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ABSTRACT
In this paper we develop a novel neural network model for predict-

ing implied volatility surface. Prior financial domain knowledge

is taken into account. A new activation function that incorporates

volatility smile is proposed, which is used for the hidden nodes

that process the underlying asset price. In addition, financial con-

ditions, such as the absence of arbitrage, the boundaries and the

asymptotic slope, are embedded into the loss function. This is one

of the very first studies which discuss a methodological framework

that incorporates prior financial domain knowledge into neural net-

work architecture design and model training. The proposed model

outperforms the benchmarked models with the option data on the

S&P 500 index over 20 years. More importantly, the domain knowl-

edge is satisfied empirically, showing the model is consistent with

the existing financial theories and conditions related to implied

volatility surface.
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1 INTRODUCTION
Machine learning algorithms are essentially data-driven models

which mainly focus on producing accurate predictions. They are

being used for a wider array of macro and micro level prediction

tasks. According to Ernst and Young [14], machine learning appli-

cations in finance have become one of the hottest sectors globally,
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with the expected direct investment growth of 63% from 2016 to

2022. Despite COVID-19, a recent survey from the Bank of England

showed that there are still a third of banks would increase their

investments in the number of planned or existing machine learning

and data science projects [4]. Therefore, it is interesting for machine

learning researchers and financial analysts to investigate this sector

because it generates a lot of practical questions and challenges,

and addressing them will result in positive economic and social

consequence.

Although with excellent prediction performance, machine learn-

ing is usually used as the “black box” model in many financial

applications. Compared with the well-developed models frommath-

ematical finance, machine learning algorithms are less interpretable,

e.g., features can be not understandable, and the learning process

is not transparent or mathematically tractable. More importantly,

they are not aligned with the well-developed financial theories.

Therefore, many financial institutions are slow to adopt machine

learning algorithms (particularly neural networks) into their major

business operations. Developing interpretable machine learning

models that are consistent with the existing financial markets and

theories will resolve the bottleneck and will boost the applications

of machine learning into finance.

In this paper, we propose a novel neural network model tailored

for implied volatility surface prediction. Implied volatility is an

important financial metric or indicator that captures the market’s

view of the likelihood of changes in a given asset price. Technically,

an implied volatility is defined as the inverse problem of option

pricing, mapping from the option price of the asset in the current

market to a single value [12]. When it is plotted against the op-

tion strike price and the time to maturity, it is called the implied
volatility surface. Prior financial domain knowledge related to im-

plied volatility surface includes: 1) the empirical evidence volatility

smile; and 2) financial conditions such as the absence of arbitrage,

the boundaries and the asymptotic slope. We use different ways

to incorporate these domain knowledge. For the former, a new ac-

tivation function that produces volatility smile is proposed, and

it is used for the hidden nodes that process the underlying asset

price. For the latter, financial conditions are embedded into the

loss function for neural network training. In the experiments, we

validate the proposed model with the option data on the S&P 500

index over a period of 20 years. Compared with the existing studies,

our experimental settings are more challenging and this requires

our model to be more robust and stable in producing convincing

results. Our model outperforms the widely used state-of-the-art

model in finance and other benchmarked neural network models on
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the mean average percentage error in both training and test sets. In

the meantime, the incorporated prior financial domain knowledge

are met empirically.

Technology wise, our study makes a methodological contribu-

tion. We propose a framework of incorporating prior financial

domain knowledge into neural network design and training. There-

fore, the developed model is aligned well with the existing empirical

evidence and financial theories related to implied volatility surface.

This is an important step for interpretable machine learning, and

we hope the framework can motivate many other investigations

of machine learning applications in finance. On the other hand,

from the application perspective, we develop a best-performing

prediction model, and to the best of our knowledge, this is one of

the very first neural networks tailored for implied volatility surface.

