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THE FROBENIUS AND FACTOR UNIVERSALITY PROBLEMS

OF THE KLEENE STAR OF A FINITE SET OF WORDS

MAKSYMILIAN MIKA AND MAREK SZYKU LA

Abstract. We solve open problems concerning the Kleene star L∗ of a finite set L of words over
an alphabet Σ. The Frobenius monoid problem is the question for a given finite set of words L,
whether the language L∗ is cofinite. We show that it is PSPACE-complete. We also exhibit an
infinite family of sets L such that the length of the longest words not in L∗ (when L∗ is cofinite) is
exponential in the length of the longest words in L and subexponential in the sum of the lengths
of words in L. The factor universality problem is the question for a given finite set of words L,
whether every word over Σ is a factor (substring) of some word from L∗. We show that it is
also PSPACE-complete. Besides that, we exhibit an infinite family of sets L such that the length
of the shortest words not being a factor of any word in L∗ is exponential in the length of the
longest words in L and subexponential in the sum of the lengths of words in L. This essentially
settles in the negative the longstanding Restivo’s conjecture (1981) and its weak variations. All
our solutions base on one shared construction, and as an auxiliary general tool, we introduce the
concept of set rewriting systems. Finally, we complement the results with upper bounds.

Keywords: cofinite language, complete set, completable word, factor universality, finite list
of words, incompletable word, Frobenius monoid, Kleene star, mortality, Restivo’s conjecture,
universality

1. Introduction

Given a set of words L over a finite alphabet Σ, the language L∗ contains all finite strings built
by concatenating any number of words from L. In general, we can think of L as a dictionary and
L∗ as the language of all available phrases. One of the most basic questions that one could ask is
whether L generates all words over the alphabet Σ. The answer is, however, trivial, because this
is the case if and only if L contains all single letters a ∈ Σ. Thus, more useful relaxed questions
are considered. In this paper, we consider two classical such problems, settling their computational
complexity and solving the related combinatorial questions.

Let ‖L‖1 denote the sum of the lengths of the words in L, and let ‖L‖∞ denote the maximum
length of the words in L. The value ‖L‖1 can be treated as the size of the input. Note that ‖L‖1 can
be exponentially larger than ‖L‖∞. We consider complexity and bounds in terms of both values.

1.1. Frobenius monoid problem. The classical Frobenius problem is, for given positive inte-
gers x1, . . . , xk, to determine the largest integer x that is not expressible as a non-negative linear
combination of them. An integer x is expressible as a non-negative linear combination if there are
integers c1, . . . , ck ≥ 0 such that x = c1x1 + . . .+ ckxk. In a decision version of the problem, we ask
whether the largest integer exists, i.e., whether the set of non-expressible positive integers is finite.
It is well known that the answer is “yes” if and only if gcd(x1, . . . , xk) = 1.
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The Frobenius problem was extensively studied and found applications across many fields, e.g.,
to primitive sets of matrices [10], the Shellsort algorithm [13], and counting points in polytopes [2].
The problem of computing the largest non-expressible integer is NP-hard [21] when the integers are
given in binary, and it can be solved polynomially if the number k of given integers is fixed [15].

A generalization of the Frobenius problem to the setting of languages was introduced by Kao,
Shallit, and Xu [16]. Instead of a finite set of integers, we are given a finite set of words over some
finite alphabet Σ, and instead of multiplication, we have the usual word concatenation. The original
question becomes whether all but a finite number of words can be expressed as a concatenation of
the words from the given set. If L is our given finite language, then the problem is equivalent to
deciding whether L∗ is cofinite, i.e., the complement of L∗ is finite.

Problem 1.1 (Frobenius Monoid Problem for a Finite Set of Words). Given a finite set of words
L over a finite non-empty alphabet Σ, is L∗ cofinite?

It is a simple observation that, if Σ is a unary alphabet, then Problem 1.1 is equivalent to the
original Frobenius problem on integers, thus it is polynomially solvable. There are also efficient
algorithms for checking whether a given word is in L∗ [9].

Example 1.1. The language L = {000, 00000} over Σ = {0} generates the cofinite language L∗;
since gcd(3, 5) = 1, the language L∗ includes all words longer than 3 · 5− 3− 5 = 7.

Example 1.2. For the language L = {0, 01, 10, 11, 101} over Σ = {0, 1}, the words in L∗ are:

0, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, . . . .

We can see that 111 /∈ L∗ and also every word of the form 111(11)∗ does not belong to L∗. However,
if we add 111 to L, the answer becomes that L∗ is cofinite; it contains every word except the word 1.

The problem can be seen as almost universality of the language L∗. Kao, Shallit, and Xu
[16, 25] showed that, in particular, if L∗ is cofinite, then the longest non-expressible words can
be exponentially long in ‖L‖∞; their construction is based on the so-called multi-shift de Bruijn
sequences [17]. This is in contrast with the classical Frobenius problem, where the largest non-
expressible integer is bounded quadratically in the largest given integer [7]. A quadratic bound exists
also for a similar problem where the iterated shuffle is used instead of the Kleene star operation
[20]. Since the shown examples also use exponentially many words in ‖L‖∞, the question about
the bound in terms of ‖L‖1 or |L| remained open.

In 2009, Shallit and Xu posed the open question about the computational complexity of deter-
mining whether L∗ is cofinite [25]. They also noted that it is NP-hard and in PSPACE when L is
given as a regular expression [26]. This question appears on Shallit’s list of open problems [24].

1.2. Factor universality problem. A word u ∈ Σ∗ is a factor (also called substring) of a word
w ∈ Σ∗ if vuv′ = w for some words v, v′ ∈ Σ∗. A language K ⊆ Σ∗ such that every word over Σ is
a factor of some word from K is called factor universal.

Problem 1.2 (Factor Universality for a Finite Set of Words). Given a finite set of words L over
a finite non-empty alphabet Σ, is L∗ factor universal?

Finite sets L such that L∗ is factor universal are one of the basic concepts in the theory of codes
[4, Section 1.5]. They are called complete sets of words, and words that are factors of some word in
L∗ are called completable.
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Example 1.3. The set L = {01, 10, 11, 000} over Σ = {0, 1} is not complete, since the word
100010001 is not completable. To create a word that contains 1 surrounded by 0s, we have to
use either 10 or 01, but then there is no way to build the succeeding 001 or preceding 100, respec-
tively.

Example 1.4. The set L = {00, 01, 10, 11} over Σ = {0, 1} is complete, because every binary
sequence of even length is in L∗. We can construct every odd-length binary sequence by removing
the first letter of a suitable even-length sequence.

The question about the length of the shortest incompletable words was posed in 1981 by Restivo
[23], who conjectured that if a finite set L is not complete, then the shortest incompletable words
have length at most 2‖L‖2∞. The conjecture in this form turned out to be false [11] and 5‖L‖2∞ −
O(‖L‖∞) was the best lower bound known so far [12], but the relaxed question whether there is a
quadratic, or at least polynomial, upper bound remained open and became one of the longstanding
unsolved problems in automata theory and the theory of codes. It was generally believed that
Restivo’s conjecture holds with a larger value of the constant [4]. On the other hand, a sophisticated
experimental research dedicated just to this problem [14] suggested that the tight upper bound is
unlikely to be quadratic. The best known upper bound was a trivial one, exponential in ‖L‖1 thus
doubly-exponential in terms of ‖L‖∞ [12].

A polynomial upper bound O(‖L‖51) was recently derived for the class of sets L called codes,
which guarantees a unique (unambiguous) factorization of any word to words from L [18]. Since
‖L‖1 can be exponentially larger than ‖L‖∞, so the general question about a polynomial upper
bound in ‖L‖∞ for this subclass still remains open.

The computational complexity of Problem 1.2 was also an open question. In a more general
setting, where instead of checking the factor universality of L∗ we check it for an arbitrary regular
language specified by an NFA, the problem was shown to be PSPACE-complete [22]. In contrast, it
is solvable in linear time when the language is specified by a DFA [22]. Also, some upper bound on
the length of the shortest incompletable words was recently derived for the case where the language
is specified by an unambiguous NFA [6].

Both the computational complexity question and finding the tight upper bound on the length also
appear as one of Berstel, Perrin, and Reutenauer’s research problems [4, Resarch problems] and on
Shallit’s list [24]. The problem itself has been connected with a number of different problems, e.g.,
testing if all bi-infinite words can be generated by a given list of finite words [22], synchronizing au-
tomata and the famous Černý conjecture [8], and the matrix mortality problem [18]. In consequence
for the mentioned problems, our solution reveals that the testing problem is PSPACE-complete,
that any general weak version of Restivo’s conjecture cannot be used to derive good upper bounds
for synchronization of automata, and that the matrix mortality problem remains hard when the
matrices are restricted to a specific form related to a list of words.

1.3. Contribution. We show that both Problem 1.1 and Problem 1.2 are PSPACE-complete. We
also show exponential in ‖L‖∞ and subexponential in ‖L‖1 lower bounds for the related length
questions. The complexity and the bounds hold even when the alphabet is binary. Since as the
input we take a list of words, this also settles the complexity of all problem variants where L is
given as a DFA, a regular expression, or an NFA.

To make the reduction feasible, we construct it in several steps. We introduce a rewriting
system called set rewriting (Section 3), which is a basis for intermediate problems that we reduce
from. We translate a set rewriting system first to a DFA, then to a binary DFA, and finally to a
binary list of words. The solutions for both problems are based on the same construction of the
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reduction (Section 4 and 5), with some technical differences. Thus, it seems that the methods may
be applicable to some other problems concerning the Kleene star.

