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ABSTRACT
In e-commerce advertising, it is crucial to jointly consider various
performance metrics, e.g., user experience, advertiser utility, and
platform revenue. Traditional auction mechanisms, such as GSP
and VCG auctions, can be suboptimal due to their fixed allocation
rules to optimize a single performance metric (e.g., revenue or so-
cial welfare). Recently, data-driven auctions, learned directly from
auction outcomes to optimize multiple performance metrics, have
attracted increasing research interests. However, the procedure
of auction mechanisms involves various discrete calculation op-
erations, making it challenging to be compatible with continuous
optimization pipelines in machine learning. In this paper, we design
Deep Neural Auctions (DNAs) to enable end-to-end auction learn-
ing by proposing a differentiable model to relax the discrete sorting
operation, a key component in auctions. We optimize the perfor-
mance metrics by developing deep models to efficiently extract
contexts from auctions, providing rich features for auction design.
We further integrate the game theoretical conditions within the
model design, to guarantee the stability of the auctions. DNAs have
been successfully deployed in the e-commerce advertising system
at Taobao. Experimental evaluation results on both large-scale data
set as well as online A/B test demonstrated that DNAs significantly
outperformed other mechanisms widely adopted in industry.
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ory of computation→Algorithmicmechanismdesign; •Com-
puting methodologies→ Neural networks.
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1 INTRODUCTION
In online e-commerce, the advertising platform is an intermediary
to help advertisers deliver their products to interested users [18].
Auction mechanisms, such as Vickrey-Clarke–Groves (VCG) auc-
tion [34], Myerson auction [28] and generalized second-price auc-
tion (GSP) [14], have been used to enable efficient ad allocation in
various advertising scenarios. On designing auction mechanisms
for e-commerce advertising, we need to jointly consider and opti-
mize multiple performance metrics from three major stakeholders,
i.e., users, advertisers, and the ad platform. Users look for good
shopping experiences, advertisers want to accomplish their ad mar-
keting objectives, and the ad platform would like to extract large
revenue while also provide satisfying services to both users and
advertisers [2, 39]. Furthermore, the ad platform may balance and
adjust the importance of these metrics to satisfy the business’s
strategies for users and advertisers in different e-commerce scenar-
ios. High-quality user experiences and advertising services would
guarantee the long-term prosperity of e-commerce advertising.

The traditional auction mechanisms are suboptimal for the e-
commerce advertising with multiple performance metrics in dy-
namic environments. VCG auction and Myerson auction focus on
optimizing either social welfare or revenue, and the procedures
of the auctions are also too complex to explain for advertisers. Al-
though GSP auction has nice interpretation and is easy to deploy
in industry, the fixed allocation rule limits its capability to opti-
mize multiple performance metrics in dynamic environments. To
overcome these limitations, we turn our attention to data-driven
auction mechanisms, inspired by the recent increase of interest
on leveraging modern machine learning, and in particular deep
learning, for auction design [12, 16, 29, 30]. The data-driven auc-
tion mechanisms enable us to exploit rich information, such as the
context of auction environment and the performance feedback from
auction outcomes, to guide the design of flexible allocation rules
for optimizing multiple performance metrics, which significantly
enlarge the design space of auction mechanisms.
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Figure 1: The comparison between traditional auctions and
Deep Neural Auction. The set encoder and the context-
aware rank score network are applied to extract auction fea-
tures, which improves representation space and flexibility
of rank scores, compared with the fixed rank score in tradi-
tional auctions. Furthermore, the differentiable sorting en-
gine makes the auctions, including allocation and pricing,
continuous and differentiable w.r.t the inputs, thereby sup-
porting the end-to-end back-propagation training.

However, it remains open to both academia and industry on
how to make full use of the powerful deep learning on designing
data-driven auction mechanisms for the industrial e-commerce ad-
vertising. We consider two critical challenges in this direction. The
first one comes from the contradiction between auction mecha-
nism and deep learning in design principle. The auction mecha-
nisms, including allocation and pricing, usually involve various
discrete optimization operations, e.g., the top-k ads selection in
GSP auction [33], while the deep learning follows an end-to-end
pipeline for continuous optimization. This contradiction prevents
the performance feedback underlying the auction outcomes from
integrating into the back-propagation model training as in deep
learning. When designing learning models for data-driven auctions,
we also need to take the game theoretical properties, such as In-
centive Compatibility [34], into account, which further complicates
the application of deep learning for auction design. Although some
recent works have proposed deep neural network architectures for
learning-based auction mechanisms [12, 16, 30], they focused on
the theoretical auction setting, either the complex combinatorial
auctions [12] or the simple single-bidder auctions [30], in lack of
the insights from industrial deployment. Thus, it needs further ef-
forts to integrate deep learning into the design and deployment of
end-to-end auction mechanisms for practical industrial setting.

The second challenge is data efficiency. The current learning-
based approaches [20, 39] usually require a large number of samples
to learn the optimal auction due to an ambiguity issue we observed
in the data from auctions. It is a common case that an advertiser
with the same feature profile can result in different outcomes in
distinct auctions, e.g., wins in one auction but loses in another, due
to the change of the auction context, e.g., the competition from
the other advertisers. From the machine learning perspective, this
may cause an ambiguity issue [23], introducing the one-to-many
relation in samples, i.e., the same feature (advertiser feature profile)
but contradictory labels (winning or losing). Naive neural network

models, which do not incorporate much inductive bias [3], may
not fully handle the ambiguity phenomenon on data samples from
auctions, resulting in inefficient learning for the end-to-end auction
design.

