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ABSTRACT 

Being able to predict the length of a scientific paper may be 

helpful in numerous situations. This work defines the paper length 
prediction task as a regression problem and reports several 

experimental results using popular machine learning models. We 
also create a huge dataset of publication metadata and the 
respective lengths in number of pages. The dataset will be freely 
available and is intended to foster research in this domain. As 

future work, we would like to explore more advanced regressors 
based on neural networks and big pretrained language models.  

CCS Concepts  

• Information systems➝Information extraction 

• AppliedComputing➝Document capture. 
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1. INTRODUCTION 
Many research papers from various disciplines are regularly 
published in online libraries. For example, the number of monthly 

submissions on Arxiv is currently higher than 16 thousand and is 
rapidly growing (June 2020 statistics from Arxiv website). One 
important aspect of a publication is its citation count dynamics in 

time which is being predicted using various techniques [1, 2]. 

Another important aspect is the relation between several attributes 
with each other and especially the way they statistically c ombine 

with stylistic metrics forming different writing styles [3]. There 
could be scenarios in which predicting the length of research 

papers based on their other attributes could be very helpful. 
Despite depending also on the layout, the length of a document in 

number of pages should correlate with other publication metadata 
and stylistic metrics as well. Understanding these latent relations 

could be useful for meta-research and important in vibrant 
applications such as plagiarism detection [4-6]. 

In this work, we focus on the length of the publications and 

propose a novel task as a regression problem: paper length 

prediction based on the metadata. We explored several online 
libraries and observed that many paper attributes are not always 
available. They still provide publication details such as title, 

authors, abstract, but length can be missing or hard to retrieve. To 

foster research in this direction, we crawled a big network of  
publication metadata [7] and created OAGL, a large dataset of 

 

 

paper attributes that we are freely releasing online.
1
 It comprises 

about 17.5 million data samples with paper attributes and the 
corresponding length in number of pages, all stored as JSON 

lines. We also experimented with popular regression models on a 
small subset of OAGL to provide some initial baselines for the 

community. From our observations, basic regression models do 
not work well. However, ensemble models produce good results 

when their parameters are optimized. They also work better if 
trained with more features. Contrary, simple NN (Neural 
Network) models with static word embeddings are not very 
accurate. We believe that NN models based on big language 

models like BERT or GPT-2 [8, 9] that represent both words and 

contexts of text features (e.g., paper abstract) may provide better 
results.  

2. OAGL DATASET CREATION 
Creating and using datasets of scientific articles has become 

common recently [10-13]. There are several initiatives that crawl 

websites for integrating research resources in big and unified data 
networks. ArnetMiner [14] is one of such attempts that links 
together research data in a common network. One of its 

byproducts is the OAG (Open Academic Graph) data collection of 
scientific publications [7]. It is organized as a set of records 
containing article metadata like title, authors, abstract, keywords, 
page length, publication year, isbn, issn, venue and more. To 

produce an abundant collection of publication metadata and the 
respective page lengths, we used the OAG bundle. We decided to 
retrieve records with at least five categories which should be the 
most important: title, keywords, abstract, publication year and 

page length.  Most of the obtained records do still contain other 
types of data like number of citations, isbn, venue, volume, etc. 

Various publication records had very long or very short text 
attributes. For this reason, we ignored every record with a title not 

within 3 - 50 tokens, abstract not in the range of 40 - 400 tokens, 
keywords not within 2 - 20, and page length not in the range 2 - 
50. Finally, we removed the duplicate entries and reached a total 
size of about 17.5 million records (precisely 17528680). Table 1 

shows some statistics of the whole OAGL and the train, 
validation, and test splits (3500, 500, and 1000 samples each) we 
used for our experiments.