The rest of the paper is organised as follows. Section 2 reviews

the related literature. Section 3 introduces our proposed model for

predicting implied volatility surface. The used dataset, our experi-

mental settings and results are presented in Section 4. Finally, we

conclude the paper in Section 5.

2 RELATEDWORK
Our research in this paper touches upon two streams of literature:

mathematical finance and machine learning. For the former, we

introduce the basic concepts and the related studies of option pric-

ing and volatility modelling. For the latter, we review a number

of recent applications of machine learning in finance, with special

focuses on option pricing and volatility modelling.

2.1 Option Pricing and Volatility Modelling
In 1973, Black and Scholes [6] proposed an elegant closed-form

pricing formula for the European style call options written on

financial assets. Theirmodel is simply called the Black-Scholes option
pricing model, in which an underlying financial asset price is driven

by a geometric Brownian motion [37] that contains a drift and a

volatility, and the volatility term shows the small fluctuations of

asset returns representing risk. The seminal work of Black and

Scholes opened the floodgates of studying mathematical models

in finance, and volatility models have soon become popular since

then [15, 39].

Volatility models in finance can be classified into two groups [22].

The first group is called indirect methods, in which an implied volatil-

ity is driven by another dynamic model such as local volatility mod-

els, stochastic volatility models and Lévy models [21, 24, 27, 34, 38].

Models in this group usually have a limited number of param-

eters, and the volatility term is fitted by the market data along

with the asset dynamics such as the geometric Brownian motion

and the mean-revision jump-diffusion process. These models ex-

hibit mathematical elegance but are sometimes invalid empirically.

Time-dependent parameters can be included but they will greatly

increase computational time and optimisation difficulty in model

calibration. The second group is called direct methods, in which an

implied volatility is specified explicitly. Direct methods can also

be divided into two types. The first type specifies the dynamics of

an implied volatility surface and assumes it evolves continuously

over time [9, 12]. The second type focuses on the static represen-

tation of implied volatility surface that uses either parametric or

non-parametric methods to fit an implied volatility surface and

then for prediction [13, 23, 26]. Our proposed method is a static

model. In this group, the stochastic volatility inspired (SVI) model

is the most commonly used method [16]. It models the implied

volatility slice for a fixed time to maturity. Gatheral and Jacquier

then further improved the SVI model with a simpler representation

on the conditions for no static arbitrage, and this improved SVI

model is called the surface SVI (SSVI) model, which is the recent

advance in mathematical finance and has been widely adopted by

investors [17]. Therefore, we choose the SSVI model as one of the

benchmarked models in this paper.

2.2 Machine Learning Applications in Finance
Applying machine learning to asset pricing and volatility predic-

tion can be traced back to the late 1980’s or early 1990’s. In the

early stages, single hidden layer neural networks were used to esti-

mate option price [32] and to predict the volatility of the S&P 100

index [33]. Then, various machine learning algorithms were intro-

duced, including ensemble methods [3, 18], kernel machines [11],

Gaussian process [40], and deep learning models such as hybrid

neural networks [28], gated neural networks [41], and recurrent

neural networks [31]. In addition to the conventional financial data,

several other recent studies developed models which use verbal,

vocal and social information [35, 36, 42].

It should be noted that our research in this paper focuses on

predicting the implied volatility surface when the underlying asset

price and the time to maturity of the corresponding option quotes

are given. This kind of prediction in essence is an inverse engineer-

ing of option pricing and it is not time series forecasting. Therefore,

our scenario is different to the above mentioned studies. Our neural

network architecture design is inspired by the work of [41] but

has three significant differences. First, our model aims to predict

the implied volatility rather than option price. Second, we design a

new activation function that can incorporate volatility smile. Third,

we embed the conditions related to implied volatility into neural

network training.

3 MODEL
In this section, we firstly introduce the preliminaries of implied

volatility surface and lays down the mathematical settings. We then

discuss our deep neural network architecture design and further ex-

plain how do we incorporate the prior financial domain knowledge

into neural network.

