
78

Graph Neural Networks for Fast Node Ranking

Approximation

SUNIL KUMAR MAURYA, Tokyo Institute of Technology

XIN LIU, AIRC, AIST

TSUYOSHI MURATA, Tokyo Institute of Technology

Graphs arise naturally in numerous situations, including social graphs, transportation graphs, web graphs,

protein graphs, etc. One of the important problems in these settings is to identify which nodes are important

in the graph and how they affect the graph structure as a whole. Betweenness centrality and closeness cen-

trality are two commonly used node ranking measures to find out influential nodes in the graphs in terms

of information spread and connectivity. Both of these are considered as shortest path based measures as the

calculations require the assumption that the information flows between the nodes via the shortest paths.

However, exact calculations of these centrality measures are computationally expensive and prohibitive, es-

pecially for large graphs. Although researchers have proposed approximation methods, they are either less

efficient or suboptimal or both. We propose the first graph neural network (GNN) based model to approxi-

mate betweenness and closeness centrality. In GNN, each node aggregates features of the nodes in multihop

neighborhood. We use this feature aggregation scheme to model paths and learn how many nodes are reach-

able to a specific node. We demonstrate that our approach significantly outperforms current techniques while

taking less amount of time through extensive experiments on a series of synthetic and real-world datasets. A

benefit of our approach is that the model is inductive, which means it can be trained on one set of graphs and

evaluated on another set of graphs with varying structures. Thus, the model is useful for both static graphs

and dynamic graphs.

Source code is available at https://github.com/sunilkmaurya/GNN_Ranking

CCS Concepts: • Computing methodologies → Machine learning; Learning paradigms; Supervised learning;

Learning to rank; Machine learning approaches; Neural networks; • Mathematics of computing → Discrete

mathematics; Graph theory;

Additional Key Words and Phrases: Betweenness centrality, closeness centrality, graph neural networks

(GNNs), node ranking, dynamic graphs

ACM Reference format:

Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. 2021. Graph Neural Networks for Fast Node Ranking

Approximation. ACM Trans. Knowl. Discov. Data 15, 5, Article 78 (May 2021), 32 pages.

https://doi.org/10.1145/3446217

Also with AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory.

This work was supported by JST CREST (Grant Number JPMJCR1687), JSPS Grant-in-Aid for Scientific Research(B) (Grant

Number 17H01785), JSPS Grant-in-Aid for Early-Career Scientists(Grant Number 19K20352), and the New Energy and

Industrial Technology Development Organization (NEDO).

Authors’ addresses: S. K. Maurya and T. Murata, Department of Computer Science, School of Computing, Tokyo Insti-

tute of Technology, W8-59 2-12-1 Ookayama, Meguro, Tokyo, Japan - 152-8552; emails: skmaurya@net.c.titech.ac.jp, mu-

rata@c.titech.ac.jp; X. Liu, Artificial Intelligence Research Center, AIST, AIST Waterfront ANNEX, 2-4-7 Aomi, Koto-ku,

Tokyo, Japan - 135-0064; email: xin.liu@aist.go.jp.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

1556-4681/2021/05-ART78

https://doi.org/10.1145/3446217

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

https://github.com/sunilkmaurya/GNN_Ranking
https://doi.org/10.1145/3446217
https://doi.org/10.1145/3446217
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3446217&domain=pdf&date_stamp=2021-05-10

78:2 S. K. Maurya et al.

1 INTRODUCTION

Graphs provide a simple way to abstract the data into simple structures that are easy to under-
stand and convenient to process. They preserve the flow of information and interaction patterns
in real-world data. Thus, graphs can be used to uncover properties of the data and gain meaningful
knowledge from it. One of the crucial tasks is to find the ranking of the nodes in graphs in terms
of information spread and connectivity [50, 54]. Node ranking helps narrow down our focus from
a huge population of data points to small and more relevant data points. Based on the situation,
it can help us to take appropriate actions. For example, in the case of infectious diseases [13, 70],
it can help to find susceptible people who are more prone to spread disease once infected. Tar-
geted immunization can curb the disease spread in its infancy and before it becomes an epidemic
while minimizing resource utilization. Similarly, in social networks, spread of misinformation can
be prevented [61]. In road and power infrastructures, finding critical points can help to take pre-
emptive actions to make systems more robust to failures. Thus, the study of node ranking is an
essential part of graph analysis.

In general, researchers have proposed centrality measures for node ranking and these measures
provide us a quantitative view of how nodes play a certain role in the graph and how their presence
or absence affects the graph structure as a whole. Some of the proposed measures are betweenness
centrality [10, 31, 57], closeness centrality [2, 8, 66], PageRank Centrality [12, 23, 29, 34], and so
on. All of these measures rank nodes based on certain criteria. In this article, we will focus on two
widely used shortest path based measures: betweenness centrality and closeness centrality.

Betweenness centrality ranks nodes based on how they facilitate the information flow in the
graph. Removal of nodes with high betweenness can disrupt the flow of information in graph
structure significantly [8]. Betweenness centrality has been used for various purposes such as
analysis of knowledge networks [62], contingency analysis in power grid systems [41], the study
of biological graphs [42], and traffic monitoring in transportation networks [63].

Closeness centrality is a measure of how close a given node is with respect to all other nodes in
the graph. It determines the ease with which a node can propagate information across the graph.
Closeness centrality has been used to identify influential nodes in social network community [55],
and to determine the expected arrival or hitting time for information or disease spreading through
the community [8, 9].

Both betweenness centrality and closeness centrality require the calculation of the shortest
paths in the graph. As such, calculating the exact centrality value is prohibitive for large graphs
in practice, many approximation algorithms based on sampling techniques have been proposed.
Geisberger et al. [32] propose a method to approximate betweenness centrality by samplingk start-
ing nodes (pivots) to find the shortest paths and estimate betweenness centrality for all nodes.
Riondato et al. [65] take a different approach while providing a theoretical guarantee. r short-
est paths are chosen between randomly sampled source–target node pairs, and betweenness is
approximated based on these paths. Borassi’s algorithm [7] provides an adaptive sampling tech-
nique for sampling shortest paths, which provides a faster computation of betweenness within a
given absolute error. For approximations of closeness centrality, Eppstein et al. [26] and Okamoto
et al. [58] provide algorithms based on single-source shortest path computations on uniformly
sampled nodes for a given graph. Cohen et al. [19] propose an improved algorithm based on a
hybrid approach.

However, more often, these random sampling-based methods lead to sub-optimal ranking accu-
racy. There is usually a tradeoff between time and accuracy with higher accuracy requiring more
samples, thus higher execution time and vice versa. In this article,1 we propose the use of Graph

1This article is an extension of our previous work [53] for approximating betweenness centrality using GNN, accepted at

CIKM2019.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

Graph Neural Networks for Fast Node Ranking Approximation 78:3

Neural Networks (GNNs) to solve the problem of approximation of shortest-path based cen-
trality measures with higher ranking accuracy in a low amount of time. GNN is a type of neural
network architecture that leverages graph structure and node/edge feature information to learn
node or graph representations that can be used for many different downstream tasks. The general
principle behind GNNs is the node feature aggregation scheme along the edges in the graph. In
a multilayer GNN model, each node aggregates features of its neighbors, which lie along all the
paths starting or ending at the given node. With repetitive aggregation, the resulting node rep-
resentation captures the structural information of its neighborhood. One prominent example is
the use of graph representations to classify input graphs based on their structure [27, 40, 51, 73].
Building on capability of GNN to learn the graph structure, we propose a novel selective feature
aggregation scheme based on the shortest paths in the graph. The input graph is preprocessed, and
the adjacency matrix is modified such that the node aggregate features over multiple hops along
possible shortest paths in the graph. We then use a ranking based loss to learn a scoring function
that maps the aggregated information of the node to a score correlated with the centrality measure
scores.

We propose two variants of the model GNN-Bet and GNN-Close for approximating between-
ness and closeness centrality, respectively. As per our knowledge, we are the first to propose robust
GNN based algorithms for this task. One of the significant benefits of our model is that we can
use the computational power of GPUs and once trained, the inference time of our model is very
small, in order of milliseconds. Another benefit of our approach is that the model training is in-
ductive, which means that it can be trained on one set of graphs and can be evaluated on another
set of graphs with varying structures. The trained model can be used to perform ranking approxi-
mations for both static graphs as well as dynamic graphs (with multiple snapshot representation).
We demonstrate that our approach dramatically outperforms current techniques (while taking less
amount of time) through extensive experiments on a series of synthetic and real-world datasets.
For betweenness approximation on static graphs, our model is up to 37 times faster than other
methods while providing higher ranking performance. We also show that our proposed between-
ness variant of the model is suitable for betweenness approximations for dynamic graphs and is
up to 14 times faster in providing node ranking approximations. Closeness approximation variant
of our model takes a similar time to the comparison method while providing comparable or better
approximations. The rest of this article is organized as follows. Section 2 presents the definition of
betweenness and closeness centrality and reviews GNN. In Section 3, we propose our approach.
Section 4 reports the experiment results. Section 5 surveys related work. Finally, Section 6 gives
our conclusion.

2 PRELIMINARIES

2.1 Betweenness Centrality

One of the ways a node can be ranked is based on its ability to control the spread of information
between other nodes. Ranking of nodes based on this criterion is called betweenness centrality
[10, 31, 57]. The main idea behind betweenness centrality is that a given node is central if many
shortest paths pass through it. A high value of betweenness centrality for a node means this node
lies on many shortest paths between other nodes and helps to pass information between other
nodes. In other words, these nodes act as “bridges” in the graph. Removing these nodes from the
graph will lead to longer paths for information to travel between other nodes. For a given graph
G = (V ,E), betweenness centrality of a node v is defined as

BC(v) =
∑

u�v�w

σuw (v)

σuw
, (1)

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

78:4 S. K. Maurya et al.

where σuw denotes the total number of shortest paths from node u to w and σuw (v) denotes the
number of paths from u to w going through node v .

2.2 Closeness Centrality

Closeness centrality [3, 4, 30] gives a measure of how close a given node is to other nodes. Higher
closeness centrality means that the node can spread information easier to other nodes. The close-
ness centrality of a node v can be defined as

CC(v) =
n − 1∑

u ∈V d (v,u)
, (2)

where d (v,u) denotes shortest distance from node v to u.
In simple terms, closeness centrality is proportional to the average of shortest distances from

nodev to other nodes. Both betweenness and closeness centrality require calculation of the short-
est paths in the graph. Calculating the exact centrality value requires time complexity of Θ(|V | |E |),
and thus it is prohibitive for large graphs. To overcome this issue, researchers have proposed ap-
proximations algorithms based on sampling techniques. However, these are either less efficient or
suboptimal or both. For more details, please refer to Section 5.

2.3 Graph Neural Networks

In recent years, many neural network models [17, 24, 45, 68] have been proposed for graph-
structured data and generally known as GNNs. In all of these models, the structure of the graph
is used to aggregate the feature information of nodes and edges [37]. Based on the feature ag-
gregation pattern, a neural network is trained to predict node labels, edge existence probabilities
between two nodes and so on. All of these existing models can be generalized under a single com-
mon Message Passing Neural Network (MPNN) framework [33].

2.3.1 Framework Design. Let G = (V ,E) denote the graph with given node feature vectors as
Xv for v ∈ V . A GNN is designed in such a way that it takes the graph G and feature information
matrix of nodes/edges as input and is trained against some arbitrary loss function designated for a
specific task. Similar to any other neural network architecture, GNN has a predetermined number
of layers decided based on the multitude of factors like task in hand, characteristics of input graphs,
the diameter of graph, etc.