In this paper, we aim to develop a data-efficient end-to-end Deep
Neural Auction mechanism, namely DNA, to optimize multiple
performance metrics for e-commerce advertising. Considering the
nice properties of easy interpretation and deployment in indus-
try, we stick to the rank score-based allocation and second-price
payment procedures inherited from GSP auction. As shown in Fig-
ure 1, DNA contains a set encoder, a family of context-aware rank
score functions and a differentiable sorting engine, with which
the process of auction design can be integrated into an end-to-end
learning pipeline. Specifically, the set encoder and a carefully de-
signed neural network extract and compress the rich features of
auction, such as auction context, bid, advertiser’s profile, predicted
auction outcomes, etc, into a context-aware rank score, tremen-
dously increasing the representation space and flexibility of rank
scores in GSP auction. We further propose a module to relax the
sorting in auctions as a differentiable operation, which makes the
whole process of GSP auction, including allocation and pricing,
to be continuous and fully differentiable with respect to the in-
puts, and then supports the end-to-end back-propagation training.
When designing the learning models for these three modules, we
introduce several constraints over the network structures, such
as the monotonicity of the neural network in terms of bid, to pre-
serve the game theoretical properties of GSP auction for DNA. Our
contributions in this paper can be summarized as follows:

•We make an in-depth study on leveraging the power of deep
learning to design data-driven auctions for industrial e-commerce
advertising. The proposed end-to-end Deep Neural Auction mecha-
nisms, namely DNA, enable us to optimize multiple performance
metrics using the real feedback from historical auction outcomes.
The newly designed rank scores also largely enhance the flexibility
of ad allocation, making it possible to adjust the auction mecha-
nisms for various performance metrics in dynamic environments.

• We employ three deep learning models to facilitate the design
of data efficient and end-to-end learning auction mechanisms with
the guarantee of game theoretical property. A set encoder model
and a monotone neural network model are proposed to encode
various features of auction into the context-aware rank score. With
the proposed differentiable sorting engine, we can formulate the
design of data-driven auction as a continuous optimization problem,
which can be integrated into an end-to-end learning pipeline.

• We have deployed the DNA mechanism in the advertising sys-
tem at Taobao, one of the world’s leading e-commerce advertising
platforms. Experimental results on both large-scale industrial data
set as well as the online A/B test showed that DNA mechanism
significantly outperformed other widely used industrial auction
mechanisms on optimizing multiple performance metrics, such as
Utility-based GSP [2] and Deep GSP [39].

2 PRELIMINARIES
2.1 Ad Auction Model
We describe a typical ad platform architecture in e-commerce adver-
tising. Formally, 𝑁 advertisers compete for 𝐾 ≤ 𝑁 ad slots, which



are incurred by a PV (page view) request from the user. Each adver-
tiser 𝑖 submits bid 𝑏𝑖 based on her private information, which could
be the probability of the user’s behaviors (e.g., 𝑝𝐶𝑇𝑅, etc.) over the
ad, obtained by learning-based prediction module [6, 40]. We use
vector b = (𝑏𝑖 , b−𝑖 ) to represent the bids of all advertisers, where
b−𝑖 are the bids from all advertisers except 𝑖 . We represent the
ad auction mechanism byM⟨R,P⟩, where R is the ad allocation
scheme and P is the payment rule. The ad allocation scheme would
jointly consider the bids and the quality (e.g., 𝑝𝐶𝑇𝑅 and 𝑝𝐶𝑉𝑅) of
the ads in a principled manner. We use R𝑖 (𝑏𝑖 , b−𝑖 ) = 𝑘 to denote
the advertiser 𝑖 wins the 𝑘th ad slot, while R𝑖 (𝑏𝑖 , b−𝑖 ) = 0 repre-
sents the advertiser loses the auction. The 𝐾 winning ads would
be displayed to the user. The auction mechanism module further
calculates the payments for the winning ads with a rule P, which
would be carefully designed to guarantee the economic properties
and the revenue of the auction mechanism.

2.2 Problem Formulation
Follow the work [39], we formulate the problem as multiple perfor-
mance metrics optimization in the competitive advertising environ-
ments. Given bid vector b from all the advertisers and 𝐿 ad perfor-
mance metric functions {𝑓1 (b;M), .., 𝑓𝐿 (b;M)} (such as Revenue,
CTR, CVR, etc), we aim to design an auction mechanism M⟨R,P⟩,
such that

maximize
M

Eb∼D [𝐹 (b;M)]

s.t. Incentive Compatibility (IC) constraint,

Individual Rationality (IR) constraint,

(1)

where D is the advertisers’ bid distribution based on which bid-
ding vectors b are drawn. We define 𝐹 (b;M) = 𝜆1 × 𝑓1 (b;M) +
· · · + 𝜆𝐿 × 𝑓𝐿 (b;M), where the objective is to maximize a linear
combination of the multiple performance metrics 𝑓𝑙 ’s with pref-
erence parameters 𝜆𝑙 ’s. The parameters 𝜆𝑙 ’s are the inputs of our
problem. The constraints of IC and IR guarantee that advertisers
would truthfully report the bid, and would not be charged more
than their maximum willing-to-pay for the allocation, which are
important for the stability of the ad auction and would be discussed
in details in Section 2.3.

In this work, we stick to the design rationale of classical GSP
auction mechanism [2, 26], where the allocation scheme is to rank
advertisers according to their rank scores with a non-increasing
order. The pricing rule is to charge the winning advertisers with
the minimum bid required to maintain the same ad slot. We study
a learning-based GSP auction framework, leveraging the power
of deep neural network to design a new rank score function and
integrate it into the GSP. We use 𝑟 (𝑏𝑖 , x𝑖 ) to denote this new rank
score function, where (𝑏𝑖 , x𝑖 ) denotes all available information,
including bid and other features related to the advertiser 𝑖’s ad, in
the auction. For ease of presentation, we also denote it as 𝑟𝑖 (𝑏𝑖 ) if
there is no ambiguity. The training of this non-linear model is under
the guideline of optimization objective in (1). With this new rank
score, the allocation scheme and payment rule can be summarized
as follows:

•Allocation SchemeR: Advertisers are sorted in a non-increasing
order of new rank score 𝑟𝑖 (𝑏𝑖 ). Without loss of generality, let

𝑟1 (𝑏1) ≥ 𝑟2 (𝑏2) ≥ · · · ≥ 𝑟𝑁 (𝑏𝑁 ), (2)

then the advertisers with top-K scores would win the corresponding
ad slots, with ties broken randomly.

• Payment Rule P: The payment for the winning advertiser 𝑖 is
calculated by the formula:

𝑝𝑖 = 𝑟
−1
𝑖 (𝑟𝑖+1 (𝑏𝑖+1)), (3)

where 𝑟𝑖+1 (𝑏𝑖+1) is the rank score of the next highest advertiser,
and 𝑟−1

𝑖
(·) is the inversion function of 𝑟𝑖 (·).

