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CCTV cameras installed for continuous surveillance generate enormous amounts of data daily, forging the term “Big Video Data” (BVD).
The active practice of BVD includes intelligent surveillance and activity recognition, among other challenging tasks. To efficiently
address these tasks, the computer vision research community has provided monitoring systems, activity recognition methods, and
many other computationally complex solutions for the purposeful usage of BVD. Unfortunately, the limited capabilities of these
methods, higher computational complexity, and stringent installation requirements hinder their practical implementation in real-world
scenarios, which still demand human operators sitting in front of cameras to monitor activities or make actionable decisions based on
BVD. The usage of human-like logic, known as fuzzy logic, has been employed emerging for various data science applications such as
control systems, image processing, decision making, routing, and advanced safety-critical systems. This is due to its ability to handle
various sources of real world domain and data uncertainties, generating easily adaptable and explainable data-based models. Fuzzy
logic can be effectively used for surveillance as a complementary for huge-sized artificial intelligence models and tiresome training
procedures. In this paper, we draw researchers’ attention towards the usage of fuzzy logic for surveillance in the context of BVD.
We carry out a comprehensive literature survey of methods for vision sensory data analytics that resort to fuzzy logic concepts. Our
overview highlights the advantages, downsides, and challenges in existing video analysis methods based on fuzzy logic for surveillance
applications. We enumerate and discuss the datasets used by these methods, and finally provide an outlook towards future research
directions derived from our critical assessment of the efforts invested so far in this exciting field.
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1 INTRODUCTION

The worldwide growth of surveillance cameras installations is raising concerns for computer vision experts and Big Data
analysts [1] due to its importance for observation and monitoring purposes. The video surveillance domain comprises
several application areas including anomaly detection [2], violence recognition [3], as well as in general global security
[4], and better and transparent urban monitoring. In addition, contextual information sharing and fusion related to
road traffic, crowd density at shopping malls, healthcare centers, and many other useful locations can enhance video
surveillance capabilities. For instance, capturing information about the traffic density can ease the daily life of smart
cities’ inhabitants by providing information on congested hot spots and suitable non-congested paths towards their
destination [5]. This is possible by employing image processing techniques along with fuzzy logic-based quick and
accurate decisions from surveillance BVD. Despite the enormous applications of surveillance through BVD, achieving
them via computationally intelligent techniques poses challenges from precision time complexity perspective, given the
different sources of real-world uncertainties these systems have to cope with. Mainstream available data for Machine
Learning models and image processing algorithms have lowered generalization abilities and reduced adaptability
towards real-world surveillance scenarios. As such, the trained models show limited performance in complex smart
cities surveillance applications [6]. For improved utilization of surveillance BVD, researchers are investigating several
image processing and machine learning algorithms [7].

These approaches require sufficient training data to generate models which can perform regression or classification
tasks satisfactorily [8]. This can be difficult in real world surveillance settings with limited ground truth data available.
These modelling paradigms have some limitations in their flexibility to adapt to short term and gradual changes and
uncertainties in real time characteristics of the data streams in a self-supervised lifelong learning mode. For instance,
a video skim generation model is presented by Hussain et al. to recognize activities inside an office environment for
video summarization [6]. Their trained model has limited performance for industrial indoor environments and similarly
outdoor scenarios without any prior training for these specific situations. There are other existing machine learning
approaches that generate black-box models where the internal reasoning process or learned functional mappings
are obscure and cannot be understood by end users, specially if they lack any technical background of machine
learning. There is a growing need for creating explainable ‘glass box’ models which can provide accurate and human
understandable modelling decisions. In addition, vision-based manual monitoring systems waste human resources,
where a person or a group of individuals deeply observe an array of live cameras. Although human monitoring has
major advantages such as operative monitoring, real-time response, and instant reporting, it still features several
limitations. It is a tedious job and human operators often get frustrated when sitting in front of screens for lengthy
periods, yielding a poor performance and deficiency in their surveillance potentials. In these scenarios the element
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of human subjectivity and variability may also comes into play in their ability to reach consistent decisions. Fuzzy
logic, in contrast, enables human-like decisions in computer programs that can be implemented effectively for the
aforementioned surveillance applications while handling human subjectivity and data uncertainties. [9].

Table 1. Structure of the overall survey.

Main heading Sub-headings/paragraphs/Tables

1. Introduction
Introduction and motivation
Applications of surveillance BVD
Focus of our survey paper
Main contributions

2. Background concepts of fuzzy logic What is fuzzy logic?
Basic pipeline of fuzzy systems

3. Representative surveys in fuzzy logic and our survey Survey articles in fuzzy logic domain/ Table 2
Coverage of our survey/ Table 2
Discussion on our survey

4. Literature review

Fuzzy logic related works/ Table 5
Fuzzy logic in surveillance BVD
Objects detection via fuzzy logic
Objects tracking through fuzzy logic
Fuzzy logic for traffic management
Generic application domains of fuzzy logic

5. Performance evaluation of fuzzy logic methods
for surveillance BVD

Evaluations methods used in fuzzy logic domain/ Table 4
Performance evaluation of fuzzy logic methods in surveillance domain
Evaluation metrics utilized in fuzzy logic methods

6. Applying fuzzy logic: why, when, and where?

Background of CNNs and their limitations in surveillance domain
Solutions to the mentioned problems using fuzzy logic
How to apply the given solutions using fuzzy logic?
CNN or fuzzy logic? Where to use which option?

7. Challenges and future research directions

Applications-wise future endeavors in fuzzy surveillance domain/Table 6
Edge intelligence and fuzzy logic
Adaptive fuzzy logic for non-stationary environments
Public availability of research implementation/ Table 7
Time complexity and computational resources analysis
Proposals for hybrid techniques
Explainability in fuzzy video data analysis

8. Concluding remarks

Surveillance BVD and fuzzy logic
Key findings of our research
Motivational reasons for further exploring fuzzy logic and its variants for
surveillance BVD

The main focus of this survey is to provide an overall review of the application of fuzzy logic systems to video
analysis in a comprehensive manner, with surveillance Big Data as a case study. Fuzzy logic in other domains are widely
used due to their ability to provide reasoning and modelling techniques that are robust to uncertainties and imprecision
in data sources [10]. The contributions from researchers and experts have had some focus on utilizing fuzzy logic for
video analysis methods. However, there has been limited research on problems like action and activity recognition,
anomaly detection, and video summarization [11], etc. that are the key application areas of surveillance systems. The
highlighted challenges to surveillance BVD analysis using fuzzy logic and their possible future insights are covered in
this review article. Finally, to motivate scientists towards this domain and focus their research efforts in video analytics
literature from fuzzy perspective, we present this review article with the following major contributions.

• To the best of our knowledge, there is no previous survey on the topic of surveillance BVD processing based on
fuzzy logic. Hence, we contribute to the fuzzy logic literature by presenting the first comprehensive survey on
the topic of Big Data generated from vision sensors.
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• Big Data generated from surveillance cameras requires image fuzzification, membership values modification,
and de-fuzzification techniques for effective and efficient usage. The current literature of fuzzy logic lacks the
focus on surveillance BVD. Therefore, we cover the existing literature in the domain of fuzzy logic to present the
concepts that can possibly be integrated with surveillance domain for effective utilization of visual Big Data.
Further, we discuss the baseline techniques and overview the representative works on the aforementioned topic
that helps recognizing the open challenges in this domain.

• Another major contribution of our survey is the prescription of future research guidelines for surveillance BVD,
with supported references to motivate scientists in conducting valuable research in this domain. Here, there are
several possible directions for integration of fuzzy logic with other soft computing techniques, such as neural
networks and spiking neural networks for fruitful results and sensitive yet important applications. We also
highlight the major challenges and provide detailed discussion about the possible research tracks in the video
analytics domain using fuzzy logic.

The rest of the paper contains several sections, whose details are provided in Table 1.

