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Abstract

Field testing refers to testing techniques that operate in the field to reveal those faults that escape in-house
testing. Field testing techniques are becoming increasingly popular with the growing complexity of con-
temporary software systems. In this paper, we present the first systematic survey of field testing approaches
over a body of 80 collected studies, and propose their categorization based on the environment and the sys-
tem on which field testing is performed. We discuss four research questions addressing how software is
tested in the field, what is tested in the field, which are the requirements, and how field tests are managed,
and identify many challenging research directions.

TECHNICAL REPORT iii



TR-Precrime-2021-02 — Field Testing Survey

Contents

1 Introduction 1

2 Methodology 2
2.1 Selection process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Data extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Replicability of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Field Testing 4

4 Research Questions 6

5 RQ1.1: Approaches, Fault Types, Test Case Generation and Platforms 7
5.1 RQ1.1: Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 RQ1.2: Source, Strategy, Triggers, Resources and Oracles 8
6.1 Where Field Test Cases Are Generated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.2 Test Strategy and Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.3 Field Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.4 Field Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.5 RQ1.2: Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

7 RQ2: Test Target, Granularity and Type of Tested Applications 12
7.1 Target Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7.2 Granularity of the Tested Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.3 Type of Tested Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.4 RQ2: Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

8 RQ3: Monitoring, Isolation, Privacy and Security 14
8.1 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.2 Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
8.3 Privacy and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.4 RQ3: Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

9 RQ4: Field Test Selection, Prioritization, and Governance 19
9.1 Field Tests Selection and Prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.2 Field Testing Governance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.3 RQ4: Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

10 Discussion 22
10.1 Open Challenges for Researchers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
10.2 Guidelines for Practitioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

11 Threats to validity 25

12 Conclusions 26

A RQ1.1: Approaches, Fault Types, Test Case Generation and Platforms 1
A.1 Ex-vivo Functional Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

A.1.1 Specification-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
A.1.2 Structure-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
A.1.3 Pre-existing Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

A.2 Offline Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
A.2.1 Specification-Based Approaches for Functional Requirements . . . . . . . . . . . . . . 3
A.2.2 Specification-Based Approaches for Non-Functional Requirements . . . . . . . . . . . 3
A.2.3 Pre-Existing Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

A.3 Online Functional Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
A.3.1 Specification-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
A.3.2 Structure-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
A.3.3 Fault-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

TECHNICAL REPORT iv



TR-Precrime-2021-02 — Field Testing Survey

A.3.4 Pre-existing Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
A.4 Online Non-Functional Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

A.4.1 Specification-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
A.4.2 Fault-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
A.4.3 Pre-existing Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

A.5 Platforms for Offline Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
A.6 Platforms for Online Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
A.7 RQ1.1: Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TECHNICAL REPORT v



TR-Precrime-2021-02 — Field Testing Survey

1 Introduction

Software testing involves a set of pervasive, critical, time-consuming and effort-demanding activities in the
software lifecycle. It is widely practiced and extensively studied [85].
Testing activities are commonly conducted on a Software Under Test (SUT) during the development cycle
to both reveal faults before deployment and study failures reported from the field. No matter whether
testing activities aim to reveal development bugs or study field failures, they are commonly executed in
the development environment, and we refer to such activities as in-house or in-vitro software testing. In-vitro
testing is generally conducted independently from the production context, except for the failures reported
from the field, which may trigger in-house testing activities. Indeed, field failures cannot be fully prevented,
and may sometime lead to catastrophic consequences. A recent study by Gazzola et al. [39] identifies several
categories of field failures, and provides empirical evidence of the unavoidability of failures in the field even
for mature and well-tested software systems.
The impossibility of dealing with all the faults using classic in-house testing approaches raised interest in
testing software systems in the field, by crossing the border between in-house validation and field execu-
tion [7]. As we illustrate in Fig. 1, this trend of moving the testing activities from the laboratory towards the
production environment can be actualized in different nuances. Test cases can be executed directly in the
field on the same instance of the software used in production, which we call online testing (rightmost flow
of activities in Fig. 1), or on a separated instance still running in production, called offline testing (middle
flow), or even in-house but on data collected from the field, called ex-vivo testing (leftmost flow).

Development Environment

field
data field test 

cases
SUT SUT production-

instance
field test 

cases
production-

instance

observations observations

In-House Testing (in-vitro) Field Testing (in-vivo)
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test cases Testing
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Figure 1: Classes of field testing approaches

Classic in-house (in-vitro) testing is a well understood discipline with studies that span many decades: The
first specialized workshop dates back to the mid seventies.1 Research in field testing has emerged fairly
recently and has not been comprehensively surveyed as a discipline yet.
Field testing was first considered an opportunity to deal with failures that were hard or too costly to
reproduce in the laboratory, with a few studies in the nineties addressing autonomic systems [51, 100], and
real-time issues [98]. It attracted then steady interest in the early years of the first decade of this century,
with a sudden burst of results from 2007 on, mostly pushed by the advent of service-oriented architectures,
which lacked centralized control for testing purposes.
Nowadays, the emergence of more and more agile and distributed paradigms of development, towards the
view of a continuous software engineering discipline [35], emphasizes the need for a continuous testing mind-
set, making developers realize that testing must continue after deployment, and that no clear boundary can
be set between development and operation [7]. Such a need, in combination with the increasing dynamism
and pervasiveness of software, as observed, for instance, in Internet of Things, Systems of Systems, and
Cyber-Physical systems, led to a relevant set of approaches and frameworks for field testing, although not
well contextualized yet. In particular, while inheriting many of the problems and solutions of its “tradi-
tional” counterpart, field testing obviously introduces new challenges, for example in terms of isolation
from side-effects, security preservation, controllability and observability of the test executions, among oth-
ers. For these reasons, a systematic study of the literature is required to rise awareness of the topic and
provide evidence for the need of further research.
To answer such need, in this paper we provide a comprehensive survey of the state-of-the-art of ex-vivo,
offline and online field testing approaches. We present the results of a systematic analysis of the scientific
literature that identified 80 distinct relevant studies since 1989. We discuss the characteristics of the different

1The ISSTA community refers back to the former TAV community with roots in the 1975 Workshop on Currently Available Program
Testing Tools.
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approaches, and propose a taxonomy based on the environment and the system where the test cases are
generated and executed. We distinguish between approaches that address functional and non-functional
faults, and observe that the relatively few ex-vivo and offline field testing approaches address functional
faults, while the many online field testing approaches span from functional to non-functional faults 2.
We survey the approaches for field testing, and for each class of approaches we systematically discuss
their characteristics based on four main research questions that guide our effort throughout this survey.
In particular, we consider how software is tested in the field, what is tested in the field, the requirements to
successfully execute the tests in the field, and the management of the field tests.
The remainder of the paper is organized as follows. Section 2 discusses the methodology of the survey,
providing details about the process that we followed to select the relevant studies and the corresponding
statistics. Section 3 introduces the key concepts and the terminology that we use in the paper, and frames
the boundaries of our analysis. Section 4 introduces the research questions that we address in this paper,
and that we discuss in Sections 5–9. Section 10 summarizes the state of the art in field testing, indicates
relevant open research directions and presents guidelines for practitioners. Section 11 discusses threats to
validity. Section 12 provides final remarks.

2 Methodology

In this section, we present the methodology that we followed to identify the relevant papers in line with
the best practices by Kitchenham et al. [56].

2.1 Selection process

The aim of this survey is to provide a comprehensive summary of the scientific literature on field testing
and propose a taxonomy of the approaches. Our research questions, which we describe later on after we
have introduced the needed background and terminology, are broad and inclusive. Accordingly, in our
search strategy we aimed at a search string wide enough to represent all the many ways researchers may
indicate field testing related work, as detailed below:
(1) Initial search and first-stage filtering. An initial set of papers was selected by searching the SciVerse Sco-
pus digital library with the following search string. We selected all papers whose title, abstract or keywords
match any of the keywords in the query:

(Runtime testing OR Online testing OR On-line testing OR Dynamic testing OR Adaptive testing OR Field

testing OR On-demand testing OR In-vivo testing OR Ex-vivo testing) AND software

OR

(Runtime software testing OR Online software testing OR On-line software testing OR Dynamic software

testing OR Adaptive software testing OR Field software testing OR On-demand software testing OR In-vivo

software testing OR Ex-vivo software testing).

The initial search produced a set of 1,238 studies. Due to the conservative query, the initial set of papers
included many papers not related to computer science, and artifacts of different nature, research articles,
editorials, standards, and welcome messages. We pruned both papers clearly not related to computer
science, and irrelevant artifacts, such as editorials, standards, welcome messages, by manually inspecting
titles and abstracts, and we obtained a set of 434 studies.
(2) Selection criteria. We refined the obtained set of papers with inclusion and exclusion criteria, to retain
scientific studies about software field testing, and eliminate papers that address neither software nor field
testing. We retained papers that satisfy all the following inclusion criteria:

• Inclusion Criterion 1: studies targeting the definition, application or experimentation of software field
testing solutions.

• Inclusion Criterion 2: studies subject to peer review.

• Inclusion Criterion 3: studies written in English.

and discarded papers that meet at least one of the following exclusion criteria:

2In this paper we use the terms failures, to indicate executions that lead to wrong results, and faults, and sometime the common
jargon term bugs, to indicate issues in the code that may cause the system to fail under specific execution conditions, in line with the
IEEE standard terminology.
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• Exclusion Criterion 1: studies proposing field testing solutions not related to software systems, such as
firmware or hardware testing, including processors, systems-on-chip, FPGA, and controllers.

• Exclusion Criterion 2: studies purely focusing on techniques other than testing, most notably we exclude
works centered on: runtime verification [68], or debugging, even approaches for debugging in the field
such as [65], or continuous experimentation via user surveys [90] and A/B testing [57], or usability eval-
uation [49, 97].

• Exclusion Criterion 3: studies that move testing away from the developer’s laboratory in order to improve
scalability and elasticity, but with no specific focus on field operation: for example, we exclude works
proposing Testing-as-a-Service and Cloud testing solutions [11].

• Exclusion Criterion 4: studies focusing on the interleaving/adjustement of test generation to test execution
(which sometimes is also referred in literature as “online” or “adaptive” testing, keywords included in
our search), but have no relation with the field, e.g., on-the-fly model based testing [96], or those works
that dynamically adjust the testing strategy using testing results, such as [19].

• Exclusion Criterion 5: studies about in-house operational profile-based testing [91]: although operational
testing refers to how the system is used in the field, this topic has been the subject of an extensive litera-
ture that has evolved independently from the notion of testing in the field.

• Exclusion Criterion 6: studies about crowdsourced testing: testing performed by the crowd on released
software could be considered as a specific form of testing in the field, however we decided not to include
them in this study, also because for this topic we can refer the reader to a recently appeared systematic
review of literature [4].

• Exclusion Criterion 7: secondary or tertiary studies (e.g., systematic literature reviews and surveys).

• Exclusion Criterion 8: studies not available as full-text.

In a first pass, the authors of this survey independently assessed the 434 papers, and classified them as
‘Included’, ‘Excluded’ and ‘Unclear’, based on the inspection of title, abstract and publication venue. We
excluded 334 papers, included 34, and identified 66 unclear papers for further analysis. Then, we collab-
oratively classified the 66 papers, by reading the full papers, and discussing them in dedicated conference
calls. We included 14 more papers, ending up with 48 selected papers.
(3) Snowballing. We completed the selection process with a snowballing procedure. We applied a full
backward snowballing, by considering all the references included in the analyzed studies, and adding further
relevant studies, provided they were indexed by at least one of these major digital libraries: SciVerse Scopus,
IEEEXplore, and ACM DL. We conducted a partial forward snowballing starting from the most popular papers
selected so far. In particular, we selected both the 10% most cited papers and the top 10% of the papers
with the highest number of normalized citations (i.e., citation/year), identifying a total of 12 highly popular
studies. We considered all the papers that cite at least one of the identified popular studies, obtaining 71
possibly relevant studies. We pruned this set with the inclusion and exclusion criteria, and added 32 new
papers to our set of papers.

The process produced a set of 80 studies for our survey. During this process, we scheduled six plenary
(physical or online) meetings in one year to define the include and exclude criteria, to discuss the studies,
and to clarify and resolve doubtful cases.

2.2 Data extraction

We identified several dimensions for analyzing the selected papers, based on the research questions pre-
sented in Section 4. For each paper, we checked if the presented study could be classified according to each
identified dimension, and when possible we produced such a classification. We describe the studies and
the analyzed dimensions in Sections 5–9.
We tuned the analysis process by assigning a small set of papers (14/80) to multiple authors, to obtain
redundant classifications for each paper, and then discussing the results of the classifications in a plenary
meeting. In the plenary meeting we agreed on the semantics of each dimension, and the criteria for clas-
sifying the papers. We relied on the results of the plenary meeting to safely distribute the analysis of the
remaining papers to subsets of authors who worked in parallel.
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2.3 Descriptive Statistics

The data collection was performed in 2018. The search period was not constrained; the time period of the
resulting papers, after filtering and classifications, was 1989-2017. Fig. 2a plots the selected studies by
year and publication type. The figure indicates that a substantial activity on field testing started in 2002.
Since then, an average of 4.68 studies per year were published, with more papers published in the last 10
years. Most of the considered studies are conference papers (51/80), followed by journals (19/80) and few
workshop papers (8/80) and book chapters (2/80).
Fig. 2b details the main publication venues, reporting venues that hosted at least two studies. There is a
considerable variety of publication venues, with 60 different venues for the 80 studies. It is worth to note
the presence of venues like TSC (Transactions on Service Computing) and WEBIST (International Conference on
Web Information Systems and Technologies), with several studies on testing of service-oriented architectures,
where testing in-the-field is of particular relevance.

2.4 Replicability of the Study

The outcome of our classification work as well as the list of all the 434 returned by the execution of the
query string are made available for the interested researchers on the ACM Digital Library as supplemental
online material of this manuscript.

3 Field Testing

This section introduces field testing. The analysis of the literature revealed no uniform and consistent way
of referring to testing solutions in the field, thus in this section we define the terminology that we consis-
tently use in the paper. While in-house testing refers to activities in controlled environments specifically
arranged to support the testing activities themselves, field testing refers to a range of activities closely
related to the production environment that we characterize first, before introducing field testing.

Definition 1 (Production Environment) The production environment of an application is any environment where
the application can be fully operational.

