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ABSTRACT

Black-box optimization (BBO) has a broad range of applications,
including automatic machine learning, engineering, physics, and
experimental design. However, it remains a challenge for users
to apply BBO methods to their problems at hand with existing
software packages, in terms of applicability, performance, and ef-
ficiency. In this paper, we build OpenBox, an open-source and
general-purpose BBO service with improved usability. The modu-
lar design behind OpenBox also facilitates flexible abstraction and
optimization of basic BBO components that are common in other
existing systems. OpenBox is distributed, fault-tolerant, and scal-
able. To improve efficiency, OpenBox further utilizes “algorithm
agnostic” parallelization and transfer learning. Our experimental
results demonstrate the effectiveness and efficiency of OpenBox
compared to existing systems.
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System/Package Multi-obj. FIOC Constraint History Distributed
Hyperopt × ✓ × × ✓
Spearmint × × ✓ × ×
SMAC3 × ✓ × × ×
BoTorch ✓ × ✓ × ×
GPflowOpt ✓ × ✓ × ×
Vizier × ✓ × △ ✓
HyperMapper ✓ ✓ ✓ × ×
HpBandSter × ✓ × × ✓
OpenBox ✓ ✓ ✓ ✓ ✓

Table 1: A taxonomy of BBO systems/softwares. Multi-obj.
notes whether the system supports multiple objectives or

not. FIOC indicates if the system supports all Float, Integer,

Ordinal and Categorical variables. Constraint refers to the

support for inequality constraints. History represents the

ability of the system to inject the prior knowledge from pre-

vious tasks in the search.Distributed notes if it supports par-

allel evaluations under a distributed environment. △ means

the system cannot support it for many cases. Note that,

BoTorch, as a framework, might provide the algorithmic

building blocks for a developer to implement some of these

capacities.

1 INTRODUCTION

Black–box optimization (BBO) is the task of optimizing an objective
function within a limited budget for function evaluations. “Black-
box” means that the objective function has no analytical form so
that information such as the derivative of the objective function is
unavailable. Since the evaluation of objective functions is often ex-
pensive, the goal of black-box optimization is to find a configuration
that approaches the global optimum as rapidly as possible.

Traditional BBO with a single objective has many applications:
1) automatic A/B testing, 2) experimental design [15], 3) knobs
tuning in database [46, 48, 49], and 4) automatic hyper-parameter
tuning [6, 27, 32, 44], one of the most indispensable components
in AutoML systems [1, 34] such as Microsoft’s Azure Machine
Learning, Google’s Cloud Machine Learning, Amazon Machine
Learning [35], and IBM’s Watson Studio AutoAI, where the task is
to minimize the validation error of a machine learning algorithm
as a function of its hyper-parameters. Recently, generalized BBO
emerges and has been applied to many areas such as 1) processor
architecture and circuit design [2], 2) resource allocation [18], and
3) automatic chemical design [22], which requires more general
functionalities that may not be supported by traditional BBO, such
as multiple objectives and constraints. As examples of applications
of generalized BBO in the software industry, Microsoft’s Smart
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Buildings project [36] searches for the best smart building designs
by minimizing both energy consumption and construction costs
(i.e., BBO with multiple objectives); Amazon Web Service aims
to optimize the performance of machine learning models while
enforcing fairness constraints [39] (i.e., BBO with constraints).

Many software packages and platforms have been developed for
traditional BBO (see Table 1). Yet, to the best of our knowledge, so
far there is no platform that is designed to target generalized BBO.
The existing BBO packages have the following three limitations
when applied to general BBO scenarios:
(1) Restricted scope and applicability. Restricted by the underlying
algorithms, most existing BBO implementations cannot handle di-
verse optimization problems in a unified manner (see Table 1). For
example, Hyperopt [6], SMAC3 [27], and HpBandSter [13] can only
deal with single-objective problems without constraints. Though
BoTorch [3] and GPflowOpt [30] can be used, as a framework, for
developers to implement new optimization problems with multi-
objectives and constraints; nevertheless, their current off-the-shelf
supports are also limited (e.g., the support for non-continuous pa-
rameters).
(2) Unstable performance across problems. Most existing software
packages only implement one or very few BBO algorithms. Ac-
cording to the “no free lunch” theorem [26], no single algorithm
can achieve the best performance for all BBO problems. Therefore,
existing packages would inevitably suffer from unstable perfor-
mance when applied to different problems. Figure 1 presents a
brief example of hyper-parameter tuning across 25 AutoML tasks,
where for each problem we rank the packages according to their
performances. We can observe that all packages exhibit unstable
performance, and no one consistently outperforms the others. This
poses challenges on practitioners to select the best package for a
specific problem, which usually requires deep domain knowledge/-
expertise and is typically very time-consuming.
(3) Limited scalability and efficiency. Most existing packages exe-
cute optimization in a sequential manner, which is inherently ineffi-
cient and unscalable. However, extending the sequential algorithm
to make it parallelizable is nontrivial and requires significant engi-
neering efforts. Moreover, most existing systems cannot support
transfer learning to accelerate the optimization on a similar task.

With these challenges, in this paper we propose OpenBox, a
system for generalized black-box optimization. The design of Open-
Box follows the philosophy of providing “BBO as a service” — in-
stead of developing another software package, we opt to implement
OpenBox as a distributed, fault-tolerant, scalable, and efficient ser-
vice, which addresses the aforementioned challenges in a uniform
manner and brings additional advantages such as ease of use, porta-
bility, and zero maintenance. In this regard, Google’s Vizier [19]
is perhaps the only existing BBO service as far as we know that
follows the same design philosophy. Nevertheless, Vizier only
supports traditional BBO, and cannot be applied to general scenar-
ios with multiple objectives and constraints that OpenBox aims for.
Moreover, unlike Vizier, which remains Google’s internal service
as of today, we have open-sourced OpenBox that is available at
https://github.com/PKU-DAIR/open-box.

The key novelty of OpenBox lies in both the system implemen-
tation and algorithm design. In terms of system implementation,
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Figure 1: Performance rank of softwares on 25AutoML tasks

(lower is better). The box extends from the lower to the upper

quartile values, with a line at themedian. The whiskers that

extend the box show the range of the data.

OpenBox allows users to define their tasks and access the gener-
alized BBO service conveniently via a task description language
(TDL) along with customized interfaces. OpenBox also introduces
a high-level parallel mechanism by decoupling basic components
in common optimization algorithms, which is “algorithm agnostic”
and enables parallel execution in both synchronous and asynchro-
nous settings. Moreover, OpenBox also provides a general transfer-
learning framework for generalized BBO, which can leverage the
prior knowledge acquired from previous tasks to improve the effi-
ciency of the current optimization task. In terms of algorithm design,
OpenBox can host most of the state-of-the-art optimization algo-
rithms and make their performances more stable via an automatic
algorithm selection module, which can choose proper optimization
algorithm for a given problem automatically. Furthermore, Open-
Box also supports multi-fidelity and early-stopping algorithms for
further optimization of algorithm efficiency.

Contributions. In summary, our main contributions are:
C1. An open-sourced service for generalized BBO. To the best of our
knowledge, OpenBox is the first open-sourced service for efficient
and general black-box optimization.
C2. Ease of use. OpenBox provides user-friendly interfaces, visu-
alization, resource-aware management, and automatic algorithm
selection for consistent performance.
C3. High efficiency and scalability. We develop scalable and general
frameworks for transfer-learning and distributed parallel execu-
tion in OpenBox. These building blocks are properly integrated to
handle diverse optimization scenarios efficiently.
C4. State-of-the-art performance. Our empirical evaluation demon-
strates that OpenBox achieves state-of-the-art performance com-
pared to existing systems over a wide range of BBO tasks.