2 BACKGROUND CONCEPTS OF FUZZY LOGIC

Fuzzy Logic is a soft computing methodology providing an approach for approximate reasoning and modelling of data
that uses words and phrases instead of numbers to model the real world systems similar to the way humans think
and make decisions [12]. Fuzzy logic consists of two important components: fuzzy sets and fuzzy data structures. A
fuzzy set, also known as an uncertain set, is a mathematical model that contains elements with varying degrees of
membership such as member, non member, and partial membership. Fuzzy sets were introduced by L. A. Zadeh in
[13] as an extension to classical sets. Fuzzy data structures such as relational rules produce outputs by processing the
linguistic values predefined by fuzzy sets.

Similarly, in other domains [14], fuzzy sets can be used to partition attribute spaces associated with video features
and quality indicators into linguistic variables such as very low, low, and high, which provide meaningful abstracted
representations of these attributes [15]. Unlike crisp sets and partitions, the boundaries of fuzzy sets are not based on
binary two-valued logic (0 or 1). Instead they use many valued logics that facilitate graduated degrees of belongingness
of data points to a set or partition. Fuzzy sets can be represented using different types of mathematical membership
functions that compute membership values of data points in the attribute spaces they partition. Since membership
values are between 0 and 1, this allows data points to have partial memberships to one or more overlapping fuzzy
sets where the boundaries between partitions are uncertain and cannot be precisely specified in the real-world. For
instance, in a set of consecutive surveillance video frames, some of them can be highly informative and significant when
compared to others that are of lower informative value or relevance with respect to detecting suspicious behaviour or
anomalies. This can help reduce the number of frames which need to be processed for real-time edge based embedded
surveillance devices or transmission over wireless sensors networks. This powerful feature facilitates data abstraction
and approximate reasoning through specifying or learning interpretable structures such as If-Then rules, graphs classes
or cluster-based representations [16]. These structures can be used to model functional mappings, causal dependencies,
and relationships between the derived fuzzy partitions across different domain specific attributes in a similar way that
other machine learning techniques learn or discover functional approximations or groupings between data points.
In particular fuzzy rule based inference systems have been most commonly used for decision making and control

4



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Fuzzy Logic in Surveillance Big Video Data Analysis: Comprehensive Review, Challenges, and Research Directions

ACM Computing Surveys,
,

applications, [17, 18], while indoor video monitoring and other video analytics tasks are also accomplished using fuzzy
logic systems [19, 20].

The basic pipeline of a rule based fuzzy inference system includes data fuzzification where input values intersect with
the antecedent fuzzy set. An inference mechanism then combines activated rules by employing intersection and union
operations for modifying the membership values or weights of the aggregated output fuzzy sets [21]. The generated
output is not necessarily a single number, instead the fuzzy set consists of a range of possible outcomes [22]. Therefore,
to make it sensible to humans, it needs to be defuzzified to obtain a single output value [21]. The most commonly used
defuzzification method is centroid defuzzification. The available fuzzy systems follow either type-1 or type-n fuzzy
framework [21]. Type-1 Fuzzy Sets are only able to compute a crisp membership value with respect to the degree of
membership of a data point to that set. A type-2 fuzzy set is characterized by a fuzzy membership function, where
the computed membership value for a data point is itself a fuzzy set in [0, 1] represented by a secondary membership
function with secondary membership grades projected in a separate dimension [18, 23]. This enables the fuzzy sets to
have additional design degrees of freedom that can capture rich information and handle higher orders of uncertainties
associated with the data point being processed. There are some restrictions when implementing type-2 fuzzy set such
as time-varying data and non-stationary measurement noise. Readers are referred to [24] for detailed information about
the implementation of type-1 fuzzy set systems.

Fig. 1. Schematic diagram showing the process followed for searching, retrieving, and screening to acquire the finally selected articles
critically reviewed in our survey. The inclusion and exclusion strategies are given in the hints alongside each phase. A few sample
queries used during the research process are “fuzzy logic in surveillance videos”, “fuzzy systems for surveillance big data”, “fuzzy logic
in CCTV videos”, “fuzzy logic for smart vision”, and “fuzzy inference systems in surveillance”.

3 REPRESENTATIVE SURVEYS IN FUZZY LOGIC AND OUR SURVEY

The fuzzy logic arena has several review articles with a major focus on medicines and diagnosis [30, 31]. Since there is
no existing survey on the specific problem of surveillance BVD analysis in the fuzzy logic literature, therefore, a baseline
for survey comparison in this domain is absent. To provide readers a broader level of information about fuzzy logic, we
review the existing representative surveys on fuzzy logic application domains in this section. Alcalá-Fernández and
Alonso [32] present a survey with an overview, research trends, taxonomy, and various prospects of fuzzy systems
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Table 2. Detailed descriptions of some representative surveys in fuzzy logic literature, along with their possible flexibility to surveillance
domain.

Ref. Coverage Relevance to surveillance Domain Reviewed pa-
pers/Surveys Main Theme

[17] 2007
~2013

Dynamic parameter optimiza-
tion can be utilized in surveil-
lance methods

General, parameters opti-
mization algorithms review
using fuzzy theory

16/No coverage
for existing sur-
veys

Review of fuzzy logic based and nature inspired
optimization techniques for dynamic parame-
ters adaptation

[25] 1996
~2014

Adaptation can be made in
surveillance domain to solve
complex non-linear problems

Fuzzy-based adaptive con-
trollers under observation

35/Lacks the
discussion
of existing
surveys

Survey of adaptive fuzzy controllers. Major fo-
cus on non-linear controllers and fuzzy infer-
ence systems

[26] 1994
~2014

Gesture recognition and activ-
ity recognition can be effec-
tively used in surveillance

Fuzzy set oriented tech-
niques for human motion
analysis

22/No coverage
of existing sur-
veys

Fuzzy methods for humanmotion analysis. First
survey aiming at this problem using fuzzy liter-
ature

[27] 2005
~2017

Purely related to disease diag-
nostics but the main fuzzy con-
cepts are explained well and
can be utilized for different pur-
poses

Disease diagnostics
46/Lack of exist-
ing surveys’ re-
view

Diagnosis systems through fuzzy logic with
proper literature coverage. Experimental results
are given to show effectiveness of fuzzy meth-
ods in disease diagnosis

[28] 2007
~2018

Fuzzy min-max neural net-
works can be used in many pat-
tern recognition and video clas-
sification tasks in surveillance

Fuzzy neural networks
54/No coverage
of survey pa-
pers

Fuzzy min-max models for pattern classifica-
tion task and its meaningful division. Detailed
discussion about future trends

[29] 2007
~2018

No relevancy with surveillance
because it provides only the cov-
erage of the given domain

Fuzzy logic for chronic dis-
eases

26/Yes, it has
discussion
about previous
surveys

A review of disease diagnosis systems through
fuzzy logic with proper literature coverage, ar-
ticles, and year-wise frequency

[30] 2005
~2019 No specific contingency Infectious disease diagnosis

using fuzzy logic

40/No dis-
cussion about
previous survey
papers

A systematic review of infectious disease diag-
nosis via fuzzy logic. Significant future research
directions in the mentioned domain

Ours 2010
~2020

Broader coverage of video ana-
lytics with focus on surveillance
BVD

Surveillance BVD

45/7 existing
surveys are
covered and
investigated

A comprehensive survey with broader overview
of fuzzy logic methods. Future tracks on the
basis of derived conclusions and current needs
of the surveillance domain

software. A survey focusing on research works related to adaptive fuzzy controllers and the advancements made in
non-linear systems is presented in [25]. Ahmadi et al. present a systematic and meta-analysis review of fuzzy logic
methods for diseases’ diagnosis [27]. The results and conclusions of this study show the effectiveness of fuzzy logic
methods and their applications in this area. A review of FL applications in the field of medicine is studied in [29] with a
recent editorial on applications to neural engineering in [33], providing current research and future directions. The
closest survey to our topic is presented in [26], where the techniques of human motion analysis using fuzzy theories
are reviewed. This work has a broader coverage of applied fuzzy techniques for the given topic with insights and
suggestions for future research. A brief overview of some representative surveys with their key findings, coverage
of their articles, and their possible relevancy (extension) to the surveillance domain is given in Table 2. The above
discussion along with this table can be used as a reference to ascertain the existing contributions of researchers in the
surveyed domain.