Production environments include hardware, software, such as system software, libraries, middleware,
application-level software, and any other element that may affect the behavior of an application, such as
sensors, input devices and network components. As an example to help clarify the following definitions,
we could think of a provider responsible for an e-commerce platform FooZon: we consider the case that
while developing a new extended feature, they need to perform an extensive testing across differing con-
figurations, as well as differing customer profiles. The same application can be in fact deployed and used
in multiple production environments, for instance an app FooZon can be installed in millions of different
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devices with different settings, or the platform can be accessed directly from its web application, again
using different browsers and versions.
The production environment of an application is a dynamically evolving entity whose characteristics change
at different speeds. For example, hardware components tend to remain the same (e.g., a component might
be upgraded only after several years to improve the hardware equipment of a server), configurations
change relatively rarely (e.g., a user may decide to change some settings to accommodate some emerg-
ing needs), while contextual elements may change quickly (e.g., the battery level and network connectivity
may change quickly for mobile apps).
Since an application can be installed and executed in many production environments, testing activities
must take such a variety and heterogeneity of environments into consideration. The notion of field refers to
the many production environments relevant for a software application.

Definition 2 (The Field) The field of a software application is the set of all its (possible) production environments.

Field testing techniques address the challenge of validating the behavior of applications in the field, that is
in all (or more practically in most) of its production environments, while considering the dynamic evolution
of their characteristics. Fig. 1 illustrates the main kinds of field testing, distinguishing between (right-side)
testing activities performed in the field (aka in-vivo) and (left-side) activities performed in-house (aka in-
vitro). Although in-house activities do not directly interact with the field, there are forms of testing that
benefit from activities performed in the field.

Definition 3 (In-house/In-vitro Software Testing ) In-house (in-vitro) software testing indicates any type of soft-
ware testing activities performed in a testing environment completely separated from the production environment.

In-house software testing implies the presence of both the SUT (e.g., the considered example of the FooZon
e-commerce platform) and a set of test cases that are executed against the SUT within the development
environment (e.g., a user access, a user browsing different products, a user concluding a transaction, etc) .
This survey considers only in-house testing activities influenced by information obtained from the field.

Definition 4 (Ex-vivo Software Testing) Ex-vivo software testing indicates any type of software testing performed
in-house using information extracted from the field.

Ex-vivo testing is a specific type of in-house testing, which can be very useful for the testing of applica-
tions processing large amounts of structured data that are costly and/or difficult to build artificially. For
example, instead of creating a series of accesses by different categories of customers trying to mimic many
different operational contexts and client behaviors, the testers of FooZon could keep track of actual invo-
cations coming from real transactions across different countries and relative to different types of products,
and use these for more realistic and extensive testing of newly deployed versions. In our survey of litera-
ture, we found a few examples, as in the work by Morán at el. [74], where the authors employ data collected
from actual user requests for the testing of MapReduce distributed data processing applications, thus over-
coming the costs of building huge amount of data as those used in these applications. Another example is
the work by Elbaum and Hardojo [34], where multiple techniques for enhancing an existing test suite by
leveraging field data collected by profiling a web application under different strategies are assessed. Al-
though ex-vivo testing does not imply running the test cases in the production environment, it is a relevant
class of approaches in the scope of this survey because they extensively use field data. Fig. 1 represents the
case of ex-vivo testing as the only kind of in-house testing activity relevant to this study.
Related to ex-vivo testing, there are a number of works that exploit failure/crash data from field execu-
tions for the generation of test cases that would help in reproducing the failures for in-house debugging
(e.g., [50, 88, 52, 92, 29]). Such works aim at generating test cases that recreate the failures observed in the
field, guided by information about the failure collected from the field. The failure information from the
field could be obtained by explicit instrumentation of the program before deployment for the purpose of
capturing essential data (e.g., [50, 52]). In other cases, crash data produced by the runtime environment
(such as stack traces or core dumps) are used for the purpose of test generation (e.g., [88, 92, 29]).
The test cases generated in this context are primarily used to recreate reported field failures for in-house
debugging. Their scope is limited to helping developers understand and fix reported field failures, and
eventually verify that the fix resolves the reported issue. They are mentioned here as related work as they
make use of field data for test generation, however they are not included in our survey as they are focused
on debugging rather than the process of field testing.
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Definition 5 (Field/In-vivo Testing) Field (in-vivo) testing indicates any type of testing activities performed in
the field.

Field testing activities can be executed offline or online:

Definition 6 (Offline Testing) Offline testing indicates field testing activities performed in the production envi-
ronment on an instance of the SUT different from the one that is operational.

The software used in offline testing activities and the operational software may be distinguished in dif-
ferent ways: for example, with reference to the FooZon platform, the provider could opportunistically
duplicate the components responsible for completing purchase transactions, and in any field testing exe-
cution involving a purchase replace the invocation to the actual component with the dummy duplication
that will not really conclude any transaction, thus limiting the degree of intrusiveness of field tests on the
operational software system because no actual product is bought. Obtaining distinct instances of the SUT
for off-line testing can be expensive, and may not guarantee perfect isolation of the testing process. For
instance, a program can still interact with some environment elements, and test execution must be prop-
erly sandboxed to prevent side-effects, as illustrated in the work by Murphy et al. [75], who proposed an
approach to duplicate the field environment by forking the process under test.

Definition 7 (Online Testing) Online testing indicates field testing activities performed in the production envi-
ronment on the actual software system.

Online testing pushes forward the concept of field testing by directly testing the operational software sys-
tem. Online testing might be preferable to offline testing in terms of the representativeness of the test
outcome, but online testing can be extremely complex, since the testing activity might easily interfere with
the normal activity of the software under test. Considering again FooZon, online field testing may entail
launching some browsing executions pretending to be a customer and placing actual transactions, which
are issued for testing purposes side-by-side with visits and transactions performed by real customers. In
addition to possibly sustaining the real costs of purchases concluded while testing and their expeditions,
this practice may also negatively impact customers experience, for example competing with them for the
purchase of products of limited availability, or slowing down actual deliveries to customers.
Notwithstanding the possible side-effects, online testing is nowadays increasingly performed in practice by
some providers, of course when the SUT has no safety-critical aspects. For example, in NetFlix the concept
of Chaos engineering for online testing the robustness of their cloud services has been established a decade
ago and still continues to be expanded [9].
In the next section we introduce the research questions addressed in the scope of this survey to study ex-
vivo, offline and online testing approaches.

4 Research Questions

The goal of the survey is to characterize the existing research on field testing, in terms of objectives of field
testing activities and approaches to achieve them. We want also to understand the practical implications of
the proposed approaches, in terms of required field resources and overall management of field testing, as op-
posed to management of traditional in-lab testing. Correspondingly, we designed two research questions
focused on the “how” (RQ1) and “what” (RQ2) dimensions, which cover respectively approaches and ob-
jectives. Furthermore, with RQ3 and RQ4 we investigate the resources and management activities required
for field testing. Overall, this survey addresses four main research questions, all characterized by several
dimensions.

RQ1 - How is software tested in the field? This research question addresses the type of testing activities
performed in the field. We detail the general question in two sub research questions:

RQ1.1 - What are the approaches, fault types, test case generation and platforms used in field testing?
RQ1.2 - What are the source, strategy, triggers, resources and oracles used in field tests?

To answer this research question, we classify the approaches based on their category (ex-vivo, offline, online),
the type of addressed faults (functional, non-functional), the strategy used to generate test cases, and the
developed support platforms, and provide an organized map of field testing solutions (Section 5). We
study where field test cases are generated (which may be a different location from where they are executed),
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the events that may trigger their execution, the resources that are typically considered in the field testing
process, and the used oracles (Section 6).

RQ2 - What is tested in the field? This research question addresses the software elements that are tested
in the field. We consider the test target, for instance new or modified features, the granularity of the soft-
ware elements under test, for instance single components or the system as a whole, and the type of tested
applications, for instance mobile or server applications (Section 7).

RQ3 - What is required to execute tests in the field? This research question addresses the features that field
testing solutions require to execute the test cases in the field. We consider four main dimensions: monitoring,
which includes the techniques used to extract information about the behavior of the SUT; isolation, which
includes mechanisms to guarantee that the execution of the field tests does not interfere –or has negligible
interference with– the regular operation of the tested software; privacy and security, which include solu-
tions to guarantee the privacy and the security of the users despite the activity performed in field testing
(Section 8).

RQ4 - How is field testing managed? This research question addresses management and control aspects of
field testing, also in view of possible evolution of the software under test. The overall problem of managing
a testing session in the field is that it should have minimum impact on the end users and on the normal
production activities. Moreover, key decisions to be made in the field include which tests to select for field
execution and how to prioritize them for execution, under the assumption that there might not be enough
resources to run all the available tests. Hence, we identify three dimensions: test selection to select the test
cases to be executed in the field to validate changes; test prioritization to sort the test cases to be executed in
the field to validate changes; and test governance to control the testing process and the involved stakeholders
(Section 9).

5 RQ1.1: Approaches, Fault Types, Test Case Generation and Platforms

Table 1: Testing techniques

Testing approach Test Generation Strategy
Specification-based Structure-Based Fault-Based Pre-existing

ex-vivo functional

Mutation of Field Executions
[74, 78, 28, 79]
Test Suite Adaptation
[48, 47, 38]

Profile Data
[34]

Field Triggers
[72]

offline

functional

IO Data Pattern
[81]
Metamorphic Relations
[10, 76]

Built-in Tests
[94, 98, 75, 54, 55, 93]
Test planning and management
[43, 42, 77]
Adaptation and Reconfiguration
[62, 64]

non-functional
Security Specifications
[25, 24]

online

functional

Choreographies and Service-based specifi-
cations
[22, 2, 12, 6, 99, 5]
Finite-State Models
[71, 95, 18, 33, 20]
Metamorphic Relations
[21]
Graph grammars
[83]

Event Interface
[101]

Fault Injection
[102]

Test planning and management
[60, 1, 59, 14, 27, 43, 42]
Adaptation and Reconfiguration
[44, 53, 64, 32, 62]
Isolation
[17]

non-functional

Stochastic Models of User Behavior
[89, 82]
Security Specifications
[12, 26, 13, 46]
Usability Models
[69]
∆-grammars for QoS
[83]
Timed-automata
[71, 95]

Fault Injection
[3, 102]
Operational Pro-
file
[73]

Adaptation and Reconfiguration
[70, 32, 67]

Table 2: Platforms for field testing

Offline Testing Platforms Online Testing Platforms
Evolution
[66, 61, 58, 63]
Shadow Instances for V&V
[45, 40]

SOA and Component-Based Testing
[105, 104, 8, 16, 81, 103]

Built-In and Pre-Existing Test Cases
[81, 51, 100, 31, 30, 41]
SOA Online Testing
[80]

Evolution
[23, 58, 61, 63, 37]
Distributed Quality Assurance
[87]

In this section, we analyze field testing techniques by considering the field testing approach and the test case
generation strategy dimensions of the classification. We distinguish between approaches that address func-
tional and non-functional faults (Table 1), and classify approaches based on the target platforms (frame-
works and architectures) (Table 2).
The studies are not evenly distributed with respect to the testing approaches: We found few ex-vivo and
offline field testing techniques, and many online field testing techniques. This indicates a strong interest
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towards techniques that test exactly the operational application.
The nature of the requirements that are tested is not evenly distributed within each testing approach. Most
ex-vivo and offline field testing approaches focus on functional requirements. Only two approaches address
offline testing of security requirements to assess the security of software systems in the operational envi-
ronment as early as possible [25, 24]. Online testing approaches address both functional and non-functional
requirements.
Concerning the problem of test case generation, in field testing a test case has a broader scope than just
the test input data. The actual novel challenges in generating field tests descend from identifying and
reproducing with each test case the relevant interactions with the field, whereas a-priori we do not expect
that new, ad-hoc techniques need to be specified for generating the test inputs data. We cluster techniques
in four categories [85] depending on the information used to generate the test cases, as is also done for
in-house testing: (i) Specification-based techniques derive test cases from formal or informal requirements
specification; (ii) Structure-based techniques use structural information, mostly the code structure, to derive
test cases; (iii) Fault-based techniques use models of potential faults (fault models) to derive test cases that
address the faults represented in the fault model; (iv) Techniques working with pre-existing test cases exploit
already available test cases. We observe that most commonly black-box techniques are used. Namely either
test cases are generated from specifications, to suitably cover certain behaviors, or strategies are defined to
execute test cases that are already available, for instance from field monitoring. Only few approaches derive
test cases from structural information and fault-models.
The available platforms, as shown in Table 2, offer a range of solutions for both offline and online testing
targeting several environments (e.g., service and component-based systems) and scenarios (e.g., continuous
quality assurance and evolution).
The classification in Tables 1 and 2 provides a roadmap to researchers, who can easily understand the po-
sitioning of the individual studies with respect to the existing literature along the identified dimensions
(testing approach, test generation strategy) and along the respective sub-dimensions. It is also potentially
useful to practitioners, when they face a specific field testing problem. Thanks to the presented classifica-
tion, they can find relevant research papers and tools that address the kind of field testing approach they
want to implement (ex-vivo, offline, online) and the kind of test generation strategy they intend to adopt
(structural, fault oriented or pre-existing tests). The detailed descriptions of the individual approaches that appear
in Tables 1 and 2 are available in a report that is part of the online supplemental material associated with the paper.

5.1 RQ1.1: Findings

We conclude this section summarizing the key findings with respect to the type of addressed faults, the test
case generation strategies, and the platforms proposed so far:

• Approaches privilege functional versus non-functional faults, which are still under-investigated: The majority
of approaches address functional faults. The few approaches that address efficiency, security, reliability
and usability, shed some initial light on a largely unexplored domain that calls for non-intrusive testing
techniques to properly address non-functional properties.

• Quality of service is a relatively well-studied quality attribute among non-functional aspects: Many of the ap-
proaches that deal with non-functional properties address the relevant problem of predicting the QoS of
applications executed in different and heterogenous production environments.

• Specification-based test case generation approaches are by far the most studied approaches: Many approaches
rely on specifications to generate field test cases, leaving open the hard problem of generating test cases in
absence of specifications, as in the many cases of systems that evolve beyond the initial specifications to
adapt to emerging execution conditions and configurations.

• Automation is still limited: Many approaches rely on relevant human contribution and already available
test cases, and automation of field testing is still limited.

6 RQ1.2: Source, Strategy, Triggers, Resources and Oracles

In this section, we discuss where field test cases are generated (Section 6.1), how field test cases are executed
and triggered (Section 6.2), what resources field test cases require (Section 6.3), and which oracles validate
the result of field test execution (Section 6.4).