Moving Forward.With the above advantages and features, Open-
Box can be used for optimizing a wide variety of different applica-
tions in an industrial setting. We are currently conducting an initial
deployment of OpenBox in Kuaishou, one of the most popular
“short video” platforms in China, to automate the tedious process
of hyperparameter tuning. Initial results have suggested we can
outperform human experts.

2 BACKGROUND AND RELATEDWORK

Generalized Black-box Optimization (BBO). Black-box opti-
mization makes few assumptions about the problem, and is thus
applicable in a wide range of scenarios. We define the generalized
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BBO problem as follows. The objective function of generalized BBO
is a vector-valued black-box function 𝒇 (𝒙) : X → R

𝑝 , where X
is the search space of interest. The goal is to identify the set of
Pareto optimal solutions P∗ = {𝒇 (𝒙) s.t. � 𝒙 ′ ∈ X : 𝒇 (𝒙 ′) ≺ 𝒇 (𝒙)},
such that any improvement in one objective means deteriorating
another. To approximate P∗, we compute the finite Pareto set P
from observed data {(𝒙 𝒊,𝒚𝒊)}𝑛𝑖=1. When 𝑝 = 1, the problem be-
comes single-objective BBO, as P = {𝑦best} where 𝑦best is defined
as the best objective value observed. We also consider the case with
black-box inequality constraints. Denote the set of feasible points
by C = {𝒙 : 𝑐1 (𝒙) ≤ 0, . . . , 𝑐𝑞 (𝒙) ≤ 0}. Under this setting, we aim
to identify the feasible Pareto set Pfeas = {𝒇 (𝒙) s.t. 𝒙 ∈ C, � 𝒙 ′ ∈
X : 𝒇 (𝒙 ′) ≺ 𝒇 (𝒙), 𝒙 ′ ∈ C}.
Black-box Optimization Methods. Black-box optimization has
been studied extensively in many fields, including derivative-free
optimization [42], Bayesian optimization (BO) [43], evolutionaray
algorithms [23], multi-armed bandit algorithms [31, 45], etc. To
optimize expensive-to-evaluate black-box functions with as few
evaluations as possible, OpenBox adopts BO, one of the most pre-
vailing frameworks in BBO, as the basic optimization framework.
BO iterates between fitting probabilistic surrogate models and de-
termining which configuration to evaluate next by maximizing an
acquisition function. With different choices of acquisition functions,
BO can be applied to generalized BBO problems.

BBO with Multiple Objectives.Many multi-objective BBO algo-
rithms have been proposed [4, 5, 25, 29, 38]. Couckuyt et. al. [7]
propose the Hypervolume Probability of Improvement (HVPOI);
Yang et. al. [47] and Daulton et. al. [8] use the Expected Hypervol-
ume Improvement (EHVI) metrics.

BBO with Black-box Constraints. Gardner et.al. [16] present Prob-
ability of Feasibility (PoF), which uses GP surrogates to model the
constraints. In general, multiplying PoF with the unconstrained ac-
quisition function produces the constrained version of it. SCBO [12]
employs the trust region method and scales to large batches by ex-
tending Thompson sampling to constrained optimization. Other
methods handle constraints in different ways [21, 24, 40]. For multi-
objective optimization with constraints, PESMOC [17] and MES-
MOC [5] support constraints by adding the entropy of the condi-
tioned predictive distribution.
BBO Systems and Packages. Many of these algorithms have
available open-source implementations. BoTorch, GPflowOpt and
HyperMapper implement several BO algorithms to solve mathe-
matical problems in different settings. Within the machine learn-
ing community, Hyperopt, Spearmint, SMAC3 and HpBandSter
aim to optimize the hyper-parameters of machine learning models.
Google’s Vizier is one of the early attempts in building service
for BBO. We also note that Facebook Ax1 provides high-level API
for BBO with BoTorch as its Bayesian optimization engine.

3 SYSTEM OVERVIEW

In this section, we provide the basic concepts in the paper, explore
the design principles in implementing black-box optimization (BBO)
as a service, and describe the system architecture.

1https://github.com/facebook/ax
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Figure 2: Architecture of OpenBox.

3.1 Definitions

Throughout the paper, we use the following terms to describe the
semantics of the system:
Configuration. Also called suggestion, a vector 𝒙 sampled from the
given search space X; each element in 𝒙 is an assignment of a
parameter from its domain.
Trial. Corresponds to an evaluation of a configuration 𝒙 , which has
three status: Completed, Running, Ready. Once a trial is completed,
we can obtain the evaluation result 𝒇 (𝒙).
Task. A BBO problem over a search space X. The task type is iden-
tified by the number of objectives and constraints.
Worker. Refers to a process responsible for executing a trial.

3.2 Goals and Principles

3.2.1 Design Goal. As mentioned before, OpenBox’s design satis-
fies the following desiderata:

• Ease of use. Minimal user effort, and user-friendly visualiza-
tion for tracking and managing BBO tasks.

• Consistent performance. Host state-of-the-art optimization
algorithms; choose the proper algorithm automatically.

• Resource-aware management. Give cost-model based advice
to users, e.g., minimal workers or time-budget.

• Scalability. Scale to dimensions on the number of input vari-
ables, objectives, tasks, trials, and parallel evaluations.

• High efficiency. Effective use of parallel resources, system
optimization with transfer-learning and multi-fidelities, etc.

• Fault tolerance, extensibility, and data privacy protection.

3.2.2 Design Principles. We present the key principles underlying
the design of OpenBox.

P1: Provide convenient service API that abstracts the im-

plementation and execution complexity away from the user.

For ease of use, we adopt the “BBO as a service” paradigm and im-
plement OpenBox as a managed general service for black-box opti-
mization. Users can access this service via REST API conveniently
(see Figure 2), and do not need to worry about other issues such
as environment setup, software maintenance, programming, and
optimization of the execution. Moreover, we also provide a Web UI,
through which users can easily track and manage the tasks.

P2: Separate optimization algorithm selection complexity

away from the user. Users do not need to disturb themselves with
choosing the proper algorithm to solve a specific problem via the

3
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task_config = {
"parameter ": {

"x1": { "type": "float", "default ": 0,
"bound": [-5, 10]},

"x2": {"type": "int", "bound": [0, 15]},
"x3": {"type": "cat", "default ": "a1",

"choice ": ["a1", "a2", "a3"]},
"x4": {"type": "ord", "default ": 1,

"choice ": [1, 2, 3]}},
"condition ": {

"cdn1": {"type": "equal", "parent ": "x3",
"child": "x1", "value": "a3"}},

"number_of_trials ": 200,
"time_budget ": 10800 ,
"task_type ": "soc",
"parallel_strategy ": "async",
"worker_num ": 10,
"use_history ": True
}

Figure 3: An example of Task Description Language.

automatic algorithm selection module. Furthermore, an important
decision is to keep our service stateless (see Figure 2), so that we can
seamlessly switch algorithms during a task, i.e., dynamically choose
the algorithm that is likely to perform the best for a particular task.
This enables OpenBox to achieve satisfactory performance once
the BBO algorithm is selected properly.

P3: Support general distributed parallelization and trans-

fer learning.Weaim to provide users with full potential to improve
the efficiency of the BBO service. We design an “algorithm agnos-
tic” mechanism that can parallelize the BBO algorithms (Sec. 5.1),
through which we do not need to re-design the parallel version for
each algorithm individually. Moreover, if the optimization history
over similar tasks is provided, our transfer learning framework can
leverage the history to accelerate the current task (Sec. 5.2).

P4: Offer resource-aware management that saves user ex-

pense. OpenBox implements a resource-aware module and offers
advice to users, which can save expense or resources for users es-
pecially in the cloud environment. Using performance-resource
extrapolation (Sec. 4.4), OpenBox can estimate 1) the minimal num-
ber of workers users need to complete the current task within the
given time budget, or 2) the minimal time budget to finish the cur-
rent task given a fixed number of workers. For tasks that involve
expensive-to-evaluate functions, low-fidelity or early-stopped eval-
uations with less cost could help accelerate the convergence of the
optimization process (Sec. 5.3).