At any given GNN layer, each node aggregates the features of its neighbors, which can also
be considered as a message passing phase. Node feature vector is updated by combining its own
feature vector with aggregated features from its neighbors. This aggregation operation is repeated
for each layer in GNN. Mathematically, the aggregation operation can be formulated as follows.

a (k)
v = AGGREGATE(k) ({h (k−1)

u : u ∈ Nv }), (3)

h (k)
v = COMBINE(k) (h (k−1)

v ,a (k−1)
v). (4)

In Equation (3), the feature vectors hu of neighboring nodes are aggregated for kth layer. The
AGGREGATE operation can vary based on the model requirement and can represent summing,
averaging, or max-pooling of feature vectors. In Equation (4), the aggregate feature vector is then
added to the node feature vector. At the end of each layer, the node has cumulative feature infor-
mation of the node’s neighbors in the current layer and all previous layers. Then, the aggregated
features are mapped to a learnable weight matrix and a nonlinear transformation like ReLU is
used. The output of each layer is then forwarded as the input to the next layer. After K number
of iterations, the node embedding vector at the final layer captures the structural as well as node
feature information of all neighbors from 1-hop distance to kth hop distance.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

Graph Neural Networks for Fast Node Ranking Approximation 78:5

Our proposed GNN framework is constructed following a similar design as mentioned above.
In [71], the authors propose a simplified GNN model by removing weights and non-linearity from
layers. The simplified model has similar performance to the standard GNN model in classifica-
tion tasks. However, in our proposed framework, we keep the learnable weights and nonlinearity
between neural network layers, as we found that the model performed better in this case.

2.3.2 Message Passing in GNN. As discussed earlier, each node aggregates feature information
of its neighbors for multiple hop distances. This aggregation scheme resembles breadth first

search (BFS) from a node and the feature information flow through all available paths in the
graph. Both betweenness centrality and closeness centrality measures, in their calculation, aggre-
gate node contributions by performing BFS (to find shortest paths) from each node. Similarly, in
our proposed message passing scheme, we restrict the flow of feature information along certain
paths, which are more likely to be the shortest paths in the graph.

Most straightforward formulation to aggregate feature information is multiplying the adjacency
matrix to the feature matrix. As rows of adjacency matrix denote indices of node’s neighbors, the
process of matrix multiplication is similar to the embedding lookup of neighbors from the feature
matrix and adding them together. To implement our message passing scheme, we modify the ad-
jacency matrix and perform feature aggregation operation. In-depth details of the construction of
our model with the proposed scheme are explored in Section 3.

3 PROPOSED FRAMEWORK

In Section 2, we observe the similarity in betweenness/closeness centrality formulation and ag-
gregation scheme of GNNs. Taking advantage of this similarity, we propose two variants of GNN-
based models that can be trained to approximate betweenness centrality (GNN-Bet) and closeness
centrality (GNN-Close) in the graphs. In message passing scheme of GNNs, we observe that each
node accumulates the feature vectors of its multi-hop neighbors with the increase in the number
of layers or conversely, each node’s feature is spread across the graph with each consecutive layer.
We use this feature information flow to model paths in the graph. A node that is connected to
many other nodes through paths of varying length is able to accumulate more features across the
graph.

As both betweenness centrality and closeness centrality measures are based on paths in the
graph, we can use GNNs to model the approximation of their calculation. Some other ranking
methods like Eigenvector centrality, PageRank centrality are based on iterative methods on the
graph. In this article, we have not explored the approximations of these types of centrality mea-
sures.

The general construction of our proposed framework is similar to other GNNs; however, there
are two key differences in our framework, which aid to approximate betweenness and closeness
centrality:

(i) First major difference is the use of constrained message passing scheme. In calculations
of betweenness and closeness centrality, we do not consider all paths between nodes but
shortest paths. In order to approximate these centrality measures in our model, we restrict
the feature information flow through edges that lie along the shortest paths. Unlike other
GNN frameworks, where regular adjacency matrix is used, we use a modified adjacency
matrix such that the feature aggregation in each layer is confined along possible shortest
paths. The modification procedure for betweenness variant and closeness variant differs
slightly based on the feature gathering scheme.

(ii) The second main difference is that we do not add the node’s own feature vectors with the
current layer neighborhood feature aggregation vector. This avoids cumulative feature

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

78:6 S. K. Maurya et al.

Fig. 1. Figure shows aggregation scheme for betweenness variant on a directed graph. Features of nodes on

both incoming and outgoing paths are aggregated at green node. Dashed arrows show direction of feature

flow along the edges. Nodes lying on incoming paths are marked red and outgoing paths marked as black.

Yellow nodes do not have shortest paths going through and the corresponding rows are set as zero.

aggregation with subsequent layers and at each layer, the node has unique information
about its neighborhood at k-th hop.

3.1 Zero Shortest Path Nodes

Both betweenness centrality and closeness centrality measures are based on the calculation of the
shortest paths. In our proposed model, we identify beforehand the nodes which have no shortest
paths going through them. There are two possible ways to identify such nodes:

(1) When a node has no path going through it. This condition arises when the node either
does not have incoming neighbors or does not have outgoing neighbors. For example, in
Figure 1, nodes 1 & 5 have no incoming neighbors and node 12 & 13 have no outgoing
neighbors. Hence, these nodes have no paths going through them.

(2) When a node’s neighbors form cliques such that there is no shortest path going through
the node. To identify such nodes, we look at incoming neighbors and outgoing neighbors
of a given node. Then, we check of there are edges from each incoming neighbor to all
outgoing neighbors. For nodes, where all incoming neighbors are directly connected to
outgoing neighbors, there will be no shortest paths going through them. For instance in
Figure 1, node 2 has incoming neighbor node 1 and outgoing neighbor node 3. However,
node 1 is directly connected to node 3, therefore, there is no shortest path going through
node 2.

With following above-mentioned criteria, we can identify nodes with no shortest paths going
through them. We refer to these nodes collectively as Nzp . In general, GNN aggregation scheme,
a node aggregates the feature of neighboring node Nk at k-th hop via a path going through se-
quence of neighboring nodes lying on consecutively decreasing hop distance from source node
i.e., (Nk → Nk−1 → Nk−2 → · · · → N2 → N1). In order to restrict feature information flow along
possible shortest paths, we can modify the aggregation scheme such that nodes Nzp do not act

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

Graph Neural Networks for Fast Node Ranking Approximation 78:7

as intermediary nodes and no feature information of can flow through the paths that are passing
through the nodes Nzp .

In rest of the section, we provide details about the construction of both betweenness and close-
ness variant.

3.2 Betweenness Variant

In a given graph, a node with high betweenness centrality has a large number of shortest paths
going through it, and these paths can be considered as a combination of a set of incoming paths and
a set of outgoing paths to the node. In betweenness variant GNN-Bet, we use a selective feature
aggregation scheme to estimate the number of shortest paths through the node. Incoming paths
and outgoing paths are considered separately, and feature aggregation for both types of paths
are performed in parallel. The adjacency matrix of the graph is used for outgoing paths and the
transpose of adjacency matrix for incoming paths.

3.2.1 Adjacency Matrix. The first step is to identify the nodes Nzp , which have no shortest
paths passing through them (as discussed previously in Section 3.1). During the feature aggre-
gation step, feature information should not flow through these nodes. To achieve that, we set the
rows corresponding to nodes Nzp in the adjacency matrix and its transpose to zero (refer Figure 1).
With this modification, nodes Nzp have no entries for neighbors in their corresponding rows in the
adjacency matrix. Hence during the aggregation step, these nodes do not receive any feature infor-
mation from other nodes and have zero feature information at the output of the layer. This helps to
avoid feature flow information through paths that are passing through such nodes as intermediary
nodes. Please note in during model initialization all nodes are assigned unique embeddings. In the
aggregation step of the first layer, Nzp nodes pass their own feature information to neighboring
nodes (path length is one). However, in subsequent steps, Nzp nodes act as an intermediary (for
path length 2 or more) and do not propagate any feature information.

We denote the new modified adjacency matrix as Amod−row . The nodes Nzp have zero between-
ness as per the definition, so with zero feature information, during training, the model learns to
distinguish their ranking with respect to other nodes with aggregated feature information.

3.2.2 Model Layer. Initial features of nodes are embedding lookup from the weight matrix of
the first layer. At the k-th layer, node aggregates features of its k-hop neighbors. In our model,
we define aggregation as the sum of feature vectors. At each layer, when the feature matrix is
multiplied with the adjacency matrix, each node sums up the features of all of its neighbors. Then,
the aggregated node features from each layer are mapped to a Multilayer Perceptron (MLP) unit
to output a vector whose values contain a single score corresponding to the node. This MLP learns
to predict a single score based on the input features. Single MLP unit is used to output scores for
all layers. The output score of all layers are summed separately for incoming and outgoing paths
for a node. In our experiments, we use an MLP unit comprising three fully connected layers with
ReLU as non-linearity.

The feature vectors of in-degree neighbors and out-degree neighbors are accumulated for mul-
tiple hops using two matrices. This aggregation approximates the information of incoming paths
and outgoing paths to a given node. Hence using our proposed framework, we get two scores for
all in-degree neighbors and out-degree neighbors. As the number of paths passing through a given
node is the combinations of incoming paths and outgoing paths through the node, the in-degree
and out-degree scores are multiplied in order to get the final score for each node. Figure 3 shows
the schematic diagram of the betweenness variant of the model. Pseudo-code of the forward prop-
agation of the model with feature aggregation scheme is presented in Algorithm 1. At line 1 and

2, adjacency matrix and its transpose is modified (row-wise) to get input matrices Ãout-degree and

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

78:8 S. K. Maurya et al.

ALGORITHM 1: GNN-Bet (Forward propagation)

Input: Directed Graph adjacency matrix A; depth K ; non-linearity ReLU; weight matricesW (k)

Output: Betweenness Centrality value vector, S (Bet)

1 Ãout-degree ← ModifyAdjacencyRow(A)

2 Ãin-degree ← ModifyAdjacencyRow(AT)

3 for k = 1...K do

4 H
(k)
out-degree

← ReLU (Ãout-degreeH
(k−1)
out-degree

W (k))

5 H
(k)
in-degree

← ReLU (Ãin-degreeH
(k−1)
in-degree

W (k))

6 S
(k)
out-degree

← MLP(H
(k)
out-degree

)

7 S
(k)
in-degree

← MLP(H
(k)
in-degree

)

8 end

9 Sout-degree ←
∑

k=1..K
|S (k)

out-degree
|

10 Sin-degree ←
∑

k=1..K
|S (k)

in-degree
|

11 S (Bet) ← Sout-degree × Sin-degree

Ãin-degree to GNN layer. For each k-th layer {k= 1...K},W (k) represents the weight matrix andH (k−1)

represents the output from the previous layer. MLP is used to map the output node embeddings

from each layer to a score vector S (k) . Scores are combined from each layer as represented in the
line 9–11 to get final centrality scores for all the nodes.

3.3 Closeness Variant

Closeness centrality has two variations: incoming closeness centrality and outgoing closeness cen-
trality, based on consideration of incoming paths or outgoing paths for the nodes. We focus on the
outgoing closeness centrality and use a simple adjacency matrix as input in our model. In case
incoming closeness centrality is to be approximated, transpose of adjacency matrix can be used in
the model.

For closeness variant of model GNN-Close, we consider paths that originate from source node
and end at other nodes. The paths in the graph, which go through Nzp are not considered, so
we need to identify Nzp in this case as well. Unlike betweenness centrality, nodes Nzp can have
non-zero closeness centrality values, so we use different adjacency matrix modification scheme.

3.3.1 Adjacency Matrix. Similar to the betweenness variant, we identify the nodes which have
no shortest paths going through them. To ensure no features flow through edges of these nodes
to other nodes, we modify the adjacency matrix by setting the columns corresponding to these
nodes to zero (refer Figure 2). We refer to this matrix as Amod−col . This operation removes the
entries of Nzp nodes as neighbor of other nodes and avoids any feature aggregation through them
when the path length is 2 or more. However, for the first layer, we still aggregate Nzp nodes own
features. Therefore, we use the normal adjacency matrix for the first layer and modified adjacency
matrix for subsequent GNN layers. To summarize, with this scheme, Nzp pass their own feature
information to other neighbors in first iteration but do not act as intermediary for further feature
aggregation in later iterations.

