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THE RECENT EMERGENCE of artificial intelligence (AI)-
powered media manipulations has widespread 
societal implications for journalism and democracy,7 
national security,1 and art.8,14 AI models have the 
potential to scale misinformation to unprecedented 
levels by creating various forms of synthetic media.21 
For example, AI systems can synthesize realistic video 
portraits of an individual with full control of facial 
expressions, including eye and lip movement;11,18,34–36 
clone a speaker’s voice with a few training samples 
and generate new natural-sounding audio of 
something the speaker never said;2 synthesize visually 
indicated sound effects;28 generate high-quality, 

relevant text based on an initial 
prompt;31 produce photorealistic im-
ages of a variety of objects from text in-
puts;5,17,27 and generate photorealistic 
videos of people expressing emotions 
from only a single image.3,40 The tech-
nologies for producing machine-
generated, fake media online may out-
pace the ability to manually detect and 
respond to such media.

We developed a neural network ar-
chitecture that combines instance 
segmentation with image inpainting 
to automatically remove people and 
other objects from images.13,39 Figure 
1 presents four examples of partici-
pant-submitted images and their 
transformations. The AI, which we 
call a “target object removal architec-
ture,” detects an object, removes it, 
and replaces its pixels with pixels that 
approximate what the background 
should look like without the object. 
This architecture operationalizes one 
of the oldest forms of media manipu-
lation, known in Latin as damnatio 
memoriae, which means erasing some-
one from official accounts.

The earliest known instances of 
damnatio memoriae were discovered 
in ancient Egyptian artifacts, and 
similar patterns of removal have ap-
peared since.10,37 Historically, visual 
and audio manipulations required 
both skilled experts and a significant 
investment of time and resources. 
Our architecture can produce photo-
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fects with the following linear proba-
bility models:

yi,j = Xα + βlog(Tin, j) + µi + νj + €i,j,n 	 (1)

and

yi,j = Xα + β1Ti1, j + β2Ti2, j + ... + β10Ti10, j + 
µi + νj + €i,j,n 	 (2)

where yi,j is the binary accuracy (correct 
or incorrect guess) of participant j on ma-
nipulated image i. X is a matrix of covari-
ates indexed by i and j, Tin represents the 
order n in which manipulated image i ap-
pears to participant j, µi represents the 
manipulated image-fixed effects, νj rep-
resents the participant-fixed effects, and 
€i,j represents the error term. The first 
model fits a logarithmic transformation 
of Tin to yi,j. The second model estimates 
treatment effects separately for each im-
age position. Both models use Huber-
White (robust) standard errors, and er-
rors are clustered at the image level.

Results
Participation and average accuracy. 
From August 2018 to May 2019, 
242,216 guesses were submitted from 
16,542 unique IP addresses with a 
mean identification accuracy of 86%. 
The website did not require partici-
pant sign-in, so we study participant 
behavior under the assumption that 
each IP address represents a unique 
individual. The majority of partici-
pants participated in the two-alterna-
tive, forced-choice experiment multi-
ple times, and 7,576 participants 
submitted at least 10 guesses.

Each image appears as the first im-
age an average of 35 times and the 

realistic manipulations nearly in-
stantaneously, which magnifies the 
potential scale of misinformation. 
This new capacity for scalable manip-
ulation raises the question of how 
prepared people are to detect manip-
ulated media.

To publicly expose the realism of AI-
media manipulations, we hosted a 
website called Deep Angel, where any-
one in the world could examine our 
neural-network architecture and its re-
sulting manipulations. Between Au-
gust 2018 and May 2019, 110,000 peo-
ple visited the website. We integrated a 
randomized experiment based on a 
two-alternative, forced-choice design 
within the Deep Angel website to exam-
ine how repeated exposure to machine-
manipulated images affects an individ-
ual's ability to accurately identify 
manipulated imagery.

Two-Alternative, Forced-Choice 
Randomized Experiment
On the Deep Angel website's “Detect 
Fakes” page, participants are present-

ed with two images consistent with 
standard two-alternative, forced-
choice methodology and are asked a 
single question: “Which image has 
something removed by Deep Angel?” 
The pair of images contains one image 
manipulated by AI and one unaltered 
image. After the participant selects an 
image, the website reveals the manipu-
lation and asks the participant to try 
again. The MIT Committee on the Use 
of Humans as Experimental Subjects 
(COUHES) approved IRB 1807431100 
for this study on July 26, 2018.