3.3 System Architecture

Based on these design principles, we build OpenBox as depicted in
Figure 2, which includes five main components. Service Master is
responsible for node management, load balance, and fault tolerance.
Task Database holds the states of all tasks. Suggestion Service creates
new configurations for each task. REST API establishes the bridge
between users/workers and suggestion service. Evaluation workers
are provided and owned by the users.

4 SYSTEM DESIGN

In this section, we elaborate on the main features and components
of OpenBox from a service perspective.

4.1 Service Interfaces

4.1.1 Task Description Language. For ease of usage, we design a
Task Description Language (TDL) to define the optimization task.
The essential part of TDL is to define the search space, which in-
cludes the type and bound for each parameter and the relationships
among them. The parameter types — FLOAT, INTEGER, ORDINAL
and CATEGORICAL are supported in OpenBox. In addition, users
can add conditions of the parameters to further restrict the search
space. Users can also specify the time budget, task type, number of
workers, parallel strategy and use of history in TDL. Figure 3 gives
an example of TDL. It defines four parameters x1-4 of different
types and a condition cdn1, which indicates that x1 is active only
if x3 = “a3”. The time budget is three hours, the parallel strategy
is async, and transfer learning is enabled.

4.1.2 BasicWorkflow. Given the TDL for a task, the basic workflow
of OpenBox is implemented as follows:

# Register the worker with a task.
global_task_id = worker.CreateTask(task_tdl)
worker.BindTask(global_task_id)
while not worker.TaskFinished ():

# Obtain a configuration to evaluate.
config = worker.GetSuggestions ()
# Evaluate the objective function.
result = Evaluate(config)
# Report the evaluated results to the server.
worker.UpdateObservations(config , result)

Here Evaluate is the evaluation procedure of objective function
provided by users. By calling CreateTask, the worker obtains a
globally unique identifier global_task_id. All workers registered
with the same global_task_id are guaranteed to link with the
same task, which enables parallel evaluations. While the task is
not finished, the worker continues to call GetSuggestions and
UpdateObservations to pull suggestions from the suggestion
service and update their corresponding observations.

4.1.3 Interfaces. Users can interact with the OpenBox service via
a REST API. We list the most important service calls as follows:

• Register: It takes as input the global_task_id, which is
created when calling CreateTask from workers, and binds
the current worker with the corresponding task. This allows
for sharing the optimization history across multiple workers.

• Suggest: It suggests the next configurations to evaluate,
given the historical observations of the current task.

• Update: This method updates the optimization history with
the observations obtained from workers. The observations
include three parts: the values of the objectives, the results
of constraints, and the evaluation information.

• StopEarly: It returns a boolean value that indicates whether
the current evaluation should be stopped early.

• Extrapolate: It uses performance-resource extrapolation,
and interactively gives resource-aware advice to users.

4.2 Automatic Algorithm Selection

OpenBox implements a wide range of optimization algorithms to
achieve high performance in various BBO problems. Unlike the
existing software packages that use the same algorithm for each
task and the same setting for each algorithm, OpenBox chooses the
proper algorithm and setting according to the characteristic of the
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incoming task. We use the classic EI [37] for single-objective opti-
mization task. For multi-objective problems, we select EHVI [11]
when the number of objectives is less than 5; we use MESMO [4]
algorithm for problems with a larger number of objectives, since
EHVI’s complexity increases exponentially as the number of ob-
jectives increases, which not only incurs a large computational
overhead but also accumulates floating-point errors. We select the
surrogate models in BO depending on the configuration space and
the number of trials: If the input space has conditions, such as one
parameter must be less than another parameter, or there are over 50
parameters in the input space, or the number of trials exceeds 500,
we choose the Probabilistic Random Forest proposed in [27] instead
of Gaussian Process (GP) as the surrogate to avoid incompatibil-
ity or high computational complexity of GP. Otherwise, we use
GP [10]. In addition, OpenBox will use the L-BFGS-B algorithm to
optimize the acquisition function if the search space only contains
FLOAT and INTEGER parameters; it applies an interleaved local and
random search when some of the parameters are not numerical.
More details about the algorithms implemented in OpenBox are
discussed in Appendix A.2.

4.3 Parallel Infrastructure

OpenBox is designed to generate suggestions for a large number of
tasks concurrently, and a single machine would be insufficient to
handle the workload. Our suggestion service is therefore deployed
across several machines, called suggestion servers. Each suggestion
server generates suggestions for several tasks in parallel, giving
us a massively scalable suggestion infrastructure. Another main
component is service master, which is responsible for managing
the suggestion servers and balancing the workload. It serves as the
unified endpoint, and accepts the requests from workers; in this
way, each worker does not need to know the dispatching details.
The worker requests new configurations from the suggestion server
and the suggestion server generates these configurations based on an
algorithm determined by the automatic algorithm selection module.
Concretely, in this process, the suggestion server utilizes the local
penalization based parallelizationmechanism (Sec. 5.1) and transfer-
learning framework (Sec. 5.2) to improve the sample efficiency.

Onemain design consideration is to maintain a fault-tolerant pro-
duction system, as machine crash happens inevitably. In OpenBox,
the service master monitors the status of each server and preserves
a table of active servers. When a new task comes, the service master
will assign it to an active server and record this binding information.
If one server is down, its tasks will be dispatched to a new server by
the master, along with the related optimization history stored in the
task database. Load balance is one of the most important guidelines
to make such task assignments. In addition, the snapshot of service
master is stored in the remote database service; if the master is
down, we can recover it by restarting the node and fetching the
snapshot from the database.

4.4 Performance-Resource Extrapolation

In the setting of parallel infrastructure with cloud computing, sav-
ing expense is one of the most important concerns from users.
OpenBox can guide users to configure their resources, e.g., the
minimal number of workers or time budget, which further saves

Figure 4: An example of the Parallel Coordinates Visualiza-

tion for configurations when tuning LightGBM.

expense for users. Concretely, we use a weighted cost model to
extrapolate the performance vs. trial curve. It uses several paramet-
ric decreasing saturating function families as base models, and we
apply MCMC inference to estimate the parameters of the model.
Given the existing observations, OpenBox trains a cost model as
above and uses it to predict the number of trials at which the curve
approaches the optimum. Based on this prediction and the cost of
each evaluation, OpenBox estimates the minimal resource needed
to reach satisfactory performance (more details in Appendix A.1).

Application Example. Two interesting applications that save ex-
pense for users are listed as follows:
Case 1. Given a fixed number of workers, OpenBox outputs a min-
imal time budget 𝐵min to finish this task based on the estimated
evaluation cost of workers. With this estimation, users can stop the
task in advance if the given time budget 𝐵task > 𝐵min; otherwise,
users should increase the time budget to 𝐵min.
Case 2. Given a fixed time budget 𝐵task and initial number of work-
ers, OpenBox can suggest the minimal number of workers 𝑁min
to finish the current task within 𝐵task by adjusting the number of
workers to 𝑁min dynamically.

