message
according to the request result. Request result is one of accept or
reject. If delegation server finds delegation is needed (accept
delegation request), server makes accept message, which contains
the grantor, grantee, role, and condition. Server then transmits
accept message to the grantor and sends delegated role
information to the grantee. Delegated role information consists of
role, which was delegated to the grantee, modified role-
permission set, and condition. In modified role-permission set,
permission’s mode is one of a+, a-, or o-. Mode o+ and o- are not
delegatable permissions. In modified role-permission set, o+
mode must be changed into o- mode. In case of delegation request
reject, server just sends delegation reject message.

3.2 Delegation Protocol
The role delegation protocol can be represented as shown in
[Figure 4]. In order to perform role delegation, the grantor
transmits the delegation request message to the delegation server
(Message ➀). Delegation request message contains the grantee,
role, and exception. After delegation server makes delegation
possibility, server transmits request result (Message ➁). The
request result is different after the decision of delegation server. If
the delegation is permitted, delegation server sends accept
message. If the delegation cannot be permitted, delegation server
sends reject message. Accept message contains grantor, grantee,
role, and condition. Reject message just contains reject delegation.
After delegation is permitted, server must transmit delegated role
information to the grantee (Message ➂) in order for the grantee to
perform the delegated role. Delegated role information consists of
role, role permission set, and condition. After grantee receives
delegated role information, he can perform delegated role, which
is mentioned in delegated role information. At this time, grantee
can perform permissions, which are specified in role permission
set within the delegated role information message.

 X

 Grantor Grantee End-Point

Delegate Proves

Delegation

 op1 op2

 [Figure 3] Basic Delegation Model

 Y

 Z

Delegation Server

Grantor Grantee

 ➀ ➁ ➂

Message ➀ : Delegation Request Message

 {Grantee, Role, Exception}

Message ➁ : Request Result

i) Accept : {Grantor, Grantee, Role, Condition}

 ii) Reject : {“Delegation request rejected”}

Message ➂ : Delegated Role Information

 {Role, Role-Permission, Condition}

[Figure 4] Role Delegation Protocol

42

3.3 Active and Passive Delegation
We model role delegation in two cases, active delegation and
passive delegation. Active delegation occurs when a subject
actively requests delegation of another role’s permission to itself.
That is, grantor and grantee are the same subjects. In passive
delegation, subject whom request delegation to some other subject
rather than itself. That is, grantor and grantee are not the same
subjects.

3.3.1 Active Delegation
In active delegation, there exists an exceptional field with a- mode
of the Role-Permission relationship [Table 1]. If the exceptional
requirements are satisfied, the grantor demands the delegation
server for the delegation of the appropriate role to itself. In this
case, grantor and grantee in [Figure 4] are the same subjects.

Scenario 1] Nurse Delegation to himself

In nurse group, the permission of a preparation of medicine (np3)
is a- mode in Role-Permission relationship. Thus nurse group has
no right to prepare medicine in a normal situation. Permission np3
has exceptional condition emergency. That is, when emergency
condition occurs, nurse can perform preparation of medicine. If
the exception condition (emergency) is satisfied, nurse request
role delegation to delegation server about preparation of medicine,
which is originally pharmacist’s permission. Nurse transmits
delegation request message {nurse, pharmacist, emergency} to the
delegation server. Delegation server judges delegation request and
makes accept request result message. Request result message is
{nurse, nurse, pharmacist, emergency}. After transmitting result
message, server transmits delegated role information. In this
active delegation, grantee has a- permission of delegated role.
Thus, the server simply changes np3 permission’s mode into a+,
and transmits {nurse, nurse-changed np3, emergency} message to
grantee (nurse). Also after the delegation process, in emergency
condition, chief nurse has changed np3 permission. Chief nurse
inherits nurse’s permission because nurse is a junior role in nurse
role group.

