
Distributed Systems Lab Report

An Empirical Evaluation of the Performance of

Video Conferencing Systems

January 20, 2021

Richard Bieringa * Abijith Radhakrishnan* Tavneet Singh* Sophie Vos*
r.bieringa@student.vu.nl mail@abijith.net t.s.tavneet@student.vu.nl s.o.vos@student.vu.nl

2544975 2667575 2668222 2551583

Jesse Donkervliet Alexandru Iosup
j.donkervliet@atlarge-research.com a.iosup@atlarge-research.com

Supervisor Course instructor

*These authors contributed equally.

Abstract - Since the global COVID-19 pandemic, a shift has occurred to remote education and
work. This is enabled by various video conferencing systems like Zoom, Google Meet, Microsoft
Teams which has consequently increased the pressure on digital infrastructure. Surprisingly, no
prior research has been undertaken to understand the performance of various video conferencing
systems.

In this study, we aim to evaluate and compare the performance of video conferencing systems in
the context of distributed systems. To achieve this objective, we designed experiments to compare
the performance and scalability of Zoom, Microsoft Teams, and Jitsi. Furthermore, we designed
and implemented an experimentation tool that automatically hosts and joins video conferences, and
measures the network bandwidth, CPU usage, and memory usage.

We observed that the video conferencing tools have a stable performance after the initial warm-
up time for up to 6 clients. Except for the high memory usage of Zoom web, which grows linearly
in time until a certain upper bound. Hence, we do not recommend Zoom web for a small number of
clients.

Keywords - Distributed Systems, Automated Experimentation Tool, Empirical Performance Anal-
ysis, Video Conferencing Systems, Zoom, Jitsi, Microsoft Teams

1 Introduction

Due to the COVID-19 pandemic many organizations, businesses, and educational institutions have
adopted a new online work structure [1, 2]. This is possible due to various video conferencing
systems, such as Zoom and Jitsi, that replace face-to-face meetings. A consequence of this rapid
switch to video conferencing systems is the increased pressure on the digital infrastructure. As our
society relies heavily on video conferencing systems and their underlying infrastructure, it is essential
to understand the performance of the various video conferencing systems.

Early studies of video conferencing systems exist, but do not yet capture a performance analysis
and comparison of popular video conferencing systems. Townsend et al. [8] studied the attitudes of
users towards video conferencing systems. They stated that video conferencing systems and virtual
collaboration have a major impact on the social work experience.

Hortelano et al. [4] introduce a framework that allows evaluating the performance of video calls.
The authors measured the throughput and inter-packet delay (jitter) of video calls using this frame-

1



work and focused on ad hoc networks. They concluded that as the number of hops increases, the
chance of high delay times and packet losses increases as well.

Zhang et al. [10] studied the video quality of Skype video calls. To measure the performance, the
authors measured the Packet Loss Rate (PLR), the impact of the available network bandwidth, and
the impact of propagation delay. They concluded that Skype is robust against mild packet losses
and propagation delay, and Skype efficiently utilizes the available network bandwidth.

Currently, Skype is losing its market share as other video conferencing systems such as Zoom are
dominating the field1. The currently most popular free video conferencing systems are Microsoft
Teams, Google Meets, and Zoom2. No research has been conducted to evaluate and compare the
performance of these video conferencing systems.

Similar research has been conducted in related domains such as video streaming. For instance,
Hyunwoo et al. [6] introduced a tool called YouSlow to monitor buffer staling events while clients
watch YouTube videos on Chrome browsers. Furthermore, Nguyen et al. [7] studied transport
protocols to coordinate simultaneous transmissions of videos from multiple senders. To understand
the behavior, they considered the sending rate, packet loss, and the probability of packets arriving
late.

In this study, we aim to evaluate and compare video conferencing systems to understand their
performance. The central research question is: “How do popular video conferencing systems per-
form relative to each other?”. To understand the performance of video conferencing systems, we
design and perform experiments to evaluate and compare the video conferencing systems. The main
contributions of this study are:

1. The design of experiments to evaluate and compare the performance of popular video con-
ferencing systems (Section 4). The experiments currently presented in public literature do
not seem to be based on a systematic approach. Hence, an experiment design based on clear,
comprehensive requirements is still needed. Section 3 provides an overview of the requirements
that form the foundation for our experiments.

2. The conceptual design and implementation of a tool that automatically hosts and measures
the performance of popular video conferencing systems (Section 5). Experiments in the field
are often performed manually. This has a major disadvantage that the experiments cannot be
validated by the research community and the experiment setup cannot be replicated for similar
experiments. We aim to fill this gap by introducing an open-source, automated tool that allows
researchers to perform experiments regarding the performance of video conferencing systems
through an intuitive Graphical User Interface (GUI).

3. A performance analysis of Zoom, Microsoft Teams, and Jitsi (Section 6). In the experiments,
we measure the network bandwidth, CPU usage, and memory usage to evaluate and compare
the performance. Furthermore, we analyze the scalability by comparing the performance for
2, 4, and 6 clients. By comparing the web-based and app-based Zoom versions, we aim to
understand the performance difference of web- versus app-based video conferencing systems.
Finally, we test the difference in performance of video and audio workloads in an in-depth
study of Jitsi.

2 Background

In this section, we explain general architectural concepts that video conferencing systems have
in common (Section 2.1). Furthermore, we describe and provide background information on the
architecture and design decisions of the video conferencing systems that are analyzed in our study
(Sections 2.2 - 2.4).

1https://www.datanyze.com/market-share/web-conferencing
2https://www.techradar.com/best/best-video-conferencing-software

2



Client

Client

Client Server
Streams

from other
clients

Raw
input for
encoding

Streams
from other

clients

Raw
input for
encoding

Raw
input for
encoding

Streams
from other

clients

Figure 1: A general overview of the client-server architecture.

2.1 Client-Server Architecture

There are multiple architectures possible to design video conferencing systems (e.g. client-server,
peer-to-peer). The most common architecture is the client-server architecture. All video conferencing
tools that we analyze in this study follow the client-server architecture. Hence, we introduce this
concept briefly.

Figure 1 presents an overview of the client-server architecture. The client-server architecture
divides the system in two main components, namely, the client(s) and the server(s). The clients
send requests to the server which processes the request and sends a response.

In the context of video conferencing systems, servers are often cloud-based. In practice, there
are multiple servers distributed over geographically distinct locations. Furthermore, different servers
can serve different tasks. To the clients, this architecture should be hidden. Hence, the cloud server
is abstracted as if it is one coherent entity. The server receives raw video and audio input from
different clients for encoding. The encoding process includes converting the input to different video
resolutions and bitrates for other clients with diverse network bandwidth.