3.3.2 Model Layer. As we use an unchanged adjacency matrix in the first layer, nodes aggregate
features of all its neighbors. For further layers, we use a modified adjacency matrix and restrict

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

Graph Neural Networks for Fast Node Ranking Approximation 78:9

Fig. 2. Figure shows aggregation scheme of closeness variant along outgoing paths on a directed graph.

Features are being aggregated at green node. Dashed arrows show direction of feature flow along the edges.

Yellow node do not have shortest paths going through them and the corresponding columns are set as zero.

ALGORITHM 2: GNN-Close (Forward propagation)

Input: Directed Graph adjacency matrix A; depth K ; weight matricesW (k)

Output: Closeness Centrality value vector, S (Close)

1 Amod-col ← ModifyAdjacencyCol(A)

2 H (1) ← AW (1)

3 S (1) ← MLP(H (1))

4 for k = 2...K do

5 H (k) ← ReLU(Amod−colH
(k−1)W (k))

6 S (k) ← MLP(H (k))

7 end

8 S (Close) ←
∑

k=1..K
|S (k) |

the feature aggregation. Aggregated features of each layer are mapped to an MLP unit to output
scores for all layers for each node. Then for each node, output scores from each layer are summed
together to get a final score. The output of the model is a score vector. The schematic diagram of
GNN-Close is shown in Figure 4 and pseudo-code for the model is described in Algorithm 2. At
line 1, input adjacency matrix is modified (column-wise) to outputAmod−col . Line 2 and 3 represent
feature aggregation in the first layer with the normal adjacency matrix, the output of which is
mapped to the MLP layer. For the rest of the layers, the modified adjacency matrix is used for
feature aggregation. Layerwise score vectors are then combined to get final closeness centrality
score vector S (Close) at line 8.

3.4 Loss Function

We use a ranking loss function to calculate the loss for scores predicted by model with respect to
actual betweenness or closeness centrality scores. Ranking loss functions are commonly used in

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

78:10 S. K. Maurya et al.

Fig. 3. Figure above shows the model of betweenness variant. Graph input is represented as an adjacency

matrix. There are two parallel aggregation pipelines for incoming and outgoing paths for nodes using ad-

jacency matrix and its transpose, respectively. At each layer, node features are aggregated and the output

is mapped to a MLP layer. The output of MLP are added together and then subsequently multiplied to get

final output scores of nodes.

Fig. 4. Figure shows the model of closeness variant. Graph input is represented as an adjacency matrix. For

first layer simple adjacency matrix is used and for further layers modified representation of adjacency matrix

(for closeness variant) is used. Feature aggregation is performed at each layer and layer output is mapped

to a MLP layer. Sum of output vectors from MLP give final node ranking vector.

recommender systems [14, 18]. Using this function helps the MLP to learn to predict the score based

on the neighborhood of the node at each layer. For the model score, S (m)
i and actual betweenness

score S (b)
i , the loss function is defined as follows:

Loss (x ,y) = max (0,−y ∗ (S (m)
i − S (b)

i) +Margin), (5)

y =
⎧⎪⎨
⎪
⎩

1 if S (m)
i should be ranked higher than S (b)

i .

−1 if S (b)
i should be ranked higher than S (m)

i .

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

Graph Neural Networks for Fast Node Ranking Approximation 78:11

4 EXPERIMENTS

In this section, we present the details of the training and testing of the model. We evaluate our
model on synthetic graphs as well as real-world graphs and compare its performance with other
betweenness and closeness approximation techniques.

4.1 Training Setup

4.1.1 Hardware and Software Setup. All experiments were conducted on Intel Core i7-8700K
CPU @ 3.70GHz machine with 12-cores, 64 GB RAM and a single NVIDIA GeForce GTX 1080Ti
GPU with 12 GB graphics memory. Software frameworks used are PyTorch [60] for implementing
the proposed model, NetworkX [36] and NetworKit [67] for graph generation and betweenness
calculations.

4.1.2 Hyper-parameters. The model size is determined by the largest training/test graph size.
For smaller graph inputs, the adjacency matrix of the input graph is placed along diagonal and
the rest is padded with zeros. We train the model with Adam as an optimizer with a learning rate
parameter set to 0.005. The number of GNN layers in our model is set to 4. Calculation of loss value
during training requires comparison of node pair rankings, but the total number of combinations

of all node pairs can be really large (
n (n−1)

2 with n nodes) and computationally prohibitive. In order
to avoid this, we randomly sampled node pairs equal to 20 times the number of nodes.

For the betweenness variant, we have used dimension embedding of 12 (limited by GPU mem-
ory). For closeness centrality, we set dimension of embedding as 15.

4.1.3 Training. Given set of graphs are divided into training dataset and test dataset. For graphs
in both datasets, exact betweenness centrality and closeness centrality values of nodes are calcu-
lated. These values are used in target vectors to train the model and to evaluate the performance
of the model during inference time for the test dataset. Self-loops are removed from the input
graphs while multi-edges are kept, if present in the graphs. We train the model for 5–10 epochs
and training time is approximately 10–15 minutes. While training the model, it is possible to have
different sizes of graphs for training and test datasets. To accommodate all the graphs, the model
size is set to be equal to or greater than the number of nodes of the largest graph in training and
test datasets combined. The adjacency matrices of smaller input graphs placed along the diagonals
and rest dimensions are padded with zeros to make its size compatible to the input layer.

Note that the test graphs are totally unseen during the training stage (inductive settings). As
the model is trained, it learns to map aggregated features for each node via MLP to ranking scores.
Once trained, the model is able to take new graphs with different sizes or structures as input and
provide node ranking approximations. Hence, the model is very robust and can be deployed in
various scenarios.

4.1.4 Evaluation Measure. In order to evaluate the ranking quality of model output, we use
Kendall’s Tau rank correlation coefficient (refer as KT Score) [44] as a ranking measure. For any
given pair (xi ,yi) and (x j ,yj), where i < j, are said to be concordant if the ranks of both elements in
both pairs agree, i.e., both xi < x j and yi < yj or both xi > x j and yi > yj . If the ranks don’t agree,
then they are said to be discordant. For two given lists with n items each, let us Nc be the total
number of concordant pairs and Nd be total number of discordant pairs, then Kendall’s ranking
coefficient is calculated by:

τ =
Nc − Nd

n (n−1)
2

, (6)

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

78:12 S. K. Maurya et al.

Table 1. Summary of Real World Datasets Used

Dataset #Nodes #Edges

Wiki-Vote 7,115 103,689
P2p-Gnutella31 62,586 147,892
Soc-Epinions 75,879 508,837
Soc-Slashdot 77,350 516,575
Ego-Gplus 107,614 13,673,453
Email-EuAll 265,214 420,045
Web-Google 875,713 5,105,039
Wiki-Talk 1,140,149 7,833,140

τ denotes Kendall’s Tau ranking coefficient and its value varies in the range −1 ≤ τ ≤ 1. Value
of 1 means all pairs are concordant (same order) and -1 means all pairs are discordant (opposite
order). In our case, we compare the ranking of model output for nodes to the ranking of their real
centrality values.

4.2 Dataset Preparation

To test the efficacy of our model on various graphs with unique structural properties and show that
the model is able to generalize well, we use extensive set of synthetic as well as real-world graphs.
We evaluate and compare our proposed model to other betweenness and closeness approximation
methods on these graphs.

4.2.1 Synthetic Datasets. For synthetic datasets, we generate three classes of directed graphs
namely, Erdos–Renyi random graphs, Scale-free graphs, and Gaussian random partition graphs.
Sizes of graphs vary from 50,000 to 100,000 nodes. For each class, 15 graphs are generated with
the number of nodes and generation parameters set randomly to incorporate structural variations
of the dataset. More details of graph generation parameters and statistics of graphs are provided
in Appendix A. For training of the model, five graphs are chosen to create 500 training samples
by randomly permuting the node sequence in adjacency matrices and their corresponding target
centrality vector. We train the model on the training set and evaluate the performance on 10 graphs
in the test set.

4.2.2 Real-World Datasets. For model evaluation on real-world datasets, we have taken eight
datasets from Stanford Large Network Dataset (SNAP) website.2 Table 1 shows the details for
these datasets. Real-world graphs have varying structural properties. Under the weak assumption
that real-world graphs have some scale-free graph properties, the model is trained on synthetic
scale-free graphs. To create training dataset, five synthetic directed scale-free graphs of 100,000
nodes each are generated using NetworkX. From these five graphs, 250 adjacency matrices are
obtained by permuting the node sequences and corresponding betweenness or closeness centrality
vectors. Two-hundred of these adjacency matrices are used for training and 50 for validation.

4.3 Static Betweenness Approximations

We compare the ranking performance and execution time comparison of our model GNN-Bet to
the following betweenness approximation methods for static graphs. Parameters used in these
methods are as follows:

2SNAP Dataset: https://snap.stanford.edu/data/index.html.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

https://snap.stanford.edu/data/index.html

Graph Neural Networks for Fast Node Ranking Approximation 78:13

Table 2. KT Ranking Scores Comparison Static Betweenness Approximation

on Real World and Synthetic Datasets

Dataset
KT Score

GS RK BN GNN-Bet Gain

Wiki-Vote 0.866 0.844 0.900 0.967 +0.067 (+7.4%)
P2p-Gnutella31 0.849 0.963 0.876 0.924 −0.039 (−4.0%)
Soc-Epinions 0.723 0.826 0.687 0.891 +0.065 (+7.8%)
Soc-Slashdot 0.766 0.793 0.639 0.909 +0.116 (+14.6%)
Ego-Gplus 0.817 0.673 0.515 0.821 +0.004 (+0.4%)
Email-EuAll 0.889 0.508 0.380 0.990 +0.101 (+11.3%)
Web-Google 0.755 0.366* 0.498 0.779 +0.024 (+3.1%)
Wiki-Talk 0.679 0.204* 0.271 0.979 +0.300 (+44.1%)

Synthetic-ER 0.845±0.05 0.829±0.07 0.629±0.14 0.902±0.03 +0.057 (+6.7%)
Synthetic-SF 0.464±0.02 0.574±0.03 0.411±0.03 0.976±0.01 +0.402 (+70.0%)
Synthetic-GRP 0.562±0.06 0.342±0.17 0.141±0.08 0.899±0.04 +0.337 (+59.9%)

Highest KT Score among comparison methods(GS, RK, and BN) is underlined and best ranking performance among

all is highlighted with bold font. Performance gain for GNN-Bet is compared with respect to the best KT Score among

comparison methods.

—Geisberger [32]: referred as GS. For GS, we need to provide the number of random nodes
to be sampled. We set it to 8,192, which is the maximum number of samples used in the
literature even for large graphs.

—Riondato et al. [65]: referred as RK. Two parameters are required, δ = 0.1 and λ = 0.005.
These values are used by the authors in their article. However, we found that RK was
taking too much time for approximation calculations with λ < 0.02, sometimes approach-
ing/exceeding the exact betweenness centrality calculation time. So far large graphs, we
show results for λ = 0.02 marked with ‘∗’.

—Borassi et al. [7]: referred as BN. Parameters are set as δ = 0.1 and λ = 0.005 as used in this
article.

In Table 2, we compare the ranking performance of our model with other betweenness approx-
imation methods using KT Score. Similarly, Table 3 shows the comparison of execution time in
seconds for betweenness approximations. We also show the time taken by exact betweenness cen-
trality computation algorithm provided by Brandes [10] as a reference to compare all approximate
algorithms. Execution time of our model is the sum of time taken to identify nodes with zero
betweenness and model inference time. For other algorithms, the execution time is shown. For
synthetic graphs, the average KT score (in Table 2) and the average time taken (in Table 3) for 10
test graphs are calculated and presented.

