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Abstract

Modern computer memories have been shown to have
reliability issues. The main memory is the target of a se-
curity attack called Rowhammer, which causes bit flips
in adjacent victim cells of aggressor rows. Multiple mit-
igation techniques have been proposed to counter this
issue, but they all come at a non-negligible cost of per-
formance and/or silicon surface. Some techniques rely
on a detection mechanism using row access counters to
trigger automatic defenses. In this paper, we propose a
tool to build a system-specific detection mechanism us-
ing gem5 to simulate the system and Machine Learning
to detect the attack by analyzing hardware event traces.
The detection mechanism built with our tool shows high
accuracy (over 99.8%) and low latency (maximum 264µs
to classify when running offline in software) to detect an
attack before completion.

1 Introduction

Physical Memory is a key component to modern com-
puting. Computers use Dynamic Random Access Mem-
ory (DRAM) as main memory, with multiple cache lev-
els between the processor and the main memory to
speed up the access to frequently used data. As com-
puter technologies became more efficient and smaller,
manufacturers have been able to put more memory in
much smaller spaces, resulting in better performances
and lower cost [12]. However, making DRAM smaller
resulted in higher vulnerability to what Kim et al. [14]
depicted as disturbance errors.

Attacks exploiting this error, named Rowhammer
(RH) attacks, have rapidly appeared to precisely flip
bits to gain kernel privileges [20], and it became a ma-

jor threat to modern computer memories. It has been
shown that this type of attack is cross-CPU compat-
ible [19], can escape web page sandboxes [11] and is
feasible using only network requests [17].

To counter this attack, multiple mitigation tech-
niques, such as increasing the refresh rate [5], probabilis-
tic neighbor refreshes [14] or row access counters [16],
have been proposed. However, all-weather mitigation
approaches are either performance costly or take non-
negligible space on the silicon. Furthermore, new at-
tacks aware of these techniques have been developed
to make the implemented protections ineffective [10].
Some solutions would benefit from simply being need-
based mitigations instead of permanently lowering the
performances.

As Rowhammer attack tries to corrupt the memory
with repeated accesses to DRAM memory while avoid-
ing row buffer hits and cache hits, it can be distinguished
from normal processes by looking at some events on the
hardware level. Therefore, in this case, vulnerability as-
sessment of microarchitectural components can serve as
first-line-of-defense toward Rowhammer vulnerabilities.

In this paper, we present work in progress on a de-
tection mechanism of Rowhammer attacks for a specific
system using the gem5 simulator, based on the analysis
of hardware events by a Machine Learning model. For
the moment, the presented work has only limited test
cases for the detection mechanism and does not evaluate
the implementation cost of the proposed solution.

2 Related work

RH mitigation has been largely studied since its first
appearance in literature [14]. Most of the existing mit-
igation techniques as of today are synthesized in [13].
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Some protection mechanisms try to make the attack
impossible to perform through hardware changes, such
as an increase of the refresh rate or an additional refresh
happening with a small probability after each access
[14]. Those solutions have an impact on performances
and power consumption even under normal operation
(no attack), but have a relatively small impact on the
hardware surface, as it does not need a lot of memory.

Some other mitigation techniques use some mecha-
nism to detect the attack and act automatically when
the attack is detected. This often requires counters to
be used, e.g. as row access counters [3][16][21]. When
the counter reaches a threshold value, the related rows
are refreshed. Those solutions do not have an impact
on performance as they rely on small processes running
in parallel directly on the hardware or the memory con-
troller. However, this requires extra memory to store
the counters.

RH defense mechanisms do not often rely on Ma-
chine Learning to detect that an attack is happening.
This type of solution has been barely studied to defend
against RH attacks. In particular, two contributions
stand out:

Chakraborty et al. [9] propose a software-based solu-
tion to predict bit-flips in the memory. The software
monitors the LLC miss rate to detect suspicious pro-
cesses, and then records the DRAM banks and rows
accessed by this process to identify access patterns.
A Convolutional Neural Network (CNN) then catego-
rizes the access pattern as being from an attack process
or not. This solution does not require any hardware
modification and relies on address mapping reverse-
engineering to precisely detect victim rows. However,
the mechanism takes a lot of time (1.5s on average) to
detect an attack process after it has begun. If the pro-
cess already knows the virtual-to-physical address map-
ping, the bit-flip can happen in less than 10ms according
to Kim et al. [14]. 1.5s is more than enough to corrupt
the system.