TECHNICAL REPORT 8



TR-Precrime-2021-02 — Field Testing Survey

6.1 Where Field Test Cases Are Generated

Field test cases may be generated and executed at different times and locations: in-house, in-house with
field data, and in the field. Field test cases generated in-house are produced during development. Field
test cases generated in-house with field data are produced during development by exploiting information
observed in the field. Test cases generated in-house can be executed either in the development environment
(ex-vivo testing) or in the production environment (in-vivo testing). Test cases generated in-the-field are
generated in the production environment.
Table 3 shows the distribution of the different approaches with respect to environments for generating test
cases. Relatively few approaches generate test cases in-house with field data (12%), most approaches gener-
ate test cases either in-house or in-the-field with an even distribution between the two sets (44% each). Test
cases generated in-house address scenarios known to be possibly field-relevant but not completely available
at design time yet, such as configurations that depend on dynamic information, for instance dynamically
discovered services. Test cases generated in-the-field address scenarios that emerge and can be identified
only in the field and cannot be identified in early development phases. Generating test cases in-house is
easier than in-the-field, but produces test cases with a scope limited to at least partially predictable scenar-
ios, while test cases generated in-the-field may address a wider set of scenarios.

Table 3: Place where tests are generated
Place Number of papers %
In-house 32 44%
In-house with field data 9 12%
In-the-field 32 44%

6.2 Test Strategy and Triggers

Testing strategies and triggers refer to the way approaches identify critical events that activate field test
cases. Testing strategies are proactive if they primarily aim to anticipate failures that could occur in the
production deployment, reactive if they primarily aim to manage the effect of field failures after their occur-
rence. We refer to the events that lead to the activation of field test cases as triggers. A trigger is any kind of
event, scenario, or configuration whose occurrence leads to the execution of some field test cases.
Most studies of field testing strategies propose proactive strategies: 63 papers, that is 86% of the papers
that deal with test strategies, propose proactive strategies; 5 papers, 7%, propose reactive strategies, that is,
activate testing sessions in-the-field as a consequence of observed failures; 5 papers, 7%, support both strate-
gies. For instance, Kawano et al.’s approach [51] proactively activates test cases when modules change, and
reactively responds to failures.
Fig. 3 classifies the strategies according to the triggers they react to. The taxonomy identifies two main
kinds of triggers, IT Operation and Evolution. IT Operation triggers are events that derive from some either
internal or external operations of the system. Evolution triggers are events that derive from some dynamic
transformation of the system or its components. Triggers are not exclusive, in fact some approaches can
react to multiple triggers.
IT Operation triggers may be periodic or asynchronous events. While few studies focus on periodic events,
the majority of approaches that react to IT operation triggers refer to asynchronous events. Some ap-
proaches react to asynchronous events internal to the SUT, related to custom events, unchecked exceptions,
idle states, data and transmissions. Other approaches react to external triggers, related to test sessions,
system policies, or external functionalities. Triggers related to test sessions derive from inputs by a client
or another system/module, a QA team member, or the run-time infrastructure, and decouple the decision-
making aspect from the technical field testing solution. Triggers-related system policies depend on explicit
decision policies that can be defined by ether the service integrators or testers, or can be based on data
observed in the field. Triggers related to external functionalities depend on the activation or usage of par-
ticularly relevant functionalities, and are defined either statically before or dynamically at runtime.
Evolution triggers react to the evolution of either the whole SUT or some components. System evolution
triggers react to either dynamic reconfigurations or environmental changes, component evolution triggers
react to discovering, binding, failing or removing components.
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Triggers:

IT Operation

Periodically ([82]; [26]; [14]; [32]); [45]

Asynchronously

Internal event

custom events ([31])

unchecked Java exception ([44])

module is in idle state ([94])

related to transmission of the data ([95])

on a request of a testing session from

a client or another system/module ([94]; [103]; [8]); [104])

a tester ( [21]; [70]; [103]); [104])

the run-time infrastructure/container ([70]; [16]; [18])

decided by some policy

defined by the service integrator ([26]; [48]; [2])

defined by the testers ([67]; [69]; [22]; [27];
[26]; [2]; [14]; [13]; [87])

defined according to actual data used in the field
([73]; [23])

activation/usage of a specific functionality

defined before run-time ([17]; [75];
[77]; [46]; [25]; [32])

defined at run-time ([89]; [24])

...

Evolution

System evolution

dynamic adaptation: structural or reconfiguration ([63];
[81]; [62]; [3]; [94]; [1]: [60]; [54]; [59];
[86]; [41]; [38]; [61]; [55])

environmental change([53]; [37]; [38]; [23])

Service/component evolution

new module discovered or deployed ([53]; [12]; [40];
[94]; [64]; [14]; [83]; [102]; [105])

new module bound ([53]; [66]; [94];
[73]; [80]; [6]; [33])

module change or fault ([66]; [40]; [64]; [14]; [73];
[80]; [6]; [51]; [93]; [32])

module removed ([64])

Figure 3: Test triggers used to run tests in the field

Exploited Resources

Data

actual user inputs ([17]; [25]; [10]; [46])

in-memory state of the application in production ([17]; [75])

test logs collected in the field ([89]; [53] )

test data repository ([53]; [22]; [26]; [37])

environmental data ([89]; [82]; [10]; [44] )

...

Dedicated infrastructures

computational resources for coordinating testing activities
([53]; [21]; [66];[37] [48]; [83]; [105]; [32];
[8]; [61]; [87])

snapshot-capable execution environment ([75]; [44])

support to the mobile agent paradigm ([102])

Figure 4: Exploited resources

6.3 Field Resources

In-vivo testing approaches require the availability of different resources in the field. In this section, we
overview both the required field data and the infrastructures dedicated to field testing. We discuss the
resources required to isolate executions of field tests in Section 8.2.
Fig. 4 shows both the kinds of field data and dedicated infrastructures that different approaches require.
Several approaches rely on the data obtained from production. Bobba et al. [17] exploit user inputs to detect
failures, Dai et al. [25] exploit user inputs to detect security vulnerabilities introduced by changes in the
configurations. Bell et al. [10] mutate user inputs and observed outputs, leveraging metamorphic testing
or weak-mutation strategies, to produce new test cases, Hui et al. [46] mutate inputs and outputs to reveal
security vulnerabilities.
Other approaches rely on the in-memory state of the application in production. Bobba et al. [17] and Murphy
et al. [75] exploit the in-memory state to discover faults hard to reveal in-house. Some works exploit data
from the logs or from the verdicts collected in the field while executing in-vivo testing sessions. Sammodi et
al. [89] use such information to predict adaptations, while King et al. [53] detect symptoms of undesirable
SUT states. Many field testing approaches require specific data, and rely on dedicated test data repositories
to store regression test cases [22], authentication/authorization cookies [26], or more generally mutable test
artefacts so as to keep them consistent with the current operating conditions [37]. Some approaches take
advantage of information on both the environment and the execution context. For instance, Gu et al. [44]
infer useful information for testing from the state of the hosting virtual machine.
Field testing approaches may require additional infrastructures that are not part of the SUT to be available in-
vivo. A common case is the request for computational resources for coordinating the testing activities, necessary
when multiple components are involved in field testing. While approaches based on replicas use either
snapshot-capable execution environments to simplify replica management [75, 44] or agent-based paradigm to
migrate components between hosts [102].
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Types of oracles

Domain-dependent ([63]; [53]; [24]; [75]; [69]; [22]; [62]; [27]; [95]; [78]; [37];
[2]; [3]; [71]; [70]; [12]; [46]; [72]; [80]; [6]; [38]; [98]; [31]; [18]; [20];
[10]; [51]; [93]; [32]; [8]; [76]; [86]; [41]; [21]; [48])

Specification based ([21]; [12]; [46]; [86]; [41]; [6]; [20]; [10]; [76])

User defined ([63]; [75]; [62])

QoS ([70])

Domain-independent ([74]; [89]; [17]; [67]; [44])

Specification based ([74])

QoS ([89]; [67])

Default (no unchecked exceptions) ([44])

...

Supports both ([30]; [26]; [83]; [102]; [23]; [25])

QoS ( [83]; [23])

User defined ([25])

Unspecified ([43]; [81]; [82]; [42]; [66]; [77]; [40];
[79]; [64]; [14]; [60]; [1]; [54]; [16]; [58]; [73]
[59]; [47]; [99]; [5]; [13]; [105]; [101]; [33]; [100]
[34]; [103]; [104]; [61]; [55]; [45]; [94]; [28])

Figure 5: Types of oracles

6.4 Field Oracles

Field testing approaches rely on different kinds of test oracle to decide the test outcome. Domain-dependent
oracles require information about the SUT application domain, for instance oracles that assert the results
expected for some operations; Domain-independent oracles, such as oracles that assert the availability of the
SUT, do not require the specific knowledge of the SUT’s application domain. Fig. 5 classifies the approaches
depending on the test oracles as domain-dependent, domain-independent, and hybrid, if they support both types
of oracles.
Many studies (34 papers ≈ 43%) do not present specific oracles. The majority of studies that propose
some oracle (76%) rely on domain-dependent oracles, 5 approaches rely on domain-independent oracles,
6 approaches rely on a combination of both types of oracles. The effort on oracles indicates that many
field failures do not cause crashes and require some knowledge about the SUT to be detected. This is not
a surprise, since in-vivo testing usually addresses stable applications, and is designed to reveal problems
related to corner cases and infrequent scenarios.
Most approaches that consider some form of oracle do not explicitly discuss the techniques used to imple-
ment the oracles. Only 20 out of 46 approaches (43%) explicitly describe the proposed oracles. The majority
of approaches that explicitly define an oracle use some form of specification-based oracles: component
specifications [12], SUT models or specifications [6], BPEL specifications [20]. Several approaches refer to
metamorphic relations [74, 21, 46, 10, 76]. Some approaches rely on user-defined oracles [63, 62, 25].
Some domain-independent oracles rely on QoS attributes of the SUT, such as general performance metrics,
like response time [89, 70, 23], or execution duration and availability [83]. Few studies exploit the default
oracle, that is, the detection of crashes or unchecked exceptions [44].

6.5 RQ1.2: Findings

We conclude this section summarizing the key characteristics of field testing approaches with respect to the
source (where test cases are generated), strategies, triggers, resources and oracles.

• Sources of Field Test Cases:
Approaches for field test cases are evenly distributed between in-house and in-the-field generation: While several
approaches investigate the opportunistic generation of test cases in the field to address unforeseen issues,
test cases generated in-house are often sufficient to address field issues. Indeed, complex strategies that
operate in the field are not always required. Simultaneously, improving the opportunistic and dynamic
generation of field test cases is still an objective.
Ex-vivo testing strategies are still largely under-explored. Only few approaches take advantage of data from the
field to generate effective field test cases, and execute them in the field, leaving a large space of opportuni-
ties for further study.

• Strategies and Triggers:
Most field testing approaches aim to predict failures, thus confirming the intuition that the main goal of in-vivo
testing is to prevent failures to occur.
Field testing activities are triggered both by events in the SUT and in the environment, and by evolutions of the
SUT or its components: Only few approaches periodically activate testing sessions, while most approaches
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rely on asynchronous triggers related to the SUT, such as structural changes and reconfigurations, and the
environment, such as new configurations and components.

• Resources:
In-vivo testing approaches heavily rely on data from the final production environment: Field data are important
sources of information for field testing to identify new scenarios and corner-cases. Field data include user
inputs, state information, logs, and environmental data.
In-vivo testing often demands additional engineering not required for the SUT: Gathering data from the field
and coordinating field testing activities require non-trivial (hardware, virtual and software) infrastructures.
Designing these infrastructures can be challenging, due to their impact on the complexity of the SUT, and
the possible introduction of threats to safety and security that must be carefully addressed and compensated
by the benefit of running field testing.
Many approaches do not explicitly mention the resources needed in the testing sessions: The additional resources
required by field testing are not always explicitly discussed as part of the approaches, despite the required
extra-cost and the extra-engineering effort.

• Oracles
Specification-based oracles are the most common field testing oracles: Field testing approaches often rely on
specification-based oracles, with metamorphic relations frequently used both as oracles and as a support to
generate new test cases.
The oracle problem is overlooked: In many cases the oracle either is not specified or the default one is used,
resulting in approaches that might miss relevant failures due to lack of proper oracles.

7 RQ2: Test Target, Granularity and Type of Tested Applications

In this section, we discuss the targets of field testing (Section 7.1), the granularity of the software tested in
the field (Section 7.2), and the type of applications considered for field testing (Section 7.3).

7.1 Target Features

Field testing can be designed to address different target features:

• New features: the feature is either new or tested without using information about past versions.

• Regression issues: the feature is tested after a change that is expected to have no effects on it.

• Changed feature: the feature is tested after a change that is known to affect its behavior.

• Changed environment: the feature is tested after detecting a change in the environment.

Table 4 shows the distribution of the different approaches with respect to the target features. It is worth
noting that some approaches address more than one type of targets.

Table 4: Targets of testing approaches
Target Number of approaches %
New feature 24 35%
Regression 37 54%
Changed feature 28 41%
Changed environment 19 28%

Most approaches deal with regression testing (37 papers). In-vivo regression testing is used especially
for software systems that can be dynamically reconfigured or adapted while running in the production
environment, such as autonomic computing systems [54], and component-based systems [63]. Regression
testing is also considered in ex-vivo approaches, as a way to obtain additional test cases that can reveal the
side-effects of changes [72].
Field testing has been also significantly employed to test the impact of environment evolution. In fact, it is
hard to exercise in-house every possible environment and configuration. Leveraging the natural diversity
of environments available in the field is a clear strength of field testing.
When a new feature is released or an existing feature is changed, the validation activity cannot always be
completed in-house, especially if the behavioral space of the SUT is large. Field testing has been exploited
to continue validation activities in the field and discover the missed faults.
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Although revealing regression problems has attracted more attention than other possible targets, all the
four scenarios have been significantly investigated in the domain of field testing.

7.2 Granularity of the Tested Elements

Granularity refers to the granularity level of the tested elements: unit/component/service, integration/sub-
system, system, or system of systems (SoS). Table 5 shows the distribution of the different approaches with
respect to the addressed granularity level. Indeed, the majority of the studies consider unit, integration,
and system testing, with most approaches focusing on unit level. In many cases, field testing approaches
target multiple levels. Our analysis indicates the testing of System of Systems as a largely unexplored area.
Given the growing complexity, size and degree of interoperability of modern software systems, such a level
deserves greater attention in the future.

Table 5: Granularity of testing approaches
Granularity Number of papers %
Unit 45 57%
Subsystem 29 37%
System 25 32%
System of Systems 2 3%

7.3 Type of Tested Applications

The type of application directly influences field testing techniques, since it impacts on the core mechanisms,
namely runtime test execution, isolation, monitoring. Current field testing approaches address four main
classes of applications: Desktop applications, which run on desktop or laptop devices; Mobile applications,
which run on mobile devices, such as smartphones, tablets, smartwatches; Remote applications, which run
on servers, usually accessed via client applications, installed on desktop or mobile devices; and Embedded
applications, which run on dedicated components with time and robustness constraints, and that are not as
frequently updated as other types of applications.
Table 6 shows the distribution of the different approaches with respect to the type of addressed application.
Most field testing techniques address remote applications, whose many resources facilitate the design of
key features, such as isolation (often obtained by replicating components) and monitoring (ofter provided
with little interference on the running systems). This is especially true for cloud infrastructures that provide
virtually unlimited computing resources.