4.5 Augmented Components in OpenBox

Extensibility and Benchmark Support. OpenBox’s modular design
allows users to define their suggestion algorithms easily by inherit-
ing and implementing an abstract Advisor. The key abstraction
method of Advisor is GetSuggestions, which receives the ob-
servations of the current task and suggests the next configurations
to evaluate based on the user-defined policy. In addition, OpenBox
provides a benchmark suite of various BBO problems to benchmark
the optimization algorithms.
Data Privacy Protection. In some scenarios, the names and ranges of
parameters are sensitive, e.g., in hyper-parameter tuning, the param-
eter names may reveal the architecture details of neural networks.
To protect data privacy, the REST API applies a transformation to
anonymize the parameter-related information before sending it to
the service. This transformation involves 1) converting the parame-
ter names to some regular ones like “param1” and 2) rescaling each
parameter to a default range that has no semantic. The workers can
perform an inverse transformation when receiving an anonymous
configuration from the service.
Visualization. OpenBox provides an online dashboard based on
TensorBoardX which enables users to monitor the optimization
process and check the evaluation info of the current task. Figure 4
visualizes the evaluation results in a hyper-parameter tuning task.
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5 SYSTEM OPTIMIZATIONS

5.1 Local Penalization based Parallelization

Most proposed Bayesian optimization (BO) approaches only allow
the exploration of the parameter space to occur sequentially. To
fully utilize the computing resources in a parallel infrastructure, we
provide a mechanism for distributed parallelization, where multiple
configurations can be evaluated concurrently across workers. Two
parallel settings are considered (see Figure 5):
1) Synchronous parallel setting. Theworker pulls new configuration
from suggestion server to evaluate until all the workers have finished
their last evaluations.
2) Asynchronous parallel setting. The worker pulls a new configu-
ration when the previous evaluation is completed.

Our main concern is to design an algorithm-agnostic mechanism
that can parallelize the optimization algorithms under the sync and
async settings easily, so we do not need to implement the parallel
version for each algorithm individually. To this end, we propose
a local penalization based parallelization mechanism, the goal of
which is to sample new configurations that are promising and far
enough from the configurations being evaluated by other work-
ers. This mechanism can handle the well-celebrated exploration vs.
exploitation trade-off, and meanwhile prevent workers from explor-
ing similar configurations. Algorithm 1 gives the pseudo-code of
sampling a new configuration under the sync/async settings. More
discussion about this is provided in Appendix A.4.

5.2 General Transfer-Learning Framework

When performing BBO, users often run tasks that are similar to
previous ones. This fact can be used to speed up the current task.
Compared with Vizier, which only provides limited transfer learn-
ing functionality for single-objective BBO problems, OpenBox em-
ploys a general transfer learning framework with the following
advantages: 1) support for the generalized black-box optimization
problems, and 2) compatibility with most BO methods.

OpenBox takes as input observations from 𝐾 + 1 tasks: 𝐷1, ...,
𝐷𝐾 for 𝐾 previous tasks and 𝐷𝑇 for the current task. Each 𝐷𝑖 =
{(𝒙𝑖

𝑗
,𝒚𝑖
𝑗
)}𝑛𝑖
𝑗=1, 𝑖 = 1, ..., 𝐾 , includes a set of observations. Note that,

𝒚 is an array, including multiple objectives for configuration 𝒙 .
For multi-objective problems with 𝑝 objectives, we propose to

transfer the knowledge about 𝑝 objectives individually. Thus, the
transfer learning of multiple objectives is turned into 𝑝 single-
objective transfer learning processes. For each dimension of the
objectives, we take RGPE [14] as the base method. 1) We first train
a surrogate model𝑀𝑖 on 𝐷𝑖 for the 𝑖𝑡ℎ prior task and𝑀𝑇 on 𝐷𝑇 ;

Algorithm 1: Pseudo code for Sample configuration
Input: the hyper-parameter space X, configuration observations 𝐷 = {(𝒙𝒊 ,𝒚𝒊 ) }𝑛𝑖=1 ,

configurations being evaluated𝐶eval , surrogate model𝑀 , and acquisition
function 𝛼 ( ·) .

1 calculate �̂� , the median of {𝒚𝒊 }𝑛𝑖=1 ;
2 create new observations 𝐷new = {(𝒙eval, �̂�) : 𝒙eval ∈ 𝐶eval };
3 fit a surrogate model𝑀 (e.g., a GP) on 𝐷aug , where 𝐷aug = 𝐷 ∪𝐷new , and build the

acquisition function 𝛼 (𝒙, 𝑀) using𝑀 ;
4 return the configuration �̄� = argmax𝒙∈X 𝛼 (𝒙, 𝑀) .

based on𝑀1:𝐾 and𝑀𝑇 , 2) we then build a transfer learning surro-
gate by combining all base surrogates:

𝑀TL = agg({𝑀1, ..., 𝑀𝐾 , 𝑀𝑇 };w);

3) the surrogate 𝑀TL is used to guide the configuration search,
instead of the original 𝑀𝑇 . Concretely, we combine the multiple
base surrogates (agg) linearly, and the parameters w are calculated
based on the ranking of configurations, which reflects the similarity
between the source and target task (see details in Appendix A.3).
Scalability discussion A more intuitive alternative is to obtain
a transfer learning surrogate by using all observations from 𝐾 + 1
tasks, and this incurs a complexity of O(𝑘3𝑛3) for 𝑘 tasks with 𝑛
trials each (since GP has O(𝑛3) complexity). Therefore, it is hard
to scale to a larger number of source tasks (a large 𝑘). By training
base surrogates individually, the proposed framework is a more
computation-efficient solution that has O(𝑘𝑛3) complexity.

5.3 Additional Optimizations

OpenBox also includes two additional optimizations that can be
applied to improve the efficiency of black-box optimizations.

5.3.1 Multi-Fidelity Support and Applications. During each evalu-
ation in the multi-fidelity setting [33, 41], the worker receives an
additional parameter, indicating how many resources are used to
evaluate this configuration. The resource type needs to be speci-
fied by users. For example, in hyper-parameter tuning, it can be
the number of iterations for an iterative algorithm and the size
of dataset subset. The trial with partial resource returns a low-
fidelity result with a cheap evaluation cost. Though not as precise
as high-fidelity results, the low-fidelity results can provide some
useful information to guide the configuration search. In OpenBox,
we have implemented several multi-fidelity algorithms, such as
MFES-HB [33].

5.3.2 Early-Stopping Strategy. Orthogonal to the above optimiza-
tion, early-stopping strategies aim to stop a poor trial in advance
based on its intermediate results. In practice, a worker can periodi-
cally ask suggestion service whether it should terminate the current
evaluation early. InOpenBox, we provide two early-stopping strate-
gies: 1) learning curve extrapolation based methods [9, 28] that stop
the poor configurations by estimating the future performance, and
2) mean or median termination rules based on comparing the cur-
rent result with previous ones.

6 EXPERIMENTAL EVALUATION

In this section, we compare the performance and efficiency of Open-
Box against existing software packages on multiple kinds of black-
box optimization tasks, including tuning tasks in AutoML.
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Figure 6: Results for four black-box problems with single objective.
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Figure 7: Scalability results on solving Ackley with different input dimensions.

6.1 Experimental Setup

6.1.1 Baselines. Besides the systems mentioned in Table 1, we also
use CMA-ES [23], Random Search and 2×Random Search (Ran-
dom Search with double budgets) as baselines. To evaluate transfer
learning, we compare OpenBox with Google Vizier. For multi-
fidelity experiments, we compare OpenBox against HpBandSter
and BOHB, the details of which are in Appendix A.5.

6.1.2 Problems. We use 12 black-box problems (mathematical func-
tions) from [50] and two AutoML optimization problems on 25
OpenML datasets. In particular, 2d-Branin, 2d-Beale, 6d-Hartmann
and (2d, 4d, 8d, 16d, 32d)-Ackley are used for single-objective opti-
mization; 2d-Townsend, 2d-Mishra, 4d-Ackley and 10d-Keane are
used for constrained single-objective optimization; 3d-ZDT2 with
two objectives and 6d-DTLZ1 with five objectives are used for
multi-objective optimization; 2d-CONSTR and 2d-SRN with two
objectives are used for constrained multi-objective optimization.
All the parameters for mathematical problems are of the FLOAT type
and the maximum trials of each problem depend on its difficulty,
which ranges from 80 to 500. For AutoML problems on 25 datasets,
we split each dataset and search for the configuration with the
best validation performance. Specifically, we tune LightGBM and
LibSVM with the linear kernel, where the parameters of LightGBM
are of the FLOAT type while LibSVM contains CATEGORICAL and
conditioned parameters.