Clients do not necessarily refer to users. Clients are machines making the requests, however, these
requests can be initiated by users. In the context of video conferencing systems, each client is a user
that participates in the video conference through a device (e.g. laptop, smartphone). However, in
our experiments, we simulate these users by setting up automated clients that use a pre-recorded
video stream.

The clients and servers are connected through a network. This could be any network depending
on the scale of the applications and system. Popular video conferencing systems are connected
through the internet. Hence, the requests and responses are sent over the internet.

Even though the system is distributed, to the user it seems like they are interacting with one
system. Accordingly, the user is not aware of the distinction between the clients and the servers,
and perceive the video conferencing system as a uniform system.

2.2 Zoom

Zoom3 provides a cloud platform for video, voice, content sharing, and chat runs across mobile
devices, desktops, telephones, and room systems. Zoom is founded in 2011 and currently dominates
the video conferencing market share4. Zoom has experienced a rapid growth since the COVID-19
pandemic. In April 2020, they experience a 50% increase of its daily meeting participants from 200
million at the start of April to 300 million at the end of April5.

3https://zoom.us
4https://www.datanyze.com/market-share/web-conferencing
5https://www.bizjournals.com/sanjose/news/2020/04/30/zoom-user-numbers-zm.html

3



Unfortunately, most of the design decisions and technical architecture of Zoom is not publicly
available. We refer to this as a black-box architecture. According to their blog6, Zoom is cloud-native
and optimized for video performance from the start rather than being built on top of legacy appli-
cations. Furthermore, Zoom’s two most important technologies providing their video conferencing
service are the cloud network and video architecture.

The cloud network contains 13 data centers that are connected through private connections.
Since the COVID-19 pandemic (that led to an increasing demand for Zoom), Zoom moved large
quantities of real-time video-conferencing traffic to Amazon Web Services (AWS)7.

The architecture is optimized to handle video-specific requirements. This is realized through a
distributed architecture that allows users to join the meetings via the nearest data center. Zoom
uses multimedia routing, this delivers multiple video streams from other users to a user’s device.
Accordingly, the audio and video of every participant in the video call are directly streamed to the
user without any preprocessing. This improves the user experience, as this enables a rapid switch
between speakers and low latency.

Moreover, Zoom performs multi-bitrate encoding. This means that each stream can change to
varying resolutions. This ensures that the video quality adapts to the maximum device and network
capacity. Zoom allows users to join calls through both web and app, this allows us to compare the
performance between the web and the app service.

2.3 Microsoft Teams

Microsoft Teams8 is a proprietary business communication tool that allows workspace chat and video
conferencing, file storage, and application integration. Similar to Zoom, Microsoft Teams has both
a web and app version.

Since the worldwide launch of Microsoft Teams on 14 March 2017, the majority of the platform’s
growth happened in the year 2020 due to the COVID-19 pandemic. As of October 2020, Microsoft
Teams has collected 115 million daily active users.

Microsoft Teams is developed based on the implementation of Microsoft 365 groups, Microsoft
Graph along with other Microsoft products. Microsoft Teams leverages identities stored in the Azure
Active Directory (Azure AD). The chat function is implemented using a micro-service in Azure.
Furthermore, it uses a combination of OneDrive for Business, SharePoint, and Microsoft Exchange
to store individual chats, images, and files. The video streams are generated using a media service in
Azure which utilizes Microsoft Stream. Microsoft Teams utilizes several Microsoft-specific protocols
along with others such as MNP24 and SILK.

2.4 Jitsi

Jitsi9 is a set of open-source projects that allow building and deploying video conferencing solutions.
The video conferencing solutions are freely accessible to anyone on the internet. Jitsi is flexible as it is
fully open-source. Jitsi is funded by 8x8 which in turn uses the open-source contributions to improve
their own products. The main services that allow the video conferencing are Jitsi Videobridge10 and
Jitsi Meet11.

Jitsi Videobridge is a Selective Forwarding Unit (SFU) designed to run many video streams from
a single server. Jitsi Videobridges requires good network bandwidth rather than CPU power.

Jitsi Meet is built on top of Jitsi Videobridge. Jitsi Meet allows video conferences through
a browser without the need to install software on the client-side. Additional features are a chat
function, screen sharing, conference recording, together with various other features.

6https://blog.zoom.us/zoom-can-provide-increase-industry-leading-video-capacity
7https://www.datacenterdynamics.com/en/news/most-zoom-runs-aws-not-oracle-says-aws
8https://www.microsoft.com/en-us/microsoft-365/microsoft-teams/online-meetings
9https://jitsi.org

10https://github.com/jitsi/jitsi-videobridge
11https://github.com/jitsi/jitsi-meet

4



3 Requirements

In this study, we evaluate and compare the performance of video conferencing systems. To enable
these experiments, we implemented an experimentation tool that allows automated hosting, join-
ing, and performance measurements of popular video conferencing systems. In this section, we list
and explain the rationale behind the requirements of the experiments. The experimentation tool
should adhere to these requirements too in the sense that each functionality specified by the require-
ments should be enabled by the tool. The requirements are prioritized according to the MoSCow
method [3]. Therefore, the requirements are classified as Must have, Should have, Could have, and
Won’t have. The requirements are derived from iterative group discussions following the AtLarge
Design Cycle [5]. Furthermore, the requirements are grouped into functional requirements (Section
3.1) and quality requirements (Section 3.2).

3.1 Functional Requirements

The functional requirements (FRs) together with their rationale are presented in the following list:

FR1 The experiments must compare multiple distinct video conferencing systems. The main objec-
tive of this study is to evaluate and compare the performance of video conferencing systems.
Hence, multiple video conferencing tools need to be analyzed.

FR2 The experiments must measure appropriate system-level metrics for video conferencing systems.
In this study, we are interested in measuring the performance of the video conferencing systems.
To do so, concrete metrics need to be selected that reflect the performance of the various
systems.

FR3 The experiments must measure the scalability of the different video conferencing systems. Scal-
ability is an important property for distributed systems as distributed systems consist of a
network of autonomous computing components. Hence, it is interesting to understand how
the systems scale for a larger number of clients.

FR4 The experiments must counter the variability of the measurements in the experiment environ-
ment. Experiments that are performed in a real-world setting experience a certain level of
variability. The experiments cannot be performed in complete isolation, hence, replicating the
same experiment might lead to different results based on the influence of outside variables.
This is an undesirable outcome, therefore, appropriate measures need to be taken to mitigate
the effects of variability within the environment on the measurements.