4.3.1 KT Score Comparison. Table 2 shows KT score for betweenness approximation values for
our model and other comparison methods. For real-world graphs, all methods have good ranking
performance but the KT Score drops for larger graphs. However, GS has consistently good perfor-
mance compared to RK and BN for all graph sizes. For synthetic graphs, all methods show high
ranking performance on ER graphs, while lower KT Scores for SF graphs and GRP graphs. Our
model GNN-Bet, consistently performs well on real-world as well as synthetic datasets with up
to 44% improvement for real-world graphs and up to 70% for synthetic graphs with respect to the
best KT Score on comparison methods.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

78:14 S. K. Maurya et al.

Table 3. Time Comparison for Static Betweenness Approximation Methods

Dataset
Timetrain (s) Time (s)

GNN-Bet Exact GS RK BN GNN-Bet Speedup

Wiki-Vote

633.5

0.8 7.1 1.6 0.2 0.1 ≈2x

P2p-Gnutella31 57.2 18.06 163.4 5.4 0.2 ≈27x

Soc-Epinions 222.1 86.5 567.9 6.8 0.5 ≈14x

Soc-Slashdot 206.7 71.2 510.3 5.96 0.9 ≈7x

Ego-Gplus 3845.7 979.4 7787.5 11.8 7.2 ≈2x

Email-EuAll 1091.5 99.8 985.1 8.1 1.1 ≈7x

Web-Google 52422 2264 8548* 314.4 8.5 ≈37x

Wiki-Talk 32385 624.2 1115.4* 32.4 3.6 ≈9x

Synthetic-ER 726.8 811.6±560.1 206.3±142.0 1354.2±765.7 20.2±3.3 0.6±0.3 ≈33x

Synthetic-SF 317.0 33.81±4.4 5.2±1.7 114.0±30.7 1.8±0.3 0.3±0.2 ≈6x

Synthetic-GRP 757.8 27.8±12.5 2.9±1.4 98.0±30.7 1.5±0.4 0.6±0.2 ≈2x

Lowest execution time among all comparison methods is underlined and bold fonts denotes the fastest method. Speedup

gains for GNN-Bet are calculated with respect to fastest among comparison methods.

4.3.2 Execution Time Comparison. Execution time comparison is presented in Table 3. We ob-
serve that GS provides good approximations with reasonable execution time, which is lower than
exact betweenness values calculations. For RK, the execution frequently approaches/exceeds exact
betweenness calculation time if we set parameters for better approximations. The method is there-
fore good if higher error tolerance is allowed. BN is the fastest among all the comparison methods,
taking very little time to output approximation values. However, as evident from Table 2, the rank-
ing accuracy drops at the expense of speed. Our proposed model is up to 37 times faster than BN

for real-world datasets and up to 33 times faster for synthetic graph datasets.

4.4 Dynamic Betweenness Approximations

Our model can readily be applied to dynamic graphs, where nodes and edges changes with time.
With these changes, we get multiple slices of graphs. Traditionally, we have to re-calculate be-
tweenness centrality on each slice from scratch, which is computationally expensive. More recent
methods overcome this limitation by first calculating betweenness for all nodes and then updating
the values as the graph changes. However, in practice, this approach is still slower and may not
provide good approximations with larger changes in graph. Since our model training is inductive,
we can use the trained model for betweenness approximations to get approximations of all slices
of dynamic graphs. In this way, our model can provide more accurate and faster approximations.

We compare our model with the algorithm proposed by [38] referred to as HA. In the experi-
ments, for each graph, we initially removed 1000 edges. Then from those 1000 edges, we randomly
take 200 edges and add them back to the graph structure while removing 200 different edges from
the graph. We repeat this step five times. So at each step, there is a change of 400 edges. We then
compare the resulting KT Score and time taken by our model and the comparison method.

Tables 4 and 5 show KT Score and time performance results. Results show significant gains in
KT Score (up to 300% improvement), while still being faster (up to 14 times faster). This shows the
versatility of the model to be used for both static and dynamic graphs. We note that if the number
of edge changes is smaller (number of edge changes in tens or less), HA may have execution time
comparable to our model. However, with smaller changes in graphs, changes in centrality values
are not significant and may not be very useful in real-world applications.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

Graph Neural Networks for Fast Node Ranking Approximation 78:15

Table 4. KT Ranking Scores Comparison for Dynamic Betweenness Approximation

Method on Real World Dataset

Dataset KT Score

Update-1 Update-2 Update-3 Update-4 Update-5 Gain(avg)

Wiki-Vote
HA 0.8909 0.8964 0.9013 0.9016 0.9031 +0.0647 (+7.2%)

GNN-Bet 0.9633 0.9636 0.9623 0.9622 0.9655

P2p-Gnutella31
HA 0.7233 0.7242 0.7282 0.7269 0.7256 +0.2023 (+27.8%)

GNN-Bet 0.927 0.928 0.928 0.928 0.929

Soc-Epinions
HA 0.5742 0.5719 0.5746 0.5698 0.5706 +0.3117 (+54.4%)

GNN-Bet 0.8832 0.8837 0.8847 0.8834 0.8846

Soc-Slashdot
HA 0.5358 0.5309 0.5368 0.5353 0.5360 +0.3705 (+69.2%)

GNN-Bet 0.9048 0.9053 0.9053 0.9057 0.9060

Ego-Gplus
HA 0.6073 0.6097 0.6126 0.6144 0.6123 +0.2001 (+32.7%)

GNN-Bet 0.8111 0.8119 0.8118 0.811 0.8111

Email-EuAll
HA 0.4312 0.4292 0.4263 0.4273 0.4316 +0.5581 (+130.0%)

GNN-Bet 0.9877 0.9808 0.9889 0.9891 0.9899

Web-Google
HA 0.3001 0.2997 0.2988 0.2998 0.3019 +0.4874 (+162.4%)

GNN-Bet 0.7664 0.7668 0.7673 0.7682 0.7684

Wiki-Talk
HA 0.2389 0.2366 0.2438 0.2402 0.2420 +0.7369 (+306.6%)

GNN-Bet 0.9770 0.9774 0.9773 0.9772 0.9772

Best KT Score are highlighted in bold.

Table 5. Time Comparison for Dynamic Betweenness Approximation Methods

Dataset Time(s)

Update-1 Update-2 Update-3 Update-4 Update-5 Speedup

Wiki-Vote
HA 3.42 2.81 3.67 3.87 3.14 ≈7x

GNN-Bet 0.53 0.52 0.51 0.54 0.44

P2p-Gnutella31
HA 2.07 2.17 2.10 2.07 2.04 ≈13x

GNN-Bet 0.17 0.16 0.17 0.16 0.16

Soc-Epinions
HA 10.69 12.74 11.51 13.16 10.77 ≈14x

GNN-Bet 0.97 0.80 0.83 0.80 0.80

Soc-Slashdot
HA 5.79 3.82 4.56 4.20 4.20 ≈6x

GNN-Bet 0.77 0.77 0.76 0.76 0.77

Ego-Gplus
HA 99.06 74.25 77.25 72.34 77.47 ≈12x

GNN-Bet 6.94 6.82 6.91 6.86 6.25

Email-EuAll
HA 7.21 8.25 8.22 3.21 7.59 ≈7x

GNN-Bet 0.89 0.90 0.89 0.90 1.10

Web-Google
HA 4.56 4.53 4.57 4.51 4.61 ≈0.8x

GNN-Bet 5.45 5.48 5.52 5.52 5.56

Wiki-Talk
HA 3.48 3.48 4.04 3.77 3.67 ≈1x

GNN-Bet 3.45 3.50 3.61 3.66 3.72

Lowest execution values are highlighted in bold.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

78:16 S. K. Maurya et al.

Table 6. KT Ranking Scores Comparison for Closeness Approximations

on Real-world and Synthetic Datasets

Dataset
KT Score

OC CD GNN-Close Gain

Wiki-Vote 0.916 0.567 0.937 +0.021 (+2.2%)
P2p-Gnutella31 0.930 0.926 0.978 +0.052 (+5.1%)
Soc-Epinions 0.945 0.810 0.917 −0.028 (−3.0%)
Soc-Slashdot 0.928 0.778 0.955 +0.027 (+2.9%)
Ego-Gplus 0.964 0.909 0.923 +0.041 (−4.4%)
Email-EuAll 0.847 0.494 0.927 +0.080 (+9.4%)
Web-Google 0.920 0.533 0.699 −0.221 (−31.6%)
Wiki-Talk 0.963 0.979 0.978 −0.001 (−0.1%)

Synthetic-ER 0.812 ± 0.04 0.651±0.26 0.907±0.03 +0.095 (+11.6%)
Synthetic-SF 0.861 ± 0.04 0.287±0.10 0.903±0.01 +0.042 (+4.8%)
Synthetic-GRP 0.527 ± 0.18 −0.403±0.11 0.979±0.01 +0.452 (+85.7%)

Higher KT Score between comparison methods(OC and CD) is underlined and best ranking performance

among all is highlighted with bold font. Performance gain for GNN-Close is compared with respect to the

best KT Score of comparison methods.

Table 7. Time Comparison for Closeness Approximation Methods

Dataset
Timetrain (s) Time(s)

GNN-Close Exact OC CD GNN-Close Speedup

Wiki-Vote

349.0

0.6 0.03 0.02 0.1 ≈0.2x
P2p-Gnutella31 42.9 1.3 0.1 0.2 ≈0.5x
Soc-Epinions 160.7 2.1 0.3 0.4 ≈0.7x
Soc-Slashdot 152.7 2.0 0.3 0.5 ≈0.6x
Ego-Gplus 3458.1 4.5 2.7 6.2 ≈0.4x
Email-EuAll 807.6 3.7 0.8 0.5 ≈1.6x
Web-Google 38176.7 18.6 10.3 5.3 ≈1.9x
Wiki-Talk 28792.0 9.7 2.6 3.1 ≈0.8x

Synthetic-ER 371.4 484.1±452.0 3.0 ±1.1 0.53±0.36 0.8±0.6 ≈0.6x
Synthetic-SF 235.2 26.4±11.4 0.9 ±0.2 0.16±0.02 0.3±0.4 ≈0.5x
Synthetic-GRP 383.3 28.8±21.1 1.0 ±0.2 0.24±0.1 0.4±0.56 ≈0.6x

Lowest execution time among all comparison methods is underlined and bold fonts denotes the fastest method. Speedup

gains for GNN-Close are calculated with respect to fastest among comparison methods.

4.5 Static Closeness Approximations

In this section, we evaluate our closeness variant of our model with respect to other closeness
centrality approximation methods. For this, we compare to the methods proposed by Okamoto
et al. [58] and Cohen et al. [19] and refer to the methods as OC and CD respectively. KT-Score
and execution time for algorithms are used as comparison metrics. For CD, the parameter for the
number of nodes to be randomly sampled is chosen as 100, as used in this article [19] and we set
parameter ϵ = 0.001. The number of nodes to be sampled for OC is also set as 100.

For closeness centrality approximations, Table 7 shows the results for real-world and synthetic
datasets. Our model outperforms OC and CD for synthetic datasets with performance improve-
ments up to 85% and 214%, respectively. For the real-world datasets, approximation performance is
higher in five out of eight datasets when compared with OC and seven out of eight datasets when

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

Graph Neural Networks for Fast Node Ranking Approximation 78:17

compared with CD. However, our model’s execution time is slightly higher than CD, though the
absolute differences between values are not significant. Compared to OC, our model has signif-
icantly faster execution time in most of the comparison datasets. In our model implementation,
most of the time is taken by the function to find nodes with no shortest path passing through them.
As the code is implemented in Python, it is relatively slower. The time taken during GNN model
inference is only a few milliseconds. Hence, there is a scope to reduce the approximation time
even further. Interestingly, we found that the output of CD had a negative KT score for synthetic
Gaussian Random Partition graphs.