3.1 Prior Financial Domain Knowledge
In mathematical finance, the spot price of an asset is usually mod-

elled as a stochastic process (St )t ≥0 that is defined on a filtered

probability space (Ω, F , (Ft )t ≥0, P), where t is the time index, Ω is

the sample space, F is the sigma-field, (Ft )t ≥0 is the filtration, and

P is the probability space. The financial market is assumed to be

arbitrage-free and a financial product’s time to maturity (i.e., the

time remaining until a financial contract expires) is always finite.

As mentioned previously, implied volatility is the inverse en-

gineering of option pricing. It can be obtained by inverting the

Black–Scholes option pricing model [6], in which one needs to
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Figure 1: Neural network architecture design tailored to implied volatility surface. The proposed multi model consists of sev-
eral single models and their weights are determined by the weighting network. Bias terms are omitted; ⊗ is the multiplication
gate operator; ⊕ is the addition gate operator.

determine the constant interest rate and dividends from the mar-

ket data. To avoid dealing with them, the forward measure can be

used instead. Let (Ft ,T )t ≥0 be the forward price of the asset with

maturity date T , where 0 ≤ t ≤ T . Then

Ft ,T =
St

B(t,T )
,

where B(t,T ) is the price of a zero-coupon bond at time t which
will pay one unit at time T . The absence of arbitrage ensures there
exists an equivalent martingale measure in which (Ft ,T )t ≥0 is a

martingale [12]. In probability theory, a martingale is a stochastic
process for which, at a particular time, the conditional expectation

of the next value in the process is equal to the present value and re-

gardless of all the previous values. So the log forward moneynessm
can be defined and used as the underlying, wherem = log{K/Ft ,T }
and K is the strike price.

Another important variable is the time to maturity, which can

be defined as

τ =
T − t

A
,

where A is the annualization factor. Therefore, in our mathematical

setting, the implied volatility v can be written as a function of the

log forward moneynessm and the time to maturity τ .

Theorem 1. Letd±(m, τ ) = − m√
τv(m,τ )

± 1

2

√
τv(m, τ ), n(·) denote

the density function of a standard normal distribution, andN (·) denote
its cumulative function. The following conditions are required to be
met for the implied volatility v :

1) (Positivity) For (m, τ ) ∈ R × R+, v(m, τ ) > 0.
2) (Twice Differentiation) For τ > 0, m → v(m, τ ) is twice

differentiable on R.
3) (Monotonicity) Form ∈ R, τ →

√
τv(m, τ ) is increasing on

R+, then

v(m, τ ) + 2τ ∂τv(m, τ ) ≥ 0.

4) (Absence of Butterfly Arbitrage) For (m, τ ) ∈ R × R+,[
1 −

m∂mv(m, τ )

v(m, τ )

]
2

−
1

4

[
v(m, τ )τ ∂mv(m, τ )

]
2

+ τv(m, τ )∂mmv(m, τ ) ≥ 0.

5) (Limiting Behaviour) If τ > 0, then

lim

m→+∞
d+(m, τ ) = −∞.

6) (Right Boundary) Ifm ≥ 0, then

N (d−(m, τ )) −
√
τ ∂mv(m, τ )n(d−(m, τ )) ≥ 0.

7) (Left Boundary) Ifm < 0, then

N (−d−(m, τ )) +
√
τ ∂mv(m, τ )n(d−(m, τ )) ≥ 0.

8) (Asymptotic Slope) If τ > 0, then

2|m | −v2(m, τ )τ > 0.

Simply, Theorem 1 conditions 1-5 ensure the absence of arbi-

trage [20]; conditions 6-7 specify the boundaries [8]; and condition

8 is the asymptotic slope [29].