The answer for the Frobenius monoid problem can be surprising because the problem is equally
hard when L is represented by other common representations that are exponentially more succinct
(i.e. DFA, regular expression, or NFA). Kao et al. [16] gave examples of finite languages L such
that the longest words not present in the generated cofinite language L∗ are of exponential length
in ‖L‖∞. However, the number of words in L is also exponential in these examples, thus they do
not imply a large lower bound in terms of the size of the input ‖L‖1. We strengthen this result by
exhibiting examples such that the longest words not present in cofinite L∗ are of subexponential
length in ‖L‖1. The examples are derived from our reduction and its complexity analysis.

The solution for the factor universality problem uses a similar construction. As well, as a
corollary, we exhibit a family of sets L of binary words whose shortest incompletable words are
of exponential length in ‖L‖∞ and subexponential in ‖L‖1. This settles in the negative all weak
variations of Restivo’s conjecture and essentially closes the longstanding problem.

Finally (Section 7), we note that both problems can be solved in exponential time in ‖L‖∞ while
remaining polynomial in |L| thus in ‖L‖1. This means that they can be effectively solved when
the given set of words is dense, that is, ‖L‖∞ is much smaller (e.g., logarithmic) than |L|. We also
derive upper bounds on the length of the same order.

We conclude that for a finite list L of words over a fixed alphabet, 2O(‖L‖∞) is a tight upper
bound on both the length of the longest words that are not in L∗ when L∗ is cofinite and the length
of the shortest incompletable words when L∗ is not factor universal. Furthermore, in terms of ‖L‖1,
the subexponential length 2Θ( 5

√
‖L‖1) is attainable.

2. Preliminaries

Let ε denote the empty word.
A nondeterministic finite automaton (NFA) is a quintuple A = (QA,Σ, δA, q0, FA), where QA is

a finite non-empty set of states, Σ is a finite non-empty alphabet, δA : QA × (Σ∪ {ε}) → 2QA is the
transition function, q0 ∈ QA is the initial state, and FA ⊆ QA is the set of final states. If for a
state q ∈ QA, the set of ε-transitions δA(q, ε) is not explicitly defined, we assume δA(q, ε) = ∅ (no
such transitions).

We extend δA to a function 2QA × Σ∗ → 2QA as usual. We assume that the extended δA is
complemented by ε-transitions, i.e., for a subset C ⊆ QA and a word w ∈ Σ∗, δA(C,w) is the set of
all the states that can be obtained from a state in C by applying sequentially a transition of each
of the consecutive letters of w interleaved with any number of ε-transitions, which can be used also
at the beginning and the end.

A state q′ ∈ QA is reachable from a state q ∈ QA if there exists a word w ∈ Σ∗ such that
q′ ∈ δA({q}, w). Similarly, a subset S′ ⊆ QA is reachable from S ⊆ QA if there exists a word
w ∈ Σ∗ such that δA(S,w) = S′. Then we say that q′ (resp. S′) is reachable by the word w from q
(resp. S).

An automaton accepts a word w ∈ Σ∗ if δA({q0}, w) ∩ FA 6= ∅. The set of all accepted words is
the language of the automaton.

A state q ∈ QA is called dead if no final state is reachable from it, i.e., δA({q}, w) ∩ FA = ∅ for
all words w ∈ Σ∗. Without affecting the language of an NFA, we can remove all dead states and
remove all the transitions to them, i.e., replace QA with QA \ D and replace each δA(q, a) with
δA(q, a) \D, where q ∈ QA, a ∈ Σ ∪ {ε}, and D ⊆ QA is the set of all dead states.
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A special case of an NFA is a deterministic finite automaton (DFA), where for all q ∈ QA and
a ∈ Σ we have |δA(q, a)| = 1 and there are no ε-transitions (i.e., δA(q, ε) = ∅). In this case, we
write δA(q, a) = q′ instead of δA(q, a) = {q′}.

Automaton recognizing the Kleene star. We will use the well-known standard construction
of an NFA recognizing the Kleene star of the language specified by a DFA (see, e.g., [27]). Let
A = (QA,Σ, δA, q0, FA) be a DFA. Then A∗ = (QA∗ ,Σ, δA∗ , q′0, {q′0}) is the NFA obtained from A
as follows. The set of states QA∗ is QA ∪ {q′0}, where q′0 is a fresh state. The transition function
δA∗ is defined as δA(q, a) with some additional ε-transitions: we add a ε-transition from q′0 to q0
and from every final state in FA to q′0. The language of the obtained NFA is L∗, where L is the
language of A.

We further simplify the construction by removing all the dead states, thus our A∗ do not contain
them. Also, if in A the initial state q0 is not reachable from itself by any non-empty word (automata
with this property are called non-returning in the literature), then we can identify q′0 with q0,
which is then the initial state and the unique final state. We will use both simplifications in the
constructions in this paper.

3. Set rewriting system

We introduce set rewriting systems, which are an auxiliary intermediate formalism for our further
reductions.

Definition 3.1. A set rewriting system is a pair (P,R), where P is a finite non-empty set of
elements and R is a finite non-empty set of rules. A rule is a function r : P → 2P ∪ {⊥}.

Given a set rewriting system and a subset S ⊆ P , a rule r is legal if ⊥ /∈ r(S) (i.e., there is no
s ∈ S such that r(s) = ⊥). The resulting subset from applying a legal rule r to S is S ·r =

⋃

s∈S r(s).
Analogously, we inductively define that a sequence of rules r1, . . . , rk is legal if r1, . . . , rk−1 is legal
for S and rk is legal for S · r1 · . . . · rk−1. The resulting subset from applying a legal sequence of
rules is S · r1 · . . . · rk.

Note that when a set rewriting system is given as the input for a problem, we can assume
polynomial input size in terms of |P | and |R| (e.g., a straightforward encoding requires writing at
most |R| · |P |2 elements from P ∪ {⊥}).
3.1. Immortality. In general, immortality is a classical problem of whether there exists any config-
uration such that there is an infinite sequence of legally applied transitions to it. This is in contrast
to the usual setting, where the initial configuration is given and we ask about reachability. In the
case of systems with a bounded configuration space, this is equivalent to the existence of a cycle in
the configuration space. For instance, mortality (also called structural termination in the literature)
problems have been considered for Turing machines [5], where the problem is undecidable, and for
linearly bounded Turing machines with a counter [3], where the problem is PSPACE-complete.

Considering our setting, every set rewriting system contains a trivial cycle which is a loop on the
empty set. Therefore, in our mortality problem, we have to exclude the empty set as the cycle. A
set rewriting system (P,R) is immortal if there exists a non-empty subset S ⊆ P and a non-empty
sequence of rules r1, . . . , rk that is legal and yields S, i.e., S · r1 · . . . · rk = S. It is called mortal
otherwise.

Furthermore, we add the restriction that the empty set is not reachable from any non-empty
subset; this will simplify reasoning in further reductions because otherwise reaching the empty set
would need to be treated in a special way, as it does not count as a cycle but does not imply any
restriction on any further rule applications. A set rewriting system is non-emptiable if for every
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non-empty subset S ⊆ P and every rule r ∈ R, either S · r 6= ∅ or r is illegal for S. This condition
is equivalent to that for every element p ∈ P and every rule r ∈ R, we have r(p) 6= ∅. Hence, it is
easy to check if a set rewriting system is non-emptiable.

Problem 3.2 (Immortality of Set Rewriting). Given a non-emptiable set rewriting system, is it
immortal?

First, we show that a mortal set rewriting system can admit exponentially long sequences of
legal rules.

Theorem 3.1. For a mortal non-emptiable set rewriting system (P,R), for every non-empty subset
of P , the length of any legal sequence of rules is at most 2|P |− 2. For every n ≥ 1, there exist a set
rewriting system (P,R) with |P | = |R| = n and some subset of P that meet the upper bound.

Proof. The upper bound is clear since there are 2|P | − 1 distinct non-empty subsets and a legal
sequence of length 2|P | − 2 involves all of them.

To show tightness, we construct a set rewriting system (P,R) with n = |P | rules. The elements
will encode a specific binary counter. Let P = {b0, . . . , bn−1}. For a subset S ⊆ P , we define
val(S, i) = 2i if bi ∈ S and val (S, i) = 0 otherwise, and we set the counter value val(S) =
∑

0≤i≤n−1 val(S, i). For every j ∈ {0, . . . , n − 1}, we introduce a rule rj that, if it is legal,
will increase the value of the counter by at least 1. The rules rj are defined as follows:

• rj(bj) = ⊥;
• rj(bi) = {bj} for i ∈ {0, 1, . . . , j − 1};
• rj(bi) = {bj, bi} for i ∈ {j + 1, j + 2, . . . , n− 1}.

First, we observe that each legal rule rj applied to a non-empty set S ⊆ P increases the counter
value by at least 1, i.e., val(S) < val (S · rj). It is because we know that val(S, j) = 0, as otherwise
the rule would be illegal, and

val (S · rj) =
∑

j<i<n

val(S · rj , i) + 2j =
∑

j<i<n

val(S, i) + 2j >

>
∑

j<i<n

val(S, i) +
∑

0≤i<j

2i ≥
∑

0≤i<n

val(S, i) = val (S).