Our survey covers a diverse set of papers including reputed conferences, journals, and workshops. The main
repositories used are ScienceDirect, Google Scholar, IEEE Xplore, ACM, and Springer.

The related papers are retrieved from these repositories with different queries based on the combination of a number
of keywords such as “Fuzzy logic”, “Fuzzy theory”, and “Fuzzy inference system”. The complete screening process
is given in Figure 1. The overall data on the filtered papers with comprehensive description, dataset availability,
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Table 3. Supporting table linking each method to its relevant citation from Figure 2.

Method Ref. Method Ref. Method Ref.
M1 [34] M2 [35] M3 [36]
M4 [37] M5 [38] M6 [39]
M7 [40] M8 [41] M9 [42]
M10 [43] M11 [44] M12 [45]
M13 [46] M14 [26] M15 [47]
M16 [48] M17 [49] M18 [50]
M19 [51] M20 [52]

Fig. 2. The overall distribution of research papers with focused topic of surveillance BVD analytics using fuzzy logic. (a) Number
of published papers versus year of publication. (b) Distribution of papers among different publishers. (c) Citations of the reviewed
methods in the literature, where references are marked as in Table 3. Information about citations of each paper helps novice researchers
select the best paper for the reviewed topic. (d) Scattered information about the nature of the publication, categorized as conference,
journals, or workshop.

application domain, adapted strategy, and the utilized tools are given in Table 4, where we show the overall literature
reviews of surveillance BVD analytics using fuzzy approaches. Furthermore, the distribution of the discussed research
articles across various publishers, yearly publication information, their citation counts (till October 6, 2020), and the
categorization of these papers are illustrated in Figure 2.

The literature survey presented in this paper is subject to some limitations. Our first limitation is that the targeted
domain for reviewed papers in this survey is comparatively narrow, i.e., surveillance BVD. A broader version can be
the complete video analytics domain, covering action and activity recognition [60], video summarization, [61], video
retrieval [7], healthcare [62], objects detection and tracking [63, 64], etc. The specific focus of our research is to conduct
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Table 4. Performance evaluation of reviewed techniques with dataset description, availability information, and the used evaluation
metrics alongside the obtained score.

Method Dataset/Available? Description Evaluation metrics and score

[40] Two outdoor and one indoor videos
were used / No

Surveillance video with two actions: leaving object and
talking to someone Visual results

[35] [53] / No Data collected from healthcare centers with different
varieties, velocity, and volume

Classification time, average response time,
accuracy, and false positive rate

[37] [54] / No Two surveillance videos are used: one for rolling a ball
and second contains a moving car and a pedestrian Visual representation of trajectories

[38] [55, 56] / Yes Fifteen different surveillance videos are used for the
detection of moving objects in dynamic backgrounds F1, precision, recall, and similarity

[39] CAVIAR [57] / Yes
Public place surveillance video, containing different ac-
tions involved such as fighting, entering and exiting
shops, window shopping, meetings, and walking alone

Visually represent multiple people activities

[34] Private recorded data via Logitech web-
cam / No

Two minute’s test videos with moving subjects in four
scenarios

Visual results are given to show alarm level
for the dataset videos without any objective
or subjective evaluation

[58] Private videos / No
Selected some videos from benchmark video dataset,
originally prepared and recorded in Gdansk University
of Technology, Gdansk, Poland

False positive and false negative rate

[40] Surveillance traffic videos / No
Chien-Kuo Bridge in the Taipei City in the daytime and
nighttime using camera (19) and Mu-Cha Tunnel on
Highway 3 using camera (27)

Accuracy, recall, and precision

[41]
80 videos, each with duration of 20 sec-
onds are recorded using Canon Power-
Shot SX150 / No

Total 80 videos: first four videos include human and
vehicles, while the remaining videos contain human
and animals

Accuracy

[42] Private videos / No Two sample videos: one is indoor and another is outdoor Visual results

[43] Private videos / No Two types of surveillance videos for indoor and outdoor
scenarios Visual results

[44] Ten different surveillance videos / No Surveillance videos are used for skin based human de-
tection Accuracy over different classes.

[59] Private videos / No The dataset includes human, animals, and moving vehi-
cles

Accuracy; human near recognition accu-
racy, and human far recognition accuracy

[45] Private videos / No On-board mounted experimental camera capturing
videos in various bad weather conditions

Absolute categorical rating (ACR) and his-
togram

[46] Outdoor surveillance video data / No Two different test-bed scenarios:scenario-1: 10 Open-
Flow, 24 links. Scenario-2: 28 OpenFlow, 50 links

Peak signal to noise ratio, average end-to-
end delay, and packet loss ratio

[48]

TUD-Crossing, PETS09-S2L2, ETH-
Jelmoli, and AVG-TownCentre as
testing set and PETS09-S2L1 and
TUD-Stadtmitte datasets as training
sets / No

Surveillance video with crowded scenario

Multi-object tracking accuracy, tracked tra-
jectories, lost trajectories, false positive,
false negative, identify switches, and frag-
ments

[49] SNA2014-Nomal / No
Traffic video sequence with different normal traffic, ret-
rograde, cross the road to the left, and cross the road to
the right

Accuracy rate and false detection rate

an in-depth review of fuzzy methods applied to the generic video analysis domain, towards deriving a proper taxonomy
of the applied fuzzy techniques.

4 LITERATURE REVIEW

The literature on fuzzy logic theory and applications is very rich, with research contributions in image/video processing,
medical diagnosis, and control systems [65]. Researchers from the entertainment domain i.e., sports video classification
have also employed fuzzy logic for soccer events detection and classification [66, 67]. In this section, we only discuss
fuzzy logic based techniques that are either applicable to surveillance video analysis, or that can be extended to
this domain. The concepts of transfer and online learning are widely used in many real-world problems including
surveillance BVD due to their resourceful utilization and knowledge sharing abilities from existing models. Fuzzy
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transfer learning is a better option due to the uncertainties, that traditional transfer learning methods are unable to
deal with [68]. However, fuzzy transfer learning poses the problems of appropriate domain selection and labeled data
selection for the target domain. This is the reason why it is currently not used in many surveillance video analysis
techniques. These problems are solved by [69] with the integration of infinite Gaussian mixture model and active
learning, enhancing the generalizability of the constructed model. Therefore, it can be proved as an effective solution for
different surveillance video analytics domain, particularly the areas dealing with image and video classification tasks.

Clustering techniques are widely used in many surveillance applications. However, feature selection for clustering
has different levels of difficulties, depending on the nature of the data. For instance, a comprehensive review is presented
in [70] to assist the surveillance experts in the selection of features for clustering, where the strategy is adaptable to
complex scenes through online learning abilities. The clustering technique utilized in this research is fuzzy c-means,
which is applicable to many surveillance applications such as similar frames clustering or differentiating among different
shots or activities. Similar fuzzy logic-based emerging techniques are available in the literature, such as those in [71] for
noise filtering, in [72] for features selection of large-scale classification problems, and in [73] for optimum-path forest
classification. These approaches can be easily transformed to the surveillance domain for useful video analysis tasks.

The video analytics domain, particularly when dealing with surveillance data via fuzzy logic, is comparatively scarce
and not investigated deeply to date. The tasks accomplished using fuzzy logic in surveillance BVD domain include road
traffic anomaly detection, foreground object detection, multi-object tracking, and risk assessment. For instance, a fuzzy
logic based multi-object tracker is presented by Liang-qun et al. [49], where a knowledge-based fuzzy inference system
is designed via a set of fuzzy if-then rules known beforehand to improve the performance of multi-object tracking. Li et
al. [50] considered fuzzy theory to deal with road traffic anomaly detection. A risk assessment analysis system using
surveillance videos is proposed in [47], where fuzzy cognitive maps are used to report on risky situations. The idea of
utilizing different fuzzy-based concepts for surveillance applications is therefore valuable, as can be inferred from the
aforementioned research works. Detailed discussion about usage of fuzzy logic in surveillance BVD is explained in the
next subsection 4.1

4.1 Fuzzy logic based methods for surveillance BVD

Herein, we cover the literature of fuzzy logic approaches applied to surveillance BVD domain, where some methods
utilize these concepts for diverse problems including object detection, tracking, motion tracking, determining events,
traffic surveillance, and human detection in outdoor scenarios [42]. The details of these approaches with their respective
domain are covered in the subsequent paragraphs.