4.6 Scalability Tests

In previous sections, we have demonstrated the ranking performance of GNN-Bet & GNN-Close
and their robustness with different types of graphs. In this section, we study the effect on time
to find zero shortest path nodes and the execution time of the model in forward propagation with
respect to the increase in the size of the input graph.

As discussed in Section 3.1, there are two possible ways to identify Nzp nodes. First, if either
in-degree or out-degree of the node is zero, there is no path passing through the node. Time com-
plexity of finding such nodes is O (V). We identify such nodes in first step. Second, if the node’s
neighbors form cliques such that there is no shortest path going through the node. We identify
such nodes by iterating through the remaining nodes v ∈ Vr emain from the first step and check
if any of the in-degree neighbors Nin_v of the node v is not connected directly to all out-degree
neighbors Nout_v . If such a node in Nin_v is found, it means that there is a path going through
node v , and the node is not considered to be in Nzp . Then, iteration over other in-degree nodes is
skipped, and the process is repeated for the next node inVr emain . Considering the average number
of in-degree or out-degree as Nin_avд = Nout_avд = Navд , the time complexity of the operation is

O (VNavд
2). In case of low density graphs, Navд << V and we do not have to iterate over all Nin_v ,

hence the complexity is almost linear (in number of nodes), approaching O (VNavд). However, if
the graph is dense and approaching a fully connected graph, then Navд � V and the time complex-

ity of the operation becomesO (V 3). To experimentally verify the time scalability of the method to
find zero shortest paths nodes, we generate three sets of Erdos–Renyi random graphs with num-
ber of edges to number of nodes ratio set to 2, 4, and 6, respectively. This provides a variation in
density of the graphs. We chose ER graphs for this experiment for the convenience of setting the
desired number of nodes and edges in the generated graphs easily. The number of nodes are varies
from a hundred thousand nodes to a million nodes for each set. Figure 5 shows the plot of exe-
cution time to find zero shortest path nodes with respect to change in the graph size. We observe
that execution time grows proportional to the number of nodes, and time increments are rather
small.

Now, we study the scalability of the inference time of model with an increase in size of the input
graphs. Here, we use the betweenness centrality variant of the model, as calculation of between-
ness centrality takes a longer time compared to that of closeness centrality. For static betweenness
centrality approximation, BN is the fastest betweenness approximation method. In order to com-
pare the speed of approximation of our model (GNN-Bet) with BN, we test them on 10 synthetic
scale-free graphs with the number of nodes ranging from 100,000 to 1,000,000. We set the size of
the model to accommodate for all input graphs (i.e., maximum 1 million nodes). Input adjacency
matrices of smaller graphs are padded with zeros to match with model size. Hence, the density
of all input matrices is proportional to the number of edges in each graph. Therefore, the time
taken is approximately proportional to the number of edges and time complexity is O (|E |) (sim-
ilar to Graph Convolutional Network (GCN) [72]). Figure 6 shows the execution time taken

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

78:18 S. K. Maurya et al.

Fig. 5. Depicts the execution time with respect to increase in number of nodes in the input graph. The ratio

of number of nodes to number of edges is fixed as 2, 4, and 6, respectively.

Fig. 6. Time taken by model as number of nodes increases for synthetic scale-free graphs.

by BN and betweenness variant of model for all graphs. We observe that in both cases, execu-
tion time grows proportional to the size of the graph. Nevertheless, our proposed model GNN-
Bet has a lower rate of increment, thus scaling well with the size of graphs and providing faster
approximations.

4.7 Ablation Tests

In this section, we conduct a series of experiments to study the effect of hyper-parameters on
the model’s performance for both variants of our proposed model. As the main parameters of the
model are the number of layers and the number of dimensions of the embeddings, we vary both
of them and evaluate the performance of the model. We choose to use synthetic datasets for these

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

Graph Neural Networks for Fast Node Ranking Approximation 78:19

experiments, as it provides a better understanding of the model’s performance on different types
of graph structures. The experiments follow the same methodology as discussed earlier.

—Varying Number of Layers: The number of layers in the model affects how much information
any given node can accumulate about its neighborhood. With the increase in the number
of layers, nodes have access to features of their neighbors located at multi-hop distances
away. In this experiment, we vary the number of layers from 1 to 7 for both betweenness
and closeness centrality variants. Figures 7 and 9 show Kendall’s Tau score for betweenness
and closeness variant, respectively for all three types of synthetic graphs. We observe that
for a lower number of layers model performs poorly, which is within expectation as the
nodes aggregation reach is limited. For both variants GNN-Bet and GNN-Close, we observe
that an increase in the number of layers leads to better approximations accuracy.

—Varying Embedding Dimensions: While training any neural network, the embedding dimen-
sion determines the number of learnable model parameters. An under-parameterized neu-
ral network model may not learn very well while the over-parameterized model can overfit
the data and have poor generalization ability. In this experiment, we look into the effect of
changing embedding dimensions on the performance of our proposed model. We vary the
model’s embedding dimensions as [2, 4, 8, 12, 16, 20] and evaluate the ranking performance
on synthetic graph datasets. Results are plotted in Figures 8 and 10 for betweenness and
closeness variant, respectively. With lower dimensions of embedding (2 & 4), we observe
lower performance, which is natural due to the limited number of parameters for optimal
learning.

4.8 Discussion

The experimental results in Sections 4.3, 4.4, and 4.5 show our GNN-based approach to node rank-
ing in graphs is highly performant and robust. However, like all other neural network based meth-
ods, they do require some hyper-parameters that need to be set to get the best out of the model.
With ablation experiments, we see that the model’s performance is relatively stable with vari-
ous combinations of parameters. Thus, it does not require extensive hyper-parameter tuning. In
Appendix B, we briefly discuss about oversmoothing in GNNs and our observations with respect
to the proposed model. For betweenness and closeness approximations, we have set the number
of layers in our model to four and seven, respectively for all graph datasets to compare results
on a single model. Nevertheless, the number of layers can be chosen based on the structure and
diameter of the target graph.

Even though the models are trained on synthetic scale-free graphs, tests on real-world graph
datasets show good approximation accuracy. This implies that the proposed model is inductive in
nature and has the ability to learn on one set of graphs and predict node ranking scores on others.
Furthermore, the model is invariant to the node sequence in the adjacency matrix, providing the
additional benefit of having no constraint of ordering the nodes to any specific sequence in graphs.

With almost all deep learning models, even though training time may vary, usually their in-
ference time is really small. Another advantage of neural network models is to take advantage of
high-performance GPUs for faster calculations. Our proposed model has the advantage of small
training time as well as inference time.

As shown in results, our proposed frameworks are able to perform really well on different types
of graphs. However, since the model training is based on ranking loss function where gradients
rely on differences in score values. Therefore, it is possible that if the given graph has lots of nodes
with similar (or same) centrality values, the model may not be able to distinguish the ranking of
nodes and may not perform very well.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

78:20 S. K. Maurya et al.

Fig. 7. Change in KT score with respect to number of layers for betweenness variant.

Fig. 8. Change in KT Score with respect to embedding dimensions for betweenness variant.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

Graph Neural Networks for Fast Node Ranking Approximation 78:21

Fig. 9. Change in KT score with respect to number of layers for closeness variant.

Fig. 10. Change in KT score with respect to embedding dimensions for closeness variant.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

78:22 S. K. Maurya et al.

5 RELATED WORK

In previous sections, we have shown the viability of neural network based approach for approxi-
mating betweenness and closeness centrality of nodes in the graphs. Our proposed model provides
a new way to approach the problem and adds to the tool-set in addition to algorithmic-based ap-
proaches. In this section, we provide a brief summary of current related works on betweenness
and closeness centrality approximation methods and various applications of neural networks on
graph-structured data.

5.1 Betweenness Centrality

Intuitively, we have to find all the shortest paths between all pairs of nodes to calculate between-
ness. Brandes [10] improves upon the naive algorithm by proposing to generate directed acyclic

graph (DAG) starting from each nodev ∈ V using BFS and aggregating the contributions of nodes
on paths in DAG for all nodes. Calculating exact betweenness centrality value for nodes is com-
putationally expensive and has a time complexity of Θ(|V | |E |). Hence, it is prohibitive for large
graphs. Two different approaches have been taken to tackle the problem of high computation time.
The first approach is to adapt the betweenness centrality algorithm for distributed computation.
Recently, many algorithms [21, 25, 39] have been proposed, which extend the computation from
a single machine to a cluster of high performance machines. This approach reduces the computa-
tion time significantly for large graphs. However, access to such computation resources is rather
limited. The second approach is to rely on approximation methods.

In most of the cases, we do not require an exact calculation of rankings of nodes, so an approxi-
mation is sufficient for tasks in hand. Many algorithms have been proposed. Brandes and Pich [11]
proposed an algorithm by taking a subset of k starting nodes (pivots) rather than all the nodes.
Selecting these pivots uniformly at random and with k << N , where N is the number of nodes
and betweenness centrality values are extrapolated in the graph. Unfortunately, this method pro-
duces large overestimates for unimportant nodes that happen to be near the pivot. Geisberger et al.
[32] solve the problem of overestimation by changing the scheme of aggregation of betweenness
contributions so that the nodes near pivot do not get extra contributions. To limit the bias, they
introduce a scaling function, which gives less importance to contributions from the pivots that
are close to the node. Since this algorithm works with random sampling of nodes (pivots), as the
number of samples increases, approximation accuracy also increases. Although a higher number of
samples also cause higher computation overhead of calculating more shortest paths in the graph.

Riondato et al. [65] take a different approach while providing a theoretical guarantee. The idea
is to sample a set of r shortest paths between randomly sampled source–target pairs (s,t). Then, the
algorithm computes the approximated betweenness centrality of a given node v as the fraction of
sampled paths thatv is internal to, by adding 1

r
to the node’s score for each of these paths. Borassi

et al. [7] provide a new adaptive sampling technique for sampling shortest paths, which provides
a faster computation of betweenness within a given absolute error.

While finalizing this manuscript, we became aware that Fan et al. [28] have also concurrently
proposed a GNN-based method for approximation of betweenness centrality. There are several
significant differences from our work. First, their method is limited to undirected graphs, while
ours is proposed for the more general case of directed graphs. Second, their method is limited
to betweenness centrality in static graphs while our model is more flexible and is able to handle
both betweenness and closeness centrality in both static and dynamic graphs. Third, their method
is proposed for identifying top-N high betweenness nodes while our model is able to make a
complete ranking of all the nodes in a graph. Due to these constraints, we do not compare to this
work [28] in this article.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

Graph Neural Networks for Fast Node Ranking Approximation 78:23

In addition to the regular graphs, the concept of betweenness centrality has been applied to di-
rected hypergraphs [1], where relations (also called hyper-edges) are defined from a set of source
nodes to a single target node. [47] proposes a new measure called Participation-based Between-

ness Centrality (PBC) for a special case of directed hypergraphs called B-hypergraphs and pro-
vides an exact and approximate method for calculation of PBC.

5.2 Closeness Centrality

To approximate the closeness centrality Eppstein et al. [26] and Okamoto et al. [58] proposed
algorithm based on sampling k nodes from the graph. However, these algorithms are not optimal
when distance distribution of sampled nodes with other nodes is heavy-tailed. Cohen et al. [19]
provided an improved algorithm with a hybrid approach of sampling and pivoting. For directed
graphs, there are two variations of closeness centrality based on the direction of paths. One is
incoming closeness centrality for paths incoming to the node and outgoing closeness centrality for
paths going away from the given node to other nodes. In this article, we have focused on outgoing
closeness centrality as it is more meaningful in terms of node importance to spread information.

