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ABSTRACT

Clinical practice in intensive care units (ICUs) requires early warn-
ings when a patient’s condition is about to deteriorate so that
preventive measures can be undertaken. To this end, prediction
algorithms have been developed that estimate the risk of mortality
in ICUs. In this work, we propose a novel generative deep prob-
abilistic model for real-time risk scoring in ICUs. Specifically, we
develop an attentive deep Markov model called At#tDMM. To the
best of our knowledge, AttDMM is the first ICU prediction model
that jointly learns both long-term disease dynamics (via attention)
and different disease states in health trajectory (via a latent vari-
able model). Our evaluations were based on an established baseline
dataset (MIMIC-III) with 53,423 ICU stays. The results confirm that
compared to state-of-the-art baselines, our A#t{DMM was superior:
AttDMM achieved an area under the receiver operating character-
istic curve (AUROC) of 0.876, which yielded an improvement over
the state-of-the-art method by 2.2 %. In addition, the risk score from
the AttDMM provided warnings several hours earlier. Thereby, our
model shows a path towards identifying patients at risk so that
health practitioners can intervene early and save patient lives.
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learning by classification; + Mathematics of computing —
Time series analysis; Markov processes; « Applied comput-
ing — Health care information systems.
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1 INTRODUCTION

Intensive care units (ICUs) provide healthcare to patients with se-
vere or life-threating illnesses. ICUs receive patients directly from
an emergency unit, from other wards if their condition deteriorates
rapidly, or after surgery. In ICUs, patients require constant care to
ensure normal body functions. Yet, due to the severity of underly-
ing illnesses, their health trajectories cannot always be stabilized.
Owing to this, mortality rates in ICUs are among the highest across
all hospital units [34] and are estimated to be 8-19 % [36].

To ensure normal body functions, patients in ICUs are subject
to extensive monitoring [21]. Examples are the monitoring of body

Mathias Kraus
FAU Erlangen-Nuremberg
90403 Nuremberg, Germany
mathias.kraus@fau.de

Stefan Feuerriegel
ETH Zirich
8092 Zurich, Switzerland
sfeuerriegel@ethz.ch

temperature, heart rate, and blood pressure. Based on this, clinical
professionals determine a risk score that identifies the probability of
in-hospital mortality. The risk score is crucial for decision-making
in ICU practice as it guides the treatment plans [5, 26, 37]. In addi-
tion, it provides early warnings when a health condition is about
to deteriorate so that preventive measures can be taken.

The clinical literature indicates the development of several meth-
ods for risk scoring in ICUs that are nowadays widely used in
clinical practice. Among the most widely applied ones is the sim-
plified acute physiology score (SAPS) [32, 35], which assesses the
severity of the health condition as defined by the probability of
patient in-hospital mortality. For this, the risk score makes use of
measurements that indicate vital signs, such as body temperature,
heart rate, and blood pressure. However, the aforementioned risk
scores are computed through overly simple decision rules that oper-
ate only on a few measurements from selected timestamps. In other
words, the complete time-series of measurements is ignored, and
because of this, the prediction power concerning patient mortality
is limited.

Recent works have addressed mortality prediction in ICUs
through the use of machine learning. On the one hand, neural
networks have been used so that long-term temporal dependen-
cies are captured. Examples of neural networks that have been
adapted for ICU predictions are long short-term memory (LSTM)
[15, 44, 52] and gated recurrent unit (GRU) [6, 10]. These models
have been powerful in representing complex interactions among
(high-dimensional) measurements and thus represent the state of
the art. On the other hand, latent variable models have been used
for ICU prediction [16, 17]. In this case, the latent variables allow
latent disease states in the health trajectory to be captured. How-
ever, we are not aware of any previous works that have combined
the strengths of neural networks and latent variables into a joint
model for predicting ICU mortality.

Proposed model:! In this work, we propose a novel genera-
tive deep probabilistic model for predicting mortality risk in ICUs.
Specifically, we develop an attentive deep Markov model called
AttDMM. Based on this, our model allows us to jointly capture
(1) long-term disease dynamics (via attention) and (2) different dis-
ease states in the health trajectory (via a latent variable model).
To the best of our knowledge, our model is the first combination

IThe code is available from https://github.com/oezyurty/AttDMM



of a deep Markov model with an attention mechanism. In addi-
tion, AttDMM is closely aligned with the needs in clinical practice
providing confidence interval of the real-time risk score that fur-
ther facilitates decision-making. Finally, we show how to estimate
AttDMM via an end-to-end training task by a tailored evidence
lower bound (ELBO).