Second, we observe that for every non-empty S ( P , there exists a rule rj that increases the
counter value exactly by 1. We choose the rule rj for j being the smallest index such that bj /∈ S,
and we have val(S · rj) = val(S) + 1. Furthermore, for S = P there is no legal rule.

It follows that the set rewriting system is mortal, and for S = {b0}, the longest possible legal
sequence of rules has length 2n − 2. �

Now, we show the PSPACE-completeness of the immortality problem. The idea is a reduction
from the non-universality of an NFA. The NFA is combined with the counter developed for the
proof of Theorem 3.1. The NFA is encoded within the set rewriting system together with a counter
incrementing its value with each transition. The counter can be reset only if there exists a non-
accepted word by the NFA, in which case it allows repeating a subset in the set rewriting system.

Theorem 3.2. Problem 3.2 (Immortality of Set Rewriting) is PSPACE-complete.

Proof. To solve the problem in NPSPACE thus in PSPACE, given a set rewriting system (P,R), it
is enough to guess a subset S ⊆ P and a length k ≤ 2|P |, and then to guess at most k rules (storing
only the current one), verifying whether the resulted subset is the same as S.
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For PSPACE-hardness, we reduce from the non-universality problem for an NFA. Given an
NFA A = (QA,Σ, δA, q0, FA), the question whether there exists any not accepted word over Σ is
PSPACE-complete (e.g., [1, Section 10.6]). We can assume that A does not have ε-transitions.

Let n = |QA|. We construct a set rewriting system (P,R) of size polynomial in n. As an
ingredient, we use the counter from the proof of Theorem 3.1. Let P be the disjoint union of
QA and C = {bi | i ∈ {0, 1, . . . , n − 1}}. The elements of C will encode the binary counter and
for a subset S ⊆ P , we define val(S, i) = 2i if bi ∈ S and val(S, i) = 0 otherwise, and we set
val(S) =

∑

0≤i≤n−1 val(S, i).

For every letter a ∈ Σ and every j ∈ {0, 1, . . . , n− 1}, we introduce a rule ra,j that acts as a in
the NFA on QA and, on the counter part, sets the j-th position of the counter. The rules ra,j are
defined as follows:

• ra,j(bj) = ⊥;
• ra,j(bi) = {bj} for i ∈ {0, 1, 2, . . . , j − 1};
• ra,j(bi) = {bj , bi} for i ∈ {j + 1, j + 2, . . . , n− 1};
• ra,j(q) = δA(q, a) ∪ {bj} for q ∈ QA.

We also introduce the reset rule that is defined as:

• rreset(q) =

{

⊥, if q ∈ FA;

{q0, b0} otherwise.

Now we observe the correctness. Assume that there is a word not accepted by A. Note that if w
is a shortest non-accepted word, then q0 /∈ δA(q0, u) for all non-empty prefixes u of w. Hence, there
exists a non-accepted word w = a1a2 . . . am of length at most 2n−1. As observed in the proof of
Theorem 3.1, we know that for each value x of the counter, there exists a rule that increments the
counter value exactly by 1. Let f(x) be the smallest index of a zero in the binary representation
of x, where the least significant position of the binary representation is indexed by zero; hence a
rule rai,f(x), if it is legal for S, increments the counter value of S by 1. Then the set S = {b0, q0} ·
ra1,f(1) ·ra2,f(2) ·. . .·ram,f(m) has the property that val(S) = m < 2n and S∩F = ∅, because w is not
accepted by A. Thus, rule rreset is legal, so {b0, q0} · ra1,f(1) · ra2,f(2) · . . . · ram,f(m) · rreset = {b0, q0}.
Hence the set rewriting system is immortal.

For the converse, assume that there exists a subset S ⊆ P and a non-empty sequence of rules
rj1 , rj2 , . . . , rjm such that S · rj1 · rj2 · . . . · rjm = S. As observed in the proof of Theorem 3.1,
we know that every rule different from rreset increments the counter value by at least 1. Hence,
there must be some index 1 ≤ k ≤ m such that rjk = rreset. Consider the sequence of rules
rj1 , rj2 , . . . , rjm , rj1 , rj2 . . . , rjm . In this sequence, rreset appears at least twice. Taking a shortest
sequence of rules between any two rreset rules (not including the reset rules), we get a sequence
ra1,i1 , ra2,i2 , . . . , rad,id such that {q0, b0} · ra1,i1 · ra2,i2 · . . . · rad,idrreset = {q0, b0}. Since rreset is legal
when applied, the word a1a2 . . . ad is such that δA(q0, a1a2 . . . ad) ∩ F = ∅ thus is not accepted by
A. �

Lemma 3.3. If a rule r is legal for a subset S ⊆ P , then it is also legal for every subset S′ ⊆ S
and S′ · r ⊆ S · r.

By this observation, when showing if the system is immortal, it is enough to consider only
singleton subsets S from which we start applying rules to find a cycle. Although a singleton does
not necessarily occur in a cycle, a non-emptiable set rewriting system is immortal if and only if, for
some singleton, there exist arbitrary long legal sequences of rules.
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3.2. Emptying. The second problem is the reachability of the empty set. This is related to factor
universality and is necessary for our further reduction.

For a subset S ⊆ P , a sequence of rules r1, . . . , rk such that S ·r1 · . . . ·rk = ∅ is called S-emptying.
We call a set rewriting system permissive if all rules are always legal. In other words, all rules

are legal for P . A permissive set rewriting system (P,R) is equivalent to the semi-NFA whose set
of states is P and the alphabet is R; the NFA initial and final states are irrelevant.

Problem 3.3 (Emptying Set Rewriting). For a given permissive set rewriting system (P,R), does
there exist a P -emptying sequence of rules?

Let A = (QA,Σ, δA, q0, FA) be an NFA. Analogously to set rewriting, for a subset S ⊆ QA, a
word w ∈ Σ∗ is called S-emptying if δA(S,w) = ∅.

The following criterion for the factor universality of a language represented by an NFA is known.

Proposition 3.4 ([22]). Let A = (QA,Σ, δA, q0, FA) be an NFA such that every state is reachable
from the initial state q0 and there are no dead states. Then a word w is not a factor of a word
accepted by A if and only if w is QA-emptying. The language of A is factor universal if and only
if there does not exist a QA-emptying word.

It is known that the problem of whether a given language specified by an NFA is factor universal
is PSPACE-complete [22]. Since it is also easy to solve Problem 3.3 in PSPACE, we have:

Proposition 3.5. Problem 3.3 (Emptying Set Rewriting) is PSPACE-complete.

Additionally, we will need an exponential lower bound on the length of the shortest P -emptying
sequences of rules. For this, we also develop a specific counter, but now counting downwards and
allowing to decrease the value by at most 1. Instead of rules being illegal, undesired rule applications
reset the counter to the maximal value.

Theorem 3.6. For a permissive set rewriting system (P,R), if there exists a P -emptying sequence
of rules, then the shortest such sequences have length at most 2|P |−1. For every n ≥ 1, there exists
a set rewriting system (P,R) with |P | = |R| = n that meets the bound.

Proof. The upper bound 2|P | − 1 is trivial.
For every n ≥ 1, we construct a permissive set rewriting system (P,R), which represents a binary

counter of length n. Let P = {bi | i ∈ {0, 1, . . . , n−1}}. For a subset S ⊆ P , we define val(S, i) = 2i

if bi ∈ S and val(S, i) = 0 otherwise, and val(S) =
∑

0≤i≤n−1 val(S, i).
We define the rules that allow decreasing the value of the counter by 1. If a wrong rule is used, the

counter is reset to its maximal value. The set of rules R consists of rules rj for j ∈ {0, 1, . . . , n− 1},
where each rj is defined as follows:

(1) rj(bi) = P for i ∈ {0, 1, . . . , j − 1};
(2) rj(bj) = {bi | i ∈ {0, 1, . . . , j − 1}};
(3) rj(bi) = {bi} for i ∈ {j + 1, j + 2, . . . , n− 1}.
We observe that emptying this set rewriting system corresponds to setting the counter value to

0. For a subset S, let i be the smallest index such that bi ∈ S. Then for all the smaller positions
j < i, bj /∈ S. Notice that for all rules rk for k ∈ {1, 2, . . . , n− 1} \ {i}, we have val(S · rk) ≥ val(S).
This is because if k < i, then S · rk = S, and if k > i, then S · rk = P . Hence, the only rule that
decreases the counter is ri, and then val(S · ri) = val(S) − 1. Thus, the shortest sequence of rules
that is P -emptying has length 2n − 1. �
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4. The Frobenius monoid problem

We note the known result about the PSPACE-membership.

Proposition 4.1 ([25, Corollary 5.5.8]). Problem 1.1 is in PSPACE.

For PSPACE-hardness, we reduce from Problem 3.2 (Immortality of Set Rewriting) to Prob-
lem 1.1 (Frobenius Monoid Problem for a Finite Set of Words). In the first step, we reduce to the
case where L is specified as a DFA instead of a list of words. Then we binarize the DFA, and finally,
we count the number of words in the language to bound the size of the list of words.

4.1. The DFA construction. As the input for the reduction, we take a non-emptiable set rewrit-
ing system (P,R). Without loss of generality, we assume the set of elements P = {p1, p2, . . . , pℓ}
and the rules R = {r1, r2, . . . , rm}.