2.3 Economic Properties
In the auction mechanism design, one cannot just assume that an
advertiser 𝑖 would truthfully reveal her maximum willing-to-pay
price𝑚𝑖 in the auction2, since they have incentives to misreport
these prices to manipulate their own interests [13]. This may se-
riously harm the stability of the advertising platform. Therefore,
we need to guarantee the property of incentive compatibility (IC),
from mechanism design. This property removes the computational
burden of bidding strategy optimization from advertisers, and also,
leads to reliable and predictable inputs for the auction mechanisms.

Definition 2.1 (Incentive Compatibility [34]). An auction mecha-
nism is IC if it is in the best interest of each advertiser 𝑖 to truthfully
reveal her maximum willing-to-pay price, i.e., 𝑏𝑖 =𝑚𝑖 .

In traditional auction theory, the celebrated IC auction mecha-
nisms, such as VCG auction [34] andMyerson auction [28], typically
build upon the assumption that advertisers are utility maximizers,
that is, the goal of each advertiser 𝑖 is to optimize her quasi-linear
utility, defined as the difference between her expected value 𝑣𝑖 and
the payment 𝑝𝑖 , i.e., 𝑢𝑖 = 𝑣𝑖 − 𝑝𝑖 . However, we observe from the
industrial e-commerce platform that this model could not fully cap-
ture the behavior pattern of advertisers. For example, in Taobao
advertising platform, there are two representative types of adver-
tisers: Optimized Cost Per Click (OCPC) advertisers with upper
bounds of bids, and Multi-variable Constrained Bidding (MCB) ad-
vertisers with constraints over budgets and the average costs, such
as pay-per-click (PPC) and pay-per-acquisition (PPA). The goal of
both types of advertisers is to optimize the overall realized value of
advertising, such as the quantity of conversions and clicks, under
certain constraints over the payments. For these types of adver-
tisers, they would calculate and report a maximum willing-to-pay
price for each PV request based on the current status of the ad cam-
paign, with the help of auto-bidding services [36, 41]. This behavior
pattern of advertisers could be well captured by the model of value
maximizer [35], which is defined as follows:

Definition 2.2 (Value maximizer [35]). A value maximizer 𝑖 op-
timizes value 𝑣𝑖 while keeping payment 𝑝𝑖 below her maximum
willing-to-pay𝑚𝑖 ; when value is equal, a lower 𝑝𝑖 is preferred.

In the auctions with multiple ad slots, a value maximizer prefers
to the outcome with a higher slot when the payment is below
the maximum willing-to-pay price, and then a smaller payment
is preferred under the situation with equal value. The strategic
behavior pattern of value maximizers would be quite different from
the traditional utility maximizers. It has been proved that an auction

2𝑚𝑖 is not necessarily equal to the value 𝑣𝑖 of the PV request. For example, there may
be budget constraints.



mechanism is IC for value maximizers, as long as the following two
conditions are satisfied [1, 35]:

•Monotonicity: An advertiser would win the same or a higher
slot if she reports a higher bid;

• Critical price: The payment for the winning advertiser is the
minimum bid that she needs to report to maintain the same slot.

We note that IR is also guaranteed under these two IC conditions.
Obviously given the monotonicity constraint, the critical price is
strictly lower than the bid, and hence is lower than the maximum
willing-to-pay price, i.e., 𝑝𝑖 < 𝑚𝑖 . It could be easily verified that
GSP satisfies these conditions and hence is IC and IR for value
maximizers. In this work, we would design learning-based auction
mechanisms, following the above conditions.

3 DEEP NEURAL AUCTION
In this section, we present the details of Deep Neural Auction (DNA)
mechanism for optimizing multiple performance metrics under the
multi-slot setting for e-commerce advertising.

3.1 Overall Architecture
As illustrated in Fig. 2a, DNA consists of three modules: a set en-
coder, a context-aware rank score function, and a differentiable
sorting engine. The set encoder learns a set embedding from the
features of candidate ads, which encodes the context of the auc-
tion. This set embedding is attached as a complementary feature
for each ad. Next, each advertiser employs a shared MIN-MAX
neural network to generate context-aware rank scores from adver-
tiser’s features. This neural network is partially monotonic with
respective to bids, which is critical to the guarantee of IC property.
Another advantage of the designed neural network is a closed form
expression for the inverse transform, which enables an easy pay-
ment calculation. Then, the differentiable sorting engine conducts a
continuous relaxation of sorting operator in auctions, and outputs a
row-stochastic permutation matrix. We can use this row-stochastic
permutation matrix to express the expected revenue as well as other
predicted performance metrics, from which training losses from
real feedback underlying the auction outcome can be constructed.
With these components, the whole DNA mechanism is fully differ-
entiable with respect to its inputs, and can be integrated into the
end-to-end learning pipeline as in deep learning. It is worth to note
that both the set encoder and the context-aware rank score function
are parameterized neural network models, while the differentiable
sorting engine is a non-parameterized operator. We next introduce
the details of these three modules.
3.2 Auction Context Encoding
As the final auction outcome is jointly determined by all the can-
didate ads, we design a set encoder to automatically extract the
feature of the auction context from all the candidate ads, instead
of the individual ad. We attach this auction context feature as an
augmented feature for each ad to overcome the ambiguity issue
discussed in Section 1.

The set encoder receives the whole set of ad features as input.
As there is no inherent ordering among the advertisers in the set,
the feature set is permutation-equivariant [37] to the auction out-
come, i.e., the auction outcome does not rely on the ordering of
the features. Learning models that do not take this set structure

into account (such as MLPs or RNNs) would cause the issue of
discontinuities [38]. Inspired from the recent progress on learn-
ing on set [37, 38], we implement the set encoder by designing a
new deep neural network, which uses DeepSet [37] network to
aggregate individual ad features to form a representation for the
auction context. The main idea is that, by setting equivariant layers
and a final symmetric layer, the DeepSet can learn to aggregate
all the features’ information in a permutation-equivariant manner.
The generated embedding vector can be trained to predict some
interested statistical value about the whole set.