Results: Our At#tDMM was evaluated on an established baseline
dataset from clinical practice, MIMIC-III [21], comprising 53,423
ICU stays. For each ICU stay, we evaluated the performance across
two prediction tasks. First, we predicted the mortality risk from
measurements spanning the first 48 hours after ICU admission. This
prediction task is analogous to that of risk scoring from the clinical
literature [e. g., 20, 32, 35, 53] and thus facilitates comparability with
prior literature. In this prediction task, state-of-the-art baselines
were consistently outperformed. Compared to the baselines, the
proposed AttDMM achieved a performance improvement in the
area under the receiver operating characteristic curve (AUROC) by
2.2 % and in area under the precision-recall curve (AUPRC) by 2.4 %.
On top of that, our model achieved the same AUROC (AUPRC)
performance as the best baseline 12 hours (6 hours) earlier. Sec-
ond, we assessed a prediction task in which we make long-term
forecasts of mortality risk. This prediction task is demanded by
clinical practice as many conditions remain stable for a fairly long
time window but afterwards deteriorate suddenly. We found that
AttDMM outperforms state-of-the-art baselines in terms of AUROC
by 2.2 % and AUPRC, remarkably, by 5.4 %.

Contributions: Our work advances machine learning for ICU
predictions in the following ways:

(1) We present a novel generative deep probabilistic model called
AttDMM. For this, we combine a deep Markov model with
an attention mechanism for risk scoring. To the best of our
knowledge, AttDMM is the first deep Markov model that is
tailored to mortality predictions in ICUs.

(2) Our evaluation demonstrated that AttDMM achieved state-
of-the-art performance. Specifically, our model outperformed
existing baselines by a considerable margin. Thereby, our work
enables precise warnings in critical care so that patient lives
can be saved.

(3) Our At#tDMM adheres to the needs of clinical practice in critical
care by informing about the precision of the prediction. It pro-
vides a confidence interval of the real-time mortality risk score.
Based on it, practitioners can carefully assess their decision-
making with regard to the confidence intervals. Thereby, we
overcome a shortcoming of existing works in machine learning
for ICU predictions, which return only the point estimate of
ICU mortality.

2 RELATED WORK

2.1 Machine learning in healthcare

Machine learning in healthcare has different objectives. Given the
breadth of research, we summarize key streams in the following
(see [3] for a detailed literature review). Examples are predicting
hospital readmission risk [e. g., 13, 19, 45, 47], forecasting the course
of symptoms [e. g., 4, 12, 29, 42], and predicting diagnosis codes of
future diseases [e. g., 7-9, 27, 28, 33, 51]. Depending on the objective
of the prediction, different sources of clinical data are used. Typical

examples comprise electronic health records, sensor measurements
(e. g., in ICUs), and patient sociodemographics (often termed “risk
factors” in a clinical context). The underlying prediction models also
differ, for instance, in whether they handle static and/or time-series
data, warrant interpretability, and model prediction intervals (i. e.,
whether they output confidence intervals to assess the uncertainty
around point estimates) [e. g., 8, 28, 51].

The use of machine learning in healthcare allows clinical practi-
tioners to obtain predictions about the current (and future) health
condition of a patient. Based on this, clinical practitioners can adapt
their treatment plans accordingly (e. g., by planning preventive in-
terventions or choosing different treatments).

2.2 Machine learning in intensive care units

Risk prediction in ICUs: Machine learning in ICU settings has
different objectives, such as predicting adverse events like sepsis
[e.g., 22, 23, 40, 41, 48], while a predominant focus in the literature
is on predicting mortality risk. For this, one uses various measure-
ments of vital signs, such as body temperature, heart rate, and blood
pressure. They are widely regarded as important indicators that
describe a patient’s health status in critical care [14, 25].

In practice, there is variability in which measurements are
recorded for a specific patient depending on her condition and rea-
son of hospitalization. For instance, for some diseases, sodium and
potassium levels are highly indicative of the future course, while
for COVID-19, a focus might be placed on measuring respiratory-
related thoracic movements. As such, some measurements might
not be subject to recording (due to the setting) and, hence, are miss-
ing for the complete (or a partial) ICU stay. Hence, the missingness
of ICU measurements must be appropriately modeled in the context
of ICU prediction [e. g., 6].