The problem of objects detection/tracking [74] with primary focus on human, single, and multi-objects tracking
has gained significant attention of the researchers. Object detection has a vital role in many surveillance applications.
In fact, it is considered as a preprocessing step for some interesting domains such as action and activity recognition,
security (person identification and re-identification), and tracking, among others. For instance, an adaptive neural-
fuzzy method for object detection is presented in [38] with the main motivation of tackling the dynamic background
problem via the integration of a self-organizing map and a fuzzy inference system. The self-organizing map deals with
dynamic background challenges for object detection while eliminating shadows. The fuzzy inference system is used to
determine the human behaviors and adjust the self-organizing map parameters automatically for the detection task. This
integration makes the overall system independent of the given scenario, thus showing significant improvements when
compared to similar methods in the object detection literature [75]. In [42], fuzzy logic is used to detect foreground
objects followed by distinct features extraction from the contours of detected objects. A unique aggregation strategy is
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used to produce a single feature vector from three feature vectors using a fuzzy inference system. The final feature
vectors’ size is reduced by using vector quantization to minimize the computation effort towards final human contour
detection.

Followed by the literature of object detection using fuzzy logic concepts, the object tracking domain likewise has
some remarkable research contributions. For instance, a motion tracking mechanism via fuzzification techniques
is presented in [37]. This research work introduced a moving objects segmentation and tracking strategy, where
motion-based algorithms acquire the shapes of dynamic objects in consecutive video sequences. The shapes acquisition
is initiated with the detection of a change between two consecutive frames, computed through permanency values.
The segmentation module applies fuzzy bi-dimensional rectangular regions that assist in capturing the similarities
among the detected objects. The final tracking module performs the association between fuzzy regions over time.
Segmentation, tracking, and analysis modules are highly influenced by the usage of fuzzy logic techniques for handling
uncertainties in permanency values caused by image noise inherent to computer vision. Fuzzy logic data association
algorithm is implemented in [49] for online multiple object tracking. There are several modules in this algorithm,
where prominently a knowledge-based fuzzy inference system is designed to incorporate expert experience with data
association for performance improvement in multi-objects tracking. Fuzzy if-then rules using parameters related to
error and change of motion error, shape, and appearance of model in last prediction are utilized to determine the fuzzy
membership degrees and substitute the association probabilities between detected objects and responses (objects and
measurements). The fragmented trajectories that occur due to long-term occlusion are handled with track-to-track
association approach based on a fuzzy synthetic function. This has the capability to precisely stitch together the track
fragments. The authors of this work show improved results of their method when compared to state-of-art approaches,
and the effectiveness of their technique in minimizing the number of fragment tracks.

Alongside object detection, tracking, and surveillance, video data can be effectively used in the management of
abnormal traffic situation handling and assistance in routing, among many other applications. There are several
contributions on the effective usage of traffic surveillance using fuzzy logic. For instance, Wu et al. [41] presented
a fuzzy hybrid information inference mechanism “FHIIM” to determine tracked vehicles in live surveillance videos.
FHIIM uses color similarity and area consistency for tracking assessment. The fuzzy rules input the degrees of color
and the area for comparison as linguistic variables such as low, medium, and high. There are five membership functions,
which process the linguistic variables to generate a meaningful output. Another research in a similar domain has
focused on anomaly detection in road traffic scenarios using fuzzy theory [50]. The traffic flow, density, and the targets’
motion state are designed on the basis of virtual detection lines, pixel statistics, and vehicle trajectory using fuzzy
logic, correspondingly, which are fused together for optimal output. The final step of traffic anomaly detection method
utilizes the above-mentioned parameters along with fuzzy control rules for road anomaly detection.

Besides the role of fuzzy logic in objects detection/tracking and traffic surveillance, there are other domains of
surveillance where these concepts and implementations are applied. These domains include diverse applications such
as healthcare [76, 77] particularly for elderly people [34], fusion of images (infrared and visible regions) [35], and
events determination [40]. Further research contributions in the surveillance domain include static and moving objects
in surveillance [44], activity modeling [9], video enhancement [46, 78], risk assessment [47], and walk directions
estimations [52, 79]. As an example, a recent work has employed fuzzy logic for open-set single-sample face recognition
in real-world surveillance scenarios [80]. This method is based on fuzzy adaptive resonance theory neural network
[81] and is adoptable to various illumination and facial expression conditions. A three-level privacy preserving video
encryption system is presented by Shifa et al. [4], where three parallel fuzzy inference systems assist to classify the

10



521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Fuzzy Logic in Surveillance Big Video Data Analysis: Comprehensive Review, Challenges, and Research Directions

ACM Computing Surveys,
,

threat to the live streaming video. In another recent research [82], a fuzzy system is used to mimic security personal
decision-making skills to identify suspicious activity by using an embedded edge computing node. The video features
used for suspicious activity identification are extracted using Deep Learning models. The mentioned research works have
much influence on surveillance applications, and the usage of fuzzy logic makes them robust and applicable in real-world
scenarios. For instance, in the latter work [82], considering the requirements collected from law enforcement services,
a number of features are selected and fuzzified to handle various uncertainties that exist in officers decision-making
procedure. However, potential applications related to activity recognition, anomaly detection, and video summarization
used in practical surveillance environments are scarce in the fuzzy logic literature, needing researchers’ attention.

5 PERFORMANCE EVALUATION OF FUZZY BASED SURVEILLANCE BVD ANALYTICS

The evaluation of each fuzzy method in the reviewed literature varies depending on the application domain of the
implemented algorithm. Some fuzzy methods provide only visual confirmation (input data and output results) of their
implemented algorithm without any state-of-the-art comparison with limited use of ground truth datasets. F-measure,
accuracy, precision, recall, and sensitivity are used for people walking, change detection, human detection, traffic
analysis, etc. The datasets provided in Table 5 can be observed and used in different ways as per the problem under
consideration. There is no single pair of research methods in this domain sharing a common dataset with similar
comparison metrics. Similarly, the data mentioned in many contributions is private, and some links provided in the
relevant articles are mentioned without providing any further information. This information is also given in the second
column of Table 4.

Fuzzy logic applications involving surveillance BVD are lacking enough evaluation standards, or benchmarks against
which improvements in accuracy or a reduction in computational complexity can be measured. Mainstream methods
rely only on graphical results, visualizing the sample outputs of their implemented techniques. Assessing results
by visual inspection without any further objective evaluation or comparison is unsatisfactory and unreliable in the
computer vision domain. For instance, the work in [44] only presented visual results of various trajectories occupied by
a pedestrian, without a more grounded comparison with state-of-the-art methods dealing with similar problems. The
comparison using objective evaluation is straightforward in this exemplifying case, and can be achieved by simply
measuring the difference between the predicted person’s trajectories and the ones that are given in the ground truth.

Despite the predicted outputs visualization of some fuzzy logic based surveillance related methods, in [49] researchers
utilized the commonly used metrics in trajectories detection related literature and evaluated their method over bench-
mark datasets and scored new state-of-the-art results. Approaches relying only on visual results are very common
in the fuzzy logic surveillance BVD domain. For instance, Munch et al. [39] attempted to recognize alert situation in
surveillance environments using fuzzy metric temporal logic, where they justified their experiments using only visual
results of multiple people activities. Similarly, a fuzzy logic based system by Yi et al. only provided visual results for the
alarm level in surveillance environments, detected by their system [35]. On top of this, they utilized privately recorded
videos for evaluation, thereby leaving no space for fair comparison in future research works.