FR5 The experiments should compare the performance of web- and app-based video conferencing.
Some video conferencing tools are accessible through the browser while others require the user
to download an application. This affects the user experience. Thus, it is valuable to understand
the difference in performance of web- and app-based video conferencing systems.

FR6 The experiments should compare the performance of audio and video workload separately. An-
other interesting distinction to further assess is the difference in performance of audio and
video workload. This is relevant as users often mute their microphone and disable their cam-
era when solely listing to a presentation. We are interested in the effect of disabling these
streams on the performance.

FR7 The experiments could measure appropriate application-level metrics for video conferencing
systems. If the time allows it, the experiments can be extended by including more application-
level metrics. These metrics are interesting to assess the performance, however, they are more
advanced to measure and hence are an alternative extension to the study.

Scaling the experiment for a large number of clients is currently out of scope. We aim to focus
on correctly implementing and executing the experiments for a relatively small number of clients (2
- 6). Once these experiments adhere to the above mentioned FRs and the experiment framework is

5



well-tested, future research can be conducted to extend the experiments by measuring the impact
on the performance when scaling up the video conferencing systems by adding a larger number of
clients.

Another limitation of the experiments is the lack of testing the effect of the experiment environ-
ment on the performance measurements. To illustrate, the performance of the video conferencing
systems could be measured using different operating systems, network conditions, and devices. This
would make the relation of the video conferencing system performance and its environment appar-
ent. To minimize the effect of these environment variables on the results, we kept the environment
stable throughout the performed experiments.

3.2 Quality Requirements

The quality requirements (QRs) together with their rationale are presented in the following list:

QR1 The experiments should be performed in a real-world environment. We aim to advise users
about the performance of popular video conferencing systems. Hence, the experiments should
be performed in an environment that is comparable to the real-world user environment. This
allows us to draw conclusions that hold in the real-world.

QR2 The experiments should be easy to replicate. For the experiments to be verifiable and re-usable
by the research community, the experiments should be easy to replicate.

QR3 The experiments could be user-friendly to conduct. The replicability and accessibility of the
experiments are amplified by a user-friendly interface.

Possible extensions to the QRs are to perform the experiments fast and efficiently. Currently,
this is out of scope as we initially aim to have a working framework to perform the experiments.
Once this is realized, the framework can be optimized.

4 Experiment Design

This section describes the high-level experiment design. We start by defining the objective, research
questions, and metrics of the overall experiment (Section 4.1). Afterward, we reflect on the relation
between the experiment design and requirements (4.2). Lastly, the experiment designs for each
concrete set of experiments, grouped by the research questions, are listed (Section 4.3).

4.1 Experiment Definition

To define our experiment, we applied the Goal-Questions-Metrics (GQM) method [9].

The goal of this experiment is: to evaluate and compare the performance of video conferencing
tools in the context of distributed systems.

The main research question is: how do popular video conferencing tools perform relative to
each other?

This is a broad research question that requires research in several disciplines. To scope down our
research, we focus on the following aspects (based on the requirements listed in Section 3):

Q1 How does the performance of video conferencing systems behave over time? This question is
required to tune the time parameter in the experiment (i.e., how long should an experiment
last to capture the essential information).

Q2 What is the variability of the measurements in our experiments? This question implements
FR4. Measuring the variability is required to understand the stability of the research envi-
ronment and, hence, the quality of the results. Furthermore, we are interested to understand
how many repetitions are required in the remaining experiments.

6



Q3 What is the performance of Zoom, Microsoft Teams, and Jitsi relative to each other? This
question implements FR1. We chose to analyze three video conferencing systems as this allows
a proper comparison feasible within the available time. Zoom, Microsoft Teams, and Jitsi are
selected as systems under test within this experiment. We selected Zoom as this is currently
the most popular video conferencing tool. Microsoft Teams is relatively new which makes it
interesting to compare its performance against other players. Lastly, we chose Jitsi as this
is an open-source tool and hence allows us to analyze application-level metrics, latency, and
jitter.

Q4 How scalable are Zoom, Microsoft Teams, and Jitsi? This question implements FR3. The
scalability of the video conferencing systems can be evaluated by comparing the performance
for different numbers of clients. We chose to repeat these experiments for 2, 4, and 6 clients.
These numbers are based on the maximum available resources within our research team to run
the clients on.

Q5 What is the difference in performance and scalability between web- and app-based systems?
This question implements FR5. We choose to analyze this question by comparing Zoom web
vs. app as this ensures that we compare the same video conferencing system through a different
means.

Q6 What is the difference in performance and scalability between audio and video workload? This
question implements FR6. We are interested in this question to understand the difference in
performance when users mute their microphone and/or disable their camera.

In this study, we evaluate the performance of video conferencing systems. Performance is a
broad notion that can be measured by many different metrics (from subjective metrics such as user
satisfaction to objective metrics such as memory usage). We focus on system-level metrics as these
are in the scope of distributed systems research.

The metrics are: Network Bandwidth, CPU Usage, Memory Usage

Selecting these metrics implements FR2. We selected these metrics as they represent the system
and network usage of the various video conferencing tools. Moreover, these metrics are important
for the user experience and relatively easy to measure. In each video conference, we measured the
metrics for each client separately. However, in the experiment results, we used the measurements of
the same client to ensure that we can accurately compare the different experiments. Note that this
entails that within an experiment of 6 clients, the results are the measurements from one client that
participates in a video conference together with 5 other clients.

4.2 Relation to Requirements

FR1 - FR6 are implemented by Q1 - Q6 together with the selection of the performance metrics
in the previous subsection. The detailed explanation of the realization of these requirements is
described in the previous subsection. The only FR that is not implemented by the experiments is
FR7. Application-level metrics are also important to understand the user experience, however, we
omitted these metrics due to time constraints. Future research is required to include these metrics
to have a more complete understanding of the performance of the video conferencing systems.

The QRs (QR1 - QR3) are addressed in the design of the experimentation tool (Section 5).

4.3 Experiment Design

We distinguish four sets of experiments that realize all research questions (Q1 - Q6). The first set of
experiments aims to understand the variability in the measurements (Section 4.3.1). The second set
of experiments are experiments in which we compare and evaluate the performance and scalability
of Zoom web, Microsoft Teams, and Jitsi (Section 4.3.2). Next, the third set of experiments focuses
on comparing Zoom web and app (Section 4.3.3). The last set of experiments is performed using
Jitsi and evaluates the performance of video and audio workload separately (Section 4.3.4).