2
 The titles and abstracts are on average 

11.96 and 144.86 tokens long, with standard deviations 4.49 and 

74.98 respectively. The number of keywords in each paper is also 
highly variable with a mean of 6.74 and a deviation of 5.49. The 

average paper length is 6.65 pages. We also noticed that about 90 
% of the papers were published between 2000 and 2010. A data 

sample example from OAGL is illustrated in Table 2. 
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 OAGL is available at: http://hdl.handle.net/11234/1-3257 

2
 Values of * attributes may vary based on the text preprocessing.  



Table 1. Statistics of the complete OAGL dataset and our experimentation splits 

Attribute 
Total 

 

Mean      Std 

Train 
 

Mean      Std 

Val 
 

Mean      Std 

Test 
 

Mean      Std 

Title tokens* 11.96       4.49 13.37        4.77 13.27      4.84 12.97       4.67 

Abstract tokens* 144.86      74.98 159.01      65.09 155.35      61.06 154.53     59.02 

Keywords 6.74        5.49 5.73        3.3 5.59       2.85 5.49      2.31 

Page length 6.65        4.87 6.95        5.27 7.16      4.46 7.2        5.39 

 

Table 2. A data sample example from OAGL dataset 
 

“title”: “Efficiency of wipe sampling on hard surfaces for pesticides and PCB residues in dust.", “abstract”: 

“Pesticides and polychlorinated biphenyls (PCBs) are commonly found in house dust and have been 
described as a valuable matrix to assess indoor pesticide and PCB contamination. The aim of this study  
was to assess the efficiency and precision of cellulose wipe for collecting 48 pesticides, eight PCBs, and 
one synergist at environmental concentrations. First, the efficiency and repeatability of wipe collection 

were determined for pesticide and PCB residues that were directly spiked onto three types of household  

floors (tile, laminate, and hardwood). Second, synthetic dust was used to assess the capacity of the wipe 
to collect dust. Third, we assessed the efficiency and repeatability of wipe collection of pesticides and  
PCB residues that was spiked onto synthetic dust and then applied to tile. In the first experiment, the  

overall collection efficiency was highest on tile (38%) and laminate (40%) compared to hardwood (34%), 
p < 0.001. The second experiment confirmed that cellulose wipes can efficiently collect dust (82% collection  
efficiency). The third experiment showed that the overall collection efficiency was higher in the presence 
of dust (72% vs. 38% without dust, p < 0.001). Furthermore, the mean repeatability also improved when  

compounds were spiked onto dust (< 30% for the majority of compounds). To our knowledge, this is the  
first study to assess the efficiency of wipes as a sampling method using a large number of compounds  
at environmental concentrations and synthetic dust. Cellulose wipes appear to be efficient to sample  
the pesticides and PCBs that adsorb onto dust on smooth and hard surfaces.”, “keywords”: [“collection 

efficiency”, “dust”, “pesticides”, “polychlorinated biphenyls”, “wipes”], “year”: 2015, “venue”: “The Science  
of the total environment", “n citation”: 16, “issn”: “1879-1026”, “volume”: 505, “plength”: 10 

 

Table 3. Different vectorizer scores with basic regression models 
 

Vectorizer 
Linear Regr 

 

MSE        MAE        R2 

MLP Regr 
 

MSE        MAE        R2 

SV Regr 
 

MSE        MAE        R2 

Tfidf 30.01         3.9         -0.03 28.71        3.81        0.01 28.03        3.29        0.04 

Hash 32.37        4.15        -0.11 29.24        3.87        -0.06 26.84        3.19        0.08 

Count 35.35        4.39        -0.21 30.9         3.89        -0.06 26.63        3.19        0.08 

Union 35.21        4.38        -0.21 29.53        3.82        -0.02 26.63        3.12        0.08 

 

3. OBSERVATIONS ON BASIC FEATURES 
We ran several experiments with various regression models on a  

small subset of OAGL. At the beginning of each trial, we 
performed a few more processing steps, lowercasing the text 
fields and clearing the messy symbols in each sample.  
Furthermore, we used Stanford CoreNLP [15] to tokenize the  

titles and the abstracts. Our goal was to observe the role of 
different feature packs in the success of the length prediction task.  
The most important document attributes are the title, the abstract 
and the keywords. They are highly related with paper topics and 

should incorporate latent correlations with the page length. A 
primitive way to combine those three strings together is by simply 
concatenating them. We used different vector space models [16-
18] for representing the common string and regression models for 

predicting the paper length.  

In this first set of experiments, we vectorized the joint string of 
each paper record with tfidf, count, hash, and a union of the three 
of them. We also explored three machine learning models: an LR 

(Linear Regression), an SVR (Support Vector Regression) that 

uses the concept of support vectors [19] and an MLP (Multi-Layer 
Perceptron) for regression [20, 21] with their default parameters.