Concretely, as illustrated in Fig. 2b, the set encoder is composed
of two groups of layers, 𝜙1 and 𝜙2. Given the features of candidate
ads {x𝑖 }𝑁𝑖=1, each instance x𝑖 is firstly mapped to a high-dimensional
latent space through shared fully connected layers 𝜙1, resulting in
a set of intermediate hidden states h = {ℎ𝑖 }𝑁𝑖=1:

ℎ𝑖 = 𝜎 (𝜙1 (x𝑖 )), (4)

where 𝜎 is an Exponential Linear Unit (ELU) activation function [7].
Then, this hidden states set is processed with symmetric aggrega-
tion pooling (such as average pooling) to build the final set embed-
ding ℎ′

𝑖
for each ad 𝑖 with another fully connected layer 𝜙2:

ℎ′𝑖 = 𝜎 (𝜙2 (avgpool(h−𝑖 ))), (5)

where h−𝑖 represent the hidden states from all advertisers except 𝑖 .
This set encoder is built by composing permutation-equivariant op-
erations (shared nonlinear transformation) with symmetric aggre-
gation operations (average pooling) at the end. Since the symmetric
operations are commutative to the input items, the output is the
same regardless of the order of the items. The set encoder learns
to extract the context of auction on the whole set of candidate
ads [15, 37], which is driven by the downstream training signals in
an end-to-end manner. The output set embedding would be sent to
the downstream rank score function as an augmented feature for
each ad, which helps to infer each ad’s rank score in the current
candidate ads set. It should be noted that the set encoder does not
include the bids from all candidate ads, as shown in Fig. 2b. This
design is specified mainly for the guarantee of IC property, keeping
the affection of each ad’s rank score only through her bid, which
will be elaborated in Section 3.3.

3.3 Context-Aware Rank Score
We design a deep neural network to transform each advertiser’s
augmented feature to a context-aware rank score.We use 𝑟 (𝑏𝑖 , x′𝑖 ) to
denote this rank score, where x′

𝑖
represents the augmented features

except bid, i.e., x′
𝑖
= (x𝑖 , ℎ′𝑖 ). From Section 2.3, we need to satisfy

two conditions to guarantee the IC property for value maximizers:
monotone allocation and critical price. Thus, we aim to design a
strictly monotone neural network with respect to bid, and supports
efficient inverse transform given the next highest rank score.

We incorporate the aforementioned constraints within the net-
work architecture design, and restrict the search space to a family
of partially monotone parameterized neural network. We model
the rank score function as a two-layer feed-forward network with
min and max operations over linear functions [9] as shown Fig. 2c.
For 𝑄 groups of 𝑍 linear functions, we associate strictly positive
weights 𝑒𝑤𝑞𝑧 with 𝑏𝑖 and other unconstrained weights 𝑤 ′

𝑞𝑧 with
x′
𝑖
, as well as intercepts 𝛼𝑞𝑧 , where 𝑞 = 1, ..., 𝑄, 𝑧 = 1, ..., 𝑍 . For
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simplicity, we denote 𝑟 (𝑏𝑖 , x′𝑖 ) as 𝑟𝑖 , and assume 𝑟1 ≥ 𝑟2 ≥ ... ≥ 𝑟𝑁
without loss of generality. We can define:

𝑟𝑖 = min
𝑞∈[𝑄 ]

max
𝑧∈[𝑍 ]

(𝑒𝑤𝑞𝑧 × 𝑏𝑖 +𝑤 ′
𝑞𝑧 × x′𝑖 + 𝛼𝑞𝑧). (6)

Since each of the above linear function in Eq. (6) is strictly non-
decreasing on 𝑏𝑖 , so is 𝑟𝑖 . This partially monotone MIN-MAX neural
network has been proved with the capability to approximate any
function [9]. Another particular advantage of this representation
is that the inverse transform can be directly obtained from the
parameters for the forward transform in a closed form expression.
For example, given the next highest rank score 𝑟𝑖+1, the payment
for advertiser 𝑖 can be formulated as follows:

𝑝𝑖 = max
𝑧∈[𝑍 ]

min
𝑞∈[𝑄 ]

𝑒−𝑤𝑞𝑧 (𝑟𝑖+1 − 𝛼𝑞𝑧 −𝑤 ′
𝑞𝑧 × x′𝑖 ). (7)

With the above designed MIN-MAX neural network, the two
conditions for IC property can be satisfied, given the assumption
that the bids affect the rank scores only through the input 𝑏𝑖 in
𝑟 (𝑏𝑖 , x′𝑖 ). However in the industrial advertising environment, there
are some engineered features in x𝑖 from domain knowledge that
may have complex dependence relation with the bids. Therefore the
bids may affect the rank scores and then the allocation in a complex
way, which may violate this assumption. In a large-scale advertising
platform, this effect of a change of one’s bid on the rank scores
via this route would be quite small from our observations on the
industrial data sets. To investigate the influence of this issue on IC
property, we conduct comprehensive experiments in Section 4.2.3
to calculate the data-driven IC metric of DNA for value maximizers.
We reserve the discussion about the strictly IC DNA mechanism
design as an interesting open problem in our future work.

3.4 Differentiable Sorting Engine
After calculating the rank scores of all ads, the mechanism deter-
mines the allocation and payment, following Eq. (2) and (3). How-
ever, treating allocation and payment outside the model learning
(i.e., as an agnostic environment) is in some sense poorly suited for
deep learning. That is the processes of allocation and payment (ac-
tually the sorting operation) are not natively differentiable, and the
gradients must all be evaluated via finite difference or likelihood ra-
tio methods (such as the policy search used in Deep GSP [39]), with
some additional issues of convergence stability and data-efficiency.
Also, in another line of related work, the model-based reinforce-
ment learning (RL) has achieved some notable successes [27]. Some
recent works used a general neural network to learn a differentiable
dynamic model [24] and argued that the model-based approaches
are often more superior and data-efficient than model-free RL meth-
ods for many tasks [10, 22]. These insights give us a motivation
to model the whole process of allocation and payment inside the
Deep Neural Auction framework.

In various types of auction mechanisms, both the allocation and
payment are built on a basic sorting operation. Sorting operation
outputs two vectors, neither of which is differentiable. On the one
hand, the vector of sorted values is piecewise linear. On the other
hand, the sorting permutation (more specifically, the vector of ranks
via argsort operator) also has no differentiable properties as it
is integer-valued.