We construct a DFA A = (QA,Σ, δA, q0, F ) recognizing a finite language L such that L∗ is
not cofinite if and only if (P,R) is immortal. The number and the lengths of words in L will be
polynomial, which will allow further polynomial reduction to the case of a list of words. First, we
define the DFA; then we describe its mechanism, and finally, we prove the correctness formally.

The DFA is presented in Fig. 1. Since this is a DFA construction, for every letter and every state
there should be a transition; for a clearer picture, we have omitted drawing the transitions from
the setting states to f0 on R.

The alphabet of A is Σ = R ∪ {α}, where the letters from R are rule letters, and α is a fresh
special letter that will be used to shift the states and separate applications of rule letters. The set
of states QA is the disjoint sum of the following sets:

• {q0}; the initial state.
• QP = P ; the elements of the set rewriting system.
• QF = {fi | i ∈ {0, 1, . . . , ℓ}}; the forcing states.

• {si,jh | i, h ∈ {1, 2, . . . , ℓ}∧ j ∈ {1, 2, . . . ,m}∧ rj(pi) 6= ⊥}; the setting states ; a setting state

si,jh is dedicated to the element pi and the rule rj .
• {qg}; the guard state.
• {qs}; the sink state, which is the unique dead state.

The transition function δA is defined as follows (see also Fig. 1):

• δA(q0, α) = p1.
• δA(pi, α) = pi+1 for all i ∈ {0, 1, . . . , ℓ− 1}.
• δA(pℓ, α) = f0.

• δA(pi, rj) =

{

si,jℓ , if rj(pi) 6= ⊥
f0, otherwise

for all i ∈ {1, 2, . . . , ℓ} and j ∈ {1, 2, . . . ,m}; the transition of a rule letter maps the elements
from QP either to the first setting state in the dedicated chain, when the rule is legal, or
directly to f0, otherwise.

• δA(q0, rj) = f0 for all j ∈ {1, 2, . . . ,m}.
• δA(s

i,j
h , α) = si,jh−1 for all i ∈ {1, 2, . . . , ℓ}, j ∈ {1, 2, . . . ,m}, and h ∈ {ℓ, ℓ− 1, . . . , 2}.

• δA(s
i,j
1 , α) = qg for all i ∈ {1, 2, . . . , ℓ} and j ∈ {1, 2, . . . ,m}.

• δA(s
i,j
h , rk) = f0 for all i, h ∈ {1, 2, . . . , ℓ} and j, k ∈ {1, 2, . . . ,m}.

• δA(qg, α) = f0.
• δA(qg, rj) = qs for all j ∈ {1, 2, . . . ,m}.
• δA(fi, α) = fi+1 for all i ∈ {0, 1, . . . , ℓ− 1}.
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Figure 1. The scheme of the DFA A for a set rewriting system. The transitions
from all si,jh to f0 on R are not drawn.

• δA(fi, rj) = qs for all i ∈ {0, 1, . . . , ℓ} and j ∈ {1, 2, . . . , ℓ}.
• δA(fℓ, α) = qs.

The set of final states FA is the disjoint union of the following sets:

• QF; all forcing states are final.
• {si,jh | i, h ∈ {1, 2, . . . , ℓ} ∧ j ∈ {1, 2, . . . ,m} ∧ rj(pi) 6= ⊥ ∧ ph ∈ rj(pi)}; states in a setting
chain are final according to the rule rj applied to the element pi.

4.1.1. The mechanism. We describe the idea of the construction and introduce a few necessary
notions for the analysis.
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To reason about L∗, we construct the NFA A∗ = (QA∗ ,Σ, δA∗ , {q0}, {q0}) recognizing the lan-
guage L∗ as described in Section 2. This NFA is A with added ε-transitions from every final state
to q0 and with the dead state qs removed.

Given a word w and a subset C by the context, the states that are obtained by applying the
action of w to C, i.e., δA∗(C,w), are called active.

A word w ∈ Σ∗ is irrevocably accepted if for every u ∈ Σ∗, the word wu belongs to L∗. One of
the key properties of our construction is that all words such that the state f0 becomes active when
starting from {q0} are irrevocably accepted. This means that for a non-accepted word w, state f0
(as every other forcing state) cannot be activated by the application of any prefix of w to the initial
subset {q0}.

In general, A∗ simulates the set rewriting system. A subset of QP corresponds to the same subset
of elements in the set rewriting system. Sequences of rules translate to words of a specific form.
When a sequence of rules is not legal for a subset, the corresponding word activates f0 at some
point. The same holds for a word that violates the specific form. This provides a correspondence
between sequences of legal rules and possibly non-accepted words.

For a subset S ⊆ QP, applying the word rjα
ℓ, for some rj ∈ R, corresponds to applying the

rule rj in the set rewriting system for S, i.e., S′ = δA∗(S, rjα
ℓ) = (S · rj) ∪ {qg} when rj is legal

for S. The chain of the setting states for a state pi ∈ QP has its final states in the DFA defined
accordingly to the action of the rule rj for the element pi. The indices keep the correspondence that

if a state si,jh is final in the DFA, then after applying rjα
ℓ, the state ph becomes active if and only

if pi ∈ S (assuming that the rule rj is legal for S). In the end, the guard state qg is additionally
activated, which ensures that we must use a rule letter as the next one since the transition of α
maps the guard state to f0. Without the guard state, sometimes one could use more α letters to
shift the states within QP and in this way cheat by obtaining a different subset of QP. If the rule
rj is not legal for S, then the transitions of rj directly activate f0.

A word u is simulating for a subset S ⊆ QP if it is in the form of ri1α
ℓri2α

ℓ · . . . · rikαℓ (for
k ≥ 0) and the sequence of the rules ri1 , ri2 , . . . , rik is legal for S in the set rewriting system. The
actions of these words correspond to applying the contained sequence of rules. The construction
ensures that, for a subset containing a non-empty S ⊆ QP together with the guard state qg, using
a simulating word is the only possibility to avoid f0.

A special case occurs at the beginning, i.e., for the initial subset {q0}. To avoid activation of
f0, we must start with αi for any 1 ≤ i ≤ ℓ. Then we obtain the subset δA∗({q0}, αi) = {pi}; this
corresponds to the selection of the initial singleton in the set rewriting system (cf. Lemma 3.3).
After that, a simulating word must be used, unless f0 is activated. Note that QP ∪ {qg} does
not contain final states, thus in this way we get non-accepted words. It follows that we can find
arbitrarily long such words if and only if the set rewriting system is immortal.

4.1.2. Correctness. We prove the correctness formally through the following lemmas.
The first lemma states that whenever f0 becomes active, all subsequent words will be accepted,

thus f0 must be avoided when constructing a non-accepted word.
A word w ∈ Σ∗ is f0-omitting for a subset C ⊆ QA∗ if there is no prefix u of w such that

f0 ∈ δA∗(C, u). It is simply f0-omitting if it is f0-omitting for {q0}.
Lemma 4.2. If a word w ∈ Σ∗ is not f0-omitting, then it is irrevocably accepted.

Proof. If w ∈ Σ∗ is not f0-omitting, then there is a prefix u of w such that f0 ∈ δA∗({q0}, u).
It is enough to observe that for every word v ∈ Σ∗, the set δA∗({f0}, v) contains a forcing state.
All forcing states are final, thus uv and, in particular, all words containing w as a prefix will be
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accepted. Suppose this is not the case, and let v be a shortest word such that δA∗({f0}, v) does
not contain any forcing states. Then for every non-empty proper prefix v′ of v, δA∗({f0}, v′) does
not contain f0, as otherwise the suffix v′′, where v′v′′ = v, would be a shorter word than v with
the same property. Note that δA∗({f0}, ε) = {f0, q0}, and in general, whenever a forcing state is
active, q0 is also active. Thus the only possibility for v is to start with αℓ+1; otherwise, active state
q0 would be mapped to f0 by the transition of a rule letter after αi for an i ≤ ℓ. However, the
action of αℓ+1 through the chain on QP also maps q0 to f0, which yields a contradiction. �

Applying a simulating word corresponds to applying the sequence of rules that is contained in
it. The following lemma formalizes this claim.

Lemma 4.3. Let C ⊆ QP∪{qg} be such that S = C ∩QP is non-empty, and let w = ri1α
ℓ . . . rikα

ℓ

be a simulating word for S. Then δA∗(C,w) = (S · ri1 · . . . · rik) ∪ {qg}.
Proof. Let C and S be as in the lemma, and let rj be a rule that is legal for S. The transitions of

the letter rj map each state pi ∈ S to si,jℓ . Then the action of αℓ maps these active states along
the setting chains, activating state q0 whenever an active setting state is final. Eventually, they
are mapped to qg. A state si,jh is final if and only if ph ∈ rj(pi). From the construction, if si,jh is
final, then q0 becomes active after applying αℓ−h. Then q0 is mapped to ph by the action of the
remaining αh. After the last occurrence of α, the last active setting states are mapped to the guard
state qg, and there is at least one such active state since S is non-empty. Finally, if besides S, C
contains the guard state, the action of rj deactivates it (maps to the empty set). Hence, we have
δA∗(C, rjα

ℓ) = (S · rj) ∪ {qg}.
Since the set rewriting system is non-emptiable, the set S · rj is non-empty, thus we can apply

the argument iteratively. Hence, the lemma follows by induction on k. �

We show that, unless f0 is activated, a word applied to a subset C ⊆ QP ∪{qg} must be a prefix
of a simulating word for S = C ∩QP. The required condition is that the guard state is also present
in C, so one cannot shift the states on QP by using α.