6.1.3 Metrics. We employ the three metrics as follows.
1. Optimality gap is used for single-objective mathematical prob-
lem. That is, if 𝑥∗ optimizes 𝑓 , and 𝑥 is the best configuration found
by the method, then |𝑓 (𝑥) − 𝑓 (𝑥∗) | measures the success of the
method on that function. In rare cases, we report the objective value
if the ground-truth optimal 𝑥∗ is extremely hard to obtain.
2. Hypervolume indicator given a reference point 𝒓 measures
the quality of a Pareto front in multi-objective problems. We report
the difference between the hypervolume of the ideal Pareto front
P∗ and that of the estimated Pareto front P by a given algorithm,
which is 𝐻𝑉 (P∗, 𝒓) − 𝐻𝑉 (P, 𝒓).
3. Metric for AutoML. For single-objective AutoML problems, we
report the validation error. To measure the results across different
datasets, we use Rank as the metric.

6.1.4 Parameter Settings. For both OpenBox and the considered
baselines, we use the default setting. Each experiment is repeated
10 times, and we compute the mean and variance for visualization.

6.2 Results and Analysis

6.2.1 Single-Objective Problems without Constraints. Figure 6 illus-
trates the results of OpenBox on different single-objective problems
compared with competitive baselines while Figure 7 displays the
performance with the growth of input dimensions. In particular,
Figure 6 shows that OpenBox, HyperMapper and BoTorch are
capable of optimizing these low-dimensional functions stably. How-
ever, when the dimensions of the parameter space grow larger, as
shown in Figure 7, only OpenBox achieves consistent and excellent
results while the other baselines fail, which demonstrates its scala-
bility on input dimensions. Note that, OpenBox achieves more than
10-fold speedups over the baselines when solving Ackley with 16
and 32-dimensional inputs.

6.2.2 Single-Objective Problems with Constraints. Figure 8 shows
the results of OpenBox alongwith the baselines on four constrained
single-objective problems. Besides Random Search, we compare
OpenBox with three of the software packages that support con-
straints. OpenBox surpasses all the considered baselines on the con-
vergence result. Note that on the 10-dimensional Keane problem in
which the ground-truth optimal value is hard to locate, OpenBox
is the only method that successfully optimizes this function while
the other methods fail to suggest sufficient feasible configurations.

6.2.3 Multi-Objective Problems without Constraints. We compare
OpenBox with three baselines that support multiple objectives and
the results are depicted in Figure 9(a) and 9(b). In Figure 9(a), the hy-
pervolume difference of GPflowOpt and Hypermapper decreases
slowly as the number of trials grow, while BoTorch and OpenBox
obtain a satisfactory Pareto Front quickly within 50 trials. In Fig-
ure 9(b) where the number of objectives is 5, BoTorch meets the
bottleneck of optimizing the Pareto front while OpenBox tackles
this problem easily by switching its inner algorithm from EHVI to
MESMO; GPflowOpt is missing due to runtime errors.
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Figure 8: Results for solving four single-objective black-box problems with constraints.
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Figure 9: Results on multi-objective problems without (a and b) and with (c and d) constraints.
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Figure 10: Performance rank on 25 datasets (the lower is the

better). The box extends from the lower to upper quartile

values, with a line at the median. The whiskers extend from

the box to show the range of the data.

6.2.4 Multi-Objective Problemswith Constraints. We compareOpen-
Boxwith Hypermapper and BoTorch on constrainedmulti-objective
problems (See Figure 9(c) and 9(d)). Figure 9(c) demonstrates the
performance on a simple problem, in which the convergence result
of OpenBox is slightly better than the other two baselines. How-
ever, in Figure 9(d) where the constraints are strict, BoTorch and
Hypermapper fail to suggest sufficient feasible configurations to up-
date the Pareto Front. Compared with BoTorch and Hypermapper,
OpenBox hasmore stable performancewhen solvingmulti-objective
problems with constraints.

6.3 Results on AutoML Tuning Tasks

6.3.1 AutoML Tuning on 25 OpenML datasets. Figure 11 demon-
strates the universality and stability of OpenBox in 25 AutoML
tuning tasks. We compare OpenBox with SMAC3 and Hyperopt
on LibSVM since only these two baselines support CATEGORICAL
parameters with conditions. In general, OpenBox is capable of han-
dling different types of input parameters while achieving the best
median performance among the baselines considered.

6.3.2 Parallel Experiments. To evaluate OpenBox with parallel
settings, we conduct an experiment to tune the hyper-parameters
of LightGBM on Optdigits with a budget of 600 seconds. Figure
11(a) shows the average validation error with different parallel
settings. We observe that the asynchronous mode with 8 workers
achieves the best results and outperforms Random Search with
8 workers by a wide margin. It brings a speedup of 8× over the
sequential mode, which is close to the ideal speedup. In addition,
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Figure 11: Average validation error under two parallel set-

tings (left figure) and average rank of tuning LightGBM with

transfer learning (right figure). “Seq”, “Sync” and “Async” re-

fer to the sequential, sync and async mode respectively. The

number of parallel workers is given after ‘-’.

although the synchronous mode brings a certain improvement over
the sequential mode in the beginning, the convergence result is
usually worse than the asynchronous mode due to stragglers.

6.3.3 Transfer Learning Experiment. In this experiment, we remove
all baselines except Vizier, which provides the transfer learning
functionality for the traditional black-box optimization. We also
add SMAC3 that provides a non-transfer reference. In addition, this
experiment involves tuning LightGBM on 25 OpenML datasets,
and it is performed in a leave-one-out fashion, i.e, we tune the
hyperparameters of LightGBM on a dataset (target problem), while
taking the tuning history on the remaining datasets as prior ob-
servations. Figure 11(b) shows the average rank for each baseline.
We observe that 1) Vizier and OpenBox show improved sample
efficiency relative to SMAC3 that cannot use prior knowledge from
source problems, and 2) the proposed transfer learning framework
in OpenBox performs better than the transfer learning algorithm
used in Vizier. Furthermore, it is worth mentioning that Open-
Box also supports transfer learning for the generalized black-box
optimization, while Vizier does not.

7 CONCLUSION

In this paper, we have introduced a service that aims for solving
generalized BBO problems – OpenBox, which is open-sourced and
highly efficient. We have presented new principles from a service
perspective that drive the system design, and we have proposed

8



efficient frameworks for accelerating BBO tasks by leveraging local-
penalization based parallelization and transfer learning. OpenBox
hosts lots of state-of-the-art optimization algorithms with consis-
tent performance, via adaptive algorithm selection. It also offers
a set of advanced features, such as performance-resource extrapo-
lation, multi-fidelity optimization, automatic early stopping, and
data privacy protection. Our experimental evaluations have also
showcased the performance and efficiency of OpenBox on a wide
range of BBO tasks.

ACKNOWLEDGMENTS

This work is supported by the National Key Research and Develop-
ment Program of China (No.2018YFB1004403), NSFC (No.61832001,
U1936104), Beijing Academy of Artificial Intelligence (BAAI), and
Kuaishou-PKU joint program. Bin Cui is the corresponding author.

REFERENCES

[1] Leonel Aguilar Melgar, David Dao, Shaoduo Gan, Nezihe M. Gürel, Nora Hol-
lenstein, Jiawei Jiang, Bojan Karlaš, Thomas Lemmin, Tian Li, Yang Li, Susie
Rao, Johannes Rausch, Cedric Renggli, Luka Rimanic, Maurice Weber, Shuai
Zhang, Zhikuan Zhao, Kevin Schawinski, Wentao Wu, and Ce Zhang. 2021. In
Proceedings of the Annual Conference on Innovative Data Systems Research (CIDR),
2021. CIDR.