Table 6: Approaches per application type
Category Number of papers %
Remote 59 74%
Embedded 10 13%
Desktop 11 14%
Mobile 1 1%

Field testing approaches that target embedded applications consider interactions with hardware and envi-
ronment, and focus primarily on ex-vivo testing [78, 28, 79] that can be safely performed in-house. Only
few approaches deal with online testing for systems with strong fault tolerance and assurance require-
ments [95, 3, 40, 16, 51, 100].
Desktop applications receive little attention, probably due to the relatively low popularity nowadays. We
found only one approach designed for mobile applications. The limitations imposed by mobile devices
(limited computational resources) and mobile operating systems (security constraints) are probably quite
challenging for field testing technology.

7.4 RQ2: Findings

We conclude this section summarizing the key characteristics of field testing approaches with respect to the
target features, the granularity, and the type of the tested elements.

• Target Features:
Field testing addressed a variety of test targets, with a focus on the presence of unexpected side effects as
consequence of changes, and on new and changed features, and environment changes.
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Monitoring targets: What is monitored

State (inspection of variables of interest)

Target application

Functional ([31]; [32])

Input to the target ([46])

Output form the target ([66])

Target-Internal I/O ([81]; [48]; [77]; [47])

Non-functional (e.g., response time) ([89]; [82]; [70])

System resources (e.g., CPU, memory, storage) ([89]; [94];
[54]; [38])

Environment (e.g., sensors value/network data) ([95]; [37];
[28]; [103]; [104]

...

Events

Target application

Interactions (e.g., method calls/service invocations) [24]; [17]; [75];
[30]; [82]; [48]; [3]; [80]; [47]; [31]; [83]; [99]; [5];
[102]; [51]; [100]; [32]; [55]; [45]

Target application changes

Code ([22]; [1]; [80]; [6])

Interface ([22]; [6])

Configuration/architecture ([63]; [53]; [22]; [62]; [27]; [12];
[40]; [94]; [14]; [86]; [41]; [6]; [38]; [93])

Exception/Error/Failures ([44]

Ad hoc events ([101])

System event (e.g., errors from system log) [3]

Environment

User interactions [89]; [69]; [82]; [73]; [47]; [34]; [32]

Interactions with other systems ([74]; [89]; [83]; [99]; [5]; [102])

Events of interest (e.g., failures from other systems) ([28]; [79]; [38]; [23])

Figure 6: Field testing approaches by monitoring targets

• Granularity of Tested Elements:
Field testing is applied to all levels: units (functions, components, services), integration, and system. Indeed,
field testing is a general solution that can address elements of different size and complexity.
Systems of Systems (SoSs) deserve more attention: SoSs are systems composed of multiple independent systems
that cooperate opportunistically. Although so far they received little attention, they are complex systems
that require field validation techniques to be properly addressed.

• Type of Tested Applications:
Most approaches apply to server applications that provide enough resources to easily address some of the key
challenges of in-vivo testing.
Mobile applications are challenging: Mobile applications can be deployed on a huge diversity of devices, and
can interact with the environment in a rich way thanks to the many sensors they can be connected to. It
is thus an extremely interesting context for field testing. However, so far, field testing is still substantially
unexplored. This is probably due to the constraints imposed by the mobile computing environment, such
as the security and resource constraints, that make the deployment of field testing difficult. We expect more
work in this domain in the future.

8 RQ3: Monitoring, Isolation, Privacy and Security

In this section, we discuss how field testing approaches monitor the SUT (Section 8.1), isolate tests in the
field (Section 8.2), and address privacy and security in field testing (Section 8.3).

8.1 Monitoring

Monitoring is the process of dynamically gathering, interpreting, and elaborating data about the execution
of the SUT. Monitoring is extremely important in field testing, as it captures data about events and states of
both the SUT and the environment. Such data are needed to trigger the testing process, generate and select
the test cases and identify the testing activities.
We distinguish direct and indirect monitoring, based on the source of information, that is, who produces
the information. Monitoring is direct if the monitored information comes directly from the SUT, indirect
if the monitored information comes from the software, physical or human environment where the SUT
operates, for instance OS resources consumption, data read by sensors or data about user interactions with
the system. We discuss what is monitored, that is, the information the monitoring facilities gather to support
field testing, and how monitoring is implemented, that is, what techniques are used. The activities for
gathering information include:

• logging: the process of recording textual and/or numerical information about events of interest,
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• tracing: the process of recording information about the control flow of a SUT during its execution.

Logging and tracing differ in their goal, even when implemented with similar techniques, for instance
by instrumentation: Tracing records the execution flow of the SUT execution without referring to specific
classes of events of interest, while logging focuses on the events of interest, for instance, recording errors
or failures. In the following, we discuss the monitoring solutions in field testing, by focusing on (1) what is
monitored and (2) how software is monitored.
Fig. 6 groups field testing approaches according the targets of the monitoring activities, that is, the infor-
mation of interest. Approaches that monitor different kinds of information are associated with more than
one branch in the tree in the figure. We distinguish (i) approaches that monitor the state of the SUT itself,
the system in which the SUT is executed, or the environment with which the SUT interacts, which entails
reading the values of the variables of interest; from (ii) approaches that monitor events of interest, that is,
events that cause the state to change, for instance, an action of a user that caused a reconfiguration or some
method calls. Our survey indicates that 55 out of 80 (69%) studies explicitly specify what is monitored to
support the testing process.
Many field testing approaches monitor the state of the target, namely the values of variables of interest. In
several studies, the monitoring solution intercepts functional values of the variables of interest, namely the
input/output exchanged to/from the target and within the target’s modules. For instance, Hui et al.’s
approach [46] detects integer overflows by online metamorphic testing. The approach monitors inputs
of insecure integer data along with sensitive code paths to detect untrusted sources of integer values with
their paths to security sensitive sinks. The approach uses the information to trigger testing, which exploits
metamorphic relations to test the same path with untrusted values. Lee et al.’s approach [66] proposes an
architecture for field testing of embedded systems that extends the Simplex architecture, to allow compo-
nents to be upgraded and tested online. The approach compares the output of the component under test to
the output of the component that is replaced in the Simplex configuration, in order for the system to benefit
from the new component while still assuring a correct computation.
In many cases, field testing accesses the Internal I/O operations of the SUT modules. Hummer et al.’s
approach [47] focuses on integration testing of dynamic service compositions, in which the data flowing
within the BPEL composition is observed to generate test cases. Murphy et al.’s approach [77] monitors the
values of variables in the scope of the function under test to understand if the application is traversing a
previously unseen state and need to be tested.
Some approaches monitor non-functional attributes. Ma et al.’s approach monitors the system response time
to perform adaptive performance testing of web services [70].
Other approaches monitor system-level information about resource utilization or about the environment. King
et al.’s approach monitors the state of managed resources in autonomic computing systems to trigger self-
testing routines [54]. De Olivera Neves et al.’s approach monitors the environment with sensors to trigger
environment-dependent field test cases [28].
Some approaches monitor events at the level of the target application. In many cases, the events are about the
interaction within the application, such as method calls or service invocations. In other cases, the events are
about changes that may occur in the target application (e.g., module/service upgrades, interface changes and
reconfigurations) and tests assess the impact of these changes.
Other approaches monitor exceptions/error/failures (e.g., unchecked Java exception [44]) or domain-specific
ad hoc events (e.g., events specifically defined for coverage assessment and published in the event inter-
face [101]). Approaches can also exploit system events, such as data present in the logs, to assess the ex-
pected versus observed behavior during testing [3]. Some approaches monitor interactions of the target
application with the external environment, by capturing interactions with users or other applications/services
such as in the case of service compositions.
Fig. 7 groups field testing approaches according to the technique adopted to monitor the SUT, that is, how
monitoring is implemented. Approaches that monitor different kinds of information are associated with
more than one branch of the tree in the figure.
Our survey indicates that 53 out of 80 (66%) of the studies explicitly indicate the monitoring technique, that
is, how monitoring is performed (direct vs. indirect). Many approaches implement direct monitoring by
logging runtime information either with or without instrumenting the SUT, in the latter case by exploiting
information natively logged by the target application. Few approaches rely on ad-hoc components de-
signed to capture a specific class of events. For example, Cooray et al. rely on the ODE-BPEL extension that
provides the BPEL event listener API to monitor the Web service process execution [22].
Some approaches monitor the system by tracing the control flow of the execution, either with or without
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Monitoring techniques: How monitoring is performed

Direct

Events of interest

Logging ([12]; [40]; [32])

W instrumentation ([74])

W/o instrumentation ([44]; [1])

Ad hoc component (e.g., listener module/service) ([63]; [89];
[22]; [82]; [62]; [12]; [40]; [94]; [14]; [80];
[47]; [86]; [41]; [6]; [101]; [93]; [32]; [61] )

Control flow ([48]; [77]; [46]; [80]; [47]; [31]; [32];
[55];[45])

Tracing by target instrumentation ([24]; [17]; [75]; [30];
[38])

W/o instrumentation (e.g.: monitor REST/SOAP requests in SOA)
([89]; [82])

Inspection ([89]; [82]; [66]; [70]; [83]; [99]; [5]; [102])

...

Indirect

Events of interest

Logging w/o instrumentation (e.g.: produced by the OS/Network/others)
([3]; [28]; [79])

Ad hoc component (e.g.: user/environment event triggering a reconfiguration)
([53]; [69]; [73]; [47]; [34])

Inspection (e.g.: periodic monitoring of OS resources (CPU/memory/storage))
([89]; [81]; [82]; [37]; [94]; [54]; [38]; [23]; [51]; [100];
[103]; [104])

Figure 7: Field testing approaches by techniques
Isolation techniques

Duplication (cloning) ([63]; [43]; [24]; [75];
[62]; [42]; [3]; [70]; [77]; [94]; [44];
[64]; [54]; [58]; [59]; [20]; [25]; [10];
[76]; [61]; [55])

Duplication in the field ([63]; [43]; [24];
[75]; [42]; [77]; [25]; [10]; [105])

Forking a separate process ([24]; [75];
[77]; [25]; [10])

State duplication ([43]; [42])

Duplication in separate vm/container ([63];
[40]; [44]; [76])

Simulation ([43]; [42]; [3]; [20])

Test mode execution ([53]; [43]; [81]; [82];
[26]; [12]; [64]; [14]; [16]; [86]; [41];
[33]; [103]; [93]; [8]; [104])

Adaptation of components (test interface) ([43];
[64]; [103]; [93]; [8]; [104])

Mocking/stubbing ([53]; [12]; [14]; [33])

Compensation ([13])

COW (copy-on-write) file system ([24])

...

Blocking (suspend-resume) ([63]; [53]; [43];
[17]; [62]; [64]; [14];
[54]; [58]; [59]; [105]; [61]; [55])

Transactional memory ([17])

Blocking interactions ([105]; [55])

Blocking user operations ([67])

Based on dependency analysis ([53])

Partial shut down ([43])

Delaying deployment of new component ([66])

Built-in tests (written so as to ensure isolation) ([63]; [89];
[62]; [94]; [59]; [18]; [61])

Side effect free tests ([89])

Sensitivity to testing specified in the components ([94])

Tagging ([62]; [64]; [58]; [59]; [51]; [100]; [61])

Tagging test data ([63]; [51]; [100])

Tagging test invocations ([82])

Figure 8: Isolation techniques

(static or dynamic) instrumentation. Other approaches periodically inspect SUT attributes.
Approaches that implement indirect monitoring are driven by information from the system and the envi-
ronment. Some approaches access logged information, such as operating systems, network, and sensors
logs [3, 28]. Other approaches propose ad hoc components for monitoring users’ or environment’s events
that trigger reconfiguration [53], [69]. Yet other approaches rely on periodic inspection of attributes of the
system and the environment, such as system resource consumption [54] and network data [51], [100].

8.2 Isolation

Field testing should not interfere with normal operations nor produce undesired side effects. To prevent
side effects on the execution flow of the SUT, field testing approaches either execute field tests in sand-
boxed environments or do a roll-back before restarting normal execution. Field testing approaches are
isolated at different levels. The isolation level of a field test is the computational unit that is subjected to
isolation during field testing, and that can be safely field tested with warrantied no side-effects on the
running system. Depending on the granularity of field testing, which we discussed in Section 7.2, the
isolation level may scale from small computational units, such as classes or functions, to large units, up to
the entire SUT.
Many approaches do not discuss the isolation problem, and do not explicitly propose solutions. Isolation is
not a problem for either ex-vivo approaches or in-vivo approaches that simply compare the behavior of the