Clinical practice in ICU risk scoring: In clinical practice, pre-
dictions of mortality risk are computed through simple decision
rules. A key benefit of decision rules from clinical practice is that
they directly output a dynamic risk score. Common examples are the
so-called simplified acute physiology score (SAPS) [32, 35], the acute
physiology and chronic health evaluation (APACHE) [53], and mor-
tality probability model (MPM) [20]. To allow for straightforward
use, the decision rules rely only upon a few sensor measurements
and, in particular, additional characteristics of patients (i. e., risk fac-
tors) are not considered. In essence, these decision rules determine
the mortality risk through a linear combination of different vital
signs. However, only the most critical value from the last 48 hours
is considered, rather than the complete time-series of vital signs.
Hence, the rich information embedded in high-resolution measure-
ments is—to a large extent—ignored which limits the prediction
power.

Machine learning for ICU mortality risk scoring: Recent
works have approached ICU mortality prediction using machine
learning. For this, several sequential neural networks have been
adapted specifically to ICU settings, namely long short-term mem-
ory networks [15, 18] and gated recurrent units [6, 10, 43]. For
ICU predictions, state-of-the-art sequential networks are designed
to capture long-term dependencies in high-resolution time-series.



However, existing machine learning does not explicitly model dif-
ferent disease states in trajectory, which would require a latent
variable approach.

2.3 Latent variable models

Latent variable models have the ability to account for the fact that
patient health trajectories undergo different disease states (e. g.,
acute, stable). However, latent variable models explicitly consider
the fact that such disease states cannot be directly observed and
must thus be treated as latent [e. g., 4, 12, 42]. In principle, such
models assume that the relation between health measurements and
the disease states are stochastic. A naive example is a hidden Markov
model. However, these models are generally made for modeling a
sequence of observations instead of classification tasks.

To adapt latent variable models for prediction tasks, some works
[1, 2, 49] encode the risk into the latent variable and adopt sequen-
tial hypothesis testing [46]. Others [16, 17] feed latent variables into
another prediction algorithm, while even others [30, 31, 50] match
discrete latent variables to the risk profiles. However, these ap-
proaches have only a limited ability in capturing long-term tempo-
ral dynamics, rely on discrete latent variables, and assume linearity
in the transition and emission components.

The deep Markov model (DMM) [24] overcomes the above limi-
tations by introducing continuous latent variables, non-linear tran-
sition networks, and non-linear emission networks. However, the
DMM presents an unsupervised framework, because of which an ap-
plication of the DMM to the prediction of mortality risk is precluded.
Instead, a new model is needed, and for this reason, we develop
an attentive deep Markov model to address the above mentioned
prediction tasks.

Research gap: To the best of our knowledge, no prior work
has combined the strength of neural networks and latent variable
approaches for the purpose of ICU prediction. To fill this gap, we
propose a novel attentive deep Markov model called AtfDMM.

3 ATTDMM: ATTENTIVE DEEP MARKOV
MODEL FOR ICU RISK SCORING

3.1 Problem statement

In the following, we develop At#tDMM, which processes ICU stays
in order to predict the ICU mortality label y € {0,1}. A label y = 0
denotes a discharge from ICU, whereas y = 1 denotes that the
patient has died during the ICU stay.

The input to our model are ICU stays. Each stay is represented
by static and time-series features: (1) Static features are denoted
by s. These encode potential risk factors at the patient level (e. g.,
gender, age) and thus describe the between-patient heterogeneity.
(2) Time-series features are denoted by {x,}thl. These encode a
high-resolution time-series with various measurements for each
time step t = 1,..., T throughout the ICU stay (e. g., in MIMIC-
111, they are sampled at a 2-hour resolution). Some measurements
might not be subject to recording, and, therefore, are missing for
the complete (or a partial) ICU stay. To address this issue, we first
decompose x; into {Xti}?il, where M is the number of features (i. e.,
types of measurements). Then, for each x;;, we derive the mask
variable m;; that denotes if x;; will be imputed (m;; = 0) or not

(mei =1).