In addition to Theorem 1, implied volatility has an important

empirical evidence (or stylised fact) called the volatility smile – for

a given time to maturity, when the implied volatility is plotted

against the strike price, it creates a line that slopes upward on

either end, looking like a “smile” [12]. In the following discussion,

we will present our neural network model by incorporating these

mentioned financial conditions and empirical evidence related to

implied volatility surface.

3.2 Deep Neural Network Architecture Design
Figure 1 presents a schematic view of our neural network archi-

tecture. The model input includes the log forward moneynessm
and the time to maturity τ , and the model output is the implied
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Figure 2: Smile function ϕ(·) where ϵ = 0.01.

volatility v . The proposed neural network is constructed from sub-

networks with two types of architectural structures: 1) several

simple networks (called single networks) which predict the implied

volatility separately; and 2) a weighting network which determines

the “votings” of the predicted implied volatilities towards the final

prediction. Similar to [41], multiplication and addition gate opera-

tors are used to process and merge information related to the log

forward moneynessm, the time to maturity τ and single networks.

Definition 1 (Smile Function). For any z ∈ R,

ϕ(z) =

[
z tanh(z +

1

2

) + tanh(−
1

2

z + ϵ)

]
1/2

, z ∈ R, (1)

where tanh(·) is the hyperbolic tangent function and ϵ is a small value
to ensure numerical stability.

As shown in Figure 2, the defined smile function exhibits a skew

pattern like volatility smile. We apply the smile function ϕ(·) to
the nodes that correspond tom and the sigmoid functionψ (·) for
the nodes that correspond to τ . It is not difficult to see that the

positivity and twice differentiation conditions in Theorem 1 are met

and the limiting behaviour condition can be proven theoretically

by inverting the Black-Scholes option pricing model [20].

Our proposed neural network can be expressed as follows:

v̂ =
I∑
i=1

yiwi , (2)

yi =

J∑
j=1

ϕ(mw̄
(i)
j +

¯b
(i)
j )ψ (τw̃

(i)
j +

˜b
(i)
j )eŵ

(i )
j + e

ˆb (i )
, (3)

wi =

exp

{∑K
k=1

ψ (m Ûw
1,k + τ Ûw

2,k + Ûbk ) Üwk ,i + Übi

}
∑I
i=1

exp

{∑K
k=1

ψ (m Ûw
1,k + τ Ûw

2,k + Ûbk ) Üwk ,i + Übi

} , (4)

where I is the number of single networks, J is the number of lay-

ers in each single network, and K is the number of layers in the

weighting network. For the ith single network, yi is its prediction
output. To ensure it is non-negative, we consider the exponential

form of the weight eŵ
(i )
j

and the bias e
ˆb (i )

. For the hidden layers,

w̄ j and ¯bj are the weight and the bias of the jth hidden node that

corresponds tom, and w̃ j and ˜bj are the weight and the bias of the

jth hidden node that corresponds to τ . Therefore, there is a total
of 5J + 1 parameter values for each single network. The weighting

network predicts the weights of single networks towards the final

prediction, where wi is its prediction for the ith single network,

Ûw ·,k is the weight of the kth hidden node,
Ûbk is the bias of the kth

hidden node, Üw ·,i is the weight of the ith single network, and
Üb is

the bias of the ith single network. Since the dimensions of Ûw ,
Ûb, Üw ,

Üb are 2 × K , K × 1, K × I , and I × 1, respectively, the total number

of parameter values in the our model is (5J + K + 2)I + 3K .

3.3 Embedding Constraints into Optimisation
Training the designed neural network solves an optimisation prob-

lem that finds for parameters which result in a minimum loss when

evaluating the samples in the training data. We define a loss func-

tion tailored to implied volatility surface by embedding the related

conditions from mathematical finance:

ℓ = ℓ0 + γ ℓ1 + δℓ2 + ηℓ3 + ρℓ4 + ωℓ5, (5)

where ℓ0 represents the data loss, ℓ1, . . . , ℓ4 are the loss functions

that incorporate financial conditions discussed previously, and ℓ5
is the regularization term to avoid over-fitting.