[2] Omid Azizi, Aqeel Mahesri, Benjamin C. Lee, Sanjay J. Patel, and Mark Horowitz.
2010. Energy-Performance Tradeoffs in Processor Architecture and Circuit
Design: A Marginal Cost Analysis. In Proceedings of the 37th Annual International
Symposium on Computer Architecture. Association for Computing Machinery,
New York, NY, USA.

[3] Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin
Letham, AndrewGordonWilson, and Eytan Bakshy. 2020. BoTorch: A Framework
for Efficient Monte-Carlo Bayesian Optimization. In NeurIPS.

[4] Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. 2019. Max-value
entropy search for multi-objective Bayesian optimization. In NeurIPS.

[5] Syrine Belakaria, Aryan Deshwal, Nitthilan Kannappan Jayakodi, and Janard-
han Rao Doppa. 2020. Uncertainty-aware search framework for multi-objective
Bayesian optimization. In AAAI, Vol. 34. 10044–10052.

[6] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Al-
gorithms for hyper-parameter optimization. In Advances in neural information
processing systems. 2546–2554.

[7] Ivo Couckuyt, Dirk Deschrijver, and Tom Dhaene. 2014. Fast Calculation of
Multiobjective Probability of Improvement and Expected Improvement Criteria
for Pareto Optimization. J. of Global Optimization 60, 3 (2014), 575–594.

[8] Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. 2020. Differentiable
Expected Hypervolume Improvement for Parallel Multi-Objective Bayesian Opti-
mization. arXiv preprint arXiv:2006.05078 (2020).

[9] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. 2015. Speeding up
automatic hyperparameter optimization of deep neural networks by extrapolation
of learning curves. In IJCAI International Joint Conference on Artificial Intelligence.

[10] Katharina Eggensperger, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown.
2015. Efficient Benchmarking of Hyperparameter Optimizers via Surrogates.. In
AAAI. 1114–1120.

[11] M. T. M. Emmerich, K. C. Giannakoglou, and B. Naujoks. 2006. Single- and
multiobjective evolutionary optimization assisted by Gaussian random field
metamodels. IEEE Transactions on Evolutionary Computation (2006).

[12] David Eriksson and Matthias Poloczek. 2021. Scalable constrained bayesian
optimization. In International Conference on Artificial Intelligence and Statistics.
PMLR, 730–738.

[13] Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and efficient
hyperparameter optimization at scale. arXiv preprint arXiv:1807.01774 (2018).

[14] Matthias Feurer, Benjamin Letham, and Eytan Bakshy. 2018. Scalable meta-
learning for bayesian optimization using ranking-weighted gaussian process
ensembles. In AutoML Workshop at ICML.

[15] Adam Foster, Martin Jankowiak, Eli Bingham, Paul Horsfall, Yee Whye Teh, Tom
Rainforth, and Noah Goodman. 2019. Variational bayesian optimal experimental
design. arXiv preprint arXiv:1903.05480 (2019).

[16] Jacob R. Gardner, Matt J. Kusner, Zhixiang Xu, Kilian Q. Weinberger, and John P.
Cunningham. 2014. Bayesian Optimization with Inequality Constraints. In Pro-
ceedings of the 31st International Conference on International Conference on Ma-
chine Learning - Volume 32 (ICML’14). JMLR.org.

[17] Eduardo C Garrido-Merchán and Daniel Hernández-Lobato. 2019. Predictive
entropy search for multi-objective bayesian optimization with constraints. Neu-
rocomputing 361 (2019), 50–68.

[18] Michael Adam Gelbart. 2015. Constrained Bayesian Optimizationand Applications.
Ph.D. Dissertation. Harvard University, Graduate School of Arts & Sciences.

[19] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John
Karro, and D Sculley. 2017. Google vizier: A service for black-box optimization.
In Proceedings of the 23rd ACM SIGKDD. ACM, 1487–1495.

[20] Javier González, Zhenwen Dai, Philipp Hennig, and Neil Lawrence. 2016. Batch
bayesian optimization via local penalization. In AISTATS 2016. arXiv:1505.08052

[21] Robert B Gramacy, Genetha A Gray, Sébastien Le Digabel, Herbert KH Lee,
Pritam Ranjan, Garth Wells, and Stefan M Wild. 2016. Modeling an augmented
Lagrangian for blackbox constrained optimization. Technometrics 58, 1 (2016),
1–11.

[22] Ryan-Rhys Griffiths and José Miguel Hernández-Lobato. 2020. Constrained
Bayesian optimization for automatic chemical design using variational autoen-
coders. Chem. Sci. 11 (2020).

[23] N. Hansen and A. Ostermeier. 2001. Completely derandomized self-adaptation
in evolution strategies.

[24] José Miguel Hernández-Lobato, Michael Gelbart, MatthewHoffman, Ryan Adams,
and Zoubin Ghahramani. 2015. Predictive entropy search for bayesian optimiza-
tion with unknown constraints. In International conference on machine learning.
PMLR, 1699–1707.

[25] José Miguel Hernández-Lobato, Michael A. Gelbart, Ryan P. Adams, Matthew W.
Hoffman, and Zoubin Ghahramani. 2016. A General Framework for Constrained
Bayesian Optimization using Information-based Search. Journal of Machine
Learning Research 17, 160 (2016), 1–53.

[26] Yu-Chi Ho and David L Pepyne. 2001. Simple explanation of the no free lunch
theorem of optimization. In Proceedings of the 40th IEEE Conference on Decision
and Control (Cat. No. 01CH37228), Vol. 5. IEEE, 4409–4414.

[27] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequential model-
based optimization for general algorithm configuration. In International Confer-
ence on Learning and Intelligent Optimization. Springer, 507–523.

[28] Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. 2017.
Learning Curve Prediction With Bayesian Neural Networks. ICLR (2017).

[29] Joshua Knowles. 2006. ParEGO: A hybrid algorithm with on-line landscape
approximation for expensive multiobjective optimization problems. IEEE Trans-
actions on Evolutionary Computation (2006).

[30] Nicolas Knudde, Joachim van der Herten, Tom Dhaene, and Ivo Couckuyt. 2017.
GPflowOpt: A Bayesian Optimization Library using TensorFlow. arXiv preprint –
arXiv:1711.03845 (2017).

[31] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2018. Hyperband: A novel bandit-based approach to hyperparameter
optimization. Proceedings of the ICLR (2018), 1–48.

[32] Yang Li, Jiawei Jiang, Jinyang Gao, Yingxia Shao, Ce Zhang, and Bin Cui. 2020.
Efficient Automatic CASH via Rising Bandits. In AAAI, Vol. 34. 4763–4771.

[33] Yang Li, Yu Shen, Jiawei Jiang, Jinyang Gao, Ce Zhang, and Bin Cui. 2021. MFES-
HB: Efficient Hyperband with Multi-Fidelity Quality Measurements. Proceedings
of the AAAI Conference on Artificial Intelligence 35, 10 (May 2021), 8491–8500.

[34] Yang Li, Yu Shen, Wentao Zhang, Jiawei Jiang, Bolin Ding, Yaliang Li, Jingren
Zhou, Zhi Yang, Wentao Wu, Ce Zhang, and Bin Cui. 2021. VolcanoML: Speeding
up End-to-End AutoML via Scalable Search Space Decomposition. Proc. VLDB
Endow. 14 (2021), 2167–2176.

[35] Edo Liberty, Zohar Karnin, Bing Xiang, Laurence Rouesnel, Baris Coskun, Ramesh
Nallapati, Julio Delgado, Amir Sadoughi, Yury Astashonok, Piali Das, et al. 2020.
Elastic Machine Learning Algorithms in Amazon SageMaker. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 731–737.