Alam et al. [4] describe a three-step mechanism to
detect micro-architectural Side-Channel Attacks (SCA)
on encryption algorithms in real time. The first step is
the detection of anomalies in the Hardware Performance
Counters. When an anomaly is detected, the abnor-
mal traces are passed to a classifier that uses a trained
machine learning model to output the possible types of
SCA. Finally, a Correlation module is used to detect cor-
relations between the abnormal process and the encryp-
tion process. If the correlation factor is high enough, the
attack can be termed as an SCA against the encryption

algorithm. This paper focuses on the defense of encryp-
tion algorithms against Micro-architectural SCA. How-
ever, according to Alam et al. [4], attacks that do not
target the protected encryption process are categorized
as a safe state of the system.

To the extent of our knowledge, the RH attack is still
an issue for modern DRAM. The most effective mit-
igation techniques rely on detection mechanisms that
have a high silicon footprint and/or performance over-
head. Based on our findings, Machine Learning (ML)
has not been studied as a detection mechanism with
performance in mind. Existing solutions only have a
software implementation and a high processing time.
The performances of ML as a Rowhammer detection
mechanism have to be studied more in depth.

3 Methodology

3.1 Overview

In this paper, we propose a method to create an
RH detection mechanism based on the categorization
of hardware event traces as normal or abnormal (no at-
tack or attack) by a Machine Learning (ML) model.

The creation methodology is divided into three steps:
features selection, simulation, and training and testing
the ML model. We also describe the final hardware
implementation of the detection mechanism once it is
built.

3.2 Features selection

We specify a list of hardware events that would be in-
fluenced by the RH attack. This list of features should
allow the mechanism to distinguish between a benign
behavior and an abnormal one. A good variety of fea-
tures is important to have as much relevant information
as possible to detect attacks. Using redundant features
could make the implementation more expensive in terms
of silicon surface and/or time to detect.

3.3 Simulation

Using gem5, we configure the architecture on which
the mechanism will work. The simulator must be config-
ured to output the desired features during a simulation.

A good variety of programs is chosen, including at-
tack programs and hardware performance benchmarks
to stress the components that would also be targeted by
the attack (high memory usage).
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Those programs are run either independently or se-
quentially on a single simulated processor, or concur-
rently on parallel simulated processors.

3.4 Machine learning offline training
and testing

The feature traces are extracted from the gem5 out-
put files. Logged events are transformed into fixed-
duration samples, grouped into windows (fix-length
buffers) with a percentage of overlap between two con-
secutive windows. Windows are labelled as attack or no
attack.

Multiple ML models are trained and tested with the
datasets. To select the model to use for the final imple-
mentation, the accuracy, time to classify when running
in software and memory usage must be taken into ac-
count.

3.5 Detection mechanism implementa-
tion and operation

Once the ML model is able to distinguish normal be-
havior and attack, it can be implemented as an online
detection mechanism and implemented in the system ar-
chitecture. The created mechanism built with the pro-
posed method is illustrated in Figure 1.

Figure 1: Rowhammer detection mechanism.

It can be separated into three steps noted by circled
numbers in the figure: 1○ hardware counters, 2○ sample
concatenation, and 3○ classification.

1○: Hardware counters have to be integrated in the
system architecture to count how many times the se-
lected features happen. This implies modifications on
existing architectures to make features available to the
mechanism.

2○: Counters are regularly read, copied in
predetermined-size buffers and cleared (a); once the
buffers are full, they are copied in the input buffers for

the ML model and partially cleared with respect to the
overlap mentioned in Section 3.4 (b).

3○: The implemented ML model classifies its input
buffer as depicting a normal behavior or an abnormal
one.

4 Experiments and results

4.1 System specifications

All the ML training and testing are performed di-
rectly on a laptop computer with an Intel® Core™ i7-
8565U CPU @ 1.80GHz, 16GB RAM running Windows
10, version 19042.