The manipulated images are drawn 
from a population of 440 images sub-
mitted by participants to be shared 
publicly. The population of unaltered 
images contains 5,008 images from 
the MS-COCO dataset.23 Images are 
randomly selected with replacements 
from each population of images. By 
randomizing the order of images that 
participants see, this experiment can 
causally evaluate the effect of image 
order on participants’ ability to recog-
nize fake media. We test the causal ef-

Figure 1. Examples of original images on the top row and manipulated images on the bottom row.

Figure 2. (a) Histogram of mean identification accuracies by participants per image (b) Bar 
chart plotting number of individuals over image position.
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Within the context of object remov-
al manipulations, exposure to media 
manipulation and feedback on what 
has been manipulated improves a par-
ticipant’s ability to recognize faked 
media. After getting feedback on 10 
pairs of images for an average of 1 
min., 14 sec., a participant's ability to 
detect manipulations improves by 
10%. With clear evidence that human 
detection of machine-manipulated 
media can improve, the next question 
is: what is the mechanism that drives 
participant learning rates? How do 
feedback, image characteristics, and 
participant qualities affect learning 
rates?

Potential Explanatory Mechanisms
We can explore what drives the learn-
ing rate by examining heterogeneous 
effects of image characteristics and 
participant qualities. Figure 4 presents 
10 plots of heterogeneous learning 
rates based on image-fixed effects re-
gressions with errors clustered at the 
participant level.

We evaluate the quality of a manipu-
lation across five measures: (a) a sub-
jective quality rating, (b) 1st and 4th 
quartile image entropy, (c) 1st and 4th 
quartile proportion of area of the ma-
nipulated image, (d) 1st and 4th quartile 
mean identification accuracy per im-
age, and (e) number of objects disap-
peared. The subjective quality rating is 
based on ratings provided by an out-
side party and is a binary rating based 

on whether obvious artifacts were cre-
ated by the image manipulation.

Image entropy is measured based on 
delentropy, an extension of Shannon en-
tropy for images.20 To help understand 
delentropy, Figure 4 presents three pairs 
of images subjectively rated as high 
quality. Their corresponding entropy 
scores are included, along with the pro-
portion of the image transformed, mean 
accuracy of participants’ first guesses, 
and mean accuracy of subsequent par-
ticipant guesses to exemplify what study 
participants learned.

For images subjectively marked as 
high quality, participants correctly dis-
cern 75% for the first image and 83% for 
the tenth image seen. In contrast, par-
ticipant accuracy on the low-quality 
images is higher, at 82% and 94% for 
the first and tenth image seen, respec-
tively. Table 3 (see online appendix) 
shows that the difference in means 
across the subjective quality measure 
is statistically significant at the 99% 
confidence level (p <.01), but we do not 
find a statistically significant differ-
ence in learning rates.

As seen in Figure 4a, there is evi-
dence that participants learn to identify 
low-quality images faster than high-
quality images if only looking at the 
first five images seen. When examining 
the first 10 images seen, we do not find 
a statistically significant difference in 
the interaction between subjective 
quality and the logarithm of the image 
position. These results indicate that the 

tenth image an average of 15 times. 
The majority of manipulated images 
were identified correctly more than 
90% of the time. In the sample of par-
ticipants who saw at least 10 images, 
the mean percentage correct classifica-
tion is 78% on the first image seen and 
88% on the tenth image seen. Figure 2a 
shows the distribution of identifica-
tion accuracy across images, while Fig-
ure 2b shows the distribution of how 
many images each participant saw. The 
interquartile range of the number of 
guesses per participant is from three to 
18 with a median of eight.

Figure 3a plots participant accuracy 
on the y-axis and image order on the x-
axis, revealing a logarithmic relation-
ship between accuracy and exposure to 
manipulated images. In this plot show-
ing scores for all participants, accuracy 
increases rapidly over the first 10 im-
ages and plateaus around 88%.