TECHNICAL REPORT 16



TR-Precrime-2021-02 — Field Testing Survey

SUT observed in the field to the expected one without interfering [30].
Many approaches that target service-oriented applications either assume side-effect-free SUTs or suitable
compensation mechanisms [13], that is, they assume that side effects can be either rolled back or compensated
(e.g., by paying proper testing fees) when services are executed for testing purposes. In-vivo approaches
that assume compensation mechanisms for allowing testers to (partially) ignore the side effects of in-vivo
testing require careful engineering to avoid such compensation mechanisms to be abused or used beyond
reasonable limits.
Some approaches address the isolation problem by assuming that test cases are side-effects free by de-
sign [89]. The difficulty of designing field test cases with no side effects depends on the test granularity: it
may be not too difficult at small granularity levels, but it becomes very difficult at high granularity levels.
Fig. 8 summarizes the isolation mechanisms proposed for field testing. The most polular mechanism is
duplication, also called cloning, that implements isolation by executing the field tests after duplicating the
execution state, hence ensuring no interference with the execution in the production environment. Some
approaches clone the execution state in the same execution space of the production environment (duplication
in the field) by (i) forking a separate process devoted to in-vivo testing, (ii) cloning the objects involved in
testing, or (iii) deploying redundant instances in the field for testing purposes (state duplication).
Other approaches separate in-vivo testing from the production processes, by either executing the field test
cases in a separated virtual machine that duplicates the runtime environment or reproducing the main process
in a simulator, possibly based on information gathered from the main execution by means of probes.
Another extensively used isolation mechanism is based on specific test execution modes that differentiate
the execution in testing versus normal operational mode. The testing mode ensures that test cases do not
affect the normal execution state. Test modes are implemented by (i) adapting the behavior of the components,
for instance by using a test interface that in-vivo test cases use instead of the production interfaces, (ii)
using stubs and mocks, or (iii) activating mechanisms that compensate the effect of test execution. All these
variants assume that components are designed and developed for testability, with a test execution mode
that prevents side effects.
A less investigated isolation mechanism is the usage of copy-on-write (COW) file systems [24], whose effec-
tiveness is limited to side effects that leave a persistent trace in the file system.
Some approaches isolate field testing with blocking mechanisms that block the execution of components
with potentially undesirable side effects for the whole duration of in-vivo testing. Field testing approaches
implement blocking in various ways. A clean and elegant solution exploits transactional memory: In-vivo
test cases are executed within a transaction that is rolled back when returning to normal execution. Variants
of this solution include blocking either the interactions between components or user operations that may in-
terfere with the execution process, identified with dependency analysis. Another way to implement blocking
consists of shutting down all components that could interfere with the main process during in-vivo testing,
to inhibit side effects.
Other approaches delegate isolation to the design of test cases (built-in tests). Writing side-effect free tests
is not a straightforward solution, highly dependent on the skills of testers, who are in charge of defining
proper tests for in-vivo execution. Other approaches delegate isolation to the design of the components, by
requiring the components of the system to declare their sensitivity to testing, in terms of side effects that
may depend on executing test cases in the field. It becomes then a responsibility of the test cases to check
that the components have an adequately low sensitivity to testing.
Few approaches implement isolation by tagging the information generated during in-vivo testing, so that
it can be distinguished and handled separately from the information originated by normal execution. It is
possible to tag either the generated data or the performed invocations.
Few approaches define explicit isolation policies. Lahami et al. [63] propose multiple policies, and assume
that developers choose among the alternatives (a subset of those in Fig. 8) once and for all, before deploying
the test suite.
Gonzalez-Sanchez et al. [43] propose to declare policies in the components under test based on the level of
testability, and configure specific isolation mechanisms based on the possible side effects declared in the
components under test. Lahami et al. [58] define test cases optimized for isolation, by choosing the best
isolation technique among the available ones, depending on component-system interactions.
Most isolation techniques work at module granularity level: service, subsystem and class, as shown in Fig. 9.
Indeed, many of the techniques that exploit isolation strategies based on duplication, test mode, built-in
tests, blocking and tagging operate at module level. Isolation at the process level is also quite common,
while application, system and host isolation levels are less frequent and often more challenging than isolation
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Isolation level

Module ([63]; [53]; [43]; [17]; [81];
[42]; [66]; [70]; [94]; [64]; [54];
[58]; [59]; [86]; [41]; [18]; [105];
[33]; [51]; [100]; [103]; [8]; [104];
[55])

Service ([26]; [33]; [103]; [8]; [104])

Subsystem ([51]; [100])

Class ([18])

...

Application ([17]; [81])

System ([67])

Process ([24]; [17]; [75]; [3];
[77]; [16]; [25]; [10]; [76])

Host ([81]; [40])

Figure 9: Granularity of the computational unit being isolated during field testing

at low granularity levels.

8.3 Privacy and Security

Privacy and security issues are still largely unaddressed. Only 8 studies out of 80 (10%) address such
aspects. A common solution to privacy and security is designing testable units with specific features to ease
testing and exposing internal information, for guaranteeing a given level of security and privacy. Ye et
al. [101] propose a method for white-box testing of service compositions with minimal exposure of internal
information about the participating services. They augment methods with event interfaces that expose
encapsulated events and relaxed constraints, to check white box coverage, thus guaranteeing information
hiding and privacy.
Zhu et al. [103] propose testing variants of existing services to enable third-party organizations to test the
SUT while assuring non-disclosure of information, for instance, source code. The testing variants can be
used in a collaborative setting in which test tasks are completed through the collaboration of various “test
services”, that are registered, discovered, and invoked at runtime using the STOWS ontology of software
testing [104].
Bartolini et al. [8] propose testable versions of services to collect coverage reports, by means of services that
do not disclose the internals of the SUT, while still providing coverage information.
Di Penta et al. [32] propose testable services to allow testers to send assertions checked by services. In this
way, testers can obtain test results without directly accessing the monitored data.
Security is often addressed by creating networks of trusted entities that communicate using secure channels.
Zhang [102] proposes an approach for dynamically testing web services for reliability before integrating a
discovered service. The approach enables the node that hosts the web service to trust the testing mobile
agent. Cooray et al. [22] rely on secure communication to assure the privacy of test execution logs and
reports. Bertolino et al. [13] propose a method to test service compositions under the governance of a
service federation. An online testing component triggers service testing requests that are indistinguishable
from regular requests, thanks to an assertion signed by an identity provider, which grants a regular role to
the test component. Tests are selected and executed proactively, so as to ensure the trustworthiness of the
federation.
Finally, both Hummer et al. [48] and Murphy et al. [75] explicitly define privacy and security requirements,
but do not propose solutions to satisfy them.

8.4 RQ3: Findings

We conclude this section summarizing the key findings about monitoring, isolation, privacy, security.

• Monitoring:
Monitoring is often overlooked: Many studies do not report details about monitoring, despite its importance:
31% of the studies do not explicitly indicate what they monitor, and 34% do not report on how they monitor
the SUT.
Custom solutions for monitoring are prevalent: most monitoring solutions largely depend on the application
context, testing objective and granularity.
Heterogeneous monitoring is quite common: Many studies privilege events and states of the SUT over the
environment. However, a significant number of studies monitor several information sources (9 out of 53
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Test Selection:

In house with field data

Evolution ([47]; [38])

In the field

Manual ( [67]; [69]))

Random ([17, 75])

...

Service/component

structural dependencies ( [63]; [53]; [62])

data dependencies ([48])

evolution ([64])

Reactive Planning ([12])

Operational profile ([89])

V&V policies and metrics ( [27]; [13]; [8] )

Model-based techniques ( [70]; [99]; [95]; [6])

Figure 10: Field testing approaches by test selection criteria

studies that indicate how monitoring is done) and capture heterogeneous information (18 out of 58 studies
that specify what is monitored) to retrieve the data required for field testing.

• Isolation:
The isolation problem is still largely open: Most approaches assume the availability of isolation mechanisms,
leaving largely unexplored the many issues that derive from possible side effects on the state of the ex-
ecution and on the environment, and from the interference with non functional properties, in particular
performance.
“Design for isolation” is often advocated: Many approaches assume the execution environment is aware of
and supportive to field test execution, and define test cases that take advantage of the isolation primitives
available in the execution environment, such as test execution mode and compensation mechanisms. This
is frequent in approaches designed for the web service domain.
Isolation policies largely ignore performance issues: Although some approaches proposes multiple alternative
solutions for isolating field tests, there is no comparative evaluation of the performance footprint of the
alternatives. As a consequence, the isolation policy is based on a-priori assumptions on the effects of each
choice, rather than on objective measures of their impact. Experiments that measure the performance over-
head of the proposed isolation mechanisms are quite rare.

• Privacy and Security:
Security and privacy are largely unaddressed: Very few studies address privacy and security issues in field test-
ing, despite their importance, especially in some application domains, like web and service-based applica-
tions. Only one of the studies reported in this survey indicates security and privacy as a main focus [26].

9 RQ4: Field Test Selection, Prioritization, and Governance

This section discusses test selection and prioritization (Section 9.1), and test governance (Section 9.2).

9.1 Field Tests Selection and Prioritization

Test selection is the activity of choosing a suitable subset of test cases to execute. Our investigation reveals
a broad spectrum of techniques spanning from simple strategies like manual and randomized procedures,
to sophisticated strategies like reactive planning and model based approaches. Fig. 10 groups field testing
approaches according to the proposed test selection strategies.
Few approaches select test cases in-house with data collected from the field. Frederiks et al. [38] and Hum-
mer et al. [47] select ex-vivo test cases when observing changes of the system or its environment.
Lee et al. [67] and Loustarinen et al. [69] rely on manual test case selection based on domain knowledge,
which may be accurate, but slow and error-prone. Many approaches propose automatic procedures. Bobba et
al. [17] and Murphy et al. [75] rely on random selection, which is simple and fast, but gives no guarantees of
accuracy and effectiveness of the selected test cases. Some approaches drive test selection using information
about the service or component to be tested: King et al. [63] and Lahamani et al. [62] select test cases based on
the structural dependencies to be tested, Hummer et al. according to data dependencies [48], and Lahami
et al. according to information about the evolution of the unit under test [64].
Bertolino et al. investigate reactive planning solutions where the selection of test inputs is performed on-
the-fly without requesting the generation of a test suite in advance [12]. Their auditing approach selects
test cases at run-time guided by both the behavioral specification of the SUT (i.e., STS [36]) and the output
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returned by the SUT at each interaction. Some approaches select test cases based on the operational profile.
De Angelis et al. refer to modules that have been exercised less by users [89].
Other approaches select test cases according to policies and metrics relevant to the V&V software process.
The works in [27, 13] consider test selection as part of a test governance framework among a federation
of services (see Section 9.2). A governance framework includes the validation of the conformance of each
member to the specifications/behaviors prescribed in the federated context. Bartolini et al. [8] propose a
framework that supports the anonymous collection of coverage information. The latter can be used either
to support regression testing activities on the SUT or to reduce a test suite by selecting only those tests that
actually contribute to the coverage improvement.
Some approaches drive test selection with models either inferred from observations or provided by testers:
to capture the behavior of the SUT and select the test cases that are likely to reveal failures, Vain et al. rely
on Markov models [95], Wang et al. on Petri Nets [99]. Bai et al. [6] and Ma et al. [70] use reinforcement
learning and agent-based paradigms to reason about the behavior of the SUT, and select the test cases to be
executed in reaction to changes in the operational conditions or in the software system.
Only few approaches address test prioritization, that is, a strategy for scheduling the order of execution of
field test cases. Mei et al. [72] propose test prioritization without a selection strategy. They prioritize the
execution of in-house tests based on changes that occur in the field to service compositions, assigning higher
priority to the tests that are more likely to exercise the change. Vein et al. [95] use a probabilistic strategy.
Few other approaches barely refer to some prioritization strategies without providing details [89, 73, 32].

9.2 Field Testing Governance

In general, governance is the act of administering, and relates to a set of policies, measures, practices and re-
sponsibilities to control and direct a complex system of relations and interactions. In the context of software
development, governance refers to a framework that defines and coordinates the tasks, activities and roles
of the software process. In the context of field testing, a governance framework provides a setting to exe-
cute and control testing activities, and establishes policies that guide the decision of when, how much, and
how to test: Test Governance concerns the establishment and enforcement of policies, procedures, notations
and tools that are required to enable test planning, execution and analysis of a given SUT [15].
We identify two dimensions that are relevant for field testing governance: Orchestration and User aware-
ness. Orchestration concerns the strategy adopted or assumed to ensure that a proposed method or tech-
nology can be suitably embedded within the target application domain and successfully managed by all
involved stakeholders. User awareness refers to the required or assumed degree of awareness of the end
users of the SUT about the field testing activities: in some cases the users might be informed and could
be even asked to cooperate to the testing campaign, in other cases the test could be conducted leaving the
users blind about the fact that some executions are launched for testing purposes.

Fig. 11 summarizes the orchestration strategies proposed for field testing. Only a small set of approaches
explicitly deal with an orchestration strategy. Some approaches acknowledge the need to make assump-
tions behind the tested application, but do not propose an orchestration strategy. King et al. [53] mention
that a Test Manager is in charge for test planning and management, and for evaluating test results ‘against
the predefined test policies’, which are available from a knowledge repository. Ma et al. [70] apply the BDI
(Belief-Desire-Intention) model for adaptive online performance testing, and assume a series of rules for de-
ciding which services to test and how to allocate the testing tasks. In similar way, Cooray et al. [22] rely
on the users of the testing system for supplying a test policy for each target service, whereby a test policy
specifies the test configuration and schedule. However, not many details are given about such policies.
De Angelis et al. [27] and Bertolino et al. [14] propose different types of policies to support the orchestration
strategy. They propose policies to decide when, how and what to test during field testing, without assuming
a specific test framework. Skoll also allows the definition of strategies that control the testing process [87].
The TT4RT framework for runtime testing by Lahami at al. [58, 59] includes a description of policies for
limiting side effects.
Several approaches propose an explicit orchestration strategy. Ali et al. [2] illustrate the strategy behind
their proposed online testing framework for service choreographies. They describe both the involved stake-
holders, including a choreography board, the testing engineers, the service providers and the choreogra-
phy end users, and a schematic process for field testing. The PLASTIC framework [12] includes an online
testing session for service admission, which requires an interaction protocol involving the requesting ser-
vice, the registry, a Test driver, and a Proxy/Stub service factory. The framework proposed by Zhu and
Zhang [104, 105] (originally outlined in a preliminary work [103]) is orchestrated around the provision of

TECHNICAL REPORT 20



TR-Precrime-2021-02 — Field Testing Survey

Orchestration:

Need for strategy is only acknowledged ([53];[70];[22])

Governance rules and policies are specified ([27];[14];[58];[59])

An explicit strategy is developed ([2];[12]; [104];[105];[103];[37];[87])

Ad-hoc strategies for evolving autonomic systems are conceived ([54]; [93];[55])

Strategies for domain specific systems are devised ([8];[101]; [69];[95])

Figure 11: Field testing approaches by orchestration strategy

dedicated test services, both general-purpose and specific ones, and the STOWS ontology for web service
testing that saves the information needed for the registration, discovery and invocation of such test services.
Proteus [37] provides runtime testing for self-adaptive systems. The framework can adapt test suites and
test cases so that both remain relevant despite changing operating conditions. The Proteus orchestration
strategy is based on two basic rules: an adaptive test plan is provided at design time for each configuration
and a testing cycle is executed at each new configuration.
King et al. [54, 93] and Stevens et al. [55] propose ad-hoc strategies for on-line self-testing of autonomic
systems, for instance, at system evolution.
Few studies develop domain-specific strategies. In service-oriented architecture, the SOCT approach for
Service-oriented Coverage Testing [8] is possible thanks to an orchestration strategy requiring that (i) the ser-
vice provider releases an instrumented service, a.k.a testable service; (ii) a third-party service called TCOV
provider collects coverage information, while (iii) a service consumer performs field testing of the service.
Ye and Jacobson’s approach [101] uses a similar orchestration strategy, assuming that instead of coverage
information, the testable services espose events that can be monitored through a dedicated interface by
the third-party service. Luostarinen et al. [69] use field testing for remote usability testing, by requiring to
natively integrate a dedicated API within the user interface. Vain et al. [95] propose testing in operation
for mission-critical systems, with an orchestration strategy based on a model-based conformance testing
approach.