The data loss ℓ0 is defined as a joint loss from the mean squared

log error (MSLE) and the mean squared percentage error (MSPE):

ℓ0 =
α

N

N∑
n=1

(
logvn − log v̂n

)
2

+
β

N

N∑
n=1

(vn − v̂n
vn

)
2

, (6)

where N is the total number of the training samples, vn is the

ground truth implied volatility for the nth sample, v̂n is the pre-

dicted implied volatility for the nth sample, α and β are hyperpa-

rameters that control the weights of MSLE and MSPE, respectively.

We use the joint data loss here because it is efficient in dealing with

sensitive data or high-dimensional feature spaces [19].

The monotonicity condition is specified by ℓ1, defined by

ℓ1 =

P∑
p=1

Q∑
q=1

max{0,−a(mp , τq )}, (7)

where P and Q are the number of samples, and a(m, τ ) = v(m, τ ) +
2τ ∂τv(m, τ ). The objective of ℓ1 is to pusha(m, τ ) to be non-negative.
This can be achieved by randomly sampling P unique values from

the domain ofm andQ unique values from the domain of τ . Penalty
is added by ℓ1 if a(m, τ ) is negative for the sampled (m, τ ) pairs.

The absence of a butterfly arbitrage condition is specified by ℓ2,

defined as follows

ℓ2 =

P∑
p=1

Q∑
q=1

max{0,−b(mp , τq )}, (8)

where

b(m, τ ) = (1 −
m∂mv(m, τ )

v(m, τ )
)2 −

(v(m, τ )τ ∂mv(m, τ ))
2

4

+ τv(m, τ )∂mmv(m, τ ).

The objective of ℓ2 is to push b(m, τ ) to be non-negative. This can

be achieved using the same way as ℓ1, by randomly sampling P
unique values from the domain ofm and Q unique values from the

domain of τ .
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The left and the right boundary conditions are specified by ℓ3,

defined as follows

ℓ3 =

P1∑
p1=1

Q∑
q=1

max{0,−c1(mp1
, τq )}

+

P2∑
p2=1

Q∑
q=1

max{0,−c2(mp2
, τq )}. (9)

where

c1(m, τ ) = N (d−(m, τ )) −
√
τ ∂mv(m, τ )n(d−(m, τ )),

c2(m, τ ) = N (−d−(m, τ )) +
√
τ ∂mv(m, τ )n(d−(m, τ )).

The objective is to push both functions to be non-negative. To

achieve this, we sample P1 unique non-negative values from the

domain ofm, P2 unique negative values from the domain ofm and

Q unique values from the domain of τ .
The asymptotic condition is specified by ℓ4, defined by

ℓ4 =

P∑
p=1

Q∑
q=1

max{0,−(д(mp , τq ) − ϵ)}, (10)

where

д(m, τ ) = 2|m | −v2(m, τ )τ ,

and ϵ is a very small value. The aim of ℓ4 is to ensure д(m, τ ) is
positive. Therefore, similar to ℓ1, ℓ2, ℓ3, we sample P unique values

from the domain ofm and Q unique values from the domain of τ .
It is worth mentioning that the values ofm and τ in ℓ1, · · · , ℓ4 can

also be sampled from the training data. However, the trained neural

network may fail to meet those conditions when the given values

ofm and τ for prediction are out of the scope of the training data.

If the training data have limited observations of input variables,

creating synthetic data by sampling values from their domains

is an effective way to train the model with good generalization

capabilities [10, 30]

The regularization term ℓ5 is defined by

ℓ5 =

I∑
i=1

| |w̄(i) | |2F +

I∑
i=1

| |w̃(i) | |2F +

I∑
i=1

| |ŵ(i) | |2F

+ | | Ûw | |2F + | | Üw | |2F , (11)

where | | · | |2F is the squared Frobenius norms.