3
 

The respective MSE (Mean Squared Error), MAE (Mean 

Absolute Error) and R2 (R squared) scores are reported in Table 
3. As we can see, the SVR performs better than the two other 
models. Regarding the vectorizers, tfidf performs best when 

combined with the LR and the MLP regressors. In the case of 

SVR, the count vectorizer leads. The union of the three does not 
seem to improve the feature extraction process. It is still worth to 
note that these observations are raw since no parameter 

optimization was performed, neither on the vectorizers nor on the 

regression models. 

We ran a second set of experiments using two NNs on the same 
feature combination as above. The simplest model we tried is 
composed of an embedding layer for the text vectorization and a 

dense layer of 100 neurons followed by the output layer. We used 
static word embeddings of 300 dimensions from three sources: the 
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6 billion tokens collection of Common Crawl
4
 trained with Glove 

[22], the 840 billion tokens collection of Common Crawl trained 
with Glove, and the 100 billion tokens collection of Google 

News
5
 trained with Word2vec [23, 24]. The embedding layer is  

not trainable (we actually noticed that tuning the embeddings on 
our data negatively impacts performance) and serves only to 

create the vector space representation of the words. The maximal 

length of each word sequence was set to 400. As training 
optimizer we used Adam with its default parameters [25]. The 
training continued for 5 epochs with a batch size of 32. 

The other NN structure is the NgramCNN architecture designed 

and used for sentiment analysis [26]. It is composed of an 
embedding layer for the word representation and several 1- 
dimensional convolution layers (feature extraction branches) of 
increasing filter sizes that extract unigrams, bigrams, trigrams or  

even longer word patterns (the W hyperparameter). The  
convolution layers are followed by max-pooling (or global max-
pooling) layers and are repeated several times (the L 
hyperparameter). The branches are finally concatenated and a  

dense layer is used for regression, as it is illustrated in Figure 5 on 
page 12 of [26]. In this work, we used a very simple variant, with 

three branches of convolutions and a single pooling iteration (W 
=3 and L = 1). The embedding layer, and the training parameters 

were kept at the same values as in the other NN model. MSE, 
MAE and R2 scores for this second set of experiments are shown 
in Table 4. In general, we see that the scores are somehow better 
than those of Table 3. From the results, we notice that Glove 

embeddings perform better than word2vec ones. Regarding the 
two models, NgramCNN outruns the one-layer NN in all the three 
metrics. 
 

Table 4. NN and NgramCNN scores on static embeddings 
 

Embeddings 
OneLayerNN 

 

MSE   MAE   R2 

NgramCNN 
 

MSE   MAE   R2 

CC6B-Glove  25.553.610.12 24.68 3.230.15 

CC840B-Glove 25.51  3.290.12 24.56 3.170.15 

Google-W2V 26.1   3.3       0.1 25.06   3.2 0.14 

4. ANALYZING MORE FEATURES  
The scores reported in Tables 3 and 4 indicate that concatenating 
the title, the abstract and the keywords in a common string and 
vectorizing them together is not a good practice. Adding other 

paper metadata could also improve the regression results. For this  
reasons, we decided to run a third set of experiments adding 
publication venue, year and citations as extra features. The venue 
is a string indicating the conference or journal where the paper 

was published. The publication year and the number of citations 
are integers. Furthermore, we decided to vectorize the title, 
abstract, keywords, and venue independently using tfidf (the best 
vectorizer from the first set of experiments) and stacking them as 

columns in the feature matrix. 

Once again, we used the LR, the SVR, and the MLP regressor but 
now we tried three ensemble models as well. An RF (Random 
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Forest) is an example of a bagging ensemble method that aims to 
increase the strength and accuracy of learning algorithms [27, 28]. 
It runs in parallel and works well with different types of features. 

Contrary, boosting methods represent sequential ensembles that 
try to turn weak models into stronger ones by correcting the  
erroneous classifications of each iteration [29-31]. One of the 

most popular implementations is GB (Gradient Boosting) 

algorithm that is based on decision trees. XGBoost (Extreme 
Gradient Boosting) is a fast implementation that reduces the 
search space of possible feature splits [32]. The three of these 
ensemble methods work well on both classification and regression 

tasks. We examined the new feature pack of our OAGL subset  

using tfidf vectorizer and these six regression algorithms, trying to 
optimize their most important parameters. The results of the 
default models and of the optimized ones are presented in Table 5. 