3.2 Specification of A#tDMM

AttDMM is a generative deep probabilistic model for predicting
mortality risk in ICUs. The model takes lab measurements recorded
during an ICU stay as input. The measurements are processed
to capture the latent disease state in a patient trajectory. This is
achieved via a latent variable model which captures the latent
disease state at time t by a latent variable z;. Based on the series of
latent variables, our model infers the ICU mortality risk of a patient.
This is achieved via an attention mechanism.

AttDMM has 4 model components, which are depicted in Fig-
ure 1. A (1) transition network specifies the transition probabil-
ity among consecutive latent variables (i. e., z;—1 and z;). It further
accommodates between-patient heterogeneity. An (2) emission
network models the probability of a lab measurement given the
latent variable from a certain time step. In this case, it adheres to
the assumption that the lab measurements are stochastically linked
to the latent variables. The combination of a transition network
and emission network represents the generative part of the model,
which is used as an ELBO regularization in the loss function. An
(3) attention network outputs the summary representation of
the patient trajectory z, based on all latent variables z;.7. Finally,
a (4) predictor network takes this summary representation as
input and predicts the ICU mortality risk of a patient.

In terms of notation, let ReLU denote the rectified linear unit,
© denote the element-wise multiplication, and [.; .] denote the
concatenation of two vectors.
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Figure 1: AtDMM. Black squares denote neural networks.

3.3 Model components

(1) Transition network: This component specifies the transition
probability among consecutive latent variables. For this, we build
upon the Markov property; i. e., the current latent variable only
depends on the previous one. Further, it accommodates the between-
patient heterogeneity by making use of the patient’s static variable
s.

Formally, the transition network models the distribution of a
latent variable z; conditional on the inputs z;—1 and s, denoted by
p(zt | zs—1, s). This distribution is parametrized by a multivari-
ate Gaussian distribution with a diagonal covariance, denoted by



N (jiz,, 3z,), where 3, is the covariance matrix with o2, on the
diagonal and 0 otherwise. The mean y, is a sum of two terms:
(1) a linear contribution of the inputs, denoted by fi;,, and (2) a
non-linear contribution of the inputs, denoted by ji;,. The weights
of these two terms are controlled by a gate g,. The diagonal cri is
derived from fi;, (plus a constant?). The mathematical formulation
of the transition network is as follows:

9z, = ReLU(W, [z1-15 s] + by)), (1)

9z, = sigmoid(Wgt 9z, + b;), 2)

iz, = ReLU(WS, [z¢-1: 5] + b)), ®)

iz, = WYL, + b, @

fiz, = Wy [ze-13 s] + b, ()

Hzp =9z, O fiz, + (1= gz,) O iz, (6)

Oz, = softplus(W. ReLU(jiz,) + bL) + const., 7)
ze ~ p(ze | ze-1, 8) = N(pz,, Zz,) ®

with matrices Wgt,, Wgt, W[f,, Wﬂt, W[f, and Wé and bias vectors bé,,
b;, bz,, bz, blt], and bZ.

(2) Emission network: The emission network outputs the prob-
ability of a lab measurement given the latent variable. Formally,
the emission network models the distribution of x; given the latent
variable z;, denoted by p(x; | z;). In the distribution, each feature
xt; of x; is modeled as conditionally independent from each other,
ie.,

plxe | z¢) = 1_[ plxei | 2ze), )

iimyi=1

where m;; is leveraged to mask out unobserved entries. The dis-
tribution p(x;; | z;) is parametrized by a univariate Gaussian
distribution, denoted by N (yix,;, U,ZC“,), where fiy,; and 0',2(“_ are the
i-th indices of the vectors /i, and oZ,. With the same model as-
sumptions from the transition network, the mean py, is a sum of
two terms: (1) a linear contribution of the inputs, denoted by fiy,,
and (2) a non-linear contribution of the inputs, denoted by iy, .
The weights of these two terms are controlled by a gate gx,. The
variance GJZQ is derived from fiy, (plus a constant as above). The
mathematical formulation of the emission network is as follows:

Iy, = ReLU(Wge, zr + bge/), (10)

9x, = sigmoid(W g5, +b7), (11)

fiy, = ReLU(Wﬂ‘) zr + bfil,), (12)

fix, = Wi fiy, + b7, (13)

fix, = Wg z¢ + by, (14)

P, = Gxp © flxy + (1= 9x,) © fix, (15)

ox, = softplus(W¢ ReLU(jfix, ) + bS) + const., (16)
xti ~ p(xi | 20) = Nxy> 0%, Vi€ {1, . M} (17)

with matrices Wge,, Wge, W[f,, W[f R W; , and W¢ and bias vectors b;,,
e e e e e
bg, b[/’ bﬁ’ bp, and b¢.