Lemma 4.4. Let C = S ∪ {qg}, where S ⊆ QP is non-empty. If w is f0-omitting for C, then w is
a prefix of a simulating word for S.

Proof. First, we observe that every word w which does not activate f0 starting from C, unless it is
the empty word, must start with a rule letter rj , since using α maps qg to f0 and we have assumed
qg ∈ C. Additionally, rj must be legal for S, as otherwise f0 would be activated. Afterwards, at
least one of the first setting states must be active, because S 6= ∅. Hence αℓ must be used, unless w
ends before that and thus is a prefix of this pattern. By Lemma 4.3 for C and w = rjα

ℓ, we know
that the set of active states is now (S · rj) ∪ {qg}. By iterating this argument, we conclude that
between each rule letter there must be exactly ℓ letters α, it must start with a rule letter, and at
the end, there are at most ℓ letters α. Furthermore, the rule letters must form a legal sequence of
rules for S. Therefore, we know that word w has to be a prefix of some simulating word for S. �

In the beginning, before we may apply a simulating word, we can choose an arbitrary singleton
{pi} as the initial subset. Then a simulating word must be applied, as otherwise f0 is activated.

Lemma 4.5. If a word w is f0-omitting, then w is a prefix of αiw′, where 1 ≤ i ≤ ℓ and w′ is a
simulating word for {pi}.
Proof. Let w be a f0-omitting word, and write w = αiw′ for i ≥ 0 and w′ ∈ Σ∗ that does not
start with α. Since we start from {q0}, we know that 1 ≤ i ≤ ℓ unless w is empty. We have
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δA∗({q0}, αi) = {pi}. Then w′ begins with some rule letter rj , which must be a legal rule for {pi}
in the set rewriting system, followed by αℓ, unless w′ is shorter and thus is a prefix of this pattern.

Hence w = αirjα
ℓu. By Lemma 4.3, we have C = δA∗({q0}, αirjα

ℓ) = S ∪{qg} for S = {pi} · rj .
Since the set rewriting is non-emptiable, S 6= ∅. By Lemma 4.4 applied to C, we know that u must
be a prefix of a simulating word for S. It follows that rjα

ℓu is a prefix of a simulating word for
{pi}. �

Finally, we show the equivalence between the immortality of the set rewriting system and the
non-cofiniteness of the language of A∗.

Lemma 4.6. The set rewriting system (P,R) is immortal if and only if there are infinitely many
words not accepted by A∗.

Proof. Suppose that the set rewriting system is immortal. For every k > 0, we will construct a non-
accepted word w of length at least k ·(ℓ+1). Since the system is immortal and by Lemma 3.3, there
exists a singleton {pi} and a legal sequence ri1 , . . . , rik of k rules for {pi}. Hence, w = ri1α

ℓ . . . rikα
ℓ

is a simulating word for S = {pi}. By Lemma 4.3, we know that δA∗({q0}, αiw) ⊆ QP∪{qg}, which
does not contain any final states, thus αiw is not accepted.

Conversely, suppose that L∗ is not cofinite. Then there are infinitely many words that are not
accepted, which, in particular, by Lemma 4.2, must be f0-omitting. Let w be a f0-omitting word
of length at least ℓ + (ℓ + 1)2|P |. By Lemma 4.5, we know that w has the form of αiw′, where
1 ≤ i ≤ ℓ and w′ is a prefix of a simulating word for {pi}. This simulating word must have length
at least (ℓ + 1)2|P |, hence it contains a sequence of k ≥ 2|P | rule letters. We conclude that this
sequence ri1 , ri2 , . . . , rik is legal for {pi}, and it does not lead to the empty set as the set rewriting
system is non-emptying. If we look at the sequence of the sets of elements Sj = {pi} · ri1 · . . . · rij ,
for j ∈ {0, . . . , 2|P |}, then we can find two distinct indices x and y such that x < y and Sx = Sy.
Hence, the rewriting system is immortal due to Sx and the sequence rix+1

, rix+2
, . . . , riy . �

We conclude this part with

Theorem 4.7. Problem 1.1 is PSPACE-hard if L is specified by a DFA over a given alphabet.

4.2. Binarization. We show that the PSPACE-hardness still holds when the alphabet is restricted
to two letters. Note that a standard binarization of an arbitrary language, where we uniformly
replace each letter with an equal-length binary encoding, does not work here. Except for some
trivial cases, if incomplete encodings are accepted, then the Kleene star will be always cofinite, and
if they are not accepted, then it will never be cofinite. Therefore, we have to use a different way
and utilize specific properties of the construction.

First, we define the following binary encoding bin : Σ → {0, 1}∗: let bin(α) = 0, bin(ri) = 1i0 for
all 0 ≤ i ≤ m−1, and bin(rm) = 1m. We extend the function bin to a function bin : Σ∗ → {0, 1}∗ in
a natural way. Note that our encoding is a maximal prefix code, which means that bin(u) 6= bin(v)
for u 6= v, and also, every binary word w′ ∈ {0, 1}∗ contains a unique maximal prefix that is the
encoding of some word over Σ; this prefix has length at least |w′| − (m− 1).

We modify the construction of A from Subsection 4.1 using the same notation. We construct
a binary DFA B = (QB, {0, 1}, δB, q0, FB), where QB is QA with some states added, and q0 and
the set of final states FB = FA are the same as in the original A. All the transitions labeled by α
are now labeled by 0. For each state pi ∈ QP, we introduce m− 1 new intermediate choice states
in the way that the binary word encoding bin(rj) of a rule letter rj acts as rj on pi in A. The
construction of these states is shown in Fig. 2. Formally, we add states ci,j for all i ∈ {1, . . . , ℓ}
and j ∈ {1, . . . ,m− 1}, and the related transitions for all i are defined by:
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pi. . . . . .0 0

ci,1 . . . ci,m−2 ci,m−1

1

1 1 1

si,11 si,m−2
1 si,m−1

1 si,m1

...
...

...
...

0 0 0 0

0 0 0
1

Figure 2. The fragment of the binary DFA B with the choice states of a state pi.
The transitions on 1 from the setting states are not drawn and go to f0.

• δB(pi, 1) = ci,1.
• δB(c

i,j , 1) = ci,j+1 for all j ∈ {1, . . . ,m− 2}.

• δB(c
i,j , 0) =

{

si,j1 , if rj(pi) 6= ⊥
f0, otherwise

for all j ∈ {1, . . . ,m− 1}.

• δB(c
i,m−1, 1) =

{

si,m1 , if rm(pi) 6= ⊥
f0, otherwise.

The transitions of the rule letters on QB \QP are simply replaced with one transition labeled by
1; all of those transitions in A are the same for every rj ∈ R and lead to either f0 or qs.

The correctness of the binarization is observed through the following lemmas. First, we state
that for a word that is f0-omitting in the original automaton, the corresponding binary encoding
works the same in the binarized one. Then we have a similar statement for not f0-omitting words
but restricted to keeping the property of being f0-omitting.

Lemma 4.8. If a word w ∈ Σ∗ is f0-omitting for a subset C ⊆ QA∗\QF in A∗, then δB∗(C, bin(w)) =
δA∗(C,w).

Proof. This can be observed by analyzing the transitions of each letter in Σ from each state in
QA∗ \QF in A∗ together with the actions of the corresponding binary encodings in B∗. �

From Lemma 4.8, in particular, if a word w ∈ Σ∗ is f0-omitting for a subset C in A, then bin(w)
is also f0-omitting for C in B∗.

Lemma 4.9. If a word w ∈ Σ∗ is not f0-omitting for a subset C ⊆ QA∗ \QF in A∗, then bin(w)
is not f0-omitting for C in B∗.

Proof. Suppose that a prefix of w activates f0 when applied to {q0}; let ua be a shortest such
a prefix, where u ∈ Σ∗ and a ∈ Σ. Since u is f0-omitting, from Lemma 4.8, we know that
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T = δA∗(C, u) = δB∗(C, bin(u)). If a = α, then 0 applied to T activates f0 in B∗, as α does it in

A∗. If a ∈ R, then in A∗, we can have q0 ∈ T , a state si,jk ∈ T , or a state pi ∈ T mapped to f0 by
the transition of a. In the first two cases, in B∗, letter 1 activates f0 from T , and in the third case,
bin(u)bin(a) activates f0 from T . Both bin(u)1 and bin(u)bin(a) are prefixes of bin(w). �

From Lemma 4.8, one direction of the cofiniteness equivalence follows easily. For the second,
we still need to consider binary words that are not complete encodings of words over the original
alphabet. We also need to observe that Lemma 4.2 holds for B∗ as well.

Lemma 4.10. The language of B∗ is cofinite if and only the language of A∗ is cofinite.

Proof. From Lemma 4.8 and by the fact that all not f0-omitting words are accepted by A∗, we
know that if a word w ∈ Σ∗ is not accepted by A∗, then bin(w) is not accepted by B∗. Thus, if
infinitely many words are not accepted by A∗, then the language of B∗ is also not cofinite.