Learning rate. With 242,216 obser-
vations, we run an ordinary least-
squares regression with participant- 
and image-fixed effects on the 
likelihood of correctly guessing the 
manipulated image. The results of 
these regressions are presented in 
Tables 1 and 2 in the online appendix 
(https://dl.acm.org/doi/10.1145/3445972). 
Each column in Tables 1 and 2 adds an 
incremental filter to offer a series of ro-
bustness checks. The first column 
shows all observations. The second col-
umn drops all participants who sub-
mitted fewer than 10 guesses and re-
moves all control images where nothing 
was removed. The third column drops 
all observations where a participant has 
already seen an image. The fourth col-
umn drops all images qualitatively 
judged as below very high quality.

Across all four robustness checks 
with and without fixed-effects, our 
models show a positive and statistical-
ly significant relationship between Tn 
and ŷi,j. In the linear-log model, a one-
unit increase in log(Tin) is associated 
with a 3% increase in ŷi,j. This effect is 
significant at the p<.01 level. In the 
model that estimates Equation 2, we 
find a 1% average marginal treatment 
effect size of image position on ŷi,j. 
This effect is also significant at the 
p<.01 level. In other words, partici-
pants improve their ability to guess by 
1% for each of the first 10 guesses. Fig-
ure 3b shows these results graphically.

Figure 3. Participants’ overall and marginal accuracy by image order.

Error bars show a 95% confidence interval for each image position: 
(a) overall accuracy for all participants with no fixed effects  
(b) marginal accuracy (relative to the first image position) for all par-
ticipants who saw at least 10 images controlling for participant- and 
image-fixed effects and clustering errors at the image level.  
In (b), the 11th position includes all image positions beyond the 10th.
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Figure 4. Ten plots of heterogeneous learning rates based on image-fixed effects regressions.

(i) From left to right, images (cropped 

into squares for display purposes) are 

increasing in entropy (3.5, 6.0, and 

8.5), varying in percent of the image 

transformed (0.7%, 2.4%, and 1.9%), 

similar in accuracy on the first guess (70%, 

71%, 70%), and varying in accuracy beyond 

the first guess (88%, 82%, 92%). 

(ii) Ten plots display heterogeneous effects 

of image and participant characteristics on 

learning while controlling for participant- 

and image-fixed effects (a) whether the 

subjective image quality was judged 

as high by a third party, (b) whether 

the original image was in the 1st to 25th 

percentile of accuracy or 75th to 99th, (c) 

whether the original image was in the 1st to 

25th percentile of image mask proportion or 

75th to 99th, (d) whether the original image 

was in the 1st to 25th percentile of entropy 

or 75th to 99th, (e) whether there were one 

or multiple objects disappeared (f) whether 

the participant’s first answer was correct 

(the omitted position for each learning 

curve represents perfect accuracy), (g) 

whether the image contained a person, 

(h) whether the original image was in the 

1st to 25th percentile of time to evaluate 

10 images or 75th to 99th, (i) whether the 

participant viewed the images on a mobile 

device or computer, and (j) whether the 

image was placed on the left or right side 

of the screen. The error bars represent the 

95% confidence interval for each image 

position and errors are clustered at the 

image level.
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cerning manipulations are also faster at 
learning to discern manipulations.

We find participants learn to dis-
cern manipulations involving disap-
peared people faster than images with 
any other object removed. This differ-
ence is statistically significant at the 
95% confidence interval (p <.05) in the 
log-linear regression as shown in Table 
3. Figure 4 also shows this difference as 
statistically significant in two of the 10 
image positions, suggesting that par-
ticipants may be learning to detect the 
kinds of images that are conducive to 
plausible object removals.

There is a clear difference in the 
learning rate of participants based on 
whether they participated with mobile 
phones or computers. Participants on 
mobile phones learn at a consistently 
faster rate than participants on com-
puters, and this difference is statisti-
cally significant as shown in Table 3 
and displayed across nine of 10 image 
positions in Figure 4. It is possible 
that the seamlessness of the zoom fea-
ture on a phone relative to a computer 
enables mobile participants to in-
spect each image more closely. We do 
not find evidence that image place-
ment on the website correlates with 
overall accuracy.