4 EXPERIMENTS
The used datasets are firstly introduced. We then provide the de-

tails of experimental design, including examined models and their

training settings. The experimental results are finally presented

and discussed.

4.1 Data
We use the option and the zero-coupon yield curve data from

OptionMetrics, and the Overnight Index Swap (OIS) data from

Bloomberg.
1
Our option data is for the S&P 500 index. It is one of the

most commonly followed stock market indices which measures the

1
OptionMetrics is a leading provider of historical implied volatility, greeks, and op-

tion pricing data for financial markets and Bloomberg is a premier financial services

company.
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Figure 3: Time series plots of cleaned option contracts and
their quotes from 04/01/1996 to 29/04/2016

stock performance of 500 large companies listed on stock exchanges

in the United States. The option data contains a total of 5,116 trad-

ing days, covering the period from 04/01/1996 to 29/04/2016. The

zero-coupon yield curve shows the relationship between the level

of the interest rate (representing the cost of borrowing) and the

time to maturity. It is constructed based on the London Inter-Bank

Offered Rate (LIBOR). However, after the 2018 financial crisis, the

LIBOR-based zero curve is not risk-free [1]. Therefore, adjustments

are performed for the period after 01/01/2008. Specifically, we ex-

tract the OIS data from Bloomberg and bootstrap the zero rate curve.

In addition, we use the cubic spline to interpolate the risk-free rates

in order to match the option maturity, and compute the forward

price using the put-call parity [5].

The option data is further processed. Option quotes which are

less than 3/8 are excluded because they are close to the tick size

and can be misleading. The bid-ask mid-point price is calculated as

a proxy for the closing price. The in-the-money option quotes are

excluded because of the small transaction volume [7]. The existing

studies usually do not analyse option contracts with the time to

maturity of less than 7 days [2]. However, as these options are get-

ting popular recently (e.g., weekly index options), we here analyse

option contracts with a short time to maturity and only exclude the

contracts with the maturity of less than 2 days. Analysing options

with a short maturity is challenging because this requires our model

with high robustness and stability. As shown in Figure 3, our pre-

pared data finally contains 63,338 option contracts with 2,986,754

valid quotes. The quotes are then used to compute the ground truth

implied volatility values by inverting the Black–Scholes option

pricing formula.

4.2 Experimental Settings
Table 1 summarises the examined models in the experiments. In

addition to our proposed model (simply denoted by Multi), we

also deploy the SSVI model, and other neural network models.

For the former, we aim to investigate if our proposed model can
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Model Description

SSVI [17]

Multi The proposed model specified in Eqs. (2)-(11).

Multi
†

The Multi model trained without embedding

ℓ1, ℓ2, ℓ3, ℓ4.

Single The single network model so there is no weighting

network, and | | Ûw | |2F and | | Üw | |2F are not included in the

regularization term ℓ5 for the model training

Single
†

The Single model trained without embedding

ℓ1, ℓ2, ℓ3, ℓ4.

Vanilla The neural network model with the simplest architec-

ture – it has a single hidden layer which only uses the

sigmoid activation function and the model’s output

is censored to be non-negative.

Vanilla
†

The vanilla model trained without embedding

ℓ1, ℓ2, ℓ3, ℓ4.

Table 1: Summary of the examined models.

Model

Hyperparameter

I J K α β γ δ η ρ ω

Multi 4 8 5 1 1 10 1 10 1 5e-5

Multi
†

4 8 5 1 1 0 0 0 0 5e-5

Single 1 32 - 1 1 10 1 10 1 5e-5

Single
†

1 32 - 1 1 0 0 0 0 5e-5

Vanilla 1 32 - 1 1 10 1 10 1 5e-5

Vanilla
†

1 32 - 1 1 0 0 0 0 5e-5

Table 2: Hyperparameter settings of neural networkmodels,
where allmodels use the same learning rate 0.1 and the same
number of iterations 2e+4.