Assume now that the language of B∗ is not cofinite. For an integer t ≥ m, let w′ ∈ {0, 1}∗
be a binary word not accepted by B∗ that has length at least t. Let u′ be the longest prefix of
w′ that properly encodes a word u ∈ Σ∗, i.e., bin(u) = u′; then u′ is shorter by at most m − 1
letters than w′. Observe that Lemma 4.2 holds for B∗; hence, since w′ is not accepted, u′ must be
f0-omitting. From Lemma 4.9, we know that u also must be f0-omitting. The length of u is at
least (t−m+ 1)/m, since each letter from Σ is encoded by at most m letters from {0, 1}. Now we
follow similarly as in the proof of Lemma 4.6. From Lemma 4.5, we conclude that u has a prefix
of length at least |u| − ℓ that is not accepted. Hence, for every length k, we can choose a suitable
t ≥ m(k+ ℓ)+m−1 to find a non-accepted word of length at least k, thus there are infinitely many
non-accepted words by A∗. �

This finishes the reduction to the case of a binary DFA.

4.3. List of words. Finally, we count the largest length and the number of words in the language
accepted by B.
Lemma 4.11. In the language of B, the maximum length of words is equal to 3ℓ+m+ 1 and the
number of words is at most mℓ2 + (1 + ℓm(2 + ℓ))(1 + ℓ) ∈ Θ(m2ℓ2).

Proof. The maximum length of words accepted by our binary DFA B is equal to 3ℓ+m+1, which

is the length of the longest path from q0 to a final state: q0
0ℓ−→ pℓ

1m−−→ sℓ,mℓ

0ℓ−1

−−−→ sℓ,m1
0−→ qg

0−→
f0

0ℓ−→ fℓ.
For the number of words in the recognized language, we consider all final states. The first type of

final states is setting states. Each setting state is reachable from q0 by a unique word, which gives
at most mℓ2 words. The second type is forcing states. A forcing state fi is reachable by different
words, but all such words have a prefix for reaching f0 followed by the unique suffix αi to map f0
to fi. For the number of the first parts, observe that all the states in QB \ (QF ∪ {qg, qs}), whose
number is at most 1+ ℓm(1+ ℓ), are reachable by a unique word, and qg is reachable by at most mℓ
words. Also, from each of these states, only one transition leads directly to f0, with the possible
exception of the last choice states ci,m−1 when both rules rm−1 and rm are illegal for an element pi;
however, in this case, we count fewer words than when they are legal, as the chain of setting states
does not exist. Thus, combining with the second parts, there are at most (1 + ℓm(2 + ℓ))(1 + ℓ)
words of this type. �

We conclude with
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Theorem 4.12. Problem 1.1 is PSPACE-complete if L is a finite list of binary words.

Using the construction, we can also infer the hardness for every fixed-sized alphabet larger
than binary. For this, it is sufficient to add a suitable number of additional letters to B with the
transitions mapping QB \ (QF∪{qs}) to f0 and mapping QF ∪{qs} to qs, thus acting as rule letters
that are always illegal in the set rewriting system.

5. The factor universality problem

We follow similarly as in Section 4. We reduce from Problem 3.3 (Emptying Set Rewriting) to
Problem 1.2 (Factor Universality for a Finite Set of Words) when L is given as a finite list of binary
words.

5.1. DFA construction. In the first step, we reduce to Problem 1.2 when L is specified as a DFA
instead of a list of words.

We slightly modify the DFA construction A from Subsection 4.1 as follows. We remove the last
forcing state fℓ and end the chain of the forcing states with fℓ−1. Thus, the set of forcing states
QF becomes {fi | i ∈ {0, 1, . . . , ℓ− 1}}, and we redefine the transition δA(fℓ−1, α) = qs. There are
no other differences.

5.1.1. The mechanism. The idea of the modified construction is as follows.
As before, we build the NFA A∗ recognizing the language L∗, where L is the language of A. In

the NFA A∗, all states are reachable from the initial state q0, and since we have also removed the
sink state qs, the NFA meets the criterion for factor universality from Proposition 3.4. Thus the
language of A∗ is factor universal if and only if there is a QA∗ -emptying word.

Simulating words in our NFA correspond to applications of sequences of rules in the set rewriting
system in the same way as before in Subsection 4.1. In the modified construction, the forcing states
have the property that whenever f0 is activated, the only way to get rid of all active forcing states
is to make the whole set QP active again. When f0 is active, this is done by applying the word
αℓ. In this way, the construction ensures that to map the whole set QP to the empty set, there
must exist a simulating word whose sequences of rules is P -emptying in the set rewriting system.
A special case occurs at the beginning, where we start with all the states QA∗ and first have to
reduce the active set of states to QP.

5.1.2. Correctness. The correctness is observed through the following lemmas.
Recall that a word w ∈ Σ∗ is f0-omitting for a subset C ⊆ QA∗ if there is no prefix u of w such

that f0 ∈ δA∗(C, u). Since in this problem our starting set is QP instead of {q0}, we redefine that
a word is simply f0-omitting if it is f0-omitting for QP.

We start with a simple observation, which follows directly from the construction and allows
reducing the problem of emptying the whole set of states to emptying QP.

Lemma 5.1. We have:

(1) δA∗(QA∗ , r2j ) = {f0, q0} for each rj ∈ R, and

(2) δA∗({f0}, αℓ) = QP.

We show that when f0 is activated, the only way to get rid of all forcing states is to activate the
whole QP at some point.

Lemma 5.2. Let C ⊆ QA∗ be such that f0 ∈ C, and let w be a word such that δA∗(C,w)∩QF = ∅.
There exists a prefix u of w such that QP ⊆ δA∗(C, u).
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Proof. It is enough to prove the lemma for C = {f0}. Let w be a shortest word such that
δA∗({f0}, w) ∩QF = ∅. Hence, there is no non-empty prefix u of w such that f0 ∈ δA∗({f0}, u), as
otherwise also δA∗({f0}, u′) ∩QF = ∅ where uu′ = w, and u′ would be shorter than w.

Observe that δA∗({f0}, αi) = {fi, q0, p1, . . . , pi} for all 0 ≤ i ≤ ℓ− 1. Thus, if w would start with
αirj for 0 ≤ i ≤ ℓ − 1 and some rule letter rj , then the active state q0 would be mapped to f0 by
the transition of rj , which yields a contradiction. The only remaining possibility is that w begins
with the prefix u = αℓ, which is such that δA∗({f0}, u) = QP. �

We show the properties of a simulating word, in particular, that they correspond to rule appli-
cations in the set rewriting system. A special case occurs when we reach the empty set; then we do
not activate the guard state.

Lemma 5.3. Let C ⊆ QP∪{qg} be such that S = C ∩QP is non-empty, and let w = ri1α
ℓ . . . rikα

ℓ

(k ≥ 1) be a simulating word for S. Then w is f0-omitting and

δA∗(C,w) =

{

(S · ri1 · . . . · rik) ∪ {qg}, if S · ri1 · . . . · rik−1
6= ∅

∅ = (S · ri1 · . . . · rik), otherwise.

Proof. In the case of S · ri1 · . . . · rik−1
6= ∅, the proof is the same as that of Lemma 4.3, since for all

0 ≤ j ≤ k − 1, we have S · ri1 · . . . · rj 6= ∅, thus all preconditions apply.
Otherwise, let j < k be the smallest index such that the set S · ri1 · . . . · rij is empty. By the

argument for the first case, we know that δA∗(S, ri1α
ℓ . . . rijα

ℓ) = {qg}. Applying the next letter
rij+1

removes this single state, yielding the empty set. �

For the other direction, words that are f0-omitting must involve simulating words. A special
case occurs when we reach the empty set; then, there are no further restrictions, in particular, on
that, we must continue with a simulating word.

Lemma 5.4. Let C = S ∪ {qg}, where S ⊆ QP is non-empty. If a word w is f0-omitting for C,
then either:

(1) w is a prefix of a simulating word for S, or
(2) a prefix of w is a simulating word for S whose sequence of rules is S-emptying.

Proof. Following the proof of Lemma 4.4, we observe that the word w must start with rjα
ℓ, unless

it ends prematurely. Then, by Lemma 5.3, we have δA∗(C, rjα
ℓ) = (S · rj) ∪ {qg}. We apply this

argument iteratively for the obtained subset and the remainder of w, until either w ends, in which
case (1) holds, or the set of resulting active states becomes {qg}, in which case (2) holds. �

Using our ingredients collected so far, we can show that the existence of a QP-emptying word
implies the existence of a P -emptying sequence of rules.

Lemma 5.5. Let w be a word such that δA∗(QP, w) = ∅. Then w contains a factor v which is a
simulating word for QP whose sequence of rules is P -emptying.

Proof. It is enough to prove the lemma for words w that do not have a non-empty prefix u such
that QP ⊆ δA∗(QP, u); otherwise, we can search for a factor v in w with u removed. Hence, by
Lemma 5.2, w must be f0-omitting. By Lemma 5.4, we have two possibilities (1) and (2). In
case (2), we immediately know that w contains a prefix that is a simulating word for QP whose
sequence of rules is P -emptying. In case (1), w is a prefix of a simulating word for QP. If w itself is a
simulating word, let v = w; otherwise, write w = vrik+1

αi for a simulating word v = ri1α
ℓ . . . rikα

ℓ

for QP (k ≥ 0) and some 0 ≤ i < ℓ. Let C′ = δA∗(QP, v). By Lemma 5.3, C′ ⊆ QP ∪ {qg} and
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S′ = C′ ∩QP = P · ri1 · . . . · rik . If S′ 6= ∅, then the action of the possibly remaining suffix rik+1
αi

do not map S′ to ∅, which yields a contradiction with the assumption about w. Therefore, S′ = ∅,
thus the sequence of rules in v is P -emptying. �

Finally, we combine all the facts to show the equivalence between the reduced problems.