To overcome this issue, we propose a differentiable sorting en-
gine that caters to the top-𝐾 selection in the multi-slot auctions. We
present a novel use of differentiable sorting operator, i.e., Neural-
Sort [21], to derive a differentiable top-𝐾 permutationmatrix, which



can be used to generate the various expected outcomes of the auc-
tions. Given a set of unsorted rank scores r = [𝑟1, 𝑟2, · · · , 𝑟𝑁 ]𝑇 , we
are concerned with the argsort operator, where argsort(r)
returns the permutation that sorts r in a decreasing order. For-
mally, we define the argsort operator as the mapping from 𝑁 -
dimensional real vectors r ∈ R𝑁 to the permutations over 𝑁 ele-
ments, where the permutation matrix𝑀𝑟 ∈ {0, 1}𝑁×𝑁 is expressed
as

𝑀𝑟 [𝑘, 𝑖] =
{
1 if 𝑖 = argsort(r) [𝑘],
0 otherwise.

(8)

Here𝑀𝑟 [𝑘, 𝑖] indicates if 𝑟𝑖 is the 𝑘th largest rank score in r. The
results from [21] showed the identity:

𝑀𝑟 [𝑘, 𝑖] =
{
1 if 𝑖 = argmax(𝑐𝑘 ),
0 otherwise,

(9)

where 𝑐𝑘 = (𝑁 + 1 − 2𝑘)r −𝐴𝑟1, 𝐴𝑟 denotes the absolute pairwise
differences of elements in r such that 𝐴𝑟 [𝑖, 𝑗] = |𝑟𝑖 − 𝑟 𝑗 |, and 1
denotes the column vector of all ones. Then, by relaxing the operator
argmax in Eq. (9) by a row-wise softmax, we can arrive at the
following continuous relaxation for the argsort operator 𝑀𝑟 ,
which is called NeuralSort in [21]:

𝑀̂𝑟 [𝑘, :] = softmax(
𝑐𝑘

𝜏
), (10)

where 𝜏 > 0 is a temperature parameter that controls the degree
of the approximation, and as 𝜏 → 0, 𝑀̂𝑟 → 𝑀𝑟 . Intuitively, the 𝑘th
row of 𝑀̂𝑟 can be interpreted as the ‘choice’ probabilities on all
elements in r, for getting the 𝑘th highest item.

This row-stochastic permutation matrix 𝑀̂𝑟 , can be used as a ba-
sic operator to construct task-specific sorting procedures according
to the order of generated rank scores in a differentiable manner.
For instance, if we let p = [𝑝1, 𝑝2, · · · , 𝑝𝑁 ]𝑇 denotes the payments
calculated by Eq. (7) for 𝑁 advertisers in a PV request, then the
top-𝐾 payments, sorted by their corresponding rank scores, can be
recovered by a simple matrix multiplication:

𝑓𝑝𝑎𝑦 = 𝑀̂𝑟 [1:𝐾, :] · p. (11)

This row-stochastic permutation matrix 𝑀̂𝑟 acts as a differentiable
sorting engine that makes the discrete sorting procedure compatible
with differentiability.

3.5 End-to-End Model Training
3.5.1 Data for Training. All data sets we used were generated un-
der GSP auction, which is IC for e-commerce value maximizing
advertisers [35]. The data contains all advertisers’ bids, the esti-
mated values (e.g., 𝑝𝐶𝑇𝑅, 𝑝𝐶𝑉𝑅), ads information (e.g., category,
price of product), user features (e.g., genders, age, income level) as
well as the context information (e.g., the source of traffic). These
information consists of the input features of the DNA architecture.
The data also contains the real feedback information (e.g., click,
conversion or transaction) from users.

3.5.2 Training Loss. As the training data contains the user feed-
back for each ad exposure, we can directly use the row-stochastic
permutation matrix 𝑀̂𝑟 to compute the 𝐾-slots expected perfor-
mance metrics via: 𝑀̂𝑟 [1:𝐾, :] ·𝐹𝑎𝑙𝑙 , where 𝐹𝑎𝑙𝑙 represents the vector

of aggregated performance metrics for all ads from real feedback:

𝐹𝑎𝑙𝑙 = [
𝐿∑︁
𝑙=1

𝜆𝑙 × 𝑓 1𝑙 , · · · ,
𝐿∑︁
𝑙=1

𝜆𝑙 × 𝑓 𝑁𝑙 ]𝑇 , (12)

with 𝑓 𝑖
𝑙
standing for the 𝑙th performance metric for 𝑖th ad from

a PV request. Therefore, we can formulate the learning problem
as minimizing the sum of top-𝐾 expected negated performance
metrics for each PV request:

L𝑡𝑔𝑡 = −
𝐾∑︁
𝑖=1

𝑀̂𝑟 [𝑖, :] · 𝐹𝑎𝑙𝑙 . (13)

One exception is the calculation of revenue. Due to the change of
allocation order, the payment for each ad is distinct from what has
happened. Thus we use the generated payments, defined in Eq. (11)
to replace the ones appeared in the training data.

We set another auxiliary task to help train the DNA mechanism.
With the benefit of hindsight from real feedback, we can access the
optimal allocation to maximize the performance metrics in each
PV request. Thus we set another multiclass prediction task, whose
loss is the row-wise cross-entropy (CE) between the ground-truth
and the predicted row-stochastic 𝑁 × 𝑁 permutation matrix:

L𝑐𝑒 = − 1
𝑁

𝑁∑︁
𝑘=1

𝑁∑︁
𝑖=1

1(𝑀𝑦 [𝑘, 𝑖] = 1)log𝑀̂𝑟 [𝑘, 𝑖], (14)

where 𝑀𝑦 is the ground-truth permutation matrix, calculated by
sorting their real feedback. We found that this auxiliary task was
beneficial to yield a stable training process in our experiments.
We use a hyper-parameter to balance the target loss L𝑡𝑔𝑡 and the
cross-entropy term L𝑐𝑒 .

However, the user feedback, especially with respect to the conver-
sion behaviors, is scarce in industrial e-commerce advertising, e.g.,
users typically decide to purchase a product after seeing dozens of
ads. To alleviate this problem, we replace the sparse user behaviors
(typically one-hot) in data with the dense values from the predic-
tion model (such as 𝑝𝐶𝑇𝑅 and 𝑝𝐶𝑉𝑅), and debias these predicted
values with real user behaviors by the calibration techniques [4, 11].
We also eliminate the deviation of CTR between different slots by
debiasing with the posterior inherent CTR of different slots.

4 EXPERIMENTAL EVALUATIONS
4.1 Experiment Setup
4.1.1 Evaluation Metrics. We consider the following metrics in our
offline and online experiments, which reflect the platform revenue,
user experience, as well as advertisers’ utility in the e-commerce ad-
vertising. For all experiments in this paper, metrics are normalized
to a same scale.