No strong evidence suggests that 
the speed with which a participant 
rated 11 images is related to the learn-
ing rate, but we do find evidence of an 
interaction between answering speed 
upon wrong guesses of high-quality 
images. In Table 4 (see online appen-
dix), we present a regression of cur-
rent and lagged features on partici-
pant accuracy. It is important to note 
that we find high-quality images re-
duce participant accuracy by 4%, 
which is significant at the 99% confi-
dence interval (p <0.1), but we do not 
find a relationship between whether 
the previous image was high quality 
and participant accuracy on the cur-
rent image. However, the interaction 
of seconds, guessing the previous an-
swer incorrectly, and the previous 
image being high quality, is associated 
with a 0.3% increase in participant 
accuracy for every marginal second (p 
<.05). This correlational evidence sug-
gests that when participants slow 
down after guessing incorrectly on 
high-quality, harder-to-guess images, 
they perform better.

main effect is not simply driven by par-
ticipants becoming proficient at guess-
ing low-quality images in our data.

The other proxies for image quality 
provide insight into how subtleties 
play a role in discerning image manip-
ulations. Participants learn to identify 
low-entropy images faster than high-
entropy images, and they recognize im-
ages with a large masked area faster 
than images with a small masked area. 
Table 3 shows that this difference in 
learning rates is statistically significant 
at the 95% (p <.05) and 90% (p <.10) 
levels, respectively.

Smaller masked areas and lower en-
tropy is associated with less stark and 
more subtle changes between original 
and manipulated images. This rela-
tionship may indicate that participants 
learn more from subtle changes than 
more obvious manipulations. It may 
even mean people are learning to de-
tect which kinds of images are hard to 
discern and, therefore, potentially like-
ly to contain a manipulation when no 
obvious manipulation is apparent. It is 
important to note that neither the split 
between the 1st and 4th quartiles of 
mean accuracy per image nor the split 
between one object and many disap-
peared objects has a statistically sig-
nificant effect on the learning rates. 
This means we find no association be-
tween overall manipulation discern-
ment difficulty and learning rates.

A participant’s initial performance is 
indicative of his or her future perfor-
mance. In Figure 4, we compare subse-
quent learning rates of participants who 
correctly identified a manipulation on 
their first attempt to participants who 
failed on their first attempt and succeed-
ed on their second. In this comparison, 
the omitted position for each learning 
curve represents perfect accuracy, which 
makes the marginal effects of subse-
quent image positions negative relative 
to these omitted image positions. On 
the first three of four image positions in 
this comparison, which correspond to 
the third through sixth image positions, 
we find that initially successful partici-
pants learn faster than participants who 
were initially unsuccessful. This hetero-
geneous effect does not persist in the 
seventh position or beyond. Overall, this 
heterogeneous effect is statistically sig-
nificant at the 99% level (p <.01), suggest-
ing that people who are better at dis-

This new capacity 
for scalable 
manipulation 
raises the question 
of how prepared 
people are to detect 
manipulated media.
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thing is manipulated at all.
Our results suggest a need to re-ex-

amine the precautionary principle that 
is commonly applied to content-gener-
ation technologies. In 2018, Google 
published BigGAN, which can generate 
realistic-appearing objects in images, 
but while the company hosted the gen-
erator for anyone to explore, it explicitly 
withheld the discriminator for its mod-
el.5 Similarly, OpenAI restricted access 
to its GPT-2 model, which can generate 
plausible long-form stories given an 
initial text prompt, by only providing a 
pared-down model of GPT-2 trained 
with fewer parameters.31 If exposure to 
manipulated content can prepare peo-
ple to detect future manipulations, 
then censoring dissemination of AI re-
search on content generation may 
prove harmful to society by leaving it 
unprepared for a future of ubiquitous 
AI-mediated content.

Methods
We developed a Target Object Removal 
architecture, combining instance seg-
mentation with image inpainting to re-
move objects in images and replace 
those objects with a plausible back-
ground. Technically, we combine a 
convolutional neural network (CNN) 
trained to detect objects with a genera-
tive adversarial network (GAN) trained 
to inpaint missing pixels in an im-
age.12,13,16,22 Specifically, we generate 
object masks with a CNN based on a 
RoIAlign bilinear interpolation on 
nearby points in the feature map.13 We 
crop the object masks from the image 
and apply a generative inpainting archi-
tecture to fill in the object masks.15,39 
The generative inpainting architecture 
is based on dilated CNNs with an adver-
sarial loss function, allowing the gen-
erative inpainting architecture to learn 
semantic information from large-scale 
datasets and generate missing content 
that makes contextual sense in the 
masked portion of the image.39

Target Object Removal Pipeline
Our end-to-end, targeted object remov-
al pipeline consists of three interfacing 
neural networks:

	˲ Object Mask Generator (G): This 
network creates a segmentation mask 
X′ = G(X, y) given an input image X 
and a target class y. In our experi-
ments, we initialize G from a semantic 

Discussion
While AI models can improve clinical 
diagnoses9,19,30 and enable autono-
mous driving,6 they also have the po-
tential to scale censorship,32 amplify 
polarization,4 and spread fake news 
and manipulated media.38 We present 
results from a large-scale, randomized 
experiment showing that the combina-
tion of exposure to manipulated media 
and feedback on which media has been 
manipulated improves an individual’s 
ability to detect media manipulations.