The system simulation using gem5 (version 19) is run-
ning on a server. The gem5 system configuration we use,
includes one or two DerivO3CPU or TimingSimpleCPU
running at 1 GHz; two 32KB L1 caches per CPU: one
instruction cache and one data cache; one 512KB L2
cache; and finally a DRAM at 2400 MHz as main mem-
ory, with a storage limit of 4 GB handled by the DRAM
simulator Ramulator [15].

The number of CPU depends on whether we need to
run two programs concurrently. The choice of the CPU
model depends on our need for out-of-order CPU(s) or
in-order CPU(s).

4.2 Features selection

The attack we want to detect is the RH attack. Its
main goal is to disturb a DRAM row (the victim row) by
repeatedly opening the neighboring rows (the aggressor
rows). Aggressor rows have to be closed and reopened
repeatedly in order to induce faults in the victim row.
This translates on the hardware events level to a high
number of row misses.

To access the aggressor rows, the attacker must first
bypass all the cache levels, either using cache flush in-
structions if they are available to the attacker, or using
cache eviction methods. At the hardware events level,
cache flush instructions are seen as cache hits. So, there
must be a high frequency of cache misses and, if the at-
tack relies on cache flush, an equally high frequency of
cache hits at the Last-Level Cache (LLC). As all LLC
misses lead to DRAM row hit or row miss, monitoring
LLC misses is redundant.

The first level cache is separated into an instruction
cache (L1-I) and a data cache (L1-D). The L1-D will
follow the LLC in terms of hits and misses, but as the
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attack is typically a short loop of memory access in-
structions, once all the instructions of this loop are in
the L1-I, there is no more L1-I miss. The number of
L1-I misses will be very low compared to the number of
L1-D misses.

Consequently, The set of features we choose to use for
the detection is presented in Table 1.

Scope Event Alias

L1 Data Cache
Cache miss L1-D-m
Cache hit L1-D-h

L1 Instructions Cache
Cache miss L1-I-m
Cache hit L1-I-h

Last-Level Cache Cache hit LLC-h

DRAM
row buffer miss DRAM-m
row buffer hit DRAM-h

Table 1: Features selection

4.3 Simulation on gem5

In order to create the datasets, we need a configurable
system simulator, with the capability to output the de-
sired features.

gem5 meets all these requirements. We can use it
to configure the system by selecting the working fre-
quency, CPU(s), caches and Random Access Memory
(RAM). For the CPU, we mostly used the standard out-
of-order CPU DerivO3CPU at 1GHz, but made some
simulations with the in-order CPU TimingSimpleCPU
at the same frequency. We used 2 levels of cache, and
the DRAM simulator Ramulator. When using multiple
cores, the CPU and the first level caches are duplicated
for each core. A Simplified view of the system we cre-
ated can be seen in Figure 2.

Figure 2: Simulated Architecture with one CPU. i port
and d port are the ports for instructions and data, re-
spectively.

For the simulated programs, we choose two different
programs that will run either separately in two simu-
lations, or concurrently on multiple CPUs. The first

program is a combination of alternating attack and no
attack loops presented in Source Code 1. The attack
loop is very similar to the code presented by Kim et
al. [14], with X and Y being constant addresses in two
distinct DRAM rows. The no-attack loop is just a sim-
ple loop that accesses random addresses from a buffer.
This loop runs much faster than the attack one due to a
higher ratio of cache hits over cache misses. No-attack
loops are run 30 times more on average to compensate
and keep a comparable execution time.

This whole program runs multiple times (typically 10)
with different loop duration to prevent time-aware mod-
els from learning the timing rather than characterizing
the traces.

1 mov rand(), %ecx;random integer ∈ [5k; 25k]
2 atk_loop:

3 mov (X), %eax

4 mov (Y), %ebx

5 clflush (X)

6 clflush (Y)

7 loop atk_loop

8

9 mov rand(), %ecx;random integer ∈ [150k; 750k]
10 no_atk_loop:

11 ;random address in a 218-bytes array

12 mov rand(), %eax

13 mov (%eax), %ebx

14 loop natk_loop

Source Code 1: Pseudo-code for attack program.

The second program is the STREAM benchmark [18].
This program is made to test the performance of the
memory. Both the attack code and the STREAM
benchmark are memory-heavy programs, so the detec-
tion we are building will have to really recognize attack
patterns and not only memory-heavy programs.