Notwithstanding the downsides of evaluation standards of fuzzy logic-based surveillance BVD analytics methods,
there are some optimistic outlooks in the related literature. The commonly utilized metrics in computer vision domain
including precision, recall, F1-score, accuracy, false positives and negatives, peak signal to noise ratio, accuracy rate,
and false detection rate, among others, are also employed by some existing algorithms. For instance, the authors
in [38, 40, 41], implemented accuracy, precision, recall, and F1 measures to justify their output results in various
surveillance domains, including human detection and their motion information computation, as given in Table 4. Thus,
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with these methods, it is possible to evaluate and validate the performance of fuzzy logic in surveillance domains when
compared to other approaches employing machine learning and traditional image processing techniques.

Some of the assessment metrics in the fuzzy logic domain from a surveillance perspective are common with other
artificial intelligence problem evaluation metrics like accuracy, time, response time, and false positive rate. For instance,
the accuracy presented in [44] calculates the quantity of correct predictions declared as a proportion of the total
predictions made. It is most commonly used and the best fit for data having an equal number of samples for positive and
negative classes however is not effective for imbalance data modeling. Similarly, the false positive rate [58], also known
as fall-out, calculates the proportion of negative samples incorrectly classified as positive samples. It is mostly utilized
to check the false alarm rates of an AI model [83]. The above discussion reveals that there is a lack of common metrics
for assessing fuzzy methods , where a set of benchmark evaluation strategies can be introduced for fair comparison and
evaluation. Interested researchers are referred to [84] and [85] for different evaluation metric proposals.

6 APPLYING FUZZY LOGIC: WHY, WHEN, ANDWHERE?

The recent success of convolutional neural networks (CNNs) in the video analysis [86] domain is commendable and
has replaced statistical image processing, providing automated activity recognition [87, 88], data prioritization [89],
and many other useful tasks. The most effective methods for video surveillance are based on CNNs or their variants
to classify abnormal actions/activities. However, these methods mostly suffer from false alarm rates when exposed
to challenging real-world environments. For instance, a fire detection method with a computationally complex CNN
baseline achieves 9.34% false alarm rate for fire detection [90]. A false alarm rate of 27.2% has been found in research
using activity recognition datasets [91]. In data prioritization approaches, there exists redundancy even after the final
output generation [6]. Decision-making opportunities for anomalous events (fire, smoke, fight, violence, etc.) detection
using CNNs with end-to-end architectures, that are intelligent enough to discriminate between a true and a false alarm,
are yet to be explored. Due to direct affect of these methods over human lives and properties, they demand human-like
decisions that are trustworthy when exposed to real-world scenarios.

Fuzzy logic is a suitable solution to address the aforementioned problems. For instance, the false alarm rate for
anomalous events (fire, violence, and many others [92]) can be marginally reduced when handled through fuzzy
inference systems. A possible direction, but not limited to the anomalous events and false alarm rate generation, is to
keep the history of the anomalous events and generate alarms when the fuzzy inference system confirms its alarming
nature by processing the previous data patterns. Similarly, the redundancy that can be observed while generating
prioritized data can be handled effectively by using fuzzy image processing techniques. Using fuzzy sets/rules and
membership values modification accordingly guarantees enhanced redundancy removal with reduced computational
complexity [19, 67]. There are an abundance of image processing techniques with a fuzzy logic baseline approach that
are used in many applications, ranging from image enhancement/interpretation/segmentation to law-enforcement.

Fuzzy logic-based image processing comprises image fuzzification, modification of membership values, and finally
image defuzzification. These techniques contain grayness ambiguity, geometrical fuzziness, and vague knowledge
that are referred to as low-level (preprocessing), intermediate-level (segmentation, representation, description), and
high-level (analysis, interpretation, recognition) processing. The final output results are generated after an image is
passed through theses phases. Some exemplary techniques are histogram-based gray-level fuzzification (histogram
fuzzification) used to control brightness for image enhancement [93, 94]. Other techniques include local fuzzification
used for edge detection, and feature fuzzification employed to analyze scenes and recognize various types of objects. On
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top of this, fuzzy image processing offers image information measurement (e.g. entropy, correlation), clustering, hybrid
approaches for better performance (including neuro-fuzzy and genetic fuzzy systems), and image filtering opportunities.

Although the fuzzy image processing tools and techniques perform well for certain problems, their accuracy over
complex classification/segmentation/object detection tasks lags behind CNNs. The major problemwith mainstream CNN
based techniques is their deployment over embedded hardware circuits and resource-constrained devices. Significant
improvements have been made to optimize the models for deployment on resource-constrained devices. An example of
this is described in our recent research in [88], where we employed optimization strategies to squeeze the model size and
run over a resource-constrained device for video summarization and activity recognition. Achieving minimum/negligible
accuracy loss with highest compression ratio of Deep Learning models after optimization is a dream for computer
vision researchers and several approaches have achieved convincing results [95]. However, it is still challenging to run
a highly precise model over edge devices for on-the-spot decisions to ensure secure surveillance. Another promising
solution towards edge computing and decision making for continuous automated surveillance is to leverage advances
in 5G and 6G technologies for data transfer to cloud analysis centers and receiving responses in real-time. Despite these
solutions, mainstream fuzzy techniques are well suited for controllers and effective hardware that are functional over
the edge and have real-time decision-making potential. Therefore, the usage of CNN or fuzzy logic still depends on
the requirements of the users dealing with surveillance BVD. In real-world scenarios requiring timely decisions and
instant explainable reporting, surveillance cameras and their hardware controllers can be re-designed and endowed
with fuzzy logic techniques on board towards achieving such desired objectives. On the other hand, detailed analysis of
surveillance BVD can be handled accurately by means of more complex CNN architectures functional at cloud analysis
centers. The future is likely to see both approaches to be complementary for achieving distributed edge AI solutions.

The following edge computing applications using fuzzy logic, fuzzy clustering algorithms can be effectively used
for surveillance BVD analysis to segment the videos or group them into similar classes [96], as proposed in [97] for
sports videos. Surveillance BVD can be effectively monitored by applying fuzzy feature extraction strategies or hybrid
mechanisms [98] with the assistance of Deep Learning architectures, as presented recently in [99]. Since fuzzy logic
processes better linguistic data, crowd behaviors/activity predicted using Deep Learning models could be effectively
analyzed from surveillance BVD using fuzzy logic and the statistics could be reported accordingly to corresponding
authorities [100]. Consider an example of civil disturbance in an online video stream predicted by a Deep Learning
model. Here the underlying event can be analyzed and compared with the previous history using fuzzy logic.

This rationale and advocation for continued research in the intersection between surveillance BVD and fuzzy logic
stimulates several challenges and future research directions, which are explained in the next section.

7 CHALLENGES AND FUTURE RESEARCH DIRECTIONS

A huge number of research methods in the fuzzy logic domain have been presented since the last decade and particularly
over the last 5 years. These methods are split over diverse categories with applications in medical [101], security
[102, 103], and surveillance [104], to mention a few.

However, in the fuzzy logic literature, there is a deficiency of research contributions related to disaster management
[105], surveillance video summarization [96], embedded vision applications [62], action and activity recognition [106]
with major focus on violence detection [3], and the Internet of Things (IoT) [107]. Similarly, hybrid systems proposed
from the integration of simple or complex structured Deep Learning architectures and fuzzy theories are very limited
and only just emerging [108]. The employed techniques lack focus on high potentials of CNNs and other emerging types
of deep neural networks such as SNNs, and graph neural networks integrated with fuzzy rules to generate accurate
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results. There are also a limited number of contributions in the fuzzy logic literature focusing on the broader coverage
of smart cities and converged to IoT and edge intelligence.

The need for such systems with possible research tracks in these specified domains are explained in the subsequent
sections and comprehensively summarized in Table 6.

7.1 Application-wise Future Endeavors in the Fuzzy Surveillance Domain

As for future research in the fuzzy logic from these applications’ perspective, there are various tracks that are discussed
in this section. These tracks include disaster management [105], video summarization [147], actions and activities
recognition [106], and intelligent decision systems using fuzzy logic.