Concerning user awareness, only few approaches explicitly address if and how the users are explicitly
aware and involved into field testing. Niebuhr et al.’s approach [80] specifies the test cases executed at
runtime by the Service Users. Luostarinen et al. [69] foresee that users actively participate to field testing
by driving the requested usability tests. Skoll requires nodes to explicitly join the infrastructure in order to
participate to the testing process [87].
In some cases even though the authors do not explicitly discuss user awareness, we can infer that users
might indirectly become aware of the field testing activity because during testing the system might be
blocked, or delayed. This may happen for the fault-injection technique by Alnawasreh et al. [3], or in the
work by Lahami et al. [62], depending on which policy, among the four implemented ones, is selected to
reduce the impact of field testing. In the work by Murphy et al. [76] the user would be warned in case the
field test reveals unexpected behavior.
Some approaches explicitly make an effort to leave the user completely unaffected by execution of field
tests using isolation solutions such as sand-boxing, as we discuss in Section 8.2.

9.3 RQ4: Findings

We conclude this section summarizing the key characteristics of field testing approaches with respect to
test selection, test prioritization, and test governance.

• Test selection
Test selection has been mostly investigated for in-vivo testing: The vast majority of approaches for selecting test
cases focuses on in-vivo testing, where reducing the number of test cases to execute is extremely important,
since the production environments typically offer limited resources for the execution of the test cases. Al-
though less investigated, test selection techniques for ex-vivo testing can still be useful, when the ex-vivo
test suites are particularly large.

• Test case prioritization
Test case prioritization is poorly investigated in field testing: This is quite surprising, since running tests in the
field can be both expensive and risky. Thus, optimizing test execution to anticipate the discovery of failures
could be particularly relevant for large field test suites. On the other hand, most of the studies consider test
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suites of limited size for which prioritization is not likely to have a large impact. This might explain the
outcome of our survey. We expect work on test prioritization to increase in the future.

• Test governance
The importance of governance is undervalued: Field testing poses many challenges, and a proper governance
framework becomes necessary for making field testing possible, specifically including a proper orchestra-
tion strategy and minimizing the impact on the end users of the production system. However, only 20
out of the 80 studies discuss orchestration, and among those only 6 develop an explicit strategy. Only 6
approaches explicitly discuss users’ involvement.
Orchestration rules and policies are needed: In field testing, testers need to refer to appropriate rules and poli-
cies that establish when, how and by whom a selected set of tests can be executed. Some of the studies
assume that such rules and policies exist, and the studies focus on the technical challenges. Only few stud-
ies propose some rules and policies, even considering domain-specific contexts. However, most studies
completely overlook the orchestration dimension.
Impact on users in production: The execution of field tests may directly or indirectly impact users’ experience
with the system under test. Only very few studies mention this issue, and take different research directions:
either the users are made aware of field testing and is expected to actively participate, or an explicit effort
is made not to affect users in any way.

10 Discussion

Table 7 summarizes the main findings for each research question. RQ1 deals with the “how is software
tested” dimension of field testing. Our survey shows that most approaches are based on functional test-
ing, that is, test cases for field testing are derived from the functional requirements and in particular from
formal or semi-formal specifications (e.g., finite state models). However, approaches for fully automated
generation of field tests are still missing. Non functional aspects, such as quality of service attributes,
have been investigated widely only within the service-oriented domain.
The main trigger for in-vivo testing is the in-field observation of a new or anomalous change in the execu-
tion environment or in the application under test itself (e.g., in case of a software update or re-configuration).
Field test cases make use of data and computational resources available in the field, although such usage
is not always analyzed in detail, despite its potentially negative impact on the end user experience. Since
the in-vivo execution state is possibly unknown, developers of field test cases often rely on weak forms
of oracles, such as metamorphic relations, that do not require a detailed analysis of all possible execution
conditions and configurations.
RQ2 deals with the “what is tested” dimension of field testing. Field testing has been investigated at all
granularity levels. There are examples of field testing approaches targeting individual units, such as func-
tions or services, the integration of units, as well as the entire system. However, the types of systems being
field tested are not evenly spread among all domains. Server applications that provide long running
services to their users or to other applications have been extensively considered as case studies, although
the scalability of field testing to larger federations of cooperating systems is still an unexplored research
area. While combinatorial testing addresses the problem of the huge configuration space of software
product lines, such testing approaches remain mostly confined to in-house testing and how to test those
systems in the field is still a quite unexplored research area.
RQ3 deals with the “what is required” dimension of field testing. The most critical aspect of field testing is
probably the creation of mechanisms to ensure isolation of field test executions. While some form of a-priori
test case design for in-vivo execution is unavoidable, there are major opportunities to develop a general
purpose infrastructure that provides isolation services to in-vivo tests. The solutions available as research
prototypes span from duplication to test mode execution, blocking and tagging, but no comprehensive and
comparative assessment was carried out to establish their performance footprint, as well as their impact on
privacy and security.
RQ4 deals with the “how is field testing managed” dimension. The main finding for this research question
is that field testing policies are largely missing and under-studied. While proper governance of the field
testing activities would be needed to ensure an even distribution of the testing load across application
instances and to control that field testing is activated only when it provides a global added value with
respect to the previously executed test cases, no such a comprehensive framework is available in the state
of the art. Existing works focus only on some of the aspects of the field test management dimension, such
as the selection of which test cases to execute or their prioritization.
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Table 7: Summary of the findings

RQ1: Approaches, Fault Types, Test Case Generation and Platforms
Field testing mostly focuses on validating functional requirements, while non-functional aspects are under-
investigated. The research on validating non-functional requirements in the field mostly focuses on QoS at-
tributes. Specification-based test case generation is quite popular, but automatic synthesis of valuable test cases
that can be safely executed in the field is still an open issue.

Section 5

RQ1: Source, Strategy, Triggers, Resources and Oracles
While in-house and field test generation are widely studied, ex-vivo testing is clearly under-explored. Section 6.1
Field testing is mostly exploited to anticipate failures and is commonly activated as a reaction to events from the
SUT or on its environment. Section 6.2

Data gathered from the production environment are the most relevant resource for in-vivo testing, however
gathering such data requires additional engineering or infrastructures, not well addressed yet. Section 6.3

Specification-based oracles are often exploited to reveal domain-dependent failures, but the oracle problem is sill
largely overlooked. Suitable oracles are either not available or not usable. Section 6.4

RQ2: Test Target, Granularity and Type of Tested Applications
Field testing addresses a variety of target objectives: overall it is an effective means to augment the validation
activities that cannot be realistically completed in-house. Section 7.1

Field testing applies to all levels from unit to system testing. However only few studies focus on scenarios fore-
seeing an opportunistic cooperation among complex systems. Research on field testing for Systems of Systems
deserves more attention.

Section 7.2

Long-running server applications are extensively investigated: some of the key challenges of in-vivo testing
can be addressed by acting on additional dedicated resources. Despite the evolving configurations sensed by
environment and the huge diversity of the devices are ideal scenarios advocating for in-vivo testing, mobile
applications have not been frequently considered, probably due to the complexity of the mobile environment.

Section 7.3

RQ3: Monitoring, Isolation, Privacy and Security
Monitoring is often overlooked: most studies do not discuss in detail which data are monitored and how, and
rely on custom solutions tailored to the context. However, some studies investigate combined approaches that
exploit several information sources.

Section 8.1

Isolating the SUT from the side effects due to field testing is still an open problem. The “Design for isolation”
principle is often advocated, but isolation is usually not considered as part of the contributions. Automated iso-
lation techniques mostly contribute to specific aspects. In general, performance studies estimating the overhead
due to the adopted isolation mechanisms are rare.

Section 8.2

Security and privacy are largely unaddressed. Further investigation on approaches that specifically guarantee
privacy and security in field testing is needed. Section 8.3

RQ4: Field Test Selection, Prioritization, and Governance
Test selection and prioritization are mostly investigated for in-vivo testing. Although less investigated, test
selection techniques for ex-vivo testing are still useful, when the size of ex-vivo test suites increases. Section 9.1

The importance of a comprehensive governance framework is undervalued. Orchestration rules and policies are
needed to establish when, how and by whom a selected set of tests can be launched. The explicit management
of the impact on users in production has to be better considered and investigated.

Section 9.2

While we have designed our research questions to be as independent and “orthogonal” as possible, there
are interactions among them. The absence of a well established framework for field testing governance af-
fects the assessment of the isolation strategies. In fact, the performance degradation due to isolated in-vivo
test execution depends on the overall governance of the field testing process, which eventually determines
the frequency of field testing experienced by each running application instance. In turn, the effectiveness
of test case generation, selection and prioritization depends on the effectiveness of the triggers that activate
field testing. In fact, additional coverage can be achieved and additional faults can be exposed only if the
right application state triggers the execution of the right test cases. Finally, the chosen oracle is a cross-
cutting factor that determines the effectiveness of all other in-field activities, since a weak oracle may not
expose any fault despite the timely activation of the appropriate in-vivo tests.

10.1 Open Challenges for Researchers

Our survey identifies several open research challenges:

• Generating and implementing field test cases: Generating and implementing test cases designed for
the field is still an open challenge. Field test cases shall adapt to the production environment, that is, they
shall exercise the software system in the context of the production environment. Field test cases must offer
a huge degree of openness and must deal with a high degree of uncertainty, since the field is not entirely
known during development. Test cases with these characteristics have been mostly studied in the domain
of service-based applications to test the interaction with dynamically discovered services. Consolidating
the field testing practices to effectively address a wider range of situations is an important research di-
rection. While existing approaches for test generation (especially specification-based ones) have been
employed also for field testing, more advanced scenarios, such as the opportunistic generation of test cases
in the field based on the characteristics of the underlying production environment, could also be conceived.
These strategies are still underdeveloped and significant effort is still needed to move test case generation
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approaches from the development to the production environment.

• Isolation Strategies: Field test cases must be non-intrusive, that is, they should not interfere with the
processes running in production and their data. There are many strategies to guarantee the isolation of the
test cases, such as duplicating processes and components, enabling test modes, and selectively blocking
executions. However these strategies might be difficult and expensive to apply, depending on the domain
and the test cases that must be executed. We need solutions that can be conveniently applied and adapted
to specific contexts, including approaches to design software ready to be field tested, and software compo-
nents with built-in tests.

• Oracle Definition: Oracles for field testing need to adapt to the unknown execution conditions that can
emerge in the field. Oracles checking abstract properties might miss relevant test failures, while oracles
accurately checking the result produced by a field test might be extremely hard or even impossible to write.
When specifications are available, they can be exploited to generate effective field oracles. However, defin-
ing oracles that can be effectively used in the field jointly with field test cases is largely an open research
challenge.

• Security and Privacy: Executing test cases in the field challenges security and privacy. Indeed, the test-
ing infrastructure can be potentially exploited to attack the software system, and the data mined from the
field by field tests, for instance failure reports, may accidentally violate users’ privacy. Security and pri-
vacy aspects have been under-investigated so far, and must be urgently addressed to move field testing to
production.

• Orchestrating and Governing Test Cases: Field testing requires a disciplined approach, due to the po-
tential impact on production: hence, testers need to refer to appropriate rules and policies that establish
when, how, by whom, and in which order, a selected set of tests can be executed. Some of the studies
just assume that such rules and policies are in place, thus bypassing the problem. The few studies that
propose some rules and policies often consider domain-specific contexts. Research is needed to find appro-
priate governance strategies and establish the technical and organizational conditions under which such
strategies can be actualized. On the other hand, the execution of field tests may directly or indirectly im-
pact users’ experience with the system in production, and it remains an open challenge how to mitigate or
recover such impact after field test execution.

• Challenging Domains: Although field testing has been experimented in multiple domains, so far, field
testing has been studied limitedly or not studied at all in other domains. In particular, the safety critical
domain is extremely challenging for field testing, due to the consequences that an imperfectly isolated
testing environment may have. Surprisingly, the mobile computing domain also received little attention,
despite the huge variety of devices and environments mobile applications can interact with. This is likely
due to the security constraints and limited resources present in mobile devices and their operating systems.
Although challenging, these domains can greatly benefit from the field testing technology, and we expect
more research in the future.

10.2 Guidelines for Practitioners

While answering the research questions along which we structured this survey, we made some observations
that are of particular interest to practitioners in the industry.

• Specifications: Specifications are intensively used both for test generation as well as for identification of
suitable oracles. However, it is also the case that specifications are not typically found in real systems, and
when available are not specified formally, hence they are not suitable for automated processing. Practition-
ers in the industry, in particular when complex systems of systems are involved, could adopt development
methodologies that make use of (formal) specifications, such as model driven development. This enables
the effective application of automated in-vivo testing techniques and tools, in addition to addressing the
general problem of test oracle definition.

• Isolation: One of the important findings of the survey is that isolation is critical for effective in-vivo
testing. However, in many cases, achieving isolation during in-vivo test execution is far from trivial and
remains still an open research problem. Practitioners could address it by adopting design and development
practices that are intrinsically compatible with isolation, making sure that side-effects are kept at a mini-
mum. When a system is planned to be tested in-vivo, developers should introduce isolation by design into
the system.
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• Security and privacy: Findings of the survey show that security and privacy concerns are mostly left
unaddressed during in-vivo testing. While this could be partly attributed to research efforts trying to re-
duce the complexity of the problem by scoping out security/privacy concerns, it is also due to the fact
that explicit policies outlining security and privacy related aspects of the systems under test are lacking.
Practitioners adopting in-vivo testing should specify and document explicitly the security and privacy
guidelines accompanying the system. This would support a compatibility check between the information
access needed for in-vivo testing and the information restrictions enforced by such security and privacy
guidelines.

• Governance: The survey findings show that the issue of comprehensive in-vivo testing governance is
not addressed by the overwhelming majority of the works surveyed. While the research should do better
to incorporate governance, this is also partly attributable to the lack of clearly defined governance frame-
works from the systems under test. Practitioners should adopt a comprehensive governance framework
that clearly defines the in-vivo process in the life-cycle of development and testing of the system. In this
way, the in-vivo testing phase would play a specific role in the overall governance, which in turn deter-
mines the frequency of in-vivo test execution, its goals and the overall test data collection process. This
is a core governance concern in highly distributed settings, with a multitude of diverse, geographically
scattered users.