Lemma 5.6. The following conditions are equivalent:

(1) The permissive set rewriting system (P,R) admits a P -emptying sequence of rules.
(2) There exists a QP-emptying and f0-omitting word for A∗.
(3) There exists a QA∗-emptying word for A∗.

Proof. (1) ⇒ (2): Suppose that for the set rewriting system there is a sequence of rules ri1 , . . . , rik
that is P -emptying. We take the word w = r1α

ℓ . . . rkα
ℓ, which is a simulating word for QP. By

Lemma 5.3, we conclude that δA∗(QP, w) ⊆ {qg}. Thus, wr1 is a QP-emptying and f0-omitting
word.
(2) ⇒ (3): If w is a QP-emptying word, then, by Lemma 5.1, δA∗(QA∗ , r21α

ℓw) = ∅.
(3) ⇒ (1): If there exists a QA∗ -emptying word w ∈ Σ∗, then, in particular, δA∗(QP, w) = ∅. By
Lemma 5.5, w contains a factor v which is a simulating word for QP whose sequence of rules is
P -emptying. �

We conclude this part with

Theorem 5.7. Problem 1.2 is PSPACE-hard if L is specified by a DFA over a given alphabet.

5.2. Binarization. We construct a binary DFA B exactly in the same way as in Subsection 4.2
and use the same notation and the same binary encoding bin . Note that the criterion for the factor
universality from Proposition 3.4 still holds for B∗.

We observe that Lemma 4.8 and Lemma 4.9 hold also in this case; it is because both construc-
tions of B∗ differ only on the set QF, whose transitions are irrelevant for the observations. Also,
Lemma 5.2 holds for B∗ as it holds for A∗:

Lemma 5.8. Let C ⊆ QB∗ be such that f0 ∈ C, and let w ∈ {0, 1}∗ be a word such that δB∗(C,w)∩
QF = ∅. There exists a prefix u of w such that QP ⊆ δB∗(C, u).

Proof. The proof is the same as that of Lemma 5.2: it is sufficient to replace each α with 0 and
each rj with 1. �

Now we show the equivalence of the existence of QP-emptying words in both A∗ and B∗.

Lemma 5.9. There is a QP-emptying and f0-omitting word for A∗ if and only if there is such a
word for B∗. In particular, if w′ ∈ {0, 1}∗ is such a word for B∗, then w′0 = bin(w) for some word
w ∈ Σ∗ with this property for A∗.

Proof. Let w be a QP-emptying and f0-omitting word for A∗. From Lemma 4.8, we know that
bin(w) is f0-omitting and such that δB∗(QP, bin(w)) = δA∗(QP, w) = ∅.

Conversely, assume that there is a QP-emptying and f0-omitting binary word w′ for B∗. Since
δB∗(QP, w

′) = ∅, we know that w′0 has the same properties. Furthermore, w′0 must be such that
w′0 = bin(w) for some word w ∈ Σ∗ because 0 can appear only at the end in bin(a) for each a ∈ Σ.
Then, from Lemma 4.9, w must be f0-omitting. From Lemma 4.8, we conclude that w has to be
also QP-emptying as w′0 is. �

Finally, we show the equivalence of the existence of a QB∗ -emptying word and of a QP-emptying
word, which finishes the reduction to the case of a binary DFA.
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Lemma 5.10. For B∗, there exists a QP-emptying and f0-omitting word if and only if there exists
a QB∗-emptying word. In particular, a QB∗-emptying word contains a factor that is QP-emptying
and f0-omitting.

Proof. Assume that there is a QP-emptying word w. We have δB∗(QB∗ , 1m+1) = {f0, q0} and
δB∗({f0}, 0ℓ) = QP. Thus, δB∗(QB∗ , 1m+10ℓw) = ∅.

Conversely, let w be a QB∗ -emptying word. Let u be the longest prefix of w such that QP ⊆
δB∗(QB∗ , u), and write w = uv. By Lemma 5.8, v has to be f0-omitting, as otherwise u would be
longer. Hence, v is a QP -emptying and f0-omitting word, and it is a factor of w. �

5.3. List of words.

Lemma 5.11. in the language of B, the maximum length of words is equal to 3ℓ + m and the
number of words is at most mℓ2 + (1 + ℓm(2 + ℓ))ℓ.

Proof. We count the maximum length and the words as in the proof of Lemma 4.11, taking into
account that the chain of forcing states is shorter by 1. �

We conclude with

Theorem 5.12. Problem 1.2 is PSPACE-complete when the alphabet is binary.

As for the Frobenius monoid problem, in the same way, by adding a suitable number of letters,
it is possible to show the hardness for every fixed-sized alphabet larger than binary.

6. Lower bounds

6.1. The longest omitted words. It is known that for each odd integer n ≥ 5, there exists a set
of binary words L, which have length at most n, such that L∗ is cofinite and the longest words not
in L∗ are of length Ω(n22

n
2 ) [16]. However, the constructed L contains exponentially many words

in n, thus a large lower bound in terms of the size of L could not be inferred.
We show a subexponential lower bound in |L| and ‖L‖1 on the length of the longest words not in

L∗ when L∗ is cofinite. The idea is to construct a list of binary words from a mortal set rewriting
system whose longest legal sequences of rules have an exponential length (Theorem 3.1).

Theorem 6.1. There exists an infinite family of finite sets L of binary words such that L∗ is

cofinite and the longest words not in L∗ are of length at least ‖L‖∞−1
4 · 2 ‖L‖∞−1

4 , and this length is

2Ω( 4
√

|L|) in terms of |L| and 2Ω( 5
√

‖L‖1) in terms of ‖L‖1.
Proof. For an n ≥ 2, from Theorem 3.1, we take the set rewriting system (P,R) with |P | = |R| = n
and the subset S meeting the bound 2n− 2. Then we use the construction from Section 4 to create
a binary DFA B and its list of binary words L. Since the set rewriting system is mortal, L∗ is
cofinite.

From Lemma 4.11 (ℓ = m = n), the length of the longest words in L is equal to 4n+1 and there
are at most n3 + (1 + n2(2 + n))(1 + n) = n4 + 4n3 + 2n2 + n + 1 words, thus |L| ∈ O(n4) and
‖L‖1 ∈ O(n5).

We take a binary simulating word w′ with the longest possible legal sequence of rules for S, thus
also for some singleton S′ ⊆ S. From Lemma 4.3 and Lemma 4.8, we know that 0iw′ /∈ L∗, for
1 ≤ i ≤ n corresponding to the initial singleton S′. For n ≥ 2, we can lower bound the length of
the binary encoding of each rule letter by 2. Since the longest possible legal sequence of rules has
length 2n − 2 and one rule application corresponds to at least n + 2 letters (i.e., bin(rj)0

n for a
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rule letter rj), the length of the word 0iw′ is at least (2n − 2) · (n + 2) + 1. For n ≥ 2, we have
(2n − 2) · (n+ 2) + 1 ≥ 2n · n.

Since n = ‖L‖∞−1
4 , n ∈ Ω( 4

√

|L|), and n ∈ Ω( 5
√

‖L‖1), respectively, the length of the word 0iw′

is as in the theorem. �

6.2. The shortest incompletable words. We show that when L∗ is not factor universal, the
length of the shortest incompletable words can be exponential in ‖L‖∞ and subexponential in |L|
and ‖L‖1. The idea is to construct a list of binary words from a permissive set rewriting system
whose shortest legal sequences of rules that are P -emptying are of exponential length (Theorem 3.6).

Theorem 6.2. There exists an infinite family of finite sets L of binary words such that the shortest

incompletable words are of length at least ‖L‖∞

4 · 2 ‖L‖∞
4 , and this length is 2Ω( 4

√
|L|) in terms of |L|

and 2Ω( 5
√

‖L‖1) in terms of ‖L‖1.
Proof. For an n ≥ 2, from Theorem 3.6, we take the set rewriting system (P,R) with |P | = |R| = n
where the shortest P -emptying rule sequences have length equal to 2n − 1. Then we apply the
construction from Subsection 5 to create a binary DFA B and its list of binary words L. Since there
exists a P -emptying sequence of rules, we know that there exists a QB∗ -emptying word in B∗, thus
L∗ is not factor universal.

We show a lower bound on the length of the shortest incompletable words. Let w′ ∈ {0, 1}∗ be
an incompletable word. From the criterion from Proposition 3.4, w′ is also QB∗ -emptying in B∗.
From Lemma 5.10, we know that w′ contains a factor u′ that is QP-emptying and f0-omitting for
QP. From Lemma 5.9, we know that the word u ∈ Σ∗ such that bin(u) = u′0 is QP-emptying in A∗.
By Lemma 5.5, u contains as a factor a simulating word v whose sequence of rules is P -emptying.
Since the shortest such a sequence of rules has length 2n − 1, the word v and also u have length
at least (2n − 1) · (n+ 2). Moreover, both these words contain at least (2n − 1) rule letters, as we
have taken such a set rewriting system. Since, for n ≥ 2, each rule letter is encoded by at least two
binary symbols, we conclude that u′, thus also w′, has length at least (2n − 1) · (n + 2) − 1. We
have (2n − 1) · (n+ 2)− 1 ≥ 2n · n.