Comparing the new scores of the LR, SVR, MLP models against 
the ones of Table 3, we notice considerable improvements. The 
LR and the MLP perform significantly better with new feature 
pack and are further improved by the parameter optimization 

process. The default SVR scores are slightly worse, but the 
optimized scores are significantly better, with R2 jumping up 
from -0.05 to 0.19. 
 

Table 5. Optimized model scores 
 

Model 
Default Params 

 

MSE   MAE   R2 

GS Params 
 

MSE   MAE   R2 

LR 23.89   3.45    0.18 22.54     3.3    0.22 

SVR 30.43   3.51   -0.05 23.58    3.14   0.19 

MLP 24.19   3.39    0.17 22.72    3.26   0.22 

RF 25.05   3.27    0.14 23.5      3.06   0.19 

GB 22.44   3.14    0.23 21.6     3.04    0.26 

XGB 22.36   3.12    0.23 21.16   3.05    0.27 

 
The ensemble learners perform better, even with their default  
parameters. The RF is the weakest of the three, reaching an MSE 
of 23.5, an MAE of 3.06, and an R2 of 0.19 when optimized. GB 

and XGB perform similarly and reach optimized 21.6 and 21.16 
MSE scores respectively. Moreover, XGB reached a 0.27 R2 
score which is the highest we got in all the experiments. It is 
worth noting that XGB was not only the most accurate, but also 

the fastest ensemble learner. Furthermore, the parameter sets we 
searched were not exhaustive and further improvements could be 

achieved. Unfortunately, there are no literature baselines we could 
compare our results with. The optimal parameters we found for 

each model are presented in Table 6. Furthermore, we provide the  
source code to reproduce the experiments online.

6
 We tried to 

further improve the results by adding some more statistical 
features like number of words in the title, number of words in the 

abstract, number of keywords, and number of capitalized words. 

There was no significant difference in the results, though. A final 
fact we observed was the insignificant role of certain numeric 
scalers (we tried MinMaxScaler and MaxAbsScaler) on year and 

citations features. 
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Table 6. Top gridsearch parameters of the vectorizer and regressor in each model 
 

Model Optimal Parameter Values 

LR    vec 

reg 

ngram range: (1,3), norm: l2, smooth idf: True, stop words: None, sublineartf: True  

copy X: True, fit intercept: True, normalize: False 

SVR  vec 

reg 

ngram range: (1,3), norm: None, smooth idf: True, stop words: None, sublineartf: True  

C: 10, gamma: auto, kernel: poly, shrinking: True 

MLP  vec 

reg 

ngram range: (1,2), norm: l2, smooth idf: True, stop words: None, sublineartf: True  

hidden layer sizes: (100, ), alpha: 0.00005, solver: adam 

RF    vec 

reg 

ngram range: (1,3), norm: None, smooth idf: True, stop words: None, sublineartf: False 

n estimators: 60, max features: auto, bootstrap: True, oob score: True  

GB    vec 

reg 

ngram range: (1,3), norm: None, smooth idf: True, stop words: None, sublineartf: True  

n estimators: 100, max features: auto, max depth: 6 

XGB  vec 

reg 

ngram range: (1,3), norm: None, smooth idf: True, stop words: None, sublineartf: False 

n estimators: 70, eta: 0.008, gamma: 0.15, max depth: 6 

 

5. CONCLUSIONS AND FUTURE WORK             
In this paper, we proposed a novel task: predicting paper length 

using various publication details as features. We also created a 
large dataset of publication metadata that will be freely available.  
It is intended to encourage experimentation with various types of 
predictive models on this research direction. From our initial 

experiments, we noticed that basic regression models are not very 
accurate, leading to error rates that are relatively high.  

Optimized ensemble models work better and may produce 
satisfying results with better feature processing and combinations.  

As future work, we would like to try neural network structures 
based on pretrained language models that are becoming very 
popular in language-related tasks. Given the large size of the data 
we dispose, we also want to examine the task from the data 

efficiency viewpoint [33], checking the scalability of the 

prediction scores when more training sample are used. A deeper 
understanding of the hidden relations between document length, 
publication attributes and other writing metrics could be 

invaluable for many applications and tasks.  
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