7



4.3.1 Variability

To mitigate the effect of external events and processes on the performance results, each measurement
needs to be repeated and aggregated. This ensures that outliers do not drastically affect the results.
The first set of experiments aims to understand the variability of the performance and answers Q1
and Q2. This allows us to understand the time a video conferencing system should last in the
remaining experiments. Furthermore, we measure the variability in the metrics of the experiments.
This provides feedback on the stability of the research environment and provides insights into the
number of repetitions of each experiment.

The experiment parameters are listed in Table 1. We chose the initial parameter 5 minutes for
the time variable as we did not expect the performance of a video call to change significantly after
the system and the video conference is set-up. Moreover, as these are experiments to tune our
parameters, we did not want to spend too much time on the experiments.

This is also the reason we chose 4 repetitions, partly because we did want to understand the vari-
ance in the metrics but also as we had a limited time window to perform the exploratory experiments
in.

Variability

Video Conference Tool Clients Time (min) Repetitions Metrics

Zoom Web 2, 4 5 4 network bandwidth, CPU usage, memory usage
Jitsi 2, 4 5 4 network bandwidth, CPU usage, memory usage
Teams 2, 4 5 4 network bandwidth, CPU usage, memory usage

Table 1: Exploratory experiments to tune the time and repetitions parameters.

4.3.2 Scalability

The second set of experiments focuses on answering Q3 and Q4. An overview of the performed
experiments is provided in Table 2. In this set of experiments, we consider the video conferencing
tools: Zoom Web, Jitsi, and Microsoft Teams. We measure the network bandwidth, CPU usage,
and memory usage.

We decided that the duration of each video conferencing experiment remains 5 minutes (this
applies to Sections 4.3.3 and 4.3.4 as well). This is a compromise between needing a high duration
to make the experiment useful and having time restrictions imposed due to the short time window in
which we conducted the experiments. Furthermore, the outcome of the variability study showed not
much variance after the start-up of the video conferencing systems has finished. We do not expect
that having the call lasts longer significantly affects the performance. In this experiment, the time
is kept at a single value to ensure that its impact on the measurements is minimal.

Moreover, the repetitions are kept at 4 as the results did not show much variability (this applies
to Sections 4.3.3 and 4.3.4 as well). Every video conferencing tool is analyzed for 2, 4, and, 6 clients.
We chose to change the number of clients in order to assess the scalability of the video conferencing
tools.

Scalability

Video Conference Tool Clients Time (min) Repetitions Metrics

Zoom Web 2, 4, 6 5 4 network bandwidth, CPU usage, memory usage
Jitsi 2, 4, 6 5 4 network bandwidth, CPU usage, memory usage
Teams 2, 4, 6 5 4 network bandwidth, CPU usage, memory usage

Table 2: Experiments to evaluate and compare the performance and scalability of Zoom Web, Jitsi,
and Microsoft Teams.

8



4.3.3 Web vs. App

The third set of experiments allows us to compare the performance and scalability of web- versus
app-based video conferencing system Zoom. This experiment aims to answer Q5 and the experiment
parameters are listed in Table 3. In order to compare the performance and scalability of web- versus
app-based video conferencing tools, we performed experiments using Zoom as this tool allows joining
a video conference both through a browser as through a pre-installed app. As both versions are from
the same platform, other variables that potentially affect the performance are as stable as possible.

Web vs. App

Video Conference Tool Clients Time (min) Repetitions Metrics

Zoom App 2, 4 5 4 network bandwidth, CPU usage, memory usage
Zoom Web 2, 4 5 4 network bandwidth, CPU usage, memory usage

Table 3: Experiments to compare web- vs. app-based video conferencing in Zoom.

4.3.4 Audio vs. Video

To obtain in-depth information regarding the difference in performance and scalability of video and
audio workload we performed several experiments using Jitsi in which we separated the video and
audio workload. The focused experiments aim to answer Q6 and are listed in Table 4.

Audio vs. Video

Video vs. Audio Clients Time (min) Repetitions Metrics

video 2, 4 5 4 network bandwidth, CPU usage, memory usage
audio 2, 4 5 4 network bandwidth, CPU usage, memory usage
video and audio 2, 4 5 4 network bandwidth, CPU usage, memory usage

Table 4: Experiments to compare audio vs. video workload in Jitsi.

4.4 Experiment Workload

To ensure input data consistency between various experiments and for a compelling comparison
between different video conferencing systems, the same set of audio and video files were streamed
throughout the experiments. The technical details of the workload are provided in Table 5. The
workload was chosen in a way so that the content is similar to a real-world video stream.

Experiment Workload

Video Bitrate 570 KB
Resolution 1280x720
Format MJPEG
Size 5.9 MB

Audio Sample Rate 44100 Hz
Precision 16 bit
Bitrate 1.41 MB
Format WAV
Size 51 MB

Table 5: The workload used to perform the experiments.

9



Figure 2: The client-server architecture of the experiment framework.

5 Experimentation Tool

We evaluated the video conference systems through a series of experiments using multiple experi-
ment clients. This section describes the experimentation tool architecture together with the various
systems used to get consistent executions in a highly varying environment (Section 5.1). The core
experiment set-up consists of the orchestration server (Section 5.2) and the experiment client (Sec-
tion 5.3). In addition, we have created a scheduler that allows automatic experiment creation and
allows the clients to run in a batch processing mode (Section 5.4).

5.1 Framework Architecture

The experiment framework adheres to a classical client-server architecture. Within this architecture,
each client acts as an experiment conductor, which sole purpose is to emulate a person using a
conferencing system while gathering the required measurements to answer our research questions as
defined in Section 4.1. The server has the job to orchestrate these clients and to gather the data
that is captured by them. A general top-down overview of the client-server architecture can be seen
in Figure 2, where both the client and the server are depicted with the multiple modules that they
consist of. The design decision for client-server architecture stems from our goal to emulate a real-
world environment as specified in requirement QR1. We use this architecture to connect multiple
clients over the internet rather than a cluster to emulate a generic web conference. The design and
implementation of these components are discussed in more detail in the following sections while a
flowchart depicting the flow of actions can be found in Figure 16 located in the Appendix.