Disaster management is a hybrid area of research that has attracted scientists from various domains, including
computer and environmental sciences and engineering. Several reporting systems have been developed by using
different sensor data and computer vision techniques to identify various types of disasters in their early stages. Natural
disasters include wildfire, earthquake, floods, and storms, where their early detection and identification can help saving
human lives and properties. For example, fire detection using data from various sensors such as smoke detection sensors,
alarm generators or vision sensors with intelligent fire detection mechanisms help identify fire at its early stages. Fire
detection sensors (heat and smoke sensors) for dense forests are difficult to install and have limited coverage. Vision
sensors, in contrast, can perform well for instant reporting after smoke or flame detection [83].

The usage of fuzzy theory in disaster management can lead us to satisfying results due to its human like reasoning
and decision methodology. In particular for fire detection using vision sensors in wild scenes, fuzzy logic can be used
to handle false alarms, variable weather conditions, and other sources of uncertainty associated to the video scenes.
Some early fuzzy-based methods [112, 148, 149] for fire detection with lower accuracy and high false alarm rates exist
that can be used as references for future research in this arena. Here the use of type-2 fuzzy systems or tunable fuzzy
systems could improve performance in these domains.

As like in disaster management, fuzzy logic systems are not greatly explored in video summarization literature,
where there is an extreme need for human-like rules for representative content selection from lengthy videos. Video
summarization aims at the condensation and summarization of videos, generated from live surveillance video or any
other input depending upon the application [150]. This is a trending research topic due to its importance in saving
resources of huge amount of video data that is generated on a daily basis. video summarization methods are split
into two sub-domains, i.e., single and multi-view video summarization on the basis of vision sensors used to generate
video data. Single-view video summarization [96] provides a summary with limited coverage, while multi-view video
summarization [61] gives a proper reporting from different angles and thus creates a diverse and representative summary.
To the best of our knowledge, there are only countable number of research studies [19, 104] that use fuzzy logic (even
as a prerequisite step) to assist an algorithm in generating a video summary. This field of research should be considered
in the future to realize an effective usage of fuzzy logic for useful surveillance video summarization. Here, fuzzy logic
can generate summaries that are closer to human perception.

In contrast to video summarization using fuzzy theories, the domain of action recognition [106] with sub-domains of
violence detection [3] and gesture recognition [151] has relatively dense research and application contributions. Activity
recognition is an active domain of research providing services in automated surveillance and playing a vital role in
ensuring public safety. Representative activity recognition methods from fuzzy logic literature include [152] and [153],
where they used fuzzy clustering, fuzzy self-organizing map, and fuzzy inference systems to predict human activity.
Unfortunately, the recent fuzzy literature is still limited on the coverage of these topics from real-world implementation
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and accuracy perspectives. Therefore, human activity recognition using fuzzy theories is still an open research area for
dealing with video data for effective activity recognition.

7.2 Edge Intelligence and Fuzzy Logic

Fuzzy systems have comparatively lower computational complexity than other modeling approaches [154], and can be
easily transformed for their use at the edge of networks that support the generation and distributed analysis of data
[155, 156] at the point of its creation. Visual sensors in surveillance IoT networks can be made intelligent enough to
analyze online streams efficiently, and eventually report on abnormal situation. These intelligent vision sensors can
be used with a resource-constrained device having limited computational capabilities, or the hardware of the input
camera might be made smarter with several functionalities such as automated objects analysis, events detection, and
recognition. As fuzzy logic performs well over controllers and hardware devices [155], embedded programming can be
employed to make surveillance cameras intelligent with various functionalities, as exemplified previously.

Transforming these capabilities into the edge has several advantages with primary benefits of effective resource usage
and instant reporting. Edge intelligence ensures real-time responsive actions with instant decision making capabilities
[62]. For instance, readers can refer to [5], where authors utilized a resource-constrained device for suspicious objects
detection, followed by video summarization. A similar case is reported in [62], which aims at intelligently using a
resource-restricted device for smart healthcare centers. In another research work [157], a Raspberry Pi is utilized for
facial expression recognition to provide smart law-enforcement services. Thus, bringing fuzzy logic to the edge of
networks [158] can play a significant role [159] in the effective analysis of generated surveillance BVD.

7.3 Adaptive Fuzzy Logic for Non-Stationary Environments

Non-stationary environments refer to scenarios where new data is produced continuously subject to exogenous factors
that make the knowledge captured by data-based models vary over time [160]. Therefore, the rules or inference systems
pre-defined for a certain scenario are limited to such environment without any adaptability for new scenes or events.
This is an emerging issue, particularly for vision data generated from surveillance cameras, where the environment
changes from time to time, and unexpected situations can be encountered at anytime. Decisions made by fuzzy logic
are safe for data with high-level of uncertainties and variation. Therefore, the problem of non-stationary surveillance
environments can be effectively tackled by virtue of adaptive fuzzy logic systems.

An adaptive fuzzy system can perform well over the new distribution of data and overcome the deficiency of confined
decisions. This track of future research is very important for effective decision making in surveillance scenarios.
Researchers in the fuzzy logic domain should be highly motivated to contribute to this direction of research. In this line
of reasoning we refer them to the study in [109], where surveillance of live streams with non-stationary environments
are handled for precise action recognition. In a similar approach towards non-stationary data handling, Jesus L et al.
[161] utilized recently evolved SNNs to provide an active adaptation for drift detection problems.

On a closing note, as fuzzy rules are based on continuous values they can be effectively utilized in non-stationary
environments to represent and generalize a situation in the learning stage of an algorithm or a hybrid model.

7.4 Public Availability of Research Implementation

The majority of the fuzzy based research works do not provide a public release of the implementation of their proposals,
nor do they made the utilized datasets public for the community.The primary concern of private resources is that
comparison of their techniques with the state of the art methods becomes tough in cases where the authors have not
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made their implementation publicly accessible. Possible content that should be attached to prospective works should
contain the codes, datasets, and supplementary materials, along with clear instructions and scripts to replicate the
results discussed in the publication of reference. When made available, codes and datasets can be harnessed by other
researchers working in different fuzzy domains towards better outcomes. Therefore, researchers should be encouraged
to release codes and necessary supporting material in Github or other open repositories for future usage of the research
community. In this regard, Table 7 shows a list of some fuzzy logic software frameworks and tools that can be utilized
for new implementations in prospective studies.

7.5 Time Complexity and Computational Resources Analysis

The generic trend in the research community for measurement of novel acceptable contributions compared to the
state-of-the-art includes F1 score, accuracy, preciseness, or increase in efficiency. Most of the research articles are racing
for higher accuracy without any focus on computational complexity. Similarly, the employed methods lack focus on the
size of the final hybrid model or method to use, its feasibility for installation, deployment conditions, CPU or GPU
inter-adoptability, extension of any algorithm from GPU to CPU, and in turn into embedded devices. For instance,
time computational complexity analysis can be observed in the study reported in [88], where authors exposed time
comparison and other issues related to the adoptability of their framework. In other research proposed by Hussain et al.
[5], a detailed analysis is made about their systems’ response time, individual algorithms comparison, experiments over
different videos resolutions, and varying frame rates. Such detailed experiments open up new directions for further
research. A possible future research avenue can be unleashed by introducing the computational complexity of fuzzy
methods, where researchers can optionally focus on reducing time complexity or increasing the precision of their
methods.

7.6 Proposals of Hybrid Techniques

Recently, different flavors of neural networks and efficient architectures have been introduced that convincingly
succeeded in imitating many functions of the human brain. These networks include SNNs [165], which have the
potential to model the human brain, and work well for pattern learning tasks such as human motion for abnormal
activity recognition. As an example, an audiovisual information processing system was implemented by [166] with
convincing results compared to state-of-the-art approaches. A derived version of SNNs with so-called super spikes

is proposed by Zenke and Ganguli [167] to open a new trend in SNNs research. Chandhok et al. solved the problem
of image clustering using SNNs [168]. Other trending neural network techniques are GNNs [169], which have been
proven to yield better solutions to complex tasks such as action recognition [170]. As an example, it is interesting to
observe the semantic segmentation results achieved by 3D graph neural networks [171]. Another research work [172]
has resorted to graph neural networks to rank web pages with promising results. These techniques can compete with
human-level accuracy, however research in regard to such hybrid models endowed with fuzzy logic capabilities has yet
to be explored for complex real-world problems.