1) Revenue Per Mille (RPM). 𝑅𝑃𝑀 =
∑
𝑐𝑙𝑖𝑐𝑘×𝑃𝑃𝐶∑
𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

× 1000.

2) Click-Through Rate (CTR). 𝐶𝑇𝑅 =
∑
𝑐𝑙𝑖𝑐𝑘∑

𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
.

3) Conversion Rate (CVR). 𝐶𝑉𝑅 =
∑
𝑜𝑟𝑑𝑒𝑟∑

𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
.

4) GMVPerMille (GPM).𝐺𝑃𝑀 =
∑
𝑚𝑒𝑟𝑐ℎ𝑎𝑛𝑑𝑖𝑠𝑒 𝑣𝑜𝑙𝑢𝑚𝑒∑

𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
×1000.

Apart from the advertising performance indicators, we also eval-
uate the effectiveness of our designed learning-based auction mech-
anisms on the property of IC.



5) ICMetric (𝚿).We propose a new data-driven metric of IC, 𝚿,
to represent the ex-post regret of value maximizers, similar to the
data-driven IC for utility maximizers [17]. The metric of 𝚿 consists
of the regret on value 𝚿𝑣 and the regret on payment 𝚿𝑝 , which de-
notes, through bid perturbation, the maximum percentage of value
increase under the payment constraint, and the maximum percent-
age of payment decrease with the identical allocation, respectively.
Concretely, we formulate 𝚿 = (𝚿𝑣,𝚿𝑝 ) as3:

𝚿𝑣 =
1
𝑁

𝑁∑︁
𝑖=1

1
𝛽𝑘𝑖

max
𝑏′
𝑖

((𝛽𝑘′
𝑖
− 𝛽𝑘𝑖 ) × 1(𝑝𝑖 (𝑏

′
𝑖 ) < 𝑚𝑖 )), (15)

𝚿𝑝 =
1
𝑁

𝑁∑︁
𝑖=1

1
𝛽𝑘𝑖𝑝𝑖 (𝑏𝑖 )

max
𝑏′
𝑖

((𝛽𝑘𝑖𝑝𝑖 (𝑏𝑖 ) − 𝛽𝑘′𝑖𝑝𝑖 (𝑏
′
𝑖 )) × 1(𝑘

′
𝑖 = 𝑘𝑖 )),

(16)
where we denote 𝑘𝑖 and 𝑘 ′𝑖 as the allocated slot indexes of advertiser
𝑖 when bidding truthfully and bidding a perturbed 𝑏 ′

𝑖
, respectively.

We use 𝛽𝑘 as the click-through rate of slot 𝑘 , and 𝑝𝑖 (𝑏𝑖 ) as the
payment of advertiser 𝑖 when bidding 𝑏𝑖 . It should be noted that
the value of a click 𝑣𝑖 for advertiser 𝑖 is reduced from the fraction in
Eq. (15). Intuitively, 𝚿 measures to what extent a value-maximizing
advertiser could get better off via manipulating her bid. A larger
value of 𝚿𝑣 indicates that an advertiser could obtain more extra
value under the constraint of maximum willing-to-pay price. Sim-
ilarly, a larger value of 𝚿𝑝 indicates that an advertiser could be
undercharged more while obtaining the same ad slot. For example,
as GSP is IC for value maximizers, its values of both 𝚿𝑣 and 𝚿𝑝

are 0.

4.1.2 Baselines Methods. We compare DNA with the widely used
mechanisms in the industrial ad platform.

1) Generalized Second Price auction (GSP). The rank score
in the classical GSP is simply the bids multiplying 𝑝𝐶𝑇𝑅, namely
effective Cost Per Milles (eCPM). The payment rule is the value of
the minimum bid required to retain the same slot. The work [26]
suggested incorporating a squashing exponent 𝜎 into the rank score
function, i.e., 𝑏𝑖𝑑×𝑝𝐶𝑇𝑅𝜎 could improve the performance, where 𝜎
can be adjusted to weight the performance of revenue and CTR. We
refer to this exponential form extension as GSP in the experiments.

2) Utility-based Generalized Second Price auction (uGSP).
uGSP extends the conventional GSP by taking the rank score as
a linear combination of multiple performance metrics using esti-
mated values: 𝑟𝑖 (𝑏𝑖 ) = 𝜆1 × 𝑏𝑖 × 𝑝𝐶𝑇𝑅𝑖 + 𝑜𝑖 , where 𝑜𝑖 represents
other utilities, such as CTR and CVR: 𝑜𝑖 = 𝜆2 × 𝑝𝐶𝑇𝑅𝑖 + 𝜆3 ×
𝑝𝐶𝑉𝑅𝑖 (where 𝜆𝑙 ≥ 0). The payment of uGSP follows the principle
from GSP: 𝑝𝑖 =

𝜆1×𝑏𝑖+1×𝑝𝐶𝑇𝑅𝑖+1+𝑜𝑖+1−𝑜𝑖
𝜆1×𝑝𝐶𝑇𝑅𝑖 . uGSP is widely used in

industry to optimize multiple performance metrics [2].
3) Deep GSP [39] Deep GSP uses a deep neural network to

map ad’s related features to a new rank score within the GSP auc-
tion. This new rank score function is optimized using model-free
reinforcement learning to maximize the interested performance
metrics.

3Since our training data comes from a vanilla GSP mechanism, which is IC for value
maximizers, we directly take the bid 𝑏𝑖 as the maximum willing-to-pay price𝑚𝑖 of
advertiser 𝑖 .
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Figure 3: The positive correlations between learned rank
scores and the targeted performance metrics. Each blue dot
represents an ad in the candidate set.

4.2 Offline Experiments
4.2.1 Datasets. The data sets we used for experiments come from
Taobao, a leading e-commerce advertising system in China. We
randomly select 5 million records logged data under GSP auctions
from July 4, 2020 as training data, and 870k records logged data
from July 5, 2020 as test data. Unless stated otherwise, all experi-
ments are conducted under the setting of top-3 ads displayed (i.e.,
3-slot auctions) in each PV request. Other details about the model
configurations and training procedure are in Appendix A.