achieve a better prediction performance than the state-of-the-art

method from mathematical finance. For the latter, we want to see

if the designed architecture (i.e., the ensemble of multiple single

networks) can improve the prediction capability. To this end, the

benchmarked neural networks include: 1) a single network (denoted

by Single) where there is no weighting network ; and 2) a simplest

neural network (denoted by Vanilla) which has a single hidden layer,

only uses the sigmoid activation function and the model’s output is

censored to be non-negative. Also, to further justify the importance

of embedding financial conditions, all the neural network models

are trained under a setting where ℓ1, ℓ2, ℓ3, ℓ4 are removed from

the total loss function ℓ. To simplify the discussion, these neural

network models are denoted with a superscript †.

Table 2 presents our hyperparameter settings of the examined

neural networks. To avoid the size effect on model performance,

the compared neural networks with the same architecture design

are specified with the same model size and with the same hyperpa-

rameter values. As also mentioned earlier in Section 3, embedding

ℓ1, ℓ2, ℓ3, ℓ4 requires synthetic data. In our neural network training,

the ratio of real market data and synthetic data is 1/6. The log for-

ward moneynessm is sampled in [−6,−3]∪[3, 6] for the asymptotic

Model

Training Test

Mean STD Mean STD

Multi 1.74 0.50 3.34 2.18

Multi
†

1.76 0.50 3.35 2.17

Single 2.15 0.67 3.60 2.12

Single
†

1.82 0.52 3.38 2.16

Vanilla 3.21 0.98 4.46 2.07

Vanilla
†

2.87 0.80 4.18 2.04

SSVI 2.59 0.85 3.73 2.18

Table 3: Mean and standard deviation (STD) of the MAPEs
for the predicted implied volatilities from the examined
models.

Model

Training Test

Mean STD Mean STD

Multi 5.97 1.86 10.64 6.72

Multi
†

6.03 1.86 10.67 6.70

Single 7.38 2.57 11.64 6.68

Single
†

6.20 1.91 10.77 6.67

Vanilla 11.31 3.57 14.61 6.42

Vanilla
†

10.53 3.34 14.17 6.60

SSVI 8.71 2.72 12.74 6.74

Table 4: Mean and standard deviation (STD) of the MAPEs
for the option prices calculated using the predicted implied
volatilities from the examined models.

condition and in [−3, 3] for other conditions; and the time to ma-

turity τ is sampled in [0.002, 3]. These values are set based on the

observations in Figure 3. Neural network models are trained using

TensorFlow and we use Adam [25] for stochastic optimisation. We

train the models using all option quotes from the previous trading

day and test the models in the next day. We move the window of

training and test split across all the trading days in the option data.

4.3 Results and Analysis
The summary statistics of the mean average percentage errors

(MAPEs) of the predicted implied volatilities for the examined mod-

els in all trading days are presented in Table 3. To further investigate

the effects or differences that the predicted implied volatilities can

trigger in option pricing, we use them to compute the correspond-

ing option prices and then report the summary statistics of the

MAPEs of the option prices in Table 4. In both tables, the widely

used SSVI model from mathematical finance underperforms the

Multi, Multi
†
, Single and Single

†
models significantly but it still out-

performs the simple neural networks like the Vanilla and Vanilla
†

models. Compared to conventional mathematical models in finance,

data-driven deep learning models have shown great predictive ca-

pabilities but they should be with a proper architecture design and

hyperparameters settings. Our study has been successfully vali-

dated with the results because the proposed Multi model is the

best-performing prediction model in both training and test data
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Figure 4: Time series plot of the MAPEs for the SSVI model
and the neural network models trained with full settings.

for implied volatility and option price, respectively. Figure 4 also

compares the time series plots of the MAPEs of the SSVI model

and the deep neural networks trained with the full settings on each

sampled trading day, showing our proposed Multi model has the

most stable outputs over time.