5.2 Experiment Server

The experiment server provides a user-interface and API to orchestrate the experiments we have
conducted. The server is hosted on an AWS EC212 instance and is accessible through the HTTP

protocol. If you access the server through a web browser, the user is presented with a user-interface
to manage and create experiments. The server also exposes a REST API to directly manage the
experiments through generic HTTP requests. In this section, we discuss how the server manages
experiments and the stages each experiment can reside in.

First of all, the server allows us to create experiments. If a user creates an experiment through
the web interface as seen in Figure 12 located in the Appendix. The user-interface provides a
user-friendly manner to create, modify, and monitor experiments to satisfy QR3. This experiment
configuration interface enables the user to customize every aspect of the experiment. For instance,

12https://aws.amazon.com/ec2

10



Experiment Stage Description

START This is the default state prior to when an experiment is created.
WAIT This is after an experiment has been created but not enough clients

have connected to perform it.
SETUP Experiment setup is used to sync all clients up until the point in time

that they are ready to join the actual meeting.
RUN This stage indicates that the clients are currently conducting the

experiment and are gathering data.
DATA COLLECTION This state occurs after the experiment has been conducted, during this

stage the clients are uploading their collected metrics.
DATA VIZ This state occurs when all clients have successfully uploaded their

data, the server can now visualize and serve the results.

Table 6: The different stages of an experiment within the framework.

the user can select any of the supported video conference platforms (Jitsi, Zoom Web, Zoom App,
or Microsoft Teams). In addition, the user can tune other experiment settings such as enabling
or disabling audio and video, setting the experiment duration, and defining the room URL and
password.

The server also grants the ability to monitor the experiment status. This allows checking which
clients are connected through which IP addresses and in which stage the experiment is currently in.
An example of this interface can be seen in Figure 13 located in the Appendix where it shows that
one client is connected and the experiment is in the WAIT stage since the experiment settings show
that this specific experiment requires 10 connected clients.

Lastly, it allows us to see the experiment results as seen in Figure 15 located in the Appendix.
This interface is presented when an experiment ends or when we browse through the previously
ended experiments. From here we can manually download the data gathered from the clients and
see the settings for a particular experiment that has ended.

There different stages into which an experiment can reside in and how it is used within the
experiment framework. At each point in time, the server has a status associated which reflects
the stage an experiment is in, all of the stages can be found in Table 6. Prior to launching any
experiment, the server will be in the START phase and during the different stages of an experiment
the status will update accordingly.

We have implemented this system in order to monitor the status of an experiment and to syn-
chronize the clients when they reach certain stages. Once a client is connected to the server, it
must first wait until enough clients are connected before advancing to the next stage. The same
mechanism of these different stages is used throughout the various phases of the experiment and
allows us to have fine-grained control of the clients in order to perform consistent experiments.

5.3 Experiment Client

The experiment client consists of a containerized set of tools that allows to automate the process of
joining video conference rooms and gather performance metrics of the video conferencing services
that the framework supports. This section discusses the various components that the client consists
of as well as the rationale behind these implementation details.

5.3.1 Headless Browser Automation

Most of the experiments that we perform are done using the browser-based variants of the meeting
clients that we use for this project. In order to run these meeting clients, we chose to use Google

Chrome. In order to automate this browser, we have opted for using Puppeteer13. Puppeteer is a

13https://developers.google.com/web/tools/puppeteer

11



high-level NodeJS14 library created by the Google Chrome team itself. Puppeteer provides an API
that allows automating tasks within a Google Chrome browser.

Moreover, the library provides several features that enable the replication of the experiments
consistently to satisfy requirement QR2. First of all, Puppeteer allows to run a headless Chrome
Browser. This means that we do not require an actual screen to render the browser and, thus, can
encapsulate the client in a Docker Container15 which we can scale indefinitely. Second of all, we
can emulate the webcam and microphone attached to the browser by using video and audio files
respectively. By doing this, we have minimal variance in the actual data that we transmit during the
experiments per client. The final feature that aims to match the real-world environment as specified
in requirement QR1, is that the experiments use an actual Google Chrome browser. This allows
measuring real-world performance since it is the most common tool to access the web with a market
share of more than 63%16.

5.3.2 Measurement Tools

In order to retrieve the measurements from the client, we utilize two tools. The first tool that we
use for our experiments is tcpdump. This allows us to capture the network traffic for the conference
systems where we can deduct our metrics such as network bandwidth from. By including this tool
in our containerized application, we only capture the data that is specific to the conference system.
This allows us to have very specific data regarding the system that we are using since most of these
systems do not document the network usage. Furthermore, we used Python libraries dpkt and scapy

to analyze and collect bandwidth information from the saved tcpdump packet files.
The second tool that we use is a Python script that gathers the system statistics of the client

that is running the experiment. By using this tool, we can record the memory and CPU usage of
the video conference system. The Python script internally uses Linux’s Process Status tools to
measure CPU and memory usage.

5.3.3 Anti-bot Detection

Most of the online systems do not tolerate the usage of automated web clients using their services.
In order to circumvent this, we have two subsystems within our meeting clients. Since the client
is already using an actual version of the Chrome browser this gives us an advantage, but detection
systems are in place to detect these systems as well. More specifically the Zoom web client detects
bots and also implements ReCaptcha17, an advanced risk analysis engine that detects bots and
prohibits them from using their services.

The first subsystem that we use is a plugin for the puppeteer browser framework 18. This provides
various mechanisms to mask the fact that we are using a headless Chrome browser to access various
services. The second subsystem that we use is a ReCaptcha solver. This allows us to send our
ReCaptcha token to an external provider which solves our ReCaptcha and sends us a valid token
back. These systems overcome the obstacles that we encountered when developing the automated
testing system.

5.3.4 Batch Mode

The clients in this framework run a single experiment before shutting down as default behavior. Since
the goal of our research is to conduct many experiments, we have included an additional batch script
for these clients to solve this problem. This script runs the containerized application and executes
the entire workflow. After the client finishes and the measurements are recorded successfully, the
script will restart and connects to the server again to wait until a new experiment is created.

14https://nodejs.org/en
15https://www.docker.com/resources/what-container
16https://gs.statcounter.com/browser-market-share
17https://www.google.com/recaptcha/about
18https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth

12



Figure 3: Top down view of the experiment scheduler within the experiment framework.

We have included a two-minute timeout before each experiment to ensure that the new experi-
ment will not encounter any leftover clients from the previous experiments. The batch script allows
us to run an infinite number of experiments per client without having to manually start them again.