4.4 Training and testing datasets cre-
ation

The simulator generates a log file with the desired
hardware events and their timestamps, and the program
counter for every instruction. The event counters and
the program counter are extracted from the simulator
output file. The counters are used to generate datasets.
Samples of fixed duration are created using the number
of events happening in 100 ns, and concatenated into
windows of 100 samples (10 µs). The last 50% of one
window is used as the first 50% of the next window. The
program counter is used to label the windows as attack
or no attack.
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4.5 Machine learning training and test-
ing

At the time of writing, the models are trained and
tested with datasets from multiple simulations in differ-
ent load conditions: Isolated conditions and low load.

In isolated conditions, a single core is used to run ei-
ther the custom program using source code 1, or a tuned
STREAM benchmark [18], as seen in datasets 1 to 3 of
Table 2. The generated dataset is labelled depending on
the simulated program: the STREAM benchmark is la-
belled as no attack, and the custom program is labelled
according to the loop being run.

In low load conditions, two cores are running in par-
allel, with the first core running the custom program
and the second core running the STREAM benchmark,
as seen in dataset 4 of Table 2. The generated dataset
is labelled using the program counter of the first CPU
running the attack program.

# simulation details
1 CPU1 [in-order]: attack program (source code 1)
2 CPU1 [out-of-order (o3)]: attack program
3 CPU1 [o3]: STREAM benchmark

4
CPU1 [o3]: attack program
CPU2 [o3]: STREAM benchmark

Table 2: Datasets Specifications

Load
Datasets # used

For Training For Testing
Isolated shuffle(1,2,3,4) 1,2,3
Low shuffle(1,2,3,4) 4

Table 3: Datasets used for training and testing under
different load conditions.

The samples for the LLC hits and misses and DRAM
row hits and row misses from dataset 2 (attack program,
isolated) of Table 2 are presented Figure 3. The same
features for dataset 4 (low load) are presented Figure 4.

In isolated conditions, we can easily see on the traces
that a simple threshold is enough to differentiate at-
tack and normal behavior. However, when we intro-
duce load, the feature patterns of attack and no attack
are sometimes hard to distinguish, which makes simple
threshold-based methods ineffective. ML models can
distinguish the patterns they learned, which makes them
great choices for this type of operation.

For training, sample windows from different simula-
tions are shuffled to distribute the attack and no-attack

(a) LLC hits

(b) LLC misses

(c) DRAM row hits

(d) DRAM row misses

Figure 3: 10 µs samples evolution over time (in seconds)
for custom program in isolated conditions. Red: an
attack process is running; Blue: no attack process is
running
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(a) LLC hits

(b) LLC misses

(c) DRAM row hits

(d) DRAM row misses

Figure 4: 10 µs samples evolution over time (in seconds)
for custom program in parallel to STREAM benchmark.
Red: an attack process is running; Blue: no attack pro-
cess is running

portions evenly in the training set. When a set is used
for both training and testing, only 50% of the windows
are chosen randomly and used for training. Testing still
uses 100% of the windows.

Three different ML models are tested: Long Short-
Term Memory (LSTM), Multi-Layer Perception (MLP)
and Convolutional Neural Network (CNN). All three
models are modified models originally created by Ja-
son Brownlee on Machine Learning Mastery [2]. LSTM
and CNN models were originally intended for human
activity recognition [8][6], and MLP for time series fore-
cast [7]. The models have different characteristics in
terms of performance and cost.

LSTM takes one sample (per number of features) as
input, and recognizes the evolution of the different fea-
tures across the window. It is easy to integrate in hard-
ware because it does not scale with the window length,
but takes much more time due to its recursive nature.

MLP is made from several fully-connected layers.
Compared to the other ML models tested, it is the
fastest when used in software, but can be hard to in-
tegrate in hardware due to its high number of intercon-
nections.

CNN is a type of network used primarily to analyze
visual images. One neuron in a layer is connected to a
small region of the previous layer (its receptive field).
Its speed in software is comparable to the MLP speed
in software, and is much easier to integrate in hardware
thanks to a relatively lower number of interconnections.

The models were built using Keras [1] with the python
codes presented in Source Codes 2, 3 and 4. In these
source codes, n_timesteps is the number of samples in
a window (100), and n_features the number of different
features logged by gem5 (7). All models take the 100×7
samples window buffer as input, and have 2 outputs
(attack and no-attack).