One interesting finding from Tables 3-4 is that excluding some fi-

nancial conditions in training neural networks will not significantly

decrease the models’ prediction performance because the Multi
†
,

Single
†
and Vanilla

†
models have a comparable performance with

their counterparts which were trained with the full settings (i.e., the

Multi, Single and Vanilla models). However, as discussed previously,

incorporating the prior financial domain knowledge is mainly to

ensure the model is consistent with the existing financial theories

and assumptions rather than the model’s prediction performance.

In Table 5, we check if the monotonicity, boundary, absence of

butterfly arbitrage and asymptotic slope conditions in Theorem 1

are empirically satisfied in the test data. Since we have discussed

in Section 3 that the positivity and twice differentiation conditions

are met in our neural network architecture design and the limit-

ing behaviour condition can be proven theoretically, these three

conditions are not checked by Table 5. It is not difficult to observe

that the violation percentage of the test samples for the examined

conditions of the Multi
†
, Single

†
and Vanilla

†
models are much

higher than the corresponding Multi, Single and Vanilla models,

showing the importance and necessity of embedding ℓ1, ℓ2, ℓ3, ℓ4
loss functions. For illustration purpose only, Figure 5 demonstrates

the limiting behaviour of the converted underlying forward con-

tracts with 11, 32, 109, and 704 days duration, verifies the limiting

behaviour condition.

Further, to get a sense of what an implied volatility surface looks

like for our readers, Figure 6 shows the surfaces resulting from the

Multi model and the Multi model trained without the regularization

term for 11/01/2016. It is clear that the volatility smiles in the former

are much smoother than those of the latter, which also verifies the

effectiveness of regularization.

0 100 200 300 400 500 600
-600

-500

-400

-300

-200

-100

0

11 days
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Figure 5: Limiting behaviour of the converted forward con-
tracts with 11, 32, 109, and 704 days duration.

Figure 6: Implied volatility surface on 11/01/2016 predicted
by: (a) the multi model; and (b) the multi model without reg-
ularization.

5 CONCLUSION
In this paper, we developed a novel neural network to predict im-

plied volatility surfaces. Unlike many previous studies where the

machine learning algorithms are mainly used as the “black box”

in finance, our model is tailored to the unique characteristics of

implied volatility surface. To the best of our knowledge, this is one

of the very first studies which discuss a methodological framework

that integrates the data-driven machine learning algorithms (par-

ticularly neural networks) with the related financial theories and

empirical evidence. The proposed model framework can be easily

extended and applied to solve other similar computational problems

in finance and business analytics such as inventory pricing and

revenue management.

In addition to the methodological contribution, we validated

the proposed model empirically with the option data on the S&P

500 index. Compared with the existing studies, our experimental

settings are more challenging because the used option data is over

20 years and the options with the short time to maturity are ex-

amined. Therefore, our model needs to be more robust in order

to produce convincing results. As presented in the experiments

section, our model outperforms the widely used SSVI model from

mathematical finance and other benchmarked neural networks.
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Model Monotonicity Absence of butterfly arbitrage Left boundary Right boundary Asymptotic slope

Multi 0.00% 7.02e-6% 0.00% 0.00% 0.00%

Multi
†

1.28% 4.87% 0.00% 14.06% 0.00%

Single 0.00% 5.56e-3 % 0.00% 0.05% 0.00%

Single
†

0.00% 14.88% 0.95% 5.16% 0.00%

Vanilla 3.75e-3% 1.53e-2% 4.07e-3% 0.00% 0.00%

Vanilla
†

5.32% 5.72% 14.63% 0.00% 0.54%

Table 5: Percentages of the test set samples which do not satisfy conditions 3,4,6,7,8 of Theorem 1.

More importantly, the conventional financial conditions and em-

pirical evidence are met empirically, which resolve the bottleneck

of data-driven machine learning applications in finance.
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