11 Threats to validity

The process of selecting and reviewing the articles is subject to the risk of bias. We hereafter report the
potential validity threats and the actions we took to mitigate them.
Study identification/sampling: Selection of the primary studies can end up with a
non-representative sample with respect to the investigated topic, for instance some relevant papers might
have been included or excluded incorrectly. The first step of our search was by a keyword-based strategy
on the Sciverse Scopus DB. Although it is a single source, Scopus is one of the largest general purpose DBs
for peer-reviewed literature and indexes journals/proceedings of the most common publishers including
Elsevier, Springer, Wiley, IEEE, ACM. As general purpose DB, we preferred Scopus to Google Scholar, as the
latter includes non-published literature (e.g., pre-print), papers that are not scientific articles or not peer-
reviewed (e.g., technical reports, theses and other grey literature). The search string was kept generic so as
to cover as much relevant studies as possible; although this conservative approach has lead to a wide set,
requiring an intensive manual filtering, it has mitigated the risk of missing relevant studies. Moreover, to
complement the search, we ran a forward and backward snowballing step.
All the steps, from the initial filtering (from 1,238 to 434 studies) to the application of inclusion/exclusion
criteria (from 434 to 48 studies) and to snowballing (from 48 to 80) were conducted, independently, by
the four research units which the authors belong to: each unit analysed a subset of the papers selected
randomly from the whole set at each stage, discussing both within the unit and between the units with
(plenary and one-to-one) online meetings, so as to agree on the papers to include/exclude and, at the same
time, iteratively refine inclusion/exclusion criteria.
Another threat regards the quality of selected studies. To mitigate it, studies are searched among those
indexed by Scopus, which considers only peer-reviewed studies (a well-established requirement for high
quality publications), excludes grey literature, and filters out several low-quality conferences and journals.
Inclusion/exclusion criteria are applied on each of the 434 studies to ensure to keep only studies pertinent
to field testing. This indeed mitigates but does not eliminate the threat of low-quality studies.
Data extraction and classification, according to the defined dimensions, could also be biased by a subjec-
tive interpretation. To reduce such a risk, the extraction and classification were done according to a data
collection form with 9 dimensions and 20 sub-dimensions defined to answer the four research questions,
in order to record data and categorize the studies unambiguously. To validate the form, we used a test-set
strategy [84, 56], in which subsets of 14 papers were assigned to each unit, with each paper reviewed by at
least two units. The units classified the papers independently, and then discussed in plenary meetings so
as to ensure that all the reviewers had the same understanding of the dimensions and of their alignment
with the four research questions.
After the dimensions validation, the rest of the papers were assigned to the four units and classified in-
dependently. The results were discussed in several inter-units and in six plenary meetings. The process,
involving all the authors in multiple iterations, also mitigates the interpretative validity threat, due to the
researcher bias in interpreting the data, classifying the papers and map them to the final findings [84]. The
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experience and expertise of many of the authors in the field of software testing is an additional mitigation
factor. Though, since this step involves human judgment, the threat cannot be eliminated.
In general, the best practices for literature reviews by Kitchenham et al. for studies selection and analysis
have been followed as documented above [56], and we published the final categorization on the ACM
Digital Library as supplemental online material of this manuscript, thus making our analysis easy to be
replicated by other researchers.
The final findings derived from the collected evidences are with references to a wide variety of applications
and domains. However, some findings could change if applied to applications/domains outside what
observed. For instance, the evidence collected for test prioritization in field testing (Section 9.3) is mainly
based on applications with small/medium test suites, hence our findings could change if larger test suite
are considered.

12 Conclusions

Field testing techniques address the complexity, unpredictability, evolvability and size of modern software
systems – challenges that in-house testing activities cannot manage satisfactorily due to the huge configu-
ration space under which those systems can operate. This paper surveyed the state of the art in field testing
following four research questions that deal with the multiple dimensions of the field testing activities: (1)
how field tests are generated; (2) what field tests are generated; (3) what is required to execute the field
tests; and (4) how field testing is managed.
The area of field testing is a challenging one and the existing research has just scraped the surface. Among
the directions for future research, the most promising ones include the automated synthesis of test cases
with high added-value (e.g., coverage increase) associated with in-field execution; the creation of oracles
that target those faults that escape in-house testing and are better exposed in the field; the execution of
in-field test cases on end-user devices with limited computation, memory and energy resources, such as
mobile phones; approaches to ensure privacy of the exchanged data and security of the application under
test when in-field tests are executed; overall governance of the distributed execution of field tests across all
available installations and users.
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Online Supplemental Material: A Survey of Field-based Testing Tech-
niques

This online appendix details the presentation of the approaches referred in Section 5 and it proposes a
deeper analysis about their classification within the framework proposed in the current survey.

A RQ1.1: Approaches, Fault Types, Test Case Generation and Plat-
forms

Table 8: Testing techniques

Testing approach Test Generation Strategy
Specification-based Structure-Based Fault-Based Pre-existing

ex-vivo functional

Section A.1.1
Mutation of Field Executions
[74, 78, 28, 79]
Test Suite Adaptation
[48, 47, 38]

Section A.1.2
Profile Data
[34]

Section A.1.3
Field Triggers
[72]

offline

functional

Section A.2.1
IO Data Pattern
[81]
Metamorphic Relations
[10, 76]

Section A.2.3
Built-in Tests
[94, 98, 75, 54, 55, 93]
Test planning and management
[43, 42, 77]
Adaptation and Reconfiguration
[62, 64]

non-functional
Section A.2.2
Security Specifications
[25, 24]

online

functional

Section A.3.1
Choreographies and Service-based specifi-
cations
[22, 2, 12, 6, 99, 5]
Finite-State Models
[71, 95, 18, 33, 20]
Metamorphic Relations
[21]
Graph grammars
[83]

Section A.3.2
Event Interface
[101]

Section A.3.3
Fault Injection
[102]

Section A.3.4
Test planning and management
[60, 1, 59, 14, 27, 43, 42]
Adaptation and Reconfiguration
[44, 53, 64, 32, 62]
Isolation
[17]

non-functional

Section A.4.1
Stochastic Models of User Behavior
[89, 82]
Security Specifications
[12, 26, 13, 46]
Usability Models
[69]
∆-grammars for QoS
[83]
Timed-automata
[71, 95]

Section A.4.2
Fault Injection
[3, 102]
Operational Pro-
file
[73]

Section A.4.3
Adaptation and Reconfiguration
[70, 32, 67]

Table 9: Platforms for field testing

Offline Testing Platforms Online Testing Platforms
Section A.5
Evolution
[66, 61, 58, 63]
Shadow Instances for V&V
[45, 40]

SOA and Component-Based Testing
[105, 104, 8, 16, 81, 103]

Section A.6
Built-In and Pre-Existing Test Cases
[81, 51, 100, 31, 30, 41]
SOA Online Testing
[80]

Evolution
[23, 58, 61, 63, 37]
Distributed Quality Assurance
[87]

We analyze field testing techniques by considering the field testing approach and the test case generation strat-
egy dimensions of the classification. We distinguish between approaches that address functional and non-
functional faults (Table 8), and classify approaches based on the target platforms (frameworks and archi-
tectures) (Table 9).
The studies are not evenly distributed with respect to the testing approaches: We found few ex-vivo and
offline field testing techniques, and many online field testing techniques. This indicates a strong interest
towards techniques that test exactly the operational application.
The nature of the requirements that are tested is not evenly distributed within each testing approach. Most
ex-vivo and offline field testing approaches focus on functional requirements. Only two approaches address
offline testing of security requirements to assess the security of software systems in the operational envi-
ronment as early as possible [25, 24]. Online testing approaches address both functional and non-functional
requirements.
Concerning the problem of test case generation, in field testing a test case has a broader scope than just
the test input data. The actual novel challenges in generating field tests descend from identifying and
reproducing with each test case the relevant interactions with the field, whereas a-priori we do not expect
that new, ad-hoc techniques need to be specified for generating the test inputs data. We cluster techniques
in four categories [85] depending on the information used to generate the test cases, as is also done for
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in-house testing: (i) Specification-based techniques derive test cases from formal or informal requirements
specification; (ii) Structure-based techniques use structural information, mostly the code structure, to derive
test cases; (iii) Fault-based techniques use models of potential faults (fault models) to derive test cases that
address the faults represented in the fault model; (iv) Techniques working with pre-existing test cases exploit
already available test cases. What we observed from our survey of literature is that most commonly black-
box techniques are used. Namely either test cases are generated from specifications, to suitably cover
certain behaviors, or strategies are defined to execute test cases that are already available, for instance from
field monitoring. Only few approaches derive test cases from structural information and fault-models.
The available platforms, as shown in Table 9, offer a range of solutions for both offline and online testing
targeting several environments (e.g., service and component-based systems) and scenarios (e.g., continuous
quality assurance and evolution).
The classification in Tables 8 and 9 provides a roadmap to researchers, who can easily understand the po-
sitioning of the individual studies with respect to the existing literature along the identified dimensions
(testing approach, test generation strategy) and along the respective sub-dimensions. It is also potentially
useful to practitioners, when they face a specific field testing problem. Thanks to the presented classifica-
tion, they can find relevant research papers and tools that address the kind of field testing approach they
want to implement (ex-vivo, offline, online) and the kind of test generation strategy they intend to adopt
(structural, fault oriented or pre-existing tests).

A.1 Ex-vivo Functional Testing

Ex-vivo testing techniques exploit information from the field to improve the in-house testing process. The
main idea is that field information can help testers direct their effort towards the scenarios that matter the
most in practice, and thus require a more extensive and thorough form of validation compared to other
scenarios. Research on ex-vivo testing focuses on functional test cases generated from specifications, code
structure or pre-existing tests.

A.1.1 Specification-Based Approaches

Ex-vivo testing uses specifications either to mutate field executions and turn them into new (in-house) test
cases or to guide the test suite adaptation process. Note that executions collected from the field are normally
modified, not only to make them fit the in-house context, but also to be exploited as seed for new test cases
that resemble without being identical to the already observed field usages.

Mutation of field executions has been investigated by both Neves et al. [28, 78, 79] in the context of au-
tonomous vehicles software and Morán et al. [74] in the context of MapReduce distributed data processing
applications. Neves et al. [28, 78] use vehicles’ sensor data to reveal the position of the vehicle while the
software is running and exploit mutations to produce new test cases to improve the coverage of the exe-
cution space. Morán et al.’s approach [74] samples production data to execute offline the computations
observed in the field, with the same data but under different mapper/reducer task configurations. If differ-
ent executions produce different results, the approach reports a bug. The test cases are designed in house
by developers, while the oracles are obtained from program executions based on metamorphic relations.

Test suite adaptation has been investigated in the context of software with highly dynamic behavior, such
as self-adaptive systems and dynamic service compositions. Fredericks et al. [38] propose to adapt test
cases according to the evolutions of the system and the environment observed in the field. They identify
the test cases to be adapted with a goal-based specification of the system and use a utility function to estimate
the correctness of the behavior of the adaptive system. The adaptation process guarantees the relevance
of the tests while preventing test cases to pass under invalid conditions. Hummer et al. [47, 48] address
the problem of finding a minimum number of test cases to validate a dynamic service composition, by
considering data-flow relationships between services. They encode the problem with a data-model, and
use the information collected from the field to drive the test generation process towards compositions not
validated in the field.

A.1.2 Structure-Based Approaches

Structure-based approaches generate in-house test cases by exploiting structural targets derived from the
observation of field executions. Elbaum and
Hardojo [34] studied the impact of profiling techniques on testing, and exploit user sessions to semi-automatically
derive ex-vivo test cases that cover all the entities exercised in the field.
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A.1.3 Pre-existing Test Cases

Some approaches generate new test cases by modifying the available ones with information extracted from
the field. Mei et al. [72] consider the problem of regression testing of Web services that evolve so quickly that
changes of external services occur during the regression testing session itself. They introduce a dynamic re-
assessment of test priorities that may preempt an ongoing regression testing session, and opportunistically
trigger a nested session aimed at covering the changed objectives.

A.2 Offline Testing

Offline testing techniques verify the functional behavior of the software in the field, while acting on an
instance of the SUT separated from the one that is operational, looking for a compromise between isolation
and direct exploitation of the field. The few offline testing techniques proposed so far either implement
specification-based approaches or reuse existing test suites.

A.2.1 Specification-Based Approaches for Functional Requirements

Some approaches use specifications to generate functional test cases that can be executed offline while
taking field information into consideration. Nishijima et al. [81] propose an offline testing approach to
verify the functional behavior of distributed autonomous (real-time and non-real-time) systems. Nishijima
et al.’s solution exploits built-in tests and deploy a test mode of the SUT to safely run test cases. They derive
test cases from input-output data patterns that specify the behavior of the components and their interactions.
The test cases look for unexpected side-effects of the field on the exercised interactions.
Metamorphic testing approaches generate new test inputs and oracles from observed executions, by using
metamorphic relations. Murphy et al. [10, 76] move metamorphic testing to the production environment
by capturing executions at the level of both individual functions and applications to trigger additional exe-
cutions that can exercise the SUT in unexpected situations. Murphy et al.’s approach executes a copy of the
application in a sandbox, and checks the behavior of the application with oracles derived from metamor-
phic relations, interestingly expanding the scope and scale of classic metamorphic testing.

A.2.2 Specification-Based Approaches for Non-Functional Requirements

Some offline testing approaches address security requirements. Dai et al. propose fuzzing to generate test
cases that can detect vulnerabilities due to configuration changes [24, 25]. Dai et al.’s approach executes a set
of manually identified functions of the program in a sandboxed environment with fuzzed configurations.
Failures are detected by security oracles that testers design as program invariants.

A.2.3 Pre-Existing Test Cases

Some software units such as components and services include built-in test suites that are opportunistically
executed when activating a test-mode behavior on the SUT. When the tests are executed in the field typical
issues may concern the validation of the impact in production and the status of the components involved
in the computations on the correctness of the execution.
Both Wang et al. [98] and Murphy et al. [75] enhance object-oriented classes with built-in test cases that are
executed in test-mode. Suliman et al. [94] propose built-in tests to assess the confidence and the reliability
of software components when running in the field, while Piel et al. [86] define built-in tests to validate the
component integration during the system evolution.
King et al. [54, 55] and Stevens et al. [93] study built-in test cases to dynamically validate the changes
produced by autonomic software in the field, before the changes are finalized.
Several studies propose strategies for test planning and managing field tests. Murphy et al. [77] define a strat-
egy to identify untested application states at run-time, to prevent executing redundant test cases. Gonzalez-
Sanchez et al. [43, 42] propose a metric to empirically estimate the online testability of a software system.
They propose a testability analysis to chose an appropriate field testing approach. Lahami et al. [62, 64]
propose a technique to validate architectural reconfigurations: based on a dependency analysis of the
components involved, they identify a set of test cases to be executed online before completing a recon-
figuration, meanwhile requests that the component under test would receive are delayed until the online
testing process is completed.
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A.3 Online Functional Testing

Online functional testing techniques generate test cases to be executed in the production environment to
validate the functional behavior of the software system.