5.3 Centrality for Dynamic Graphs

In the real world, node interactions and the level of activity of nodes change all the time. Some
nodes and edges can disappear and new nodes and edges can appear with time. There is some
research on updating betweenness centrality of nodes in dynamic graphs. A naive way is to re-
compute from scratch, which is however computationally expensive. Many dynamic algorithms
[35, 43, 46, 48] have been proposed, which avoid recomputation by maintaining data structure
based on original graph structure and update it as the structure changes. These algorithms have
faster updates compared to Brandes’s exact algorithm. However, they are not scalable as they re-
quire a huge amount of memory σ (n2) to store the data structures.

Bergamini et al. [6] proposed a method to approximate the dynamic centrality of nodes with the
insertion of edges. This method is based on Riondato et al. [65], although the proposed method
does not support the removal of edges. Hayashi et al. [38] propose a new method based on the
data structure named hypergraph sketch, which is used to represent the shortest paths between
nodes sampled randomly. Their proposed method supports both nodes and edges addition/removal
operations.

5.4 Graph Neural Networks

Due to an abundance of graph-structured data, many graph-centric neural network models have
been proposed. These GNNs have been designed to solve multitude of problems like node classifi-
cation [45, 68, 69], graph classification [75, 76], link prediction [5, 74], prediction of molecular prop-
erties [33], functional analysis of brain [59, 64], synthesize chemical compounds [15, 49], and so on.

All of these GNN frameworks utilize node or edge feature aggregation scheme guided by the
structure of the graph [72, 77]. In addition to the simple summation for node features as described
in this article, Hamilton et al. [37] have proposed aggregation based on LSTM and max-pooling
operation of randomly sampled neighbors. Earlier proposed GNN models were transductive in
nature, in other words the models can only be trained and tested on the same graph [22, 22, 45].
However, there have been many emerging works, which are inductive by construction [17, 37, 69].
The models can be trained on one set of graphs and tested on another set of graphs. Recent works
are now delving deeper into the working of GNNs from a theoretical perspective, exploring their
learning capacity, [20] and expressiveness with respect to graph isomorphism heuristic algorithms
[52, 56, 73].

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

78:24 S. K. Maurya et al.

6 CONCLUSION

In this article, we propose a novel approach to solve the betweenness and closeness approxima-
tion problem in graphs using GNN. Using the constrained message passing scheme, we train
GNN model to output ranking scores for nodes in correlation with betweenness and closeness
centrality values. We compare the performance of the model with other state of the art approx-
imation techniques and the experimental results show better performance of our model while
taking significantly less time.

For future works, possibilities can be explored to extend the neural network framework to other
centrality measures. Graphs based on real-world data often accompany explicit node/edge feature
information. Current graph centrality measures lack in utilizing this additional information in
ranking nodes as they are solely based on the structure of the graph. However, GNN-based models
can easily incorporate any additional data for learning. There is a potential to find new ways to
rank nodes based on the graph structure of data and node/edge external features, which explains
real-world interactions more consistently.

APPENDICES

A DETAILS OF SYNTHETIC GRAPHS

In this section, we provide generation parameters and other relevant statistics of synthetic graphs
used for evaluation of proposed models.

A.1 Synthetic Graph Generation Parameters

We have generated all graphs using a Python based graph library NetworkX.3 Three different graph
types: Erdos–Renyi (ER), Scale-Free (SF) and Gaussian Random Partition (GRP) are generated using
graph generators provided in NetworkX. Table A1 provides the summary of NetworkX functions
and generation parameters used.

Table A1. NetworkX Functions and Parameters used to Generate Synthetic ER, SF, and GRP Graphs

Graph type NetworkX function Generation parameters

ER fast_gnp_random_graph
Number of nodes sample(50000,100000)

p sample(1,99) ×10−6

SF scale_free_graph

Number of nodes sample(50000,100000)
alpha sample(40,60) ×10−2

beta 0.5
gamma 1 - alpha - gamma

GRP gaussian_random_partition_graph

Number of nodes sample(50000,100000)
s sample(2000,10000)
v sample(2000,10000)

p_in sample(2,25) ×10−5

p_out sample(2,25) ×10−5

The notation sample(start,end) represents uniform sampling function, which randomly
samples an integer between start and end. Parameter names used are the same as provided
in NetworkX documentation. In the case of ER graphs, when the probability value “p” is low,
it is possible for the generated graph to have isolated nodes. We filter out these nodes in the
pre-processing step.

3https://networkx.github.io/.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

https://networkx.github.io/

Graph Neural Networks for Fast Node Ranking Approximation 78:25

Table A2. Statistics of three Types Synthetic Graphs ER, SF

and GRP used for Test Datasets is Provided

Graph Type #Nodes #Edges
Shortest Paths

Avg Max

88203 126162 19.8± 15.5 91
69357 175354 11.5±2.6 30
52369 71773 19.6±17.2 96
91279 491778 6.9±0.9 14

ER 73981 173110 12.5±3.1 35
96390 649893 6.2±0.8 11
73311 268817 8.6±1.3 19
92495 652114 6.0±0.7 11
92937 612060 6.2±0.8 12
37789 28605 1.3±0.7 11

85683 144937 4.6±2.5 17
81626 150397 4.4±2.3 17
99689 207035 3.5±2.1 18
54547 88096 4.8±2.6 20

SF 70828 154573 4.0±1.8 13
67673 137958 3.7±1.9 17
60137 98727 4.3±2.8 17
64155 126305 3.8±2.2 16
83106 136311 4.5±2.7 18
63653 111007 4.4±2.3 18

95447 571347 4.3± 2.7 24
64922 391928 4.4±2.7 23
50096 188980 2.9±1.8 17
71002 295411 3.4±2.2 20

GRP 78081 235093 2.5±1.6 16
55048 294552 3.9±2.5 20
86739 371866 3.7±2.5 21
89998 400220 5.5±3.6 34
68483 365743 4.2±2.7 26
71422 218240 2.5±1.6 16

A.2 Statistics of Synthetic Graphs

For evaluation of the model, 10 synthetic graphs were generated for each graph type ER, SF, and
GRP. Table A2 provides the information of synthetic datasets used as test datasets for the evalu-
ation of our proposed model. All shortest path lengths were measured using Dijkstra’s algorithm
and for each graph, average and maximum of all shortest path lengths are shown in the table.

A.3 Nodes with Zero Centrality Values

In our proposed model, one of the important steps is to identify the nodes in the graph with no
shortest paths going through them and use this information to modify the aggregation scheme in
GNN-Bet and GNN-Close. Please note that such nodes in the graph will have zero betweenness

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

78:26 S. K. Maurya et al.

Fig. A1. Figure shows the number of nodes with zero betweenness and closeness centrality for different

types of graphs in synthetic evaluation datasets.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

Graph Neural Networks for Fast Node Ranking Approximation 78:27

Fig. A2. Figure shows the number of nodes with zero betweenness and closeness centrality for different

types of graphs in real-world datasets.

centrality but not necessarily zero closeness centrality. Here, we show the percentage of the nodes
with both zero betweenness and closeness to provide the overview of statistics of the test graphs.

Figures A1 and A2 depict the percentage of nodes that have zero betweenness and closeness cen-
trality for synthetic and real-world evaluation datasets. It is interesting to find that the percentage
of the nodes for synthetic scale-free graphs is very similar(86%–88%). To investigate further, we
generated more synthetic graphs with a wider range of generation parameters than presented in
this article. We find that for betweenness centrality, the percentage of such nodes always var-
ied between 86%–89%. With our experimental observations, we conclude that this is an inherent
property of graphs generated with NetworkX scale-free graph generation function.

B OVERSMOOTHING MEASUREMENT IN GNN-BET & GNN-CLOSE

In the current literature of GNNs, most common tasks are classification or link-prediction-based
tasks. In general, the performance of these types of tasks is dependent on the node having similar
features to its neighbors. In conventional GNN models, a cumulative aggregation scheme is used
by adding self-loops to gain and retain features of the node’s neighbors at multiple hops. However,
with a higher number of layers in GNN, due to this scheme, nodes tend to have similar features at
the final layer, and hence it becomes difficult to learn to classify them with respect to the labels.
This problem in general is known as over-smoothing in GNNs.

In our proposed scheme, we aggregate the node features at each layer separately (no self-loops)
and map them to an MLP to get layer-specific scores of nodes. The scores are dependent on
each node’s unique neighborhood at multiple hops. Ranking loss is then calculated based on the
combination of the output of the multiple layers. The shortest path lengths can go higher than
seven and thus adding more information with a higher number of layers. Nevertheless, the effect
diminishes due to fewer number of longer paths.

In order to empirically study the over-smoothing effect in our model, we use a metric similar to
one proposed by Chen et al. [16]. In [16], the authors calculate pairwise cosine distance between
node embeddings after each layer. They observe that after each successive layer, the average co-
sine distance reduces thus implying presence of over-smoothing effect. To measure the effect of

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

78:28 S. K. Maurya et al.

Table A3. Table Shows the Average of Pairwise Score Difference

of Nodes for Each Layer in Seven-layered GNN-Bet Model

GNN Layers Average Score Difference (GNN-Bet)
ER SF GRP

In
co

m
in

g

Layer-1 0.0025 ±0.003 0.0274 ±0.028 0.0042 ±0.005
Layer-2 0.0959 ±0.083 0.0520 ±0.043 0.0717 ±0.052
Layer-3 0.0694 ±0.091 0.0771 ±0.060 0.0456 ±0.046
Layer-4 0.1124 ±0.108 0.0916 ±0.072 0.1605 ±0.119
Layer-5 0.0771 ±0.062 0.0312 ±0.028 0.0931 ±0.090
Layer-6 0.1223 ±0.120 0.0282 ±0.025 0.1355 ±0.101
Layer-7 0.0959 ±0.101 0.0993 ±0.109 0.0605 ±0.050

O
u

tg
o

in
g

Layer-1 0.0025 ±0.004 0.0265 ±0.026 0.0040 ±0.004
Layer-2 0.0956 ±0.083 0.0647 ±0.050 0.0719 ±0.052
Layer-3 0.0688 ±0.090 0.0557 ±0.056 0.0451 ±0.046
Layer-4 0.1120 ±0.108 0.0532 ±0.059 0.1609 ±0.119
Layer-5 0.0768 ±0.063 0.0297 ±0.035 0.0927 ±0.089
Layer-6 0.1232 ±0.122 0.02584 ±0.022 0.1344 ±0.100
Layer-7 0.0970 ±0.103 0.1491 ±0.192 0.0599 ±0.049

Table A4. Table Shows the Average of Pairwise Score Difference

of Nodes for Each Layer in Seven-layered GNN-Close Model

#Layer
Average Score Difference (GNN-Close)

ER SF GRP

Layer-1 0.5202 ±0.508 1.0771 ±0.892 1.9355 ±1.574
Layer-2 1.2834 ±1.052 1.5232 ±1.611 2.5324 ±2.130
Layer-3 3.1149 ±2.643 1.3551 ±1.458 3.9440 ±3.024
Layer-4 2.7950 ±2.216 1.5866 ±1.387 4.5423 ±3.724
Layer-5 0.7851 ±0.651 1.1937 ±1.133 0.9860 ±0.839
Layer-6 0.7561 ±0.886 1.2197 ±1.192 0.8559 ±0.681
Layer-7 0.8555 ±0.716 0.8492 ±0.921 1.4291 ±1.481

over-smoothing on our model’s performance, we take similar approach and perform experiments
on a seven-layered model. In our proposed model, the output from each layer is a score vector
corresponding to the nodes in the graph. Therefore, we replace cosine distance measure with the
difference of two score values. As the total number of pairs of nodes can become very large (≈ N 2

pairs), we randomly sample 1000 non-zero centrality nodes and calculate pairwise score difference
(5 × 105 node pairs) for each layer. In Tables A3 and A4, we show the average score difference val-
ues of each layer for betweenness variant and closeness variant, respectively. We observe that
there is no obvious consecutive decrease in difference values with respect to the layers. Thus, the
model is still able to provide stable performance with seven-layers.