[36] Microsoft. 2020. Smart buildings: From design to reality. https://azure.microsoft.
com/en-us/resources/smart-buildings-from-design-to-reality/.

[37] J Močkus. 1975. On Bayesian methods for seeking the extremum. In Optimization
Techniques IFIP Technical Conference. Springer, 400–404.

[38] Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. 2020. A flexible
framework for multi-objective Bayesian optimization using random scalariza-
tions. In Uncertainty in Artificial Intelligence. PMLR, 766–776.

[39] Valerio Perrone, Michele Donini, Muhammad Bilal Zafar, Robin Schmucker, Kr-
ishnaram Kenthapadi, and Cédric Archambeau. 2020. Fair bayesian optimization.
arXiv preprint arXiv:2006.05109 (2020).

[40] Victor Picheny, Robert B Gramacy, Stefan MWild, and Sebastien Le Digabel. 2016.
Bayesian optimization under mixed constraints with a slack-variable augmented
Lagrangian. arXiv preprint arXiv:1605.09466 (2016).

[41] Matthias Poloczek, Jialei Wang, and Peter Frazier. 2017. Multi-information source
optimization. In Advances in Neural Information Processing Systems. 4288–4298.

[42] L. M. Rios and N. Sahinidis. 2013. Derivative-free optimization: a review of
algorithms and comparison of software implementations. Journal of Global
Optimization 56 (2013), 1247–1293.

[43] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando De Fre-
itas. 2016. Taking the human out of the loop: A review of Bayesian optimization.

9

https://arxiv.org/abs/1505.08052
https://azure.microsoft.com/en-us/resources/smart-buildings-from-design-to-reality/
https://azure.microsoft.com/en-us/resources/smart-buildings-from-design-to-reality/


[44] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian
optimization of machine learning algorithms. In NIPS. 2951–2959.

[45] N. Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger. 2010.
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental
Design. In ICML.

[46] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. 2017.
Automatic database management system tuning through large-scale machine
learning. In Proceedings of the 2017 SIGMOD. 1009–1024.

[47] Kaifeng Yang, Michael Emmerich, André Deutz, and Thomas Bäck. 2019. Multi-
Objective Bayesian Global Optimization using expected hypervolume improve-
ment gradient. Swarm and evolutionary computation 44 (2019), 945–956.

[48] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, et al. 2019. An end-to-end automatic
cloud database tuning system using deep reinforcement learning. In Proceedings
of the 2019 International Conference on Management of Data. 415–432.

[49] Xinyi Zhang, Zhuo Chang, Yang Li, Hong Wu, Jian Tan, Feifei Li, and Bin Cui.
2021. Facilitating Database Tuning with Hyper-Parameter Optimization: A
Comprehensive Experimental Evaluation. ArXiv abs/2110.12654 (2021).

[50] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. 2000. Comparison of Multiob-
jective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8,
2 (2000), 173–195.

10



A APPENDIX

A.1 Performance-Resource Extrapolation

While optimizing various black-box problems, we observe that the
optimization curve (performance vs. trials) is often saturating, i.e.,
after a certain number of trials, more evaluations will not cause a
meaningful improvement 𝛿 > 0 in performance. OpenBox applies
a combined learning curve extrapolation method inspired by [9],
which early stops the training procedure of neural networks when
the performance of the network becomes less likely to improve.

We measure the performance by negative hypervolume indica-
tor (HV) of the Pareto set P bounded above by reference point 𝑟 ,
denoted by 𝐻𝑉 (P, 𝑟 ). In single-objective case, P = {𝑦best}. Note
that in both cases, the performance is decreasing.

Denote the performance at timestep 𝑡 by 𝑧𝑡 . Given observed
data 𝑧1:𝑛 := {𝑧1, . . . , 𝑧𝑛}, a natural idea is to estimate whether the
performance at a future timestep 𝑡 > 𝑛 will exceed the current best
performance 𝑧𝑛 . We extrapolate the performance curve 𝑧𝑡 with a
weighted probabilistic model

𝑔comb (𝑡 |𝚯) =
𝐾∑︁
𝑘=1

𝑤𝑘𝑔𝑘 (𝑡 |𝜽𝒌 ) + Y,

where each of 𝑔1, . . . , 𝑔𝐾 is a parametric family of decreasing satu-
rating functions, and Y ∼ N(0, 𝜎2). We estimate 𝚯 = (𝑤1, . . . ,𝑤𝐾 ,
\1, . . . , \𝐾 , 𝜎

2) usingMarkov ChainMonte Carlo (MCMC) inference.
The prior and posterior distribution over 𝚯 are as follows

𝑝 (𝚯) ∝
( 𝐾∏
𝑘=1

𝑝 (𝑤𝑘 )𝑝 (𝜽𝒌 )
)
𝑝 (𝜎2)1(𝑔comb (1|𝚯) > 𝑔comb (𝑡 |𝚯)),

𝑃 (𝚯|𝑧1:𝑛) ∝ 𝑃 (𝑧1:𝑛 |𝚯)𝑃 (𝚯),
where 𝑡 > 𝑛.

We sample𝚯 from the posterior and compute 𝑃 (𝑧𝑡 < 𝑧𝑛−𝛿 |𝑧1:𝑛),
which is the probability that the optimization procedure yields a
meaningful improvement 𝛿 at timestep 𝑡 .

A.2 Bayesian Optimization Algorithms

The BO algorithms in OpenBox include three parts: surrogate mod-
els, acquisition functions, and acquisition function optimizers. Note
that, partial implementations for single-objective BBO without
constraints, including probabilistic random forest surrogate, ei op-
timization, are inheriting from the SMAC32 package directly.

Surrogate Models. OpenBox selects different surrogate models
based on the number of trials. For tasks with under 500 trials, Open-
Box defaults to usingGaussian Process (GP) from scikit-optimize
package. We use a Matérn kernel with automatic relevance deter-
mination (ARD) for continuous parameters and a Hamming kernel
for categorical parameters. When both continuous and categorical
parameters exist, we use the product of these two kernels. The pa-
rameters of GP are fitted by optimizing the marginal log-likelihood
with the gradient-based method (as default) or MCMC sampling.
Due to the high computational complexity O(𝑛3), GP cannot scale
well to the setting with too many trials (a large 𝑛). Therefore, for
tasks with more than 500 trials, the surrogate model is switched

2https://github.com/automl/SMAC3

to probabilistic random forest proposed in [27], which incurs less
complexity.

Acquisition Functions. By default, OpenBox uses Expected Im-
provement (EI) [37] for single-objective optimization, Expected
Hypervolume Improvement (EHVI) [11] for multi-objective opti-
mization, and Probability of Feasibility (PoF) [16] for constraints.
OpenBox computes these acquisition functions analytically [47] (by
default) or through Monte Carlo integration [8]. In addition, Open-
Box includes multiple acquisition functions to meet the needs of dif-
ferent problem settings. For single-objective optimization, Expected
Improvement per second (EIPS) [44] can be used to find a good con-
figuration as quickly as possible, and Expected Improvement with
Local Penalization (LP-EI) [20] utilizes local penalizers to propose
batches of configurations simultaneously. For multi-objective opti-
mization, Max-value Entropy Search for Multi-objective Optimiza-
tion (MESMO) [4] and Uncertainty-aware Search framework [5]
for Multi-objective Optimization (USeMO) work efficiently when
the number of objectives is large. Other implemented acquisition
functions include Probability of Improvement (PI), and Upper Con-
fidence Bound (UCB) [45].

Acquisition Function Optimizers. To support generic surrogate
models that are not differentiable, we maximize the acquisition
function via the following two methods: 1) interleaved local and
random search (gradient-free) which can handle categorical param-
eters, and 2) multi-start staged optimizer of random search and
L-BFGS-B from Scipy (estimate gradient by 2-point finite differ-
ence) which can locate the global optimum in high dimensional
design space efficiently.