4.2.2 Performance in Offline Simulations. We conduct experiments
to compare the performance of DNA and other baseline mecha-
nisms. In order to facilitate intuitive comparisons, we set only two
performance metrics with the form 𝜆 × 𝑅𝑃𝑀 + (1 − 𝜆) × 𝑋 , where
𝑋 is one of the metric selected from {𝐶𝑇𝑅,𝐶𝑉𝑅,𝐺𝑃𝑀}. For uGSP,
we set the rank score function with 𝜆 × 𝑝𝐶𝑇𝑅 × 𝑏𝑖𝑑 + (1 − 𝜆) × 𝑋 .
For GSP, we tune the variable 𝜎 in the interval [0.5, 2.0]. For both
Deep GSP and DNA, we directly set the objective by selecting the
values of 𝜆 uniformly from the interval [0, 1].

We show the relation between the learned rank scores and the
targeted performance metrics, and illustrate some results in Fig. 3.
We calculate the Pearson’s Correlation Coefficient (𝜌), which is
0.989 on the test data set, together with the p-value less than 1e−7.
This result indicates the strong positive correlation between the
learned rank scores and the performance metrics, implying that the
ads with higher targeted objectives also have higher rank scores.
This would encourage advertisers to optimize their ads’ quality
(such as CTR) to enhance their competitiveness in the auctions.

As some performance metrics may be conflicting, we next plot
the Pareto Front for different baselines in Fig. 4. We observe that all
the learning-based methods (both Deep GSP and DNA) are above
the curves of other baselines. The flexible learning-based rank score
models have the ability to perform automatic feature extraction
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Figure 4: The performance of DNA and other baseline mechanisms in the offline experiments.

from raw data. Learning-based methods can alleviate the problem
of inaccurate predicted values (such as 𝑝𝐶𝑇𝑅) used in GSP and
uGSP to some extend, and learn ad auctions directly from the real
feedback. We also note that the performance of GSP is poor when
considering CVR and GPM, as GSP does not model the effect of
these indicators explicitly in its rank score formulation.

DNA outperforms Deep GSP baseline by a clear margin. The
rank score function of Deep GSP is only conditioned on each ad’s
private information. While in DNA, it also contains a set embedding
which models the context of auction from the candidate ads set
explicitly, making it more competitive than the rank scores in the
Deep GSP auctions. We analyze this set embedding in more details
in Appendix B. The upgrade of training method also contributes to
this superior performance improvement. Deep GSP treats the whole
process of allocation as the environment and uses exploration based
algorithms (i.e., policy search) to optimize the rank score functions.
In comparison, DNA directly differentiates the sorting procedure
in allocation, which is more data-efficient.

4.2.3 Evaluation on IC Property. We present the IC property of
DNA, i.e., the regret metric 𝚿, in Table 1. We compare with only
the regret of truthful bidding in the Utility-based Generalized First
Price (uGFP) auction, as the regret of other mechanisms (GSP and
uGSP) are all 0. uGFP mechanism allocates the ad slots in the same
way as uGSP while the payment of a winning advertiser is simply
her bid. One can observe from Table 1 that 𝚿𝑣 of both DNA and
uGFP are 0, which indicates that advertisers could not win higher
slots under the payment constraints. For 𝚿𝑝 , DNA outperforms
uGFP significantly under all experiment settings. For example of the
first row (1.0×RPM), an advertiser could be undercharged at most
0.042% payment in DNA with the same allocation result, which is
13.312% in uGFP.

4.3 Online Experiments
We present the online experiments by deploying the proposed DNA
in Taobao advertising system. As we only use the trained model to
make inference in online system, we set the temperature parameter
𝜏 = 0 in the differentiable sorting engine to output the winning ads
as well as the corresponding payments to the online advertising
platform. Other deployment details are described in Appendix C.

To demonstrate the performance of DNA, we conduct online A/B
tests with 1% of whole production traffic from Jan 25, 2021 to Feb 8,
2021 (about one billion auctions). We also consider RPM, CTR, CVR

Table 1: IC Metric (𝚿) experiments under four tasks with
1000 PV requests randomly selected from the test data. For
each bidder, we randomly generate 100 perturbations (rang-
ing from 0.0 to 2.0 times) to her value.

DNA uGFP
𝚿𝑣 𝚿𝑝 𝚿𝑣 𝚿𝑝

1.0×RPM 0 0.042% 0 13.312%
0.5×RPM+0.5×CTR 0 0.059% 0 21.616%
0.5×RPM+0.5×CVR 0 0.118% 0 19.280%
0.5×RPM+0.5×GPM 0 0.028% 0 16.400%

Table 2: Online A/B test compared with uGSP on promoting
different performancemetrics, keeping the sameRPM level.

% Improved Deep GSP DNA
CTR +6.43% +11.58%
CVR +6.38% +31.26%
GPM +2.77% +16.17%

Table 3: Online A/B test (nearly twomonths) compared with
GSP on promoting all performance metrics.

RPM CTR CVR GPM
% Improved +5.68% +18.93% +14.68% +14.53%

and GPM metrics and conduct online experiments as in the offline
experiments, i.e., setting only two performance metrics at a time.
In order to make fair and efficient comparisons between different
baselines in production traffic, we set the 𝜆 in uGSP with 0.8, and
tune the 𝜆’s of both Deep GSP and DNA until the observed RPM
performance reaches the same level with the one in uGSP. Then we
record the relative improvements of the other metrics of Deep GSP
and DNA compared with uGSP, which is shown in table 2. From the
results, we can find that the DNA mechanism achieves the highest
promotion for CTR, CVR and GPM. To verify the performance
stability of the DNA, we conduct a relatively long-term experiment
(nearly two months) to compare with the GSP auction. Table 3
shows that all the performance metrics related to users, advertisers,
and advertising platform are promoted. Considering the massive
advertisers and users, the promotion of marketing performance
verifies the effectiveness of our proposed DNA framework.



5 RELATEDWORK
Aplethora ofworks have used learning-based techniques for revenue-
maximizingmechanism design in theoretical auction settings. Conitzer
and Sandholm [8] proposed the paradigm of automated mechanism
design (AMD) and laid the groundwork for this direction. Since
then, many works [20, 25] have adopted learning approaches for
mechanism design problems. Recently, Dütting et al. [12] first lever-
aged deep neural networks for the automated design of optimal
auctions. Several other works extended this study for various sce-
narios [16, 19, 29].