REFERENCES

[1] Giorgio Ausiello and Luigi Laura. 2016. Directed hypergraphs: Introduction and fundamental algorithm: A survey.

Theoretical Computer Science 658, Part B (2016), 293–306. DOI:https://doi.org/10.1016/j.tcs.2016.03.016

[2] Alex Bavelas. 1950. Communication patterns in task-oriented groups. Journal of the Acoustical Society of America 22,

6 (1950), 725–730. DOI:https://doi.org/10.1121/1.1906679

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

https://doi.org/10.1016/j.tcs.2016.03.016
https://doi.org/10.1121/1.1906679

Graph Neural Networks for Fast Node Ranking Approximation 78:29

[3] Alex Bavelas. 1948. A mathematical model for group structures. Applied Anthropology 7, 3 (1948), 16–30. DOI:https://

doi.org/10.17730/humo.7.3.f4033344851gl053

[4] Murray A. Beauchamp. 1965. An improved index of centrality. Behavioral Science 10, 2 (1965), 161–163. DOI:https://

doi.org/10.1002/bs.3830100205

[5] Rianne van den Berg, Thomas Kipf, and Max Welling. 2017. Graph convolutional matrix completion. arXiv:1706.02263.

Retrieved from https://arxiv.org/abs/1706.02263

[6] E. Bergamini, H. Meyerhenke, and C. Staudt. 2015. Approximating betweenness centrality in large evolving networks.

In Proceedings of the 17th Workshop on Algorithm Engineering and Experiments. Society for Industrial and Applied

Mathematics, 133–146. DOI:https://doi.org/10.1137/1.9781611973754.12

[7] Michele Borassi and Emanuele Natale. 2019. KADABRA is an Adaptive Algorithm for Betweenness via Random

Approximation. ACM Journal of Experimental Algorithmics 24, 1 (2019), 1.2:1–1.2:35. DOI:https://doi.org/10.1145/

3284359

[8] Stephen P. Borgatti. 1995. Centrality and AIDS. Connections 18, 1 (1995), 112–115.

[9] Stephen P. Borgatti. 2005. Centrality and network flow. Social Network 27, 1 (2005), 55–71. DOI:https://doi.org/10.

1016/j.socnet.2004.11.008

[10] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. The Journal of Mathematical Sociology 25, 2 (2001),

163–177. DOI:https://doi.org/10.1080/0022250x.2001.9990249

[11] Ulrik Brandes and Christian Pich. 2007. Centrality estimation in large networks. International Journal of Bi-

furcation and Chaos in Applied Sciences and Engineering 17, 7 (2007), 2303–2318. DOI:https://doi.org/10.1142/

S0218127407018403

[12] S. Brin and L. Page. 1998. The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN

Systems 30, 1–7 (1998), 107–117. Retrieved from http://ilpubs.stanford.edu:8090/361/

[13] Dirk Brockmann and Dirk Helbing. 2013. The hidden geometry of complex, network-driven contagion phenomena.

Science 342, 6164 (2013), 1337–1342. DOI:https://doi.org/10.1126/science.1245200

[14] Christopher J. C. Burges. 2010. From RankNet to LambdaRank to LambdaMART: An Overview. Microsoft Research

Technical Report MSR-TR-2010-82. Microsoft, Albuquerque, NM.

[15] Nicola De Cao and Thomas Kipf. 2018. MolGAN: An implicit generative model for small molecular graphs. In ICML

Workshop, Theoretical Foundations and Applications of Deep Generative Models. Retrieved from https://arxiv.org/abs/

1805.11973

[16] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2019. Measuring and relieving the over-smoothing

problem for graph neural networks from the topological view. Proceedings of AAAI conference on Artificial Intelligence

34 (2019), 3438–3445. Retrieved from http://arxiv.org/abs/1909.03211

[17] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast learning with graph convolutional networks via impor-

tance sampling. In Proceedings of the International Conference on Learning Representations. Retrieved from https://

openreview.net/forum?id=rytstxWAW¬eId=ByU9EpGSf.

[18] Wei Chen, Tie-yan Liu, Yanyan Lan, Zhi-ming Ma, and Hang Li. 2009. Ranking measures and loss functions in learning

to rank. In Proceedings of theAdvances in Neural Information Processing Systems 22, Y. Bengio, D. Schuurmans, J. D.

Lafferty, C. K. I. Williams, and A. Culotta (Eds.). Curran Associates, Inc., 315–323. Retrieved from http://papers.nips.

cc/paper/3708-ranking-measures-and-loss-functions-in-learning-to-rank.pdf.

[19] Edith Cohen, Daniel Delling, Thomas Pajor, and Renato F. Werneck. 2014. Computing classic closeness centrality, at

scale. In Proceedings of the 2nd ACM Conference on Online Social Networks . ACM, 37–50. DOI:https://doi.org/10.1145/

2660460.2660465

[20] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. 2020. Principal neighbourhood

aggregation for graph nets. In Advances in Neural Processing Systems 33 (NeurIPS’20).

[21] Pierluigi Crescenzi, Pierre Fraigniaud, and Ami Paz. 2020. Simple and fast distributed computation of between-

ness centrality. In IEEE Conference on Computer Communications. DOI:https://doi.org/10.1109/INFOCOM41043.2020.

9155354

[22] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional neural networks on graphs with

fast localized spectral filtering. arxiv:1606.09375 Retrieved from http://arxiv.org/abs/1606.09375

[23] Ying Ding, Erjia Yan, Arthur Frazho, and James Caverlee. 2010. PageRank for ranking authors in co-citation networks.

Journal of the American Society for Information Science and Technology 60, 11 (2010), 2229–2243. DOI:https://doi.org/

10.1002/asi.v60:11

[24] David K. Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alan Aspuru-Guzik,

and Ryan P. Adams. 2015. Convolutional networks on graphs for learning molecular fingerprints. In Proceedings of

the 28th International Conference on Neural Information Processing Systems - Volume 2. 2224–2232. Reterieved from

http://papers.nips.cc/paper/5954-convolutional-networks-on-graphs-for-learning-molecular-fingerprints.pdf.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

https://doi.org/10.17730/humo.7.3.f4033344851gl053
https://doi.org/10.17730/humo.7.3.f4033344851gl053
https://doi.org/10.1002/bs.3830100205
https://doi.org/10.1002/bs.3830100205
https://arxiv.org/abs/1706.02263
https://doi.org/10.1137/1.9781611973754.12
https://doi.org/10.1145/3284359
https://doi.org/10.1145/3284359
https://doi.org/10.1016/j.socnet.2004.11.008
https://doi.org/10.1016/j.socnet.2004.11.008
https://doi.org/10.1080/0022250x.2001.9990249
https://doi.org/10.1142/S0218127407018403
https://doi.org/10.1142/S0218127407018403
http://ilpubs.stanford.edu:8090/361/
https://doi.org/10.1126/science.1245200
https://arxiv.org/abs/1805.11973
https://arxiv.org/abs/1805.11973
http://arxiv.org/abs/1909.03211
https://openreview.net/forum?id=rytstxWAW¬eId=ByU9EpGSf
https://openreview.net/forum?id=rytstxWAW¬eId=ByU9EpGSf
http://papers.nips.cc/paper/3708-ranking-measures-and-loss-functions-in-learning-to-rank.pdf
http://papers.nips.cc/paper/3708-ranking-measures-and-loss-functions-in-learning-to-rank.pdf
https://doi.org/10.1145/2660460.2660465
https://doi.org/10.1145/2660460.2660465
https://doi.org/10.1109/INFOCOM41043.2020.9155354
https://doi.org/10.1109/INFOCOM41043.2020.9155354
http://arxiv.org/abs/1606.09375
https://doi.org/10.1002/asi.v60:11
https://doi.org/10.1002/asi.v60:11
http://papers.nips.cc/paper/5954-convolutional-networks-on-graphs-for-learning-molecular-fingerprints.pdf

78:30 S. K. Maurya et al.

[25] Nick Edmonds, Torsten Hoefler, and Andrew Lumsdaine. 2010. A space-efficient parallel algorithm for computing

betweenness centrality in distributed memory. In Proceedings of the 2010 International Conference on High Performance

Computing. 1–10. DOI:https://doi.org/10.1109/HIPC.2010.5713180.

[26] David Eppstein and Joseph Wang. 2001. Fast approximation of centrality. In Proceedings of the 12th Annual ACM-

SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 228–229. Retrieved from

http://dl.acm.org/citation.cfm?id=365411.365449.

[27] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. 2019. A fair comparison of graph neural networks

for graph classification. arXiv:1912.09893.

[28] Changjun Fan, Li Zeng, Yuhui Ding, Muhao Chen, Yizhou Sun, and Zhong Liu. 2019. Learning to identify high be-

tweenness centrality nodes from scratch: A novel graph neural network approach. In Proceedings of the 28th ACM

International Conference on Information and Knowledge Management. ACM, 559–568. DOI:https://doi.org/10.1145/

3357384.3357979

[29] Massimo Franceschet. 2011. PageRank: Standing on the shoulders of giants. Communications of the ACM 54, 6 (2011),

92–101. DOI:https://doi.org/10.1145/1953122.1953146

[30] Linton C. Freeman. 1978. Centrality in social networks conceptual clarification. Social Networks 1, 3 (1978), 215–239.

DOI:https://doi.org/10.1016/0378-8733(78)90021

[31] Linton C. Freeman. 1977. A set of measures of centrality based on betweenness. Sociometry 40, 1 (1977), 35–41.

DOI:https://doi.org/10.2307/3033543

[32] Robert Geisberger, Peter Sanders, and Dominik Schultes. 2008. Better approximation of betweenness centrality. In Pro-

ceedings of the Meeting on Algorithm Engineering & Expermiments. 90–100. Retrieved from http://dl.acm.org/citation.

cfm?id=2791204.2791213.

[33] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. 2017. Neural message passing

for quantum chemistry. In Proceedings of the 34th International Conference on Machine Learning - Volume 70. 1263–

1272. Retrieved from http://dl.acm.org/citation.cfm?id=3305381.3305512.

[34] David F. Gleich. 2015. PageRank beyond the web. Society for Industrial and Applied Mathematics 57, 3 (2015), 321–363.

DOI:https://doi.org/10.1137/140976649

[35] O. Green, R. McColl, and D. A. Bader. 2013. A fast algorithm for streaming betweenness centrality. In Proceedings

of the 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social

Computing. 11–20. DOI:https://doi.org/10.1109/SocialCom-PASSAT.2012.37

[36] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring network structure, dynamics, and function

using NetworkX. In Proceedings of the 7th Python in Science Conference. 11–15.

[37] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. In Proceedings

of the 31st International Conference on Neural Information Processing Systems. I. Guyon, U. V. Luxburg, S. Bengio, H.

Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), ACM, 1024–1034. Retrieved from http://papers.nips.cc/

paper/6703-inductive-representation-learning-on-large-graphs.pdf.

[38] Takanori Hayashi, Takuya Akiba, and Yuichi Yoshida. 2015. Fully dynamic betweenness centrality maintenance on

massive networks. 9 (2015), 48–59. DOI:https://doi.org/10.14778/2850578.2850580

[39] Loc Hoang, Matteo Pontecorvi, Roshan Dathathri, Gurbinder Gill, Bozhi You, Keshav Pingali, and Vijaya Ramachan-

dran. 2019. A round-efficient distributed betweenness centrality algorithm. In Proceedings of the 24th Symposium

on Principles and Practice of Parallel Programming. Association for Computing Machinery, 272–286. DOI:https:

//doi.org/10.1145/3293883.3295729

[40] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec. 2019. Pre-

training graph neural networks. In Proceedings of the 24th Symposium on Principles and Practice of Parallel Program-

ming. 272-286

[41] S. Jin, Z. Huang, Y. Chen, D. Chavarría-Miranda, J. Feo, and P. C. Wong. 2010. A novel application of parallel be-

tweenness centrality to power grid contingency analysis. In Proceedings of the 2010 IEEE International Symposium on

Parallel Distributed Processing. 1–7. DOI:https://doi.org/10.1109/IPDPS.2010.5470400

[42] Maliackal Poulo Joy, Amy Brock, Donald E. Ingber, and Sui Huang. 2005. High-betweenness proteins in the yeast

protein interaction network. Journal of Biomedicine and Biotechnology 2005, 2 (2005), 96–103. DOI:https://doi.org/10.