A.3 Transfer Learning Details

InOpenBox, we expand RGPE [14], a state-of-the-art transfer learn-
ing method on single-objective problems, into generalized settings.

First, for each prior task 𝑖 , we train surrogates𝑀𝑖
1:𝑚 for𝑚 objec-

tives on the corresponding observations from 𝐷𝑖 . Then we build
surrogates𝑀TL

1:𝑚 to guide the optimization instead of using the orig-
inal surrogates𝑀𝑇1:𝑚 fitted on 𝐷𝑇 only. For ease of description, we
assume there is only one surrogate𝑀TL since the method of build-
ing surrogate for each objective is exactly the same. The prediction
of𝑀TL at point 𝒙 is given by 𝑦 ∼ N(∑𝑖 `TL (𝒙), 𝜎2

TL (𝒙)), where

`TL (𝒙) = (
∑︁
𝑖

`𝑖 (𝒙)w𝑖𝜎−2
𝑖 (𝒙))𝜎2

TL (𝒙),

𝜎2
TL (𝒙) = (

∑︁
𝑖

w𝑖𝜎−2
𝑖 (𝒙))−1,

where w𝑖 is the weight of base surrogate𝑀𝑖 , and `𝑖 and 𝜎2
𝑖
are the

predictive mean and variance from base surrogate𝑀𝑖 . The weight
w𝑖 reflects the similarity between the previous task and current
task. Therefore,𝑀TL carries the knowledge of the prior tasks, which
could greatly accelerate the convergence of the optimization on the
current task. We then use the following ranking loss function 𝐿, i.e.,
the number of misranked pairs, to measure the similarity between
previous tasks and current task:

𝐿(𝑀𝑖 , 𝐷𝑇 ) =
𝑛𝑇∑︁
𝑗=1

𝑛𝑇∑︁
𝑘=1

1((𝑀𝑖 (𝒙 𝑗 ) < (𝒙𝑘 ) ⊕ (𝑦 𝑗 < 𝑦𝑘 )), (1)
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where ⊕ is the exclusive-or operator, 𝑛𝑇 = |𝐷𝑇 |, 𝒙 𝑗 and 𝑦 𝑗 are the
sampled point and its performance in 𝐷𝑇 , and𝑀𝑖 (𝒙 𝑗 ) means the
prediction of𝑀𝑖 on the point 𝒙 𝑗 . Based on the ranking loss function,
the weight w𝑖 is set to the probability that 𝑀𝑖 has the smallest
ranking loss on 𝐷𝑇 , that is, w𝑖 = 𝑃 (𝑖 = argmin𝑗 𝐿(𝑀 𝑗 , 𝐷𝑇 )). This
probability can be estimated using the MCMC sampling.

A.4 Discussions about Local Penalization based

Parallelization

Algorithm 1 parallelizes BO algorithms by imputing the config-
urations being evaluated with the median of the evaluated data
𝐷𝑛 = {𝒙 𝒊,𝒚𝒊}𝑛𝑖=1. For notational simplicity, we discuss the single-
objective case with EI as acquisition function. Denote the median
of observed values {𝑦𝑖 }𝑛𝑖=1 by 𝑦, and the smallest observed value
by [. Define 𝑢 = 𝑓 (𝒙), 𝑢 ∼ N(`𝑛 (𝒙), 𝜎2

𝑛 (𝒙)), where `𝑛 (𝒙) and
𝜎2
𝑛 (𝒙) are the mean and variance of the posterior distribution of
the surrogate model trained on 𝐷𝑛 . The expected improvement is

𝛼EI (𝒙 ;𝐷𝑛) = E𝑢 [([ − 𝑢)1(𝑢 < [)]
= ([ − `𝑛 (𝒙))Φ(𝑧) + 𝜎𝑛 (𝒙)𝜙 (𝑧)

(2)

when 𝜎𝑛 > 0 and vanishes otherwise. Here, Φ and 𝜙 are the CDF
and PDF of the standard normal distribution, 𝑧 = [−`𝑛 (𝒙)

𝜎𝑛 (𝒙) .
We first show that, with our imputation strategy, 𝛼EI (𝒙;𝐷aug)

will be sufficiently small if 𝒙 is close to some 𝒙eval ∈ 𝐷aug, i.e.,
locally penalized near 𝒙eval. For all probabilistic surrogate models,
`𝑛 (𝒙) = 𝑓 (𝒙), 𝜎𝑛 (𝒙) = 0 if 𝒙 ∈ 𝐷𝑛 , which means 𝛼EI (𝒙) = 0, ∀𝒙 ∈
𝐷𝑛 . By augmenting 𝐷𝑛 with 𝐷new = {(𝒙eval, 𝑦) : 𝒙eval ∈ 𝐶eval},
we have 𝛼EI (𝒙eval) = 0, ∀𝒙eval ∈ 𝐶eval. Since 𝛼𝐸𝐼 (𝒙;𝐷aug) is con-
tinuous if the surrogate is GP and flat if the surrogate is random
forest, when 𝒙 is close to some 𝒙eval ∈ 𝐶eval, [ − `𝑛 (𝒙) ≈ [ −𝑦 and
𝑧 = ([ − `𝑛 (𝒙))/𝜎𝑛 (𝒙) are negative and sufficiently small. Hence,
both terms in (2) are small and 𝒙 is unlikely to be the maximum of
𝛼EI. This conclusion can be naturally extended to cases with multi-
ple objectives, and more generally, other acquisition functions.

Moreover, although Algorithm 1 changes the posterior distribu-
tion of the surrogate by imposing a local penalty, it helps avoid
over-exploitation. Considering the configurations evaluated at the
same time as a "batch", Algorithm 1 simplified the complex joint op-
timization problem by assigning a different region for each worker
to explore. From the experiment results shown in Figure 11(a), we
observe that Algorithm 1 is a highly efficient, as well as widely
applicable parallelization heuristic.

A.5 More Experimental Results

AutoML Performance. Besides the rank of convergence results
shown in Figure 11, we present Figure 12 that demonstrates the opti-
mization process of OpenBox on AutoML tasks. OpenBox achieves
2.0-3.3× speedups over the best baseline in each task.

Muiti-fidelity Acceleration. Figure 13 shows the acceleration of
OpenBox using multi-fidelity optimization compared with SMAC3
and two other multi-fidelity packages, HpBandSter and BOHB. The
dataset used in this experiment is Covtype, which is a large-scale
dataset with over 580k samples.We observe that though HpBandSter
and BOHB accelerates the optimization in the beginning, their con-
vergence results are worse than that of SMAC3. However, OpenBox
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Figure 12: Performance of two AutoML tasks on 4 datasets.

obtains a 3.8 × speedup over SMAC3when achieving the comparable
convergence performance.
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Figure 13: Multi-fidelity experiment on tuning hyper-

parameters of LightGBM.

A.6 Reproduction Instructions

We run our experiments on 2 machines with 56 Intel(R) Xeon(R)
CPUE5-2680 v4@2.40GHz. The versions of baselines are 1) BoTorch
0.3.3, 2) GPflowOpt 0.1.1, 3) HyperMapper master branch 3, 4)
SMAC3 0.8.0, 5) Hyperopt 0.2.3 and 6) Spearmint master branch 4.
The source code of OpenBox is written in Python 3.7 and is already
available in Github 5. We place the code for reproduction under
the directory test/reproduction. For example, to run single-objective
experiment on Branin, the script is as follows:

python test/reproduction/so/benchmark_xxx.py
–problem branin –n 200.

3https://github.com/luinardi/hypermapper
4https://github.com/JasperSnoek/spearmint
5https://github.com/PKU-DAIR/open-box
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