5.4 Experiment Scheduler

The experiment scheduler is a Python based script that automatically creates and runs our experi-
ments. Although we can manually create our experiments it can take a lot of time to do so for the
amount of experiments that we planned on running. This script assumes that there are clients run-
ning in batch mode as discussed in Section 5.3.4 where the clients keep trying to join and experiment
until it successfully does so. The scheduler is configured to match our experiment requirements and
iterates over all the different experiment configurations that we have defined in Section 4. After each
experiment, the scheduler waits for a predetermined amount of time to let the clients gracefully shut
down and allows time for the clients to leave the meeting rooms. Afterward, the scheduler repeats
this process until all different experiment combinations have been conducted.

6 Results

This section presents the results of the conducted experiments. We start by explaining the exper-
iment execution environment (Section 6.1). After which the general metrics used to conduct the
data analysis are defined (Section 4.1). Lastly, we present the results of the performed experiments
(Section 6.2).

6.1 Experiment Execution

In this section, we explain the specifications of the machine from which we reported the client
measurements. The specification are from one common machine which is used across all experiments
for an accurate comparison. The specifications of the common machine used for the experiments are
provided in Table 7.

For scaling up to 4 and 6 clients, virtual machines from the Google Cloud platform were utilised
besides individual laptops. The experiments were manually run through a batch script on each
individual client which joins the server and the statistics are collected. The detailed process is
explained in Section 5. The bandwidth measurements are aggregated based on seconds, this causes
some outliers as seen in the following sections where the results of the experiments are discussed.

13



Experiment Machine Specification

Operating System Elementary OS 5.1.7 (Linux Distro based on Ubuntu LTS 18.04)
CPU Intel i7 (8th gen, 8 cores, and 4.2 GHz max clock speed)
RAM 16 GB
Docker Version 20.10.0
Docker Compose Version 1.17.1

Table 7: The setup used to perform the experiments

6.2 Experiment Results

This section describes the results obtained from our experiments. We classified the experiments in
four classes, namely, variability (Section 6.2.1), performance and scalability (Section 6.3), web- vs.
app-based video conferences (Section 6.3.1), and video vs. audio workload (Section 6.3.2).

Before the data visualization, value entries that recorded 0 for each metric are removed as part
of data cleaning to improve plots readability. These values can be caused by measurement errors or
unstable connectivity. For the variability experiments, this reduces the rows from 7350 to 7220, for
performance and scalability experiments from 11024 to 10824, for app vs. web experiments from
5186 to 4660, and for audio vs. video workload from 7221 to 6929.

6.2.1 Variability

To answer Q1 on time taken for system metrics to become stable, the three conferencing systems
were run for 5 minutes and the corresponding CPU percentage over time is shown in Figure 5,
memory usage in Figure 6, and bandwidth in Figure 4. From Figure 6, it can be observed that the
memory for Zoom web increases linearly up to 5 GB before stabilizing while Jitsi and Teams memory
usage is stable around 1GB during the entire run. We conjecture the linear memory increase due to
a potential memory leak in Zoom web which has been reported in discussion forumns19 20 and the
stabilization of 5GB being an application memory limit for a single tab in Google Chrome.

From Figure 5, it can be seen that CPU usage is stable over time with Zoom web having the
highest CPU utilization. For bandwidth, it is observed in Figure 4 that initially both Zoom web and
Teams take some warm-up time of 20 seconds where the amount of bandwidth consumed is variable
before stabilizing whereas Jitsi has a stable bandwidth from the start. We conjecture that the initial
warm-up time is taken by the applications to adjust the video and audio bit rate across connections
before reaching a steady state while Jitsi does not follow a similar cold start model.

To answer Q2, the variability across 4 iterations was observed to finalize the parameters for
the remaining experiments. As seen in Figure 7, from the inter-quartile range and error bars that
represent the min/max values, the performance of Jitsi for all three metrics is stable across the 4
iterations. A high number of outliers are observed for the CPU percentage. A similar trend was
observed for Teams but in Zoom as shown in Figure 8, the variability of CPU usage and memory
usage was high but the median was similar across iterations. Even though the variability in Zoom
was higher than the other systems, the number of iterations was fixed to 4 and repetitions to 5 due
to time constraints.

6.3 Performance and Scalability

To answer Q4 and Q3, experiments were run across multiple number of clients, namely, 2, 4 and
6. As seen in Figure 9, the memory consumption and bandwidth of Zoom web are higher than Jitsi
and Teams across all clients. The variation of the median across the iterations is also low. The
bandwidth in Teams is extremely low in comparison to the other two systems but this is due to

19https://superuser.com/questions/1589202/apparent-memory-leak-using-zoom-web-app-on-chromium-ubuntu-20-
04

20https://devforum.zoom.us/t/memory-leak-in-zoom-website-meeting-hosting/14503

14



0 50 100 150 200 250 300
Time (s)

4

2

0

2

4

6

8

10
Ba

nd
wi

dt
h 

(K
b/

s)
 L

og
 S

ca
le

d

Warmup time ends index
JITSI, 2 Clients
JITSI, 4 Clients
TEAMS, 2 Clients
TEAMS, 4 Clients
ZOOMWEB, 2 Clients
ZOOMWEB, 4 Clients

Figure 4: Bandwidth over time.

0 50 100 150 200 250 300
Time (s)

0

50

100

150

200

250

300

CP
U 

Us
ag

e 
(%

)

Warmup time ends

index
JITSI, 2 Clients
JITSI, 4 Clients
TEAMS, 2 Clients
TEAMS, 4 Clients
ZOOMWEB, 2 Clients
ZOOMWEB, 4 Clients

Figure 5: CPU over time.

an architectural choice where only the current speaker video is displayed on all clients leading to a
lower bandwidth requirement. Jitsi requires the highest CPU percentage across the systems. This

15



0 50 100 150 200 250 300
Time (s)

1000

2000

3000

4000

5000

6000
M

em
or

y 
(M

B)

Warmup time ends

JITSI, 2 Clients
JITSI, 4 Clients
TEAMS, 2 Clients
TEAMS, 4 Clients
ZOOMWEB, 2 Clients
ZOOMWEB, 4 Clients

Figure 6: Memory over time.

2 4
Clients

0

50

100

150

200

250

Ba
nd

wi
dt

h 
(K

B/
s)

2 4
Clients

750

800

850

900

950

M
em

or
y 

(M
B)

2 4
Clients

160

180

200

220

240

260

280

300

CP
U 

Us
ag

e 
(%

)

Iteration 0 Iteration 1 Iteration 2 Iteration 3

Figure 7: Jitsi execution across 4 iterations.

is a known issue of Jitsi Meet being CPU heavy 21 with forum posts disabling hardware acceleration
and other parameters on Chrome to lower CPU utilization. But overall the CPU usage percentage
for all three systems make the systems compute heavy.