Direct interaction with cutting-edge 
technologies for content creation 
might enable more discerning media 
consumption across society. In prac-
tice, the news media has exposed high-
profile, AI-manipulated media, includ-
ing fake videos of the Speaker of the 
House of Representatives Nancy Pelosi 
and Facebook CEO Mark Zuckerberg, 
which serves as feedback to everyone 
on what manipulations look like.24,25 
Our results build on recent research 
showing that people can detect low-
quality news,29 human intuition can be 
a reliable source of information about 
adversarial perturbations to images,42 
and familiarizing people with how fake 
news is produced may confer them 
with cognitive immunity when they are 
later exposed to misinformation.33 Our 
results also offer suggestive evidence 
for what drives learning to detect fake 
content. In this experiment, present-
ing participants with low-entropy im-
ages with minor manipulations on 
mobile devices increased learning 
rates at statistically significant levels. 
Participants appear to learn best from 
the most subtle manipulations.

Our results focus on a bespoke, cus-
tom-designed, neural-network architec-
ture in a controlled, two-alternative, 
forced-choice experimental setting. The 
external validity of our findings should 
be further explored in different do-
mains, using different generative mod-
els, and in settings where people are 
not instructed explicitly to look out for 
fakes, but rather encounter them in a 
more naturalistic social media feed, and 
in the context of reduced attention span. 
Likewise, future research in human per-
ception of manipulated media should 
explore to what degree an individual’s 
ability to adaptively detect manipulated 
media comes from learning by doing, di-
rect feedback, and awareness that any-

With clear 
evidence that 
human detection 
of machine-
manipulated media 
can improve, 
what is the 
mechanism that 
drives participants’ 
learning rates?
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segmentation network trained on the 
2014 MS-COCO dataset following the 
Mask-RCNN algorithm.13 The net-
work generates masks for all object 
classes present in an image, and we 
select only the correct masks based 
on input y. This network was trained 
on 60 object classes.

	˲ Generative Inpainter (I): This net-
work creates an inpainted version Z = 
I(X′, X) of the input image X and the ob-
ject mask X′. I is initialized following 
the DeepFill algorithm trained on the 
MIT Places 2 dataset.39,41

	˲ Local Discriminator (D): The final 
discriminator network takes in the in-
painted image and determines its valid-
ity. Following the training of a GAN dis-
criminator, D is trained simultaneously 
on I, where X are images from the MIT 
Places 2 dataset and X′ are the same 
images with randomly assigned 
holes following.39,41

Live Deployment
The Deep Angel website enabled us to 
make the Target Object Removal archi-
tecture publicly available.a We hosted 
the architecture API with a single Nvidia 
Geforce GTX Titan X; anyone could up-
load an image to the site and select an 
object to be removed from the image.

Participants uploaded 18,152 unique 
images from mobile phones and com-
puters; they also directed the crawling 
of 12,580 unique images from Insta-
gram. We can surface the most plausi-
ble object removal manipulations by 
examining the images with the lowest 
guessing accuracy. The Target Object 
Removal architecture can produce plau-
sible content, but the plausibility is 
largely image dependent and con-
strained to specific domains, where ob-
jects are a small portion of the image, 
and the background is natural and un-
cluttered by other objects.

Data availability: The data and repli-
cation code are available at: https://
github.com/mattgroh/human-detection-
machine-manipulated-media-data-code.

Acknowledgments. We thank Abhi-
manyu Dubey, Mohit Tiwari, and David 
McKenzie for their helpful comments 
and feedback.	

a	 We retained the Cyberlaw Clinic from Harvard 
Law School and Berkman Klein Center for In-
ternet & Society for advice on copyright protec-
tion of manipulated images.