2 A constant term is added to the diagonal covariance to ensure stability in the ELBO
computation. This applies to all Gaussian distributions introduced in A#tDMM.

(3) Attention network: The attention network allows the
model to assign a different importance to each latent variable
when making inferences of mortality risk. The importance is com-
puted via similarity between a query vector and the latent variable.
Thereby, the attention network aggregates the latent variables based
on their importance. The resulting vector is used as a summary
representation of the patient health trajectory, which is fed into a
predictor network. Although this overcomes the Markov property,
it allows the model to capture long-term dependencies.

Formally, the attention network outputs the aggregation of latent
variables z based on the input sequence z;.7. This is formalized via

z; = Wz’ Z + bzz, (18)
_ exp({K[o, ])
Xl exp({K[v, 2,])
T

z=) vz (20)
=1

(19)

Y

with matrix Wy, bias vector b,/, query vector v, and scalar {, where
K(:, ) defines the cosine similarity, i. e.,
Ko, 2)) = — 271 1)
ST ol - Iz
(4) Predictor network: The predictor network is the final step
of making the inference of mortality risk. For this, it predicts y
based on z from the attention network. This yields

i = sigmoid(Uy ReLU(Wy, Z + by) + cy) (22)

with matrices Wy, and Uy, and bias vectors by and cy. § is the output
of AttDMM.

3.4 Posterior approximation

The computational complexity present in AtfDMM hinders the
exact inference of the latent variables. Because of this, we develop
a posterior approximation that builds upon stochastic variational
inference to estimate latent variables (see Figure 2).

For AttDMM, we approximate the posterior distribution of latent
variables (denoted as ¢) based on the sequence of lab measurements
and static variables. It further makes use of the missingness of each
lab measurement (i. e., masks).
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Figure 2: Posterior approximation of AttDMM, rolled-out
across time steps. Black squares denote neural networks.

Formally, the approximated posterior distribution q of z; is based
on the inputs z;_1, s, x;.7, and m;.7. For this, we proceed as fol-
lows. First, we use a recurrent neural network (RNN) for encoding



the information carried by the future lab measurements and their
missingness, i. e., a concatenation of x;.7 and my.7. This yields the
encoded information h;. This is formalized via

I’lt = RCLU(Wh [mt; xt] + Uh ht+l + bh), (23)

with matrices Wy, Uy, and bias vector by. Second, a combiner net-
work is applied to the inputs of z;_1, s, and h;. In this case, z; 1 and
h; encapsulate the past and future lab measurements. In addition, s
is leveraged to accommodate the between-patient heterogeneity in
the posterior approximation.

The combiner network models the approximated distribution
of z;, denoted by q(z; | zt-1, s, .7, mg.1). This distribution is
parametrized by a multivariate Gaussian distribution with a diago-
nal covariance, denoted by N (piz,, 22,), where X, is the covariance
matrix with O'gt on the diagonal and 0 otherwise. The mathematical
formulation of the combiner network is given by

cr = We [ze-1; s] + be, (24)

h; = 0.5 tanh (c; + hy), (25)

fz, = Wy by + by, (26)

0, = softplus(W; he + bs) + const., (27)

zt ~q(z¢ | ze-1, S, e, MeT) = N(lzps 22,) (28)

with matrices W, Wy, and W, and bias vectors be, by, and by. Al-
together, this approximated the posterior of the latent variables
of AttDMM, which is leveraged to optimize the ELBO via the sto-
chastic variational inference. See Appendix A for the details of the
estimation procedure.

3.5 Inferring risk scores

AttDMM estimates the probability of in-hospital mortality at time T
as follows. The static features s, the lab measurements x;.7, and the
masking of measurements m.7 are fed into the posterior approx-
imation network. Based on it, A#{DMM constructs the posterior
distribution q(z; | z¢-1, S, Xr.T, Ms.7), from which the latent vari-
ables z;.7 are sampled sequentially. This sampling procedure is
repeated N times, where the number N is defined by the user. At
the end of the sampling procedure, the set of sampled latent vari-
ables {27, T}fj: 1 is processed sequentially by the attention network
and the predictor network. AttfDMM then produces N samples of
in-hospital mortality prediction {g"}{l": 1» whose mean is used for
the estimate of the probability of in-hospital mortality.