A surprising observation was the gradual decrease in all three metrics across all three conferencing
systems with an increase in the number of clients. A possible conjecture is that a possible decrease
in video quality leads to lower values but it is difficult to reason due to the black-box property
architectures of Zoom and Teams.

6.3.1 Web vs. App

To answer Q5, Zoom web and app were compared across 2 and 4 clients. The number of clients was
limited to 4 due to a lack of physical machines available. As seen in Figure 10, Zoom app outperforms
Zoom web for all three metrics. To illustrate, CPU utilization and memory consumption are multiple

21https://community.jitsi.org/t/high-cpu-utilization-on-client-end/25764/39

16



2 4
Clients

0

1000

2000

3000

4000

Ba
nd

wi
dt

h 
(K

B/
s)

2 4
Clients

1000

2000

3000

4000

5000

M
em

or
y 

(M
B)

2 4
Clients

0

50

100

150

200

250

300

CP
U 

Us
ag

e 
(%

)

Iteration 0 Iteration 1 Iteration 2 Iteration 3

Figure 8: Zoom execution across 4 iterations.

2 4 6
Clients

0

500

1000

1500

2000

2500

3000

3500

4000

M
em

or
y 

(M
B)

2 4 6
Clients

0

50

100

150

200

250

CP
U 

Us
ag

e 
(%

)

2 4 6
Clients

0

50

100

150

200

250

300

350

Ba
nd

wi
dt

h 
(K

B/
s)

ZOOMWEB JITSI TEAMS

Figure 9: The impact of the number of clients on the memory usage, CPU usage, and network
bandwidth.

factors lower in the app. This shows the company has focused on the desktop app which has more
features 22, is more popular, and can be developed by directly interacting with system resources
instead of serving the content through a browser. Another observable trend is the reduction in
metric values with the increase in clients for both the Zoom app and web.

6.3.2 Audio vs. Video

To answer Q6, experiments were run on 2 and 4 clients for Jitsi with audio only, video only, audio
and video combined workloads. As seen in Figure 11, as expected the video and audio combined
workload consumes more bandwidth, CPU percentage, and memory than only audio and only video
separately. The audio workload separately consumed the least amount of resources for bandwidth
and memory usage which is expected because the data size to be transferred is the least for only
audio. The surprising result is the CPU percentage for audio only workload being higher than video
only workload.

Another surprising observation is that the difference in CPU utilization and memory utilization
across the three workloads is quite less as compared to bandwidth where the difference is in orders
of magnitude between audio and audio-video workload, so from the application’s perspective, the
system requirements/usage remain similar irrespective of the workload.

22https://support.zoom.us/hc/en-us/articles/360027397692-Desktop-client-mobile-app-and-web-client-comparison

17



2 4
Clients

0

500

1000

1500

2000

2500

3000

3500

4000

M
em

or
y 

(M
B)

2 4
Clients

0

50

100

150

200

250

CP
U 

Us
ag

e 
(%

)

2 4
Clients

0

50

100

150

200

250

300

350

Ba
nd

wi
dt

h 
(K

B/
s)

ZOOMWEB ZOOMAPP

Figure 10: The impact of using Zoom web and app on the memory usage, CPU usage, and network
bandwidth.

2 4
Clients

0

100

200

300

400

500

600

700

800

M
em

or
y 

(M
B)

2 4
Clients

0

50

100

150

200

250

CP
U 

Us
ag

e 
(%

)

2 4
Clients

0

20

40

60

80

100

120

140

Ba
nd

wi
dt

h 
(K

B/
s)

Video Only Audio and Video Audio Only

Figure 11: The impact of using audio and video workloads on the memory usage, CPU usage, and
network bandwidth.

7 Discussion

In this study, we aimed to answer the research question: how do popular video conferencing tools
perform relative to each other? To answer this question, we performed experiments using Zoom
(web and app), Microsoft Teams, and Jitsi. In these experiments, we measured the bandwidth, CPU
usage, and memory usage. Furthermore, we assessed the scalability by repeating the experiments
for 2, 4, and 6 clients.

From our experiment results, we observed that after an initial warm-up time (typically between
20 - 30 seconds after joining the conference) the performance of the various video conferencing
systems becomes relatively stable. From this, we learned that relatively short experiments (≤ 5
minutes) are adequate to measure the performance of video conferencing systems.

An exception to the stable performance after the warm-up time is the memory usage of Zoom
web over time. We showed that after the warm-up time, the memory usage of Zoom web grew
linearly up until a certain upper bound. We conjecture that this shows a memory leak and that the
upper bound is due to browser-specific restrictions. From this, we recommend users with a memory
critical system to refrain from using Zoom web.

A major trend across all experiments was the reduction in bandwidth, CPU usage, and memory
usage as the number of clients increases. We did not expect this trend initially as we expected that a
higher number of clients would increase the pressure on the network and system. We reason that this
is due to the system reducing the quality of the audio and video streams as more clients are added
to ensure a stable connection and performance. An exception to this trend is Microsoft Teams as

18



the performance remains stable when increasing the number of clients. So for a stable performance,
we would recommend Teams.

When comparing Zoom app and Zoom web, we verified our previous observation that Zoom web
performs relatively poorly. This is a striking observation as Zoom is such a large player in the field.
By comparing the performance of Zoom app to Zoom web, we learned that the performance of Zoom
app is significantly better in all areas. From this, we expect that Zoom mostly focuses on optimizing
the application rather than the web-based version. Hence, we recommend users to download the
application of Zoom when using this video conferencing system.

When comparing different workloads within the video conference systems such as audio-only,
video-only, and both audio and video we had some unexpected results at first. Our initial results
did not align well with what we initially expected. After rerunning the experiments, the results
aligned more with our expectations where the audio and video workload combined consumes most
resources within the system. From the experiment, we recommend users in lower inter-connectivity
areas should use audio-only workloads. The initial results showed once again that the internet is an
unreliable network and that many external factors can influence the results of the experiments.

Finally, we discuss some of the threats to validity encountered in our experiments and describe
them in the following list:

• Lack of interleaving of experiments could cause the results to be variable across web-app where
network congestion at a particular time could affect the results of these applications. Our
experiment suffers from the threat as the iterations of an experiment were run in succession.