A particular stream of research have focused on the mecha-
nism design in online advertising. The GSP and VCG auction have
been widely adopted and investigated in various advertising sys-
tem [14, 26]. Building on the success of deep reinforcement learn-
ing, Tang et al. [5, 31] proposed reinforcement mechanism design
for the optimization of reserve prices in online advertising. A re-
cently proposed learning-based ad auction mechanism, called Deep
GSP [39], leveraged the deep learning technique to optimize multi-
ple performance metrics in e-commerce advertising.

6 CONCLUSION
In this paper, we have proposed a Deep Neural Auction mechanism,
towards learning data efficient and end-to-end auction mechanisms
for e-commerce advertising.We have deployed theDNAmechanism
on one of the leading e-commerce advertising platforms, Taobao.
The offline experiments as well as the online A/B test showed that
DNA mechanism significantly outperformed other existing auction
mechanism baselines on optimizing multiple performance metrics.
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A MODEL CONFIGURATIONS AND OFFLINE
TRAINING PROCEDURE

In the set encoder module (Fig. 2b), 𝜙1 consists of two fully con-
nected layers with 128, 32 neurons respectively. 𝜙2 is a single fully
connected layer with 16 neurons, thus the final size of the set em-
beddings ℎ′

𝑖
is 16. The ELU non-linearity is applied to the output

of every layer. In the context-aware rank score module (Fig. 2c),
we use 5 groups of 20 linear functions in the partially monotone
MIN-MAX neural network, i.e., 𝑄 = 5, 𝑍 = 20.

We use the Adam optimizer with 𝛽1 = 0.9, 𝛽2 = 0.99, 𝜖 = 1𝑒−8.
Each batch contains 128 PV requests in total. We also leverage some
temperature annealing schedules for adjusting 𝜏 in the differentiable
sorting engine during the training process, such as polynomial de-
cay and exponential decay. But we did not observe significant per-
formance differences between these schedules. The offline training
procedure of DNA is as follows:

Algorithm 1 Offline Training Procedure of DNA
Require: Online log data with user behaviors, temperature an-

nealing schedule in the differentiable sorting engine
1: Data preprocessing: feature construction, ground-truth label

generation
2: Initialize the neural network parameters of the set encoder and

the context-aware rank score function, initialize the tempera-
ture 𝜏 in the differentiable sorting engine

3: while not converged do
4: Sample a random minibatch from training data
5: Compute the target loss L𝑡𝑔𝑡 and the cross-entropy loss

L𝑐𝑒 with Eq. (13)(14), given the generated rank scores and
payments with Eq. (4)(5)(6)(7)

6: Update the network parameters using stochastic gradient
descent optimizer (i.e., Adam)

7: Decrease 𝜏 by one step
8: end while

B ANALYSIS OF THE SET EMBEDDINGS
We next provide empirical evidence suggesting the meaningfulness
of set embedding ℎ′

𝑖
learned by the set encoder. We conducted

experiments on training DNA mechanism without the set encoder.
The learning curves on four different tasks are plotted in Fig. 5.
We find that the learning performance degrades when disabling
the set encoder, indicating that the context-aware rank scores are
beneficial to promote the performance. To qualitatively study the
latent set embeddings from the set encoder, we randomly select
some top-10 and last-10 ads from the test data set and generate their
corresponding set embeddings ℎ′

𝑖
using the trained set encoder. The

t-SNE [32] plots can be seen in Fig. 6, where each point represents
an ad. It is interesting to find that the top-ranked ads are clustered
together, and the “weak” ads are separated from the cluster. This
indicates that the set embeddingℎ′

𝑖
may carry the “competitiveness”

information from the other candidate ads, assisting the subsequent
rank score module to learn rank scores towards optimizing the
overall performance.
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Figure 5: Learning curves on DNA and DNA w/o set encoder
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Figure 6: Distribution of the set embedding for sampled tok-
10 and end-10 ads in latent space using t-SNE.

C DEPLOYMENT IN E-COMMERCE
ADVERTISING SYSTEM

The Deep Neural Auction mechanism is deployed under “Adverti-
sement Intelligent Decision-mAking system” (AIDA) in Taobao
display advertising system. The online inference procedure can be
formulated as follows:

Algorithm 2 Online Auction Service of DNA
Require: Online auction data (all candidate ads in a PV request),

the trained DNA
1: Data preprocessing: feature construction
2: Generate rank scores of DNA with Eq. (4)(5)(6)(7)
3: Obtain the top-𝐾 winning ads and their corresponding pay-

ments with differentiable sorting engine by setting 𝜏 = 0

Fig. 7 shows the overall architectures of the training system
pipeline, including online ad platform and offline trainer. Firstly,
the online ad platform receives a page view (PV) request from a user.
The relevant candidate ads are selected, together with the generated
user response predictions (e.g., 𝑝𝐶𝑇𝑅, 𝑝𝐶𝑉𝑅). Then, the auction
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mechanism is conducted and the top-𝐾 winning ads will be selected
and displayed to the user. Once the user finishes interacting with
the ad, e.g., click, or place an order, these behaviors are recorded as
log data and sent to the real-time data processing module, where
hundreds of thousands of log data are processed per second. After
that, the training procedure is performed via parameter-server (PS)
framework and the model evaluation will be periodically carried on
to monitor the training process. When the convergence condition
is satisfied, the model checkpoint will be pushed to the model
center module. The model checkpoint can be delivered in several
minutes from offline to online. We also design a model version
management tool inside the model center, endowing the training
system with rollback ability in response to training crash or service
breakdown. The whole pipeline from real-time data processing to

model checkpoint transmission can be completed in less than 20
minutes.
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Figure 8: Online Auction Service.

The online auction service, as illustrated in Fig. 8, consists of
three main components: a feature extraction module, a model in-
ference module, and an allocation & pricing module. Given the
candidate ads set with the available information, the feature extrac-
tion module conducts feature engineering, which extracts useful
information from the raw user and ads. The trained model check-
point is then loaded and executed to generate rank scores for all
ads in the model inference module. Finally, the allocation and pay-
ments are determined using the differentiable sorting engine in
DNA (by setting 𝜏 = 0). We mainly focus on response time (RT)
for the online auction service. The online auction service processes
tens of thousands of ad auctions per second, and the RT is 6ms
average with dozens of 32-CPU-cores servers. In the last Double
Eleven shopping festival of Taobao, the online auction service ac-
commodated a tremendous nearly 1 million ad auctions per second
during the peak, keeping all services in working order.
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