Since n = ‖L‖∞

4 , n ∈ Ω( 4
√

|L|), and n ∈ Ω( 5
√

‖L‖1), respectively, the length of every QP-
emptying word is as in the theorem. �

7. Upper bounds

We show algorithms and upper bounds on the related lengths for both problems, which are
exponential only in ‖L‖∞ while remain polynomial in |L| thus also in ‖L‖1.

For the Frobenius monoid problem, the upper bound 2
2|Σ|−1(2

‖L‖∞ |Σ|‖L‖∞ − 1) on the length of

the longest words not in L∗ when L∗ is cofinite was known [16, Theorem 6.1]. We show an upper
bound that involves both ‖L‖∞ and |L|.
Theorem 7.1. Problem 1.1 can be solved in time exponential in ‖L‖∞ while polynomial in |L|. If
L∗ is cofinite, then the longest words not in L∗ have length at most |L| · (2‖L‖∞ − 1)− 1.

Proof. The proof uses a similar idea to that in [16, Theorem 6.1] ([25, Theorem 3.2.5]), but involves
the number of words |L|. We can assume that ε /∈ L and L 6= ∅.

We construct a DFA A = (QA,Σ, δA, qε, FA) recognizing L in a standard way that it forms a
tree. Thus QA = {qu | u is a prefix of a word in L} ∪ {qs}, where qs is the unique dead state. For
qu ∈ QA and a ∈ Σ, we define δA(qu, a) = qua if ua is a prefix of a word in L and δA(qu, a) = qs,
otherwise. Then each word w ∈ L has the action mapping the initial state q0 to a distinct state.
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By the standard construction for the Kleene star (Section 2), we construct an NFA A∗ =
(QA∗ ,Σ, δA∗ , qε, {qε}) recognizing L∗. Hence A∗ is A with added an ε-transition from every fi-
nal state to qε and with the dead state qs removed. For a word w ∈ Σ∗, let the set of active states
be δA∗({qε}, w).

We are going to observe that for every word w, there are no more than |QA∗ | · 2‖L‖∞ + 1 active
states. We define the level of a state qu ∈ QA∗ to be the length of u. For every state qu and a letter
a, the set δA∗({qu}, a) contains qua, if this state exists, and qε, if qua was final in the DFA. Hence,
for a subset C ⊆ QA∗ with at most one state for each level, the transition of every letter, thus also
the action of every word, preserves this property. Since we start with {qε}, after reading any word
for every level at most one state can be active. Moreover, if a state qu is the active state with the
largest level, then the set of all the states with smaller levels that can be active is determined, as
they are the states qu′ with u′ being a prefix of u. We call them the possibly active states of qu.
Hence, the number of reachable subsets from {q0} is bounded by the number of the choices for the
set of possibly active states and for its subset with actually active states.

Note that for a state qu where u is a proper prefix of some word w ∈ L, the set of possibly active
states of qu is contained in that set of qw. Thus it is sufficient to count only the sets of the possibly
active states of qu with u ∈ L.

Also, the initial state qε is active if and only if a final state in the DFA is active, with the
exception of the initial subset {qε}. Altogether, we have at most |L| choices for the set of possibly
active states combined with at most 2‖L‖∞ − 1 choices for the non-empty subset of actually active
states. Additionally, there are the empty set and the initial singleton. We obtain the upper bound
2 + |L| · (2‖L‖∞ − 1) on the number of reachable subsets from {qε}.

The problem of whether A∗ recognizes a non-cofinite language is equivalent to whether in the
space of reachable subsets there exists a cycle such that a subset without the unique final state qε
is reachable from it. Thus, we can check this in time exponential in ‖L‖∞ and polynomial in |L|.

If the language is cofinite, the empty subset is not reachable (which was counted in the upper
bound), and there exists a reachable cycle from which we can reach only subsets with the final
state. Thus, the longest words not in L∗ have length at most |L| · (2‖L‖∞ − 1)− 1. �

For the factor universality problem, only the trivial upper bound 2‖L‖1−‖L‖∞+1 was known [12].
Note that it is doubly-exponential if represented only in terms of ‖L‖∞.

Theorem 7.2. Problem 1.2 can be solved in time exponential in ‖L‖∞ while polynomial in |L|. If
the set L 6= ∅ is not complete, then the shortest incompletable words have length at most ‖L‖∞ +
|L| · 2‖L‖∞.

Proof. The statement is trivial when L = {ε}, and we can assume ε /∈ L. We construct a DFA A
and an NFA A∗ for L∗ as in the proof of Theorem 7.1. The language L∗ is factor universal if and
only if there exists a QA∗ -emptying word (Proposition 3.4).

We follow similarly as in the proof of Theorem 7.1, obtaining an upper bound on the set of
reachable subsets from QA∗ . Note that for every word w of length at least ‖L‖∞, in δA∗(QA∗ , w)
there is at most one state for each level. Thus, when restricted to such words, there are at most
1 + |L| · (2‖L‖∞ − 1) reachable subsets (not counting {qε} this time, since it is not reachable from
QA∗ as long as L * {ε}). Since we start from QA∗ , at the beginning there could be more reachable
subsets by words shorter than ‖L‖∞.

If there exists a QA∗ -emptying word w, then for every word u, the word uw is also QA∗ -emptying.
Hence, to solve the problem, we can start from an arbitrary word u of length ‖L‖∞, and then check
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the reachability of the empty set. The length of the shortest QA∗-emptying words is at most
‖L‖∞ + |L| · (2‖L‖∞ − 1). �

Under a fixed-sized alphabet (as otherwise ‖L‖1 can be arbitrarily large with respect to ‖L‖∞),
we have |L| ≤ |Σ|‖L‖∞ . We conclude that 2O(‖L‖∞) is a tight upper bound on the lengths related
to both problems.
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Appendix

Large length of the shortest incompletable words. We define explicitly the family from the
proof Theorem 6.1 of sets of words L for which the shortest incompletable words in L∗ are of

exponential length ‖L‖∞

4 · 2 ‖L‖∞
4 in terms of ‖L‖∞ and subexponential length 2Ω( 5

√
‖L‖1) in terms

of ‖L‖1.
For a given n ≥ 2, the words in L are as follows. The paths in the construction from the initial

state to a final state, which correspond to words in L, are also listed. We rename the elements
in the set P = {b0, b1, . . . , bn−1} from the set rewriting system in the proof to the elements from
{p1, p2, . . . , pn} such that bi = pi+1 as in the reduction. In this way, the construction keeps the

property that if si,jk is final and pi is active, then after 1j00n (or 1j0n if j = n), pk will be active.
The words coming from final states fx for x ∈ {0, 1, . . . , n− 1}:

• 10x for x ∈ {0, . . . , n− 1}; (q0
1−→ f0

0x−→ fx)

• 0n00x for x ∈ {0, . . . , n− 1}; (q0
0n−→ pn

0−→ f0
0x−→ fx)

• 0i1j00k10x for i ∈ {1, . . . , n}, j ∈ {1, . . . , n− 1}, k ∈ {0, . . . , n− 1}, and x ∈ {0, . . . , n− 1};
(q0

0i−→ pi
1j0−−→ si,jn

0k−→ si,jn−k

1−→ f0
0x−→ fx)

• 0i1n0k10x for i ∈ {1, . . . , n}, k ∈ {0, . . . , n − 1}, and x ∈ {0, . . . , n − 1}; (q0
0i−→ pi

1n−→
si,nn

0k−→ si,nn−k

1−→ f0
0x−→ fx)

• 0i1j00n00x for i ∈ {1, . . . , n}, j ∈ {1, . . . , n − 1}, and x ∈ {0, . . . , n − 1}; (q0
0i−→ pi

1j0−−→
si,jn

0n−→ qg
0−→ f0

0x−→ fx)

• 0i1n0n00x for i ∈ {1, . . . , n} and x ∈ {0, . . . , n−1}; (q0
0i−→ pi

1n−→ si,nn
0n−→ qg

0−→ f0
0x−→ fx)

The words coming from the final setting states corresponding to the transition rj(pj) = {pi | i ∈
{0, 1, 2, . . . , j − 1}}:

• 0j1j00n−k for j ∈ {1, . . . , n− 1} and k ∈ {1, . . . , j − 1}; (q0
0j−→ pj

1j0−−→ sj,jn

0n−k

−−−→ sj,jk )

• 0n1n0n−k for k ∈ {1, . . . , n− 1}; (q0
0n−→ pn

1n−→ sn,nn

0n−k

−−−→ sn,nk )

The words coming from the final setting states corresponding to the transition rj(pi) = P for
i ∈ {0, 1, 2, . . . , j − 1}:

https://cs.uwaterloo.ca/~shallit/Talks/bc4.pdf
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• 0i1j00n−k for j ∈ {1, 2, . . . , n− 1}, i ∈ {1, . . . , j− 1}, and k ∈ {1, 2, . . . , n}; (q0
0i−→ pi

1j0−−→
si,jn

0n−k

−−−→ si,jk )

• 0i1n0n−k for i ∈ {1, . . . , n− 1} and k ∈ {1, 2, . . . , n}; (q0
0i−→ pi

1n−→ sn,nn

0n−k

−−−→ sn,nk )

The words coming from the final setting states corresponding to the transition rj(pi) = {pi} for
i ∈ {j + 1, j + 2, . . . , n− 1}:

• 0i1j00n−i for j ∈ {1, 2, . . . , n− 1} and i ∈ {j + 1, . . . , n}; (q0
0i−→ pi

1j0−−→ si,jn
0n−i

−−−→ si,ji )

A program generating these examples is also available at [19] as a source file.
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