A.3.1 Specification-Based Approaches

Specification-based approaches use different kinds of specifications to generate field test cases to be ex-
ecuted in the production environment. In particular, specification-based approaches use choreographies
to generate field tests for service-based applications, finite-state models to generate field tests for stateful
components, metamorphic relations to generate field tests that compare outputs across executions, and graph
grammars to test web services.

Choreographies and service-based specifications Several techniques exploit choreographies and service-
based specifications for testing service-based applications. Bai et al.’s approach models web service test with
OWL-S, and generates test cases through partition testing based on ontologies [6, 99, 5]. Ali et al. pro-
pose a testing framework for service choreographies specified in BPMN [2]. The framework supports a
model-based approach for automatically generating, storing and executing test cases, to trustworthiness
rate service choreographies and individual subscribing services. Cooray et al. [22] propose an approach to
dynamically test the reconfiguration of composite web services exploiting a stochastic usage model of the
services.
Bertolino et al. [12] propose the PLASTIC framework for testing service-oriented applications. PLASTIC
supports the validation of both functional and extra-functional properties of networked services, spanning
over both in-house and field testing stages. The framework supports online test case generation from
Symbolic Transition System (STS) specifications that capture both the structure of the interfaces and the
messages allowed across interfaces.

Finite state models Other techniques generate online test cases from finite state models. Dranidis et al.
derive test cases from Stream X-Machines (SXMs), a kind of finite state machines that model both the
control-flow and the data-flow of a software system [33]. Dranidis et al. propose just-in-time testing of
conversational web services to ensure that the invocation protocol works before executing a service com-
position. They assume services to be testable without side effects.
Maâlej et al. propose a technique for online conformance testing of BPEL compositions, based on Timed Au-
tomata [71]. They define an algorithm for generating and executing test cases implemented in the WSCCT
WS-BPEL Compositions Conformance Testing tool. Similarly, Cao et al. [20] convert BPEL specifications
into timed extended finite state machines that are used to derive test cases. The test cases are executed
online on the web service composition under test, by simulating external services with service mocks.
Vain et al. map Multi-Fragment Markov Models (MFMMs) to Uppaal Probabilistic Timed Automata (UPTA),
for online monitoring and model-based testing [95]. They map MFMMs specifications of reliability and
security-related behaviors to UPTA fine-grain states and timing constraints, and use the UPTA models to
generate conformance tests of the operation modes specified with MFMM.
Brenner et al. enhance the verification process of component-based systems with built-in tests [18]. They
automate the testing process at component level, to enable runtime testing of large systems in the presence
of configuration changes. The runtime testing leverages Markov chains to represent states and operations,
along with the frequency of invocation.

Metamorphic Relations Chan et al. [21] define metamorphic services that encapsulate the SUT and gen-
erate online test cases from metamorphic relations provided by the testers, aiming to reveal regressions and
harmful changes in the environment.

Graph grammars Park et al. [83] generate online test cases from ∆-grammars specifications of the func-
tional services.
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A.3.2 Structure-Based Approaches

Structure-based approaches leverage structural information to derive the test cases to be executed online.
Chunyang et al. [101] propose a method for white-box testing of service compositions with minimal ex-
posure of information about the internal implementations of the participating services. They expose an
event interface that service consumers use to check the white-box coverage of the used service. Chunyang
et al.’s approach defines the information that services shall expose depending on the desired coverage,
namely branch, path, or data-flow coverage, and generates the test cases by random and constraint-based
techniques.

A.3.3 Fault-Based Approaches

Fault-based approaches generate test cases from fault models. Zhang’s approach [102] generates fault-
based test cases for dynamically aggregated web services. The approach targets the problem of determining
whether a discovered web service can be integrated into a system without disrupting the reliability of the
system as a whole. It addresses the problem by testing both the discovered web service in isolation, to
determine whether the service is reliable, and the web service communications, to determine whether the
communications are robust. The approach assesses the reliability of the discovered service by injecting faults
into correct inputs, and executing them to determine if the new service is vulnerable to corrupted inputs. It
assesses the robustness of the communication by integrating the reliable service into the system, executing
it with the injected faults, and monitoring the effects of fault propagation.

A.3.4 Pre-existing Test Cases

Several field testing techniques focus on the execution and maintenance of the available test cases, which
can be either the same as the in-house test cases or designed ad-hoc for field testing.

Test planning and Management. Planning and management techniques focus on strategies to schedule test
execution based on information available in the field. Lahami et al. [60, 59] define strategies to properly
interleave the normal operation of the software with the execution of online test cases, to reduce the inter-
ference between these two processes. Bertolino et al. [27, 14] propose a governance framework for V&V
activities in the context of service choreographies. Bertolino et al.’s framework includes policies for activat-
ing, rating, ranking, and enacting choreographies, and for selecting test cases (we further discuss test gov-
ernance in Section 9.2). Akour et al. [1] define a model-driven approach to maintain test cases by removing
the test cases that are no longer applicable due to changes that occurred in the system. Gonzalez-Sanchez et
al. [43, 42] define metrics to estimate the software testability, as we already discussed for offline techniques
(see Section A.2.3).

Adaptation and Reconfiguration. Field testing techniques are used to validate reconfigurations and adapta-
tions either before or immediately after changes are finalized. Gu et al. [44] use online testing to validate the
recovery actions synthesized for handling Java exceptions in a sandboxed environment before exploiting
them. King et al. [53] and Piel et al. [86] test adaptation and evolution among interconnected components
by running available test cases. The approach proposed by Lahami et al. [62, 64] and already presented in
Section A.2.3 applies both offline and online functional testing techniques. Di Penta et al. [32] propose a
technique for online regression testing of service changes based on a set of available unit test cases. The
approach monitors component interactions to prevent the execution of redundant test cases.

Isolation. Some solutions specifically address isolation. For instance, Bobba et al. [17] investigate the use of
transactional memory to isolate the testing process from the system in operation.

A.4 Online Non-Functional Testing

Online non-functional testing techniques generate test cases to be executed in the production environment
to validate non-functional properties of the SUT.

A.4.1 Specification-Based Approaches

In this section, we discuss the approaches that derive test cases from specifications of non-functional re-
quirements, for the different non-functional properties.
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Stochastic Models of User Behavior. Sammodi et al. [89] capture the user behavior with stochastic models
that can be used to generate test cases for assessing the Quality of Service (QoS) of service-based appli-
cations. Oriol et al. combine test cases from stochastic models with passive monitoring to improve QoS
attributes [82].

Security Specifications. De Angelis et al. propose (Role)CAST, a framework for online testing federations
of services in their execution context, while the server is engaged in serving operational requests. The
framework focuses on authentication, authorization, identification features [26], and general role-based
access policies [13]. De Angelis et al. generate test cases from UML-based specifications. Bertolino et al.’s
PLASTIC framework [12], already presented in Section A.3.1, also addresses non-functional properties of
networked services, with test cases derived from Symbolic Transition System (STS) specifications. Hui et
al. [46] use online metamorphic testing to improve software security by exercising paths to security sensitive
sinks with additional untrusted values obtained from metamorphic relations.

Usability Models. Luostarinen et al. propose a model-based approach for remotely testing a messaging
platform in the military domain using a controller that can run test sessions online, engaging the users [69].

Graph Grammars for QoS. Park et al. select test cases from graph grammar specifications of QoS attributes to
test if target services satisfy specific qualities [83].

Timed Automata. Both Vain et al. [95] and Maaley et al. [71] generate online test cases from timed automata
specifications to sample the functional and the timing behaviors of the SUT.

A.4.2 Fault-Based Approaches

Fault-based approaches derive test suites based on fault-models.
Fault Injection. Fault-injection approaches aim to assess the capability of software systems to react to un-
expected and faulty situations. Zhang’s approach [102], which we already discussed in Section A.3.3, ad-
dresses both functional and nonfunctional quality attributes, with a focus on vulnerability and interoper-
ability issues within a federation of web services.
Alnawasreh et al. [3] focus on the problem of testing the robustness of distributed embedded systems in
the presence of spurious or incorrect communication via message passing. Their Postmonkey approach
alters the communication between components by both introducing random delays of message delivery
and randomly injecting invalid messages.
Operational Profile. Metzger et al. [73] propose an online pro-active testing approach for service-based ap-
plications that aims to predict failures with a known confidence. The approach monitors the applications
for failures, and generates test cases with search-based strategies.

A.4.3 Pre-existing Test Cases

Some online testing approaches support the adaptation and reconfiguration of the software. Di Penta et
al. [32] rely on available test cases to assess the non-regression of the non-functional characteristics of web
services. Lee and Na [67] exploit available test scripts and data for automatically testing unidirectional
communication system online. Test data are prepared at design time and the user, at runtime, manually
selects the test to run. Ma et al. [70] propose a multi-agent framework for continuous performance testing
of service-oriented software. Ma et al.’s Test Coordinator agent orchestrates multiple Test Runner agents. The
Test Coordinator activates the Test Runners that execute test cases online to expose performance issues,
such as slow response time under specific load conditions.

A.5 Platforms for Offline Testing

Platforms for offline field testing provide architectural solutions to execute test cases on separated instances
of the software under test.

Evolution. Multiple platforms support offline testing activities in response to software evolution.
Lee and Sha [66] present an architecture for offline testing of upgrades in real-time embedded systems.
Lee and Sha’s solution is based on the Simplex architecture, which allows to execute multiple and diverse
implementations of the same components. Lee and Sha’s solution takes advantage of this capability to
execute both the original and the upgraded component, and restores the original component in the presence
misbehaviors.
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Lahami et al. propose a testing framework for the evolution of dynamic distributed (real-time) systems [61,
58]. Lahami et al.’s framework manages test execution in response to reconfiguration events. By depen-
dency analysis, it identifies the components involved in the reconfiguration and then executes the available
TTCN-3 test cases [58]. The framework executes the test cases according to a resource-aware test plan
generated at runtime [63].

Shadow Instances for V&V. Some platforms maintain shadow instances of the operative software, for veri-
fication and validation (V&V) activities. In particular, Hosek and Cadar [45] propose an architecture that
replicates field executions on a shadow instance of the same application, which can be tested and analyzed
without any risk of interfering with the original application. Hosek and Cadar’s approach captures and
replays executions at the system call level. Goh et al. [40] propose an online virtual execution environment
to test a replica of an application. They test the replica in the virtual execution environment with states
and input data monitored from the operative system, with which the operators substitute the replica after
successfully completing the tests.

SOA and Component-Based Software. Several approaches propose multiple offline platforms to address the
specific cases of service and component-based software systems.
Zho and Zhang [105, 104] propose a framework for field testing of web services. The framework adopts
the SOA paradigm, and is centered on a broker service that facilitates the collaboration among different
online testing services, such as test execution environment and test driver services. Zhu [103] proposes an
ontology to mediate the information exchanged among the testing services. Zhu’s approach executes the
available test cases on an equivalent version of the operational SUT.
Bartolini et al. [8] define a framework to execute testing sessions on available Web Services, just before
their deployment. Bartolini et al.’s approach requires an instrumented version of the deployed service that
they use for testing sessions with the available test cases. An orchestrator leverages coverage reports from
previous testing sessions to infer changes on services externals, without information about their internals.
Bhanu et al. [16] propose a general architecture for offline testing of embedded software in the context of
safety critical system. Nishijima et al. [81] present an architecture for distributed autonomous systems and
a testing mechanism composed of off-line and on-line testing techniques. Off-line tests check functional
specifications, while on-line tests check the communication and other non-functional aspects of the live
system.

A.6 Platforms for Online Testing

Online testing platforms support testing activities targeting the operational instance of the SUT.
Built-In and Pre-Existing Test Cases. Several architectural solutions offer features to maintain and execute
tests in the form of either test cases built in software components or external test suites.
Kawano et al. [81, 51, 100] propose an architecture to support online testing with test cases both built in
the autonomous components and generated with dynamically activated dedicated modules. Deussen et
al. [31, 30] propose an architecture for validating systems online, by monitoring and controlling the target
distributed system, and executing the available TTCN-3 test cases. González et al. [41] propose the ATLAS
framework for integration testing of component-based systems. The framework requires components to
expose both built-in interfaces for testing and acceptance interfaces for managing test cases.

SOA Online Testing. Niebuhr et al. [80] propose an integration infrastructure for verifying the correct bind-
ing of components at runtime. Service consumers specify both the components to be tested and the test
cases to be executed. The integration infrastructure executes the test cases, and prunes the components to
be integrated according to the test results.

Evolution. Several platforms focus on managing software evolution, most of which support the execution
of validation activities in the field in response to changes.
Da Costa et al. [23] propose JAAF+T, an extension of the Java self-Adaptive Agent Framework (JAAF), a frame-
work for the implementation of self-adaptive agents. JAAF+T extends the typical Monitor, Analyze, Plan
and Execute (MAPE) loop with a testing activity that checks adapted behaviors before their execution. La-
hami et al. propose a hybrid offline/online framework for runtime testing of distributed (real-time) sys-
tems [61, 58], as already discussed in Section A.5.
Fredericks et al. [37] present Proteus, a framework for online testing of self-adaptive systems that addresses
the evolution of online test suites, by adjusting test parameters and making sure that test suites remain
relevant to changes at runtime.
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Distributed Quality Assurance. Distributed quality assurance platforms exploit the participation of multiple
nodes to the same infrastructure to perform large-scale studies aimed at assessing the quality of a SUT.
Interestingly, Skoll envisions the direct participation of the users with their machines as the nodes of this
infrastructure [87]. In this way, quality assurance tasks, including testing tasks, can be distributed among
participants taking their environments into consideration. This solution guarantees not only scalability, but
also the capability to assess the SUT against many diverse real configurations and environments, effectively
covering a range of situations otherwise infeasible to cover in house.

A.7 RQ1.1: Findings

We conclude this section summarizing the key findings with respect to the type of addressed faults, the test
case generation strategies, and the platforms proposed so far:

• Approaches privilege functional versus non-functional faults, which are still under-investigated: The majority
of approaches address functional faults. The few approaches that address efficiency, security, reliability
and usability, shed some initial light on a largely unexplored domain that calls for non-intrusive testing
techniques to properly address non-functional properties.

• Quality of service is a relatively well-studied quality attribute among non-functional aspects: Many of the ap-
proaches that deal with non-functional properties address the relevant problem of predicting the QoS of
applications executed in different and heterogenous production environments.

• Specification-based test case generation approaches are by far the most studied approaches: Many approaches
rely on specifications to generate field test cases, leaving open the hard problem of generating test cases in
absence of specifications, as in the many cases of systems that evolve beyond the initial specifications to
adapt to emerging execution conditions and configurations.

• Automation is still limited: Many approaches rely on relevant human contribution and already available
test cases, and automation of field testing is still limited.
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