1 model = Sequential()

2 model.add(LSTM(100,

3 input_shape=(n_timesteps,n_features)))

4 model.add(Dropout(0.5))

5 model.add(Dense(100, activation='relu'))

6 model.add(Dense(n_outputs, activation='softmax'))

7 model.compile(loss='categorical_crossentropy',

8 optimizer='adam', metrics=['accuracy'])

Source Code 2: Python code to build the LSTM model
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1 model = Sequential()

2 model.add(Permute((2,1),

3 input_shape=(n_timesteps, n_features)))

4 model.add(Dense(n_timesteps // 2))

5 model.add(Flatten())

6 model.add(Dense(128, activation="relu"))

7 model.add(Dense(n_outputs, activation="softmax"))

8 model.compile(loss='categorical_crossentropy',

9 optimizer='adam', metrics=['accuracy'])

Source Code 3: Python code to build the MLP model

1 model = Sequential()

2 model.add(Conv1D(filters=64, kernel_size=3,

3 activation='relu',

4 input_shape=(n_timesteps,n_features)))

5 model.add(Conv1D(filters=64, kernel_size=3,

6 activation='relu'))

7 model.add(Dropout(0.5))

8 model.add(MaxPooling1D(pool_size=2))

9 model.add(Flatten())

10 model.add(Dense(100, activation='relu'))

11 model.add(Dense(n_outputs, activation='softmax'))

12 model.compile(loss='categorical_crossentropy',

13 optimizer='adam', metrics=['accuracy'])

Source Code 4: Python code to build the CNN model

ML
model

Load Accuracy
(%)

FP
(%)

FN
(%)

Software
over-
head

LSTM
I 99.970 0.028 0.002 216µs
L 99.924 0.071 0.005 264µs

MLP
I 99.983 0.016 0.001 5.9µs
L 99.881 0.119 0 7.1µs

CNN
I 99.975 0.024 0.001 38.5µs
L 99.962 0.038 0 37µs

Table 4: ML models predictions performances

4.6 Results

Table 4 shows the results of the different ML models
for different load conditions (I: Isolated, L: Low load).
The accuracy is the percentage of windows the model
is able to categorize correctly as attack or normal be-
havior. False Positives (FP, resp. False Negatives, FN)
is the percentage of windows the models categorize as
attack (resp. normal behavior), when it is a normal be-
havior (resp. an attack). The measured software over-
head is the time necessary to categorize one window as
attack or no attack on a single thread.

All three models show accuracy above 99.8%. Errors
usually happen on one or two windows when transition-
ing between attack and no attack. This means that all

three models are able to detect the attack when it starts
using less than 50 µs of samples, and do not classify nor-
mal behavior as attack. This time is sufficiently lower
than the minimum time necessary to flip a bit using an
RH attack (v10 ms). When implemented in software
on the test machine, the slowest model (LSTM) takes
less than 300 µs to categorize a 10 µs dataset window.
The other models are faster with 10 µs and 40 µs for
MLP and CNN respectively.

The hardware footprint and the speed to categorize
one window will be taken into account when integrating
the mechanism in hardware in a future work.

5 Conclusion

The RH attack has been a serious threat to memory
security since its first appearance. Existing countermea-
sures are either performance-costly or require significant
space on the silicon. Existing Machine-Learning based
detection systems are not well studied. In this paper, we
have introduced a vulnerability assessment mechanism
which does the trace analysis using gem5 and binary
classification of these behavior using Machine Learn-
ing. Our approach seems to offer very high accuracy
for simple attacks with very low timing overhead when
the system is run in software. The time it takes to de-
tect the attack (maximum 264 µs per 10 µs window) is
sufficiently lower than the minimum time to perform an
attack (1̃0 ms). This solution provides a good RH detec-
tion mechanism that could be used to launch effective
but performance-costly mitigation techniques.

6 Future work

At the time of writing, the proposed solution has only
been tested with offline classification in software. We in-
tend to extend our proof of concept to complex variants
of RH vulnerabilities and we intend to perform online
classification. We also plan to integrate our assessment
platform at the hardware level by exploring vulnera-
bilities in different microarchitecture components i.e.,
branch predictors, prefetchers, etc.
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