7.7 Explainability in Fuzzy Video Data Analysis

Much attention has been lately paid to the interpretability of black-box Machine Learning models, mainly due to their
noted significance in practical scenarios where they are used [173, 174]. In fact, it is widely acknowledged that in certain
domains [175], a proper understanding of how decisions are furnished by these opaque models ease the acceptability
and trust of the user who is making decisions on the basis of their output [176]. Surveillance is not an exception to
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this noted need for explainability, particularly for the identification and accountability of the reasons why the model
detected a given event. Explainability (XAI) techniques can help the user discriminate these reasons, analyze them, and
ultimately design countermeasures to minimize their recurrence over time.

Fuzzy logic can be an efficient interface for explaining the knowledge contained in the model to its end user. For
instance, evolutionary fuzzy rule-based systems can complement black-box models (e.g. Deep Learning) for their
understanding by an audience without in Machine Learning [177]. However, the provision of explanations over non-
stationary data (Subsection 7.3) still remains an open challenge, particularly in regards to how model changes resulting
from this lack of stationarity propagate to the produced explanations, and how these varying explanatory information
can be consumed by the audience.

Another challenge emerges when matching the cognitive skills of the user for which explainability is sought with the
complexity of explanations elicited by XAI techniques [178]. This issue becomes even more involved when explanations
are produced over both space and time domains, including natural language stories about the sequence of frames that
triggered the output of the model at hand [85]. Some baseline research is carried out in this direction towards the
explainable type-2 fuzzy logic systems for gesture recognition [20]. We foresee vast research opportunities to address
these aspects in coming years [108].

8 CONCLUDING REMARKS

Surveillance cameras are one of the most common sources responsible for generation of huge amount of video data,
requiring effective analysis methods for their significant usage. There exists a variety of methods undertaking this raw
video data and transforming it into useful information via machine learning, Deep Learning, image processing, and
pattern recognition techniques. Fuzzy methods such as fuzzy inference, fuzzy clustering, and extensions to type-1 fuzzy
systems mimic human cognitive abilities to process any type of data. These methods can achieve video analytics tasks by
transforming input video data into useful information while having the ability to handle different sources of contextual
uncertainties. At the same time, as fuzzy logic and its generated system is based on perceived assumptions, it may show
limited performance for some complex pattern recognition tasks when compared to classical image processing and
machine learning algorithms. Fuzzy systems excel in their ability to proved explainable, flexible and robust knowledge
representation and reasoning solutions. However, using them on their own may show poor performance for video
analysis tasks (activity classification, anomaly recognition, etc.). Therefore, in the majority of these cases, fuzzy inference
techniques are widely used in combination with neural networks for precise output predictions in several domains.

Fuzzy logics’s usage in surveillance BVD is comparatively scarce. This review paper addresses this research niche by
highlighting the need for surveying the use of fuzzy techniques in this challenging and increasing relevant domain.
The studies reviewed in Section 4 confirm that fuzzy methods are able to outperform traditional methods in many
complex problems related to security [179], sentiment analysis [180], data classification [181], and natural language
processing tasks [182], among others. However, the literature still receives rare contributions from the perspective of
surveillance applications. There are approximately 20 methods performing object detection, tracking human actions, or
dealing with surveillance BVD using a variety of fuzzy systems. In this review paper, we have first introduced the topic,
along with its motivation and applications of interest. Next, we have explained the basic working procedure of fuzzy
methods, followed by an introduction of video analytics via fuzzy logic. Following this, we have introduced possible
challenges and a motivational rationale for the review article directed towards our major contributions. In Section 3,
we have presented and discussed existing surveys in the fuzzy logic domain to familiarize readers with previous and
ongoing works in this realm. Furthermore, we have provided a wide literature coverage of our survey followed by
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different surveillance methods utilizing BVD for various applications. Most importantly, Section 7 has exposed future
research directions in terms of applications leveraging this synergy of technologies, as well as possible areas of research
in machine learning that align closely with the needs of fuzzy logic BVD analytics.

Fuzzy logic is a hot topic of research and development withmajor focus on disease diagnosis, control systems, semantic
similarity controllers, and pattern classification problems. The effectiveness of fuzzy logic is not properly utilized
for inspection and reporting of surveillance BVD, leading to the possibility of developing robust and representative
solutions. Through this survey, we encourage scientists to develop novel applications or improvements to previous
research applying fuzzy methods utilized for surveillance applications. A lack of research focus on the domain will leave
fuzzy techniques for surveillance as deserted, and surveillance BVD analytics will be deprived from the full potential of
fuzzy logic. This overview has provided baseline material and outlined valuable research directions for this area to
blossom in the years to come.
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Table 5. A detailed analysis of the reviewed literature in surveillance domain along with their description, application domain, adapted
strategy, and used tools for the implementation of the proposed method (s).

Ref Description Domain Strategy Tool/Output
results

[35]
A fuzzy logic approach is used to fuse images from
different sensors in order to enhance visualization for
surveillance.

Visible and infrared
image fusion

Fuzzy if-then rules and Mamdani-type fuzzy with
several membership functions

Simulation
results

[37] Fuzzy logic for locating moving objects in a video se-
quence with segmentation, tracking, and analysis phase Motion tracking

Fuzzy bi-dimensional is used for objects matching.
Trapezoidal fuzzy sets are also used to describe the
movement over each dimension

Not avail-
able

[34] Posture based events detection with fuzzy logic to de-
termine the subject’s behavior Face recognition FuzzyAND and fuzzyOR with sigmoid membership

function
MATLAB

[38] Dynamic neural fuzzy approach is used for segmenta-
tion of moving objects in dynamic backgrounds.

Object detection
with dynamic
backgrounds

Neural-fuzzy model based on one-to-one self-
organizing map architecture. Fuzzy inference
Sugeno system to mimic human behavior

Not avail-
able

[39]
A hierarchical approach to focus on modeling expert
knowledge via fuzzy metric temporal Logic and Situa-
tion Graph Trees

Recognize moving
objects, bag pack-
ing etc.

Fuzzy metric temporal logic rules dictionary for
guiding the operator’s attention in surveillance
video and automatic report generation

Simulation
results

[40]
An ontology-based method for identification, model-
ing, and generalization of the most relevant events to a
specific domain

Semantic events de-
tection

Top-down general knowledge is built based on end-
user descriptions of events, followed by automatic
video indexing via bottom-up approach.

Natural
language
generation
and under-
standing

[41] Video-based traffic surveillance approach using a fuzzy
hybrid information inference mechanism

Object detection
and tracking

Three major steps: background updating, vehicle
detection with block-based segmentation, and track-
ing

Not avail-
able

[42] An efficient fuzzy logic background modeling method
for human detection Human detection

Fuzzy logic assisted moving human detection, fea-
ture extraction and aggregation, and contour detec-
tion

Simulation
results

[45] Five different phases for foreground objects detection
i.e., humans Human recognition A robust background modeling algorithm using

fuzzy logic is used to detect foreground objects.
MATLAB

[46] A fast yet robust technique to enhance the visibility of
video frames using the dark channel with fuzzy logic

Video enhancement
for foggy, hazy, and
rainy weather sce-
narios

Fuzzy logic-based technique produces high quality
haze-free images in real-time

Java

[47]
Risk assessment method, risk calculation is based on
fuzzy cognitive maps for a complex automated video
surveillance system.

Risk assessment

Fuzzy cognitive maps are used to capture dependen-
cies between assets and fuzzy cognitive maps-based
reasoning is applied to aggregate risks assigned to
lower-level assets

Not avail-
able

[48] An adaptive traffic engineering method based on type-2
fuzzy logic for video surveillance system over SDN Video surveillance

Type-2 fuzzy system to assign network links costs
based on quality of experience; and adaptive traffic
engineering calculates the best routes to guarantee
quality of service in a video surveillance system

Java

[49] A fuzzy logic data association algorithm for online vi-
sual multi-object tracking

Multi-object track-
ing

By incorporating fuzzy logic into multi-object track-
ing system, the association probabilities are allowed
to be adjusted dynamically based on the conclusions
of a set of fuzzy rules.