1155/JBB.2005.96

[43] M. Kas, M. Wachs, K. M. Carley, and L. R. Carley. 2013. Incremental algorithm for updating betweenness centrality in

dynamically growing networks. In Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social

Networks Analysis and Mining 33–40. DOI:https://doi.org/10.1109/ASONAM.2013.6785684

[44] M. G. Kendall. 1938. A new measure of rank correlation. Biometrika 30, 1 (1938), 81–93. DOI:https://doi.org/10.1093/

biomet/30.1-2.81

[45] Thomas N. Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. In Inter-

national Conference on Learning Representation (ICLR’17).

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

https://doi.org/10.1109/HIPC.2010.5713180
http://dl.acm.org/citation.cfm?id=365411.365449
https://doi.org/10.1145/3357384.3357979
https://doi.org/10.1145/3357384.3357979
https://doi.org/10.1145/1953122.1953146
https://doi.org/10.1016/0378-8733(78)90021
https://doi.org/10.2307/3033543
http://dl.acm.org/citation.cfm?id=2791204.2791213
http://dl.acm.org/citation.cfm?id=2791204.2791213
http://dl.acm.org/citation.cfm?id=3305381.3305512
https://doi.org/10.1137/140976649
https://doi.org/10.1109/SocialCom-PASSAT.2012.37
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
https://doi.org/10.14778/2850578.2850580
https://doi.org/10.1145/3293883.3295729
https://doi.org/10.1145/3293883.3295729
https://doi.org/10.1109/IPDPS.2010.5470400
https://doi.org/10.1155/JBB.2005.96
https://doi.org/10.1155/JBB.2005.96
https://doi.org/10.1109/ASONAM.2013.6785684
https://doi.org/10.1093/biomet/30.1-2.81
https://doi.org/10.1093/biomet/30.1-2.81

Graph Neural Networks for Fast Node Ranking Approximation 78:31

[46] N. Kourtellis, G. De Francisci Morales, and F. Bonchi. 2016. Scalable online betweenness centrality in evolving graphs.

In Proceedings of the 2016 IEEE 32nd International Conference on Data Engineering. 1580–1581. DOI:https://doi.org/10.

1109/ICDE.2016.7498421

[47] Kwang Hee Lee and Myoung Ho Kim. 2020. Linearization of dependency and sampling for participation-based be-

tweenness centrality in very large B-hypergraphs. ACM Transactions on Knowledge Discovery from Data 14, 3 (2020),

25:1–25:41. DOI:https://doi.org/10.1145/3375399

[48] Min-Joong Lee, Jungmin Lee, Jaimie Yejean Park, Ryan H. Choi, and Chin-Wan Chung. 2012. QUBE: A quick algorithm

for updating betweenness centrality. In Proceedings of the 21st international conference on World Wide Web. 351–360.

DOI:https://doi.org/10.1145/2187836.2187884

[49] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter W. Battaglia. 2018. Learning deep generative models

of graphs. In International Conference on Machine Learning.

[50] Hao Liao, Manuel Sebastian Mariani, Matúŝ Medo, Yi-Cheng Zhang, and Ming-Yang Zhou. 2017. Ranking in evolving

complex networks. Physics Reports 689 (2017), 1–54. DOI:https://doi.org/10.1016/j.physrep.2017.05.001

[51] Andreas Loukas. 2019. What graph neural networks cannot learn: Depth vs width. In Proceedings of the International

Conference on Learning Representations.

[52] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. 2020. Provably powerful graph networks. In

Advances in Neural Processing Systems 32 (NeurIPS’19).

[53] Sunil K. Maurya, Xin Liu, and Tsuyoshi Murata. 2019. Fast approximations of betweenness centrality using graph

neural networks. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management.

ACM, 2149–2152.

[54] Matus Medo. 2013. Network-based information filtering algorithms: Ranking and recommendation. In Dynamics on

and of Complex Networks, Volume 2: Applications to Time-Varying Dynamical Systems, Animesh Mukherjee, Monojit

Choudhury, Fernando Peruani, Niloy Ganguly, and Bivas Mitra (Eds.). Springer, New York, 315–334. DOI:https://doi.

org/10.1007/978-1-4614-6729-8_16

[55] Peter Mika. 2004. Social networks and the semantic web. In Proceedings of the 2004 IEEE/WIC/ACM International

Conference on Web Intelligence. IEEE Computer Society, 285–291. Retrieved from http://dl.acm.org/citation.cfm?id=

1025132.1026332.

[56] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin

Grohe. 2018. Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings of the 32nd AAAI

Conference on Artificial Intelligence. DOI:https://doi.org/10.1609/aaai.v33i01.33014602

[57] M. E. J. Newman. 2003. A measure of betweenness centrality based on random walks. Social Networks 27, 1 (2003),

39–54. DOI:https://doi.org/10.1016/j.socnet.2004.11.009

[58] Kazuya Okamoto, Wei Chen, and Xiang-Yang Li. 2008. Ranking of closeness centrality for large-scale social networks.

In Frontiers in Algorithmics, Franco P. Preparata, Xiaodong Wu, and Jianping Yin (Eds.). Lecture Notes in Computer

Science, Springer, Berlin, 186–195.

[59] Sarah Parisot, Sofia Ira Ktena, Enzo Ferrante, Matthew Lee, Ricardo Guerrerro Moreno, Ben Glocker, and Daniel

Rueckert. 2017. Spectral graph convolutions for population-based disease prediction. In Proceedings of the Interna-

tional Conference on Medical Image Computing and Computer-Assisted Intervention, Maxime Descoteaux, Lena Maier-

Hein, Alfred Franz, Pierre Jannin, D. Louis Collins, and Simon Duchesne (Eds.). Lecture Notes in Computer Science,

Springer International Publishing, 177–185. DOI:https://doi.org/10.1007/978-3-319-66179-7_21

[60] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban

Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in PyTorch. In Proceedings ofthe31st Con-

ference on Neural Information Processing Systems.

[61] Sen Pei, Lev Muchnik, José S. Andrade, Jr, Zhiming Zheng, and Hernán A. Makse. 2014. Searching for superspread-

ers of information in real-world social media. Scientific Reports 4, Article 5547 (2014). DOI:https://doi.org/10.1038/

srep05547

[62] M. C. Pham and R. Klamma. 2010. The structure of the computer science knowledge network. In Proceedings of the

2010 International Conference on Advances in Social Networks Analysis and Mining. 17–24. DOI:https://doi.org/10.1109/

ASONAM.2010.58

[63] Rami Puzis, Yaniv Altshuler, Yuval Elovici, Shlomo Bekhor, Yoram Shiftan, and Alex Pentland. 2013. Augmented

betweenness centrality for environmentally aware traffic monitoring in transportation networks. Journal of Intelligent

Transportation Systems 17, 1 (2013), 91–105. DOI:https://doi.org/10.1080/15472450.2012.716663

[64] Zarina Rakhimberdina and Tsuyoshi Murata. 2020. Linear graph convolutional model for diagnosing brain disorders.

In Complex Networks and Their Applications VIII, Hocine Cherifi, Sabrina Gaito, José Fernendo Mendes, Esteban Moro,

and Luis Mateus Rocha (Eds.). Studies in Computational Intelligence, Springer International Publishing, 815–826.

DOI:https://doi.org/10.1007/978-3-030-36683-4_65

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

https://doi.org/10.1109/ICDE.2016.7498421
https://doi.org/10.1109/ICDE.2016.7498421
https://doi.org/10.1145/3375399
https://doi.org/10.1145/2187836.2187884
https://doi.org/10.1016/j.physrep.2017.05.001
https://doi.org/10.1007/978-1-4614-6729-8_16
https://doi.org/10.1007/978-1-4614-6729-8_16
http://dl.acm.org/citation.cfm?id=1025132.1026332
http://dl.acm.org/citation.cfm?id=1025132.1026332
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1016/j.socnet.2004.11.009
https://doi.org/10.1007/978-3-319-66179-7_21
https://doi.org/10.1038/srep05547
https://doi.org/10.1038/srep05547
https://doi.org/10.1109/ASONAM.2010.58
https://doi.org/10.1109/ASONAM.2010.58
https://doi.org/10.1080/15472450.2012.716663
https://doi.org/10.1007/978-3-030-36683-4_65

78:32 S. K. Maurya et al.

[65] Matteo Riondato and Evgenios M. Kornaropoulos. 2016. Fast approximation of betweenness centrality through sam-

pling. Data Mining and Knowledge Discovery 30, 2 (2016), 438–475. DOI:https://doi.org/10.1007/s10618-015-0423-0

[66] Gert Sabidussi. 1966. The centrality index of a graph. Psychometrika 31, 4 (1966), 581–603. DOI:https://doi.org/10.

1007/BF02289527

[67] Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. 2016. NetworKit: A tool suite for large-scale com-

plex network analysis. Network Science 4, 4 (2016), 508–530. DOI:https://doi.org/10.1017/nws.2016.20

[68] Petar Veliĉković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. 2018. Graph

attention networks. In International Conference on Learning Representation (ICLR’18).

[69] Petar Veliĉković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon Hjelm. 2018. Deep

graph infomax. In International Conference on Learning Representation (ICLR’19).

[70] Zhen Wang, Chris T. Bauch, Samit Bhattacharyya, Alberto d’Onofrio, Piero Manfredi, Matjaz Perc, Nicola Perra,

Marcel Salathé, and Dawei Zhao. 2016. Statistical physics of vaccination. Physics Reports 664 (2016), 1–113. DOI:https:

//doi.org/10.1016/j.physrep.2016.10.006

[71] Felix Wu, Amauri H. Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Weinberger. 2019. Simplifying

graph convolutional networks. In Proceedings of the 36th International Conference on Machine Learning. 6861–6871.

[72] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. 2021. A comprehensive

survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems 32, 1 (2021), 4–24.

[73] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful are graph neural networks? In

International Conference on Learning Representation (ICLR’19).

[74] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. 2018. Graph con-

volutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining. DOI:https://doi.org/10.1145/3219819.3219890

[75] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure Leskovec. 2018. Hierarchical

graph representation learning with differentiable pooling. In Proceedings of the 32nd International Conference on Neu-

ral Information Processing Systems. Curran Associates Inc. 4805–4815. Retrieved from http://dl.acm.org/citation.cfm?

id=3327345.3327389.

[76] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An end-to-end deep learning architecture for

graph classification. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence. 4434–4445.

[77] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong

Sun. 2020. Graph neural networks: A review of methods and applications. AI Open 1 (2020), 57–81. https://www.

sciencedirect.com/science/article/pii/S2666651021000012.

Received January 2020; revised October 2020; accepted December 2020

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 78. Publication date: May 2021.

https://doi.org/10.1007/s10618-015-0423-0
https://doi.org/10.1007/BF02289527
https://doi.org/10.1007/BF02289527
https://doi.org/10.1017/nws.2016.20
https://doi.org/10.1016/j.physrep.2016.10.006
https://doi.org/10.1016/j.physrep.2016.10.006
https://doi.org/10.1145/3219819.3219890
http://dl.acm.org/citation.cfm?id=3327345.3327389
http://dl.acm.org/citation.cfm?id=3327345.3327389
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://www.sciencedirect.com/science/article/pii/S2666651021000012

