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that a traditional measure, Radem-
acher complexity, is high for the deep 
net architecture.

Subsequent work has explored the 
authors’ suggestion that the train-
ing algorithm (a variant of gradient 
descent) plays a powerful role in how 
overfitting is avoided. Many new mea-
sures have been defined to measure 
the “effective number of parameters” 
of a trained net. Several of these mea-
sures were reported to correlate with 
good generalization. However, a re-
cent extensive study2 suggests this 
correlation is pretty weak and we still 
don’t have a conclusive idea of why 
overfitting does not happen.

Another intriguing direction that 
has led to a flurry of papers is theo-
retical understanding of extreme 
over-parametrization. Since over-pa-
rametrization does not seem to hurt 
deep nets, it is natural to wonder if 
one can take it to the extreme. Recent 
work has analyzed the infinite limit: 
take a finite net and allow its width (= 
number of nodes for fully connected 
layers, and number of channels for 
convolutional layers) to go to infinity. 
This is the wonderful world of Neu-
ral Tangent Kernels or NTK.1 Perhaps 
some of these new ideas will appear 
in the pages of Communications in fu-
ture. Kudos to Zhang et al. for writing 
a paper that led to all this interesting 
follow-up work! 
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THE FOLLOW IN G A R TICLE  by Zhang et al. 
is well-known for having highlighted 
that widespread success of deep learn-
ing in artificial intelligence brings 
with it a fundamental new theoretical 
challenge, specifically: Why don’t to-
day’s deep nets overfit to training data? 
This question has come to animate the 
theory of deep learning.

Let’s understand this question in 
context of supervised learning, where 
the machine’s goal is to learn to pro-
vide labels to inputs (for example, 
learn to label cat pictures with “1” 
and dog pictures with “0”). Deep 
learning solves this task by training 
a net on a suitably large training set 
of images that have been labeled cor-
rectly by humans. The parameters of 
the net are randomly initialized and 
thereafter adjusted in many stages 
via the simplest algorithm imagin-
able: gradient descent on the current 
difference between desired output 
and actual output.

At the end of training, one usually 
finds that labels assigned by the net 
on the training images are mostly 
or entirely correct. Does this mean 
the net can be used to correctly la-
bel other pictures we will find on the 
Internet? Not necessarily. It is con-
ceivable the net learned to correctly 
label just the training pictures, and 
no others. In other words, it could 
have overfitted to the training data. 
It is customary to check for this us-
ing a holdout set of training data that 
was left unused during training. The 
assumption underlying this meth-
odology is that training data con-
sists of independent samples from 
a fixed distribution, and we desire a 
net that gives correct labels to most 
images of the entire distribution. A 
simple probability concentration 
bound shows that performance on 
the holdout set is predictive—up to 
some well-defined error bars—of 
performance on the unseen images 
from the same distribution.

Received wisdom has it that overfit-
ting happens if the net is too expres-
sive, that is, has sufficient number of 
layers, and parameters per layer, than 
it is capable of expressing arbitrarily 
complicated mappings from inputs 
to 0/1 labels. To avoid overfitting, 
one should use a model that cannot 
“achieve more complicated functions 
than necessary.” This philosophical 
principle is called Occam’s Razor and 
related to the reasons why we prefer 
simpler scientific theories to compli-
cated ones.

Decades of work in theory of ma-
chine learning and statistics has 
yielded measures of model complex-
ity ranging from the old VC dimen-
sion and Rademacher complexity to 
more modern norm-based measures. 
This theory suggests that during 
training one must add a regularizer 
term to the training objective that 
penalizes models with a high mea-
sure of complexity.

Modern deep nets have turned out 
to confound this intuitive framework 
of regularizers. As the paper shows, 
it is possible to train nets with 50 
million parameters using no regu-
larizers on only 10,000 training ex-
amples. Surprisingly, no significant 
overfitting happens.

The extensive experiments de-
tailed in the paper serve to deepen the 
mystery of this lack of overfitting. The 
experiments involve training nets on 
randomized/nonsensical versions 
of standard images datasets—the 
most benign being randomization 
of labels and more extreme being us-
ing random collections of pixels as 
images and random labels. Current 
deep nets—even with standard train-
ing and regularizer—are capable of 
achieving a good fit on these non-
sensical datasets, which shows that 
these nets are capable of expressing 
very complicated functions. In par-
ticular, the experiment of fitting a net 
on images with random labels shows 
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