MATLAB
and C++

[50]
Fuzzy theory to handle the complex issues in traffic
video surveillance and a traffic anomaly detection algo-
rithm

Road traffic anom-
aly

Fuzzy traffic flow, density, and fuzzy motion state
are input to relevant membership functions for an
anomalous state evaluation

Not avail-
able

[51]
Probabilistic self-organizing map and fuzzy logic-based
model for foreground object detection in video se-
quences

Foreground object
detection

Probabilistic self-organising maps based model to
incorporate a suitable choice of pixel features and
a featured foreground self organizing map is com-
bined with a fuzzy rule-based system for final de-
tection.

Python,
MATLAB,
and Java

[52]
A type-1 fuzzy approach over apposite inter and intra-
frame locomotion feature of pedestrian to yield precise
walks direction

Walk directions es-
timation

Inter and intra-framemotion features of pedestrians
are extracted to finally predict their walk directions
via fuzzy rules and membership functions.

Simulation
results
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Table 6. Challenges on the basis of surveyed literature of fuzzy theories in surveillance domain, including solutions, baseline papers,
and possible follow-up citations.

Ref. Problems and their solutions Baseline
papers Future works

7.1
Fuzzy logic is underrated in lots of emerging computer vision domains including disaster management
[105], video summarization [96], action and activity recognition [109], healthcare [62], communication
[110], violence detection [3], and entertainment [111].

[61], [28], [80]
[112], [113],
[114], [115],
[116]

7.2 Providing services at the edge of the network using efficient fuzzy logic-based techniques are missing
from the current literature in surveillance BVD. [117], [116] [118], [119],

[120]

7.3

There are limited adaptive methods in fuzzy logic literature. Although surveillance BVD encounters
distinct patterns in real-world scenarios every day and focusing on such data is missing in the current
fuzzy logic literature. The irregular patterns encountered in everyday surveillance instigate the need
of malleable fuzzy based techniques functional in stationary as well as non-stationary environments.

[121], [122],
[123], [124]

[125], [126],
[127]

7.4
The implementation of majority of the fuzzy methods is not reported or publicized, which could help
other researchers to fine-tune the available methods for other purposes or use them to compare their
results and notice the advancement or lag in their method.

[128] Table 7

5,
7.5

The literature of fuzzy theories lacks some common evaluation metrics for a certain domain such
as video analytics (video classification, retrieval), image processing (classification, clustering), etc.
Common evaluation metrics for a certain area of fuzzy theories can hold the researchers at one
mutual point, seeking some quality results and methods. Similar intuition can be obtained from image
classification [129] and image retrieval domains.

[130] [131], [84],
[132]

7.6
There are plenty of hybrid methods in overall fuzzy literature integrated with neural networks, machine
learning strategies heading towards a common output solution. This aspect seems inadequately covered
in surveillance BVD literature. Hybrid techniques are highly encouraged to have quality results.

[133], [134] [135], [136]

7.1

There is an appealing advancement in neural networks and learning strategies, where new trending
practices pose higher precisions and computationally efficient solutions to complex real-world problems.
These networks include SNNs, graph neural networks, and learning strategies such as reinforcement
learning, etc. It is a challenging phenomenon to integrate these networks with fuzzy logic theories
and explore the intermediate layers for possible entrance of fuzzy rules to provide effective and
computationally intelligent solutions to different real-world complications.

[137] [138], [139],
[140]

7.3,
7.4

Medical image data and its related processing to assist humans in diagnostic procedures and many other
applications is delicate in nature. Such data is not always publicly available where similar concepts as
federated learning should be adopted by fuzzy methods to introduce effective solutions in data scarce
situations and propose precise and accurate solutions.

[141, 142] [143], [144]

7.7

Recently, non-experts of computer science are taking interest in AI-based solutions to the problems
they encounter in their respective domains. Explainable AI (XAI) has simple decision making process
that is understandable for an average person. Introducing such fuzzy rules, predicate logic, or inference
systems etc. that are understandable for average person can lead the technology of dealing BVD
effectively to its best level.

[145] [146]
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Table 7. List of main fuzzy logic software frameworks. For more information and details about other related tools, refer to [162].

Tools Provider Remarks

Fuzzy Logic Toolbox for MAT-
LAB

MathWorks
https://www.mathworks.com/help/fuzzy/ (Accessed on 23 No-
vember 2020)

Fuzzy Logic Toolbox has different functions for fuzzy based
design, analysis, and simulations.
It is licensed under Fuzzy Logic Toolbox by MathWorks.

LabVIEW PID and Fuzzy Logic
Toolkit

NATIONAL INSTRUMENTS
https://knowledge.ni.com/KnowledgeArticleDetails?id=
kA00Z0000019RTlSAM (Accessed on November 23, 2020)

Suitable for fuzzy system designs and control systems with
multiple applications integration capabilities.
It is licensed under National Instruments Patent Notice at ni.
com/patents.

fuzzyTECH INFORM GmbH and Inform Software Corporation
https://www.fuzzytech.com/ (Accessed on November 23, 2020)

Software development kit for fuzzy logic and neural-fuzzy prob-
lems.
Open source, editions can be made at https://fuzzytech.com/e/
fteo.html.

sciFLT
SCILab (ATOMS)
https://atoms.scilab.org/toolboxes/sciFLT/0.4.7 (Accessed on
November 23, 2020)

Supports fuzzy logic simulations and final code generation.
Open source under Free Software Foundation

Scikit-Fuzzy
SciKit (Python)
https://github.com/scikit-fuzzy/scikit-fuzzy (Accessed on No-
vember 23, 2020)

It contains a lot of fuzzy logic algorithms implemented in Python
language.
Open source, redistribution under licence by Copyright (C) 2011,
the scikit-image team

Juzzy [163]
http://juzzy.wagnerweb.net/ (Accessed on November 23, 2020)

“A Java based toolkit for type-1, interval type-2, general type-2
fuzzy logic, and fuzzy logic systems”
Free to use and cite the reference.

Fuzzycreator
[164]
https://bitbucket.org/JosieMcCulloch/fuzzycreator/src/
master/ (Accessed on November 23, 2020)

“A python-based toolkit for automatically generating and
analysing data-driven fuzzy sets”
Free to use and redistribution reserved by Copyright (C) 2016
Josie McCulloch.

27

https://www.mathworks.com/help/fuzzy/
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z0000019RTlSAM
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z0000019RTlSAM
ni.com/patents
ni.com/patents
https://www.fuzzytech.com/
https://fuzzytech.com/e/fteo.html
https://fuzzytech.com/e/fteo.html
https://atoms.scilab.org/toolboxes/sciFLT/0.4.7
https://github.com/scikit-fuzzy/scikit-fuzzy
http://juzzy.wagnerweb.net/
https://bitbucket.org/JosieMcCulloch/fuzzycreator/src/master/
https://bitbucket.org/JosieMcCulloch/fuzzycreator/src/master/

	Abstract
	1 Introduction
	2 Background concepts of fuzzy logic
	3 Representative surveys in fuzzy logic and our survey
	4 Literature Review
	4.1 Fuzzy logic based methods for surveillance BVD

	5 Performance Evaluation of Fuzzy Based Surveillance BVD Analytics
	6 Applying fuzzy logic: why, when, and where?
	7 Challenges and Future Research Directions
	7.1 Application-wise Future Endeavors in the Fuzzy Surveillance Domain 
	7.2 Edge Intelligence and Fuzzy Logic
	7.3 Adaptive Fuzzy Logic for Non-Stationary Environments
	7.4 Public Availability of Research Implementation
	7.5 Time Complexity and Computational Resources Analysis
	7.6 Proposals of Hybrid Techniques
	7.7 Explainability in Fuzzy Video Data Analysis

	8 Concluding Remarks 
	Acknowledgments
	References