• The WiFi-connectivity being used affect the bandwidth and other values. As video and audio
experiments trends changed when connecting to a new WiFi connection. Internet connectivity
in an uncontrolled environment. To mitigate the threat, the experiments are repeated.

• The experiments were only run on laptops and VMs having Ubuntu 18.04 OS. The application
performance can vary for Windows and Mac users (so the results cannot be generalized).

• Due to a low number of resources, the experiments are only run for a few clients and it is
possible that for higher clients the trends can change or some conference clients cannot scale
past a certain number.

• The results for only one common machine used for all experiments are plotted, so system-
level metrics like CPU utilization and memory usage can be highly dependent on the system’s
hardware.

8 Conclusion

In this study, we aimed to evaluate and compare the performance of video conferencing tools in
the context of distributed systems. To achieve this objective, we designed experiments to compare
the performance and scalability of Zoom, Microsoft Teams, and Jitsi. Furthermore, we designed
and implemented an experimentation tool that automatically hosts and joins video conferences, and
measures the network bandwidth, CPU usage, and memory usage.

The design and implementation of the experiment tool contributes to the research community as
it allows the reproduction of performed experiments. The tool can be extended with other features
such as the support of other video conferencing systems (e.g. Google Hangouts) and the inclusion
of other metrics to understand the behavior of the video conferencing systems (e.g. jitter).

Based on the performed experiments, we concluded that the performance of the various video
conferencing systems is irregular during the warm-up time. After approximately 20 - 30 seconds,
the warm-up time has finished and the performance of the video conferencing systems becomes
relatively stable. This trend has one major exception regarding the memory usage of Zoom web,
this increases linearly over time until a certain upper bound has been reached. Hence, we advise users
of video conferencing systems not to use Zoom web on a memory critical device. Another interesting
trend that we observed is that as the number of clients increases, the network and system utilization

19



decreases. This contrasted to our initial intuition and we expect that this is due to video conferences
reducing the quality of the audio and video streams as the number of clients increases to ensure stable
performance.

As this is the first study to evaluate and compare the performance of popular video conferencing
systems, many gaps remain. Future work is required to understand the performance when scaling up
the video conferences to a larger number of clients (10+). Furthermore, application-level metrics are
required to further understand the performance of the various video conferencing systems. Lastly,
the relation between the performance of the video conferencing systems and their environment (OS,
browser, etc.) needs to be studied to further understand their behavior.

20



APPENDIX

A Figures

Figure 12: Server - Creation of an experiment.

21



Figure 13: Server - Status of an experiment.

Figure 14: Preview of a standard experiment as an external observer.
Disclaimer: The video was used as we wanted a speaker talking directly to a webcam. No political
statement was intended by the authors. In hindsight, we should have changed the experiment
workload using less controversial material.

22



Figure 15: Server - Results of an experiment.

23



Figure 16: Flow-chart of the experiment framework.

24



B Time Sheet

Time sheets

Activity Time Spent (hours)

Meetings
Group meetings 20
Meetings with supervisor 10
Development
Framework design 20
Framework development 180
Experiments
Experiment Execution 20
Analysis
Discuss outcomes 15
Make figures 15
Report
Set-up document structure 10
Write report 50
Report review 5
Wasted Time
Rerunning experiments 5

Total time spent 350

Table 8: Time spent as group effort per section of the project.

25



References

[1] Aleksander Aristovnik, Damijana Keržič, Dejan Ravšelj, Nina Tomaževič, and Lan Umek. Im-
pacts of the covid-19 pandemic on life of higher education students: A global perspective.
Sustainability, 12(20):8438, 2020.

[2] Erik Brynjolfsson, John J Horton, Adam Ozimek, Daniel Rock, Garima Sharma, and Hong-Yi
TuYe. Covid-19 and remote work: an early look at us data. Technical report, National Bureau
of Economic Research, 2020.

[3] Dai Clegg and Richard Barker. Case Method Fast-Track: A Rad Approach. Addison-Wesley
Longman Publishing Co., Inc., USA, 1994.

[4] Jorge Hortelano, Juan-Carlos Cano, Carlos T Calafate, and Pietro Manzoni. Evaluating the
performance of real time videoconferencing in ad hoc networks through emulation. In 2008
22nd Workshop on Principles of Advanced and Distributed Simulation, pages 119–126. IEEE,
2008.

[5] Alexandru Iosup, Laurens Versluis, Animesh Trivedi, Erwin Van Eyk, Lucian Toader, Vincent
Van Beek, Giulia Frascaria, Ahmed Musaafir, and Sacheendra Talluri. The atlarge vision on
the design of distributed systems and ecosystems. In 2019 IEEE 39th International Conference
on Distributed Computing Systems (ICDCS), pages 1765–1776. IEEE, 2019.

[6] Hyunwoo Nam, Kyung-Hwa Kim, Doru Calin, and Henning Schulzrinne. Youslow: A perfor-
mance analysis tool for adaptive bitrate video streaming. SIGCOMM Comput. Commun. Rev.,
44(4):111–112, August 2014.

[7] Thinh P Nguyen and Avideh Zakhor. Distributed video streaming over internet. In Multimedia
Computing and Networking 2002, volume 4673, pages 186–195. International Society for Optics
and Photonics, 2001.

[8] Anthony M Townsend, Samuel M Demarie, and Anthony R Hendrickson. Desktop video con-
ferencing in virtual workgroups: anticipation, system evaluation and performance. Information
Systems Journal, 11(3):213–227, 2001.

[9] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and Anders
Wesslén. Experimentation in software engineering. Springer US, 2012.

[10] Xinggong Zhang, Yang Xu, Hao Hu, Yong Liu, Zongming Guo, and Yao Wang. Profiling
skype video calls: Rate control and video quality. In 2012 Proceedings IEEE INFOCOM, pages
621–629. IEEE, 2012.

26


	Introduction
	Background
	Client-Server Architecture
	Zoom
	Microsoft Teams
	Jitsi

	Requirements
	Functional Requirements
	Quality Requirements

	Experiment Design
	Experiment Definition
	Relation to Requirements
	Experiment Design
	Variability
	Scalability
	Web vs. App
	Audio vs. Video

	Experiment Workload

	Experimentation Tool
	Framework Architecture
	Experiment Server
	Experiment Client
	Headless Browser Automation
	Measurement Tools
	Anti-bot Detection
	Batch Mode

	Experiment Scheduler

	Results
	Experiment Execution
	Experiment Results
	Variability

	Performance and Scalability
	Web vs. App
	Audio vs. Video


	Discussion
	Conclusion
	Figures
	Time Sheet