3.3.2 Passive Delegation
In passive delegation, grantor and grantee are not the same
subjects. Grantee can carry out a new acquired role by the
delegation process. DAC is free for delegating one’s permission to
other users, but in RBAC, since permission is granted to roles but
not to users, only system administrator can change Role-
Permission relationship. Sometimes, one role delegates his
permission to the other role. Or, the grantor’s permission is
delegated to the grantee by the other role’s request. Passive
delegation can be triggered by any role in the system.

Scenario 2] Resident delegates his role to intern

Take a resident as an example. Resident has dp3, and resident
supports surgical operation upon a specialist’s request. But
sometimes the resident can not perform that permission, and he
wants that permission to be performed by an intern. At that time,
the resident decides to delegate his role to the intern in order to
carry out the specialist’s request.

Resident makes delegation request message, {intern, resident, -},
for delegating his role to intern. Then delegation server makes

decision about whether delegation can happen. If delegation
server decides to allow this delegation, then delegation server
transmits accept request result message, {resident, intern, resident,
-}. Delegation server must send delegated role information
{resident, resident’s permission set, -} to intern. Intern, who is the
grantee in the delegation process, can perform resident’s
permission, which is mentioned in resident’s permission set.

Scenario 3] Doctor delegates pharmacist’s role to nurse

Take np2 permission as another example for passive delegation.
This permission means that nurse has no authority about
preparation of medicine, except in the emergency condition. If
one member of the doctor group needs nurse’s preparation of
medicine in emergency condition, he requests to delegate the
pharmacist’s role to nurse. Grantor (member of a doctor group :
ex, intern) makes delegation request message, {nurse, pharmacist,
emergency}. After delegation server receives request message it
defines whether delegation is permitted or not. If delegation can
be permitted, server transmits accept request result message,
{intern, nurse, pharmacist, emergency}, to the grantor. Delegated
role information must transmit to the nurse, to whom the
pharmacist’s role is granted. Delegated role information is the
same, which is used in scenario 1.

Scenario 4] Nurse delegates specialist’s role to resident

Take a resident as an example. A resident does not have
permissions of reading and fixing charts written by interns. When
a nurse finds problems in chart written by intern, he (she) has to
demand fixing the specialist who owns the permission dp1. If the
specialist does not exist, the role higher than the intern is called
on to judge the correctness of the chart. The nurse delivers
message {resident, specialist, no specialist} to the delegation
server. After deciding the possibility of delegation, the delegation
server lets the nurse know the result with request result message.
In this scenario, request result message is {nurse, resident,
specialist, no specialist}. Delegated role information message is
{specialist, specialist-permission set, no specialist}. Note that,
specialist-permission set is not the same in original Role-
Permission relationship. Dp2 must be changed similar to {dp2, o-,
specialist, {chief of surgical operation}, patient, -,-}. When
delegation process occurs, mode o+ must be changed into o-. This
is because, duty permission can not be performed by a delegated
role.

Scenario 5] Delegation reject

Intern has o- mode permission, dp6. In this case, intern can not
perform {chief of surgical operation}, which was granted to
specialist. If no specialist exists, nurse can make the decision on
surgical operation for patients. Nurse makes delegation request
message, {intern, specialist, no specialist}, and transmits it to
delegation server. Delegation server makes reject message,
because dp6 permission contains mode o-. Also, {chief of surgical
operation} is just granted to specialist by dp1, with o+ mode.
Delegation server transmits request result message, {“Delegation
request rejected”}. Delegation server rejects delegation process.

43

4. Conclusion and Future Works
We have presented role-based access control (RBAC) concept that
is in the spotlight recently, and have defined its simplified model.
RBAC model shows the standardized access control of
complicated organization’s resources.

In RBAC, permission is assigned not to user but to role. In case of
changing access control policy, Role-Permission relationship, not
User-Permission relationship, is to be revised. Therefore, RBAC
can deal with changing access control policy more flexibly.

In RBAC, senior role has junior role’s permission by virtue of
role hierarchy. But, junior role can not perform the permission,
which is granted to the senior or other role groups only. If some
kinds of role fail to perform their permission, junior roles or other
roles also cannot perform their jobs. For continuous operation,
even in the absence of senior role or in the exceptional condition,
our delegation scheme allows dynamically granting roles to
perform their jobs successfully. Inheritances of permissions in
role hierarchies are static. In order to tackle this problem, we
propose a role delegation in which appropriate roles and
permissions can be performed temporarily.

Role delegation server makes a decision about whether delegation
process is permitted or not. Server maintains a delegation
information for making decisions. Delegation information is
maintained in Role-Permission relationship. If the role delegation
is needed, grantor makes and sends delegation request message to
delegation server. Delegation server makes decision about
delegation is performed or not after retrieving delegation
information. Also, delegation server transmits request result to
grantor and transfer delegated role information for grantee.

Role delegation is classified into passive delegation and active
delegation. The former is that other role request delegation, and
the latter is that grantee and delegation requester are the same.

Our delegation methods propose a role delegation to other roles or
itself. In role delegation, obligation is not delegated to other roles.
Only authorization is delegated to other roles. In future work, we
address delegation granularity. This is needed to delegate
dedicated permissions to other roles instead of the whole role.
This can be done through specifying constraints for delegation
information.

5. REFERENCES
[1] E. C. Lupu, D. A. Marriott, M. S. Sloman, and N.

Yialelis, “A Policy Based Role Framework for Access
Control”, First ACM/NIST Role Based Access Control
Workshop, Dec, 1995.

[2] Department of Defense(USA), Department of Defense
Trusted Computer System Evaluation Criteria, DoD
5200-78-STD, DoD, 1985.

[3] L. Giuri, “Role-Based Access Control in Java”, 3rd
ACM Role-Based Access Control Workshop, 1998.

[4] E. C. Lupu, M. S. Sloman, “A Policy Based Role
Object Model”, Proceeding of IEEE EDOC'97, Oct,
1997.

[5] N. Yialelis, M. S. Sloman, “A Security Framework
Supporting Domain Based Access Control in
Distributed Systems”, ISOC Symposium on Network
and Distributed System Security(SNDSS96), Feb 1996.

[6] David F. Ferraiolo and Richard Kuhn, “Role-based
access control”, Proceedings of the 15th NIST-NSA
National computer security conference, 1992.

[7] Ravi S. Sandhu, Edward J.Coyne, Hal L. Feinstein and
Charles E. Youman, “Role-Based Access Control
Models”, IEEE computer, Volume 29, number 2, Feb
1996.

[8] David F. Ferraiolo, J. Cugini and Richard Kuhn,
“Role-Based Access Control: Features and
Motivations”, National Institute of standards and
technology, 1995.

[9] J. Barkley, “RBAC in Health Care”, 1995.
http://hissa.ncsl.nist.gov/rbac/

[10] C. Goh, A. Baldwin, “Towards a more Complete
Model of Role”, 3rd ACM Role-Based Access Control
Workshop, 1998.

[11] B, Lampson, M, Abadi, and R, Needham, “A Logic of
Authentication”, ACM Transaction on Computer
System, Vol. 8(1), 1990.

[12] Fang Chen and R, S Sandhu. “Constraints for Role-
Based Access Control”, ACM RBAC Workshop. MD.
1996.

[13] M. Sloman. “Policy Driven Management for
Distributed System”, Journal of Network and System
Management, Vol.2(4), 1994.

[14] Eun-Hong Cheon and Dong-kyu Kim, “A Model and
Constraints for Role Based Access Control(RBAC)”,
Proceeding of The 24th KISS Fall Conference, V.24.
n.2, 1997.

[15] Nicholas Yialelis, Emil Lupu and Morris Sloman,
“Role-based Security for Distributed Object Systems”,
Proceedins of the IEEE Fifth WET ICE, 1996.

[16] NIST ITL Bulletins, “An Introduction to Role-Based
Access Control”, 1995.

[17] D. Marriot and M. Sloman, “Management Policy
Service for Distributed Systems”, IEEE Third Int.
Workshop on Servics in Distributed and Networked
Environments(SDNE’96), Macau, June 1996

44