The complete hospital stay of an ICU patient is tracked by our
AttDMM, thereby producing the probability of in-hospital mortality
over time. In this way, A#fDMM can inform the physicians in the
ICU about the risk scores of each patient.

AttDMM vyields a full posterior distribution of the prediction
(rather than a point estimate). This distribution is acquired by the
multiple samples of the mortality prediction {yA"}fl\L ;- This allows
us to compute confidence interval of the prediction in order to
quantify the uncertainty of our prediction. and, in practice, one
can use it in order to decide whether the prediction is sufficiently
reliable.

4 EXPERIMENTAL SETUP
4.1 Dataset

Our evaluation was based on an established reference dataset with
ICU measurements, namely, MIMIC-III [21]. MIMIC-III is one of the
largest publicly available ICU datasets, comprising 38,597 distinct
patients and a total of 53,423 ICU stays. Because of this, MIMIC-
IIT has been used extensively in prior literature for benchmarking
[e.g., 6, 10, 15, 18, 22, 23, 38, 40, 41]. For each ICU stay, the dataset
includes a time-series of different measurements, such as temper-
ature, heart rate, and blood pressure. In addition, the dataset also
reports sociodemographic variables that describe the heterogeneity
among patients, such as age and admission type (e. g., scheduled
surgery, unscheduled surgery). The available features for prediction
are reported in Appendix B. For details on the dataset, we refer the
reader to [21].

We follow the preprocessing pipeline established by prior liter-
ature [6, 38]. We first remove ICU stays which are shorter than 2
days or longer than 30 days, and ICU stays of patients younger than
15. Further, we only consider the first ICU stay of patients with
multiple stays. Afterwards, we applied further preprocessing steps
consistent with the aforementioned references [6, 38]. For each ICU
stay, we extracted features that were sampled regularly (i. e., every
2 hours), and we filled missing values with a forward-backward
linear imputation.

The preprocessed dataset contains 31,895 ICU stays. Out of them,
the share of ICU stays with in-hospital mortality amounted to 3,311
stays (i. e., 10.38 %). The remaining 28,584 stays (i. e. 89.62 %) resulted
in a discharge from the ICU. The length of hospital stay after ICU
admission had a mean of 189.21 hours (with a standard deviation of
136.44 hours). Of all the ICU stays, 58.78 % required a hospital stay
of longer than five days. The distribution of hospitalization length
is shown in the Appendix.

4.2 Prediction tasks

4.2.1 Task 1: Mortality prediction (48 hours after ICU admission).
In this task, we predict the in-hospital mortality based on the mea-
surement data from the first 48 hours after ICU admission. This
represents the reference task in the literature for calibrating and
evaluating mortality predictions in ICUs. To examine how the pre-
diction performance changes throughout an ICU stay, we further
report the prediction performance at different time periods after
the ICU admission, ranging from 12 to 48 hours after the ICU admis-
sion. For this, all the predictions have only access to the respective
(limited) time frame of ICU measurements. This allows us to assess
how precise predictions are at the beginning of the ICU stay.

4.2.2  Task 2: Mortality prediction (complete hospital stay after ICU
admission). A second prediction task is used to evaluate ICU mortal-
ity during the complete hospital stay. Typical use cases are diseases
in which the health trajectory remains stable for a large amount
of time and, only later, deteriorates suddenly. The relevance of the
second prediction task is also seen in the summary statistics of our
dataset, in which hospital stays with a duration of more than 48
hours are highly common and account for more than 80 % of all
ICU admissions.



Formally, we now use the complete time-series of the ICU data
during both training and evaluation. We then report the prediction
performance in intervals of 2 hours. In this case, we label time
with respect to hours to discharge/death. We report the prediction
performance for all lead times between —120 hours and 0 hours.
Longer lead times were discarded, as there was not sufficient data.

We later also report an overall performance score. For this, we
aggregate the prediction performance across all time-steps via a
weighted micro-level average. Thereby, we weigh each time step
by the number of available patients for the evaluation at that time
step.

4.3 Performance metrics

We compare our AttDMM with other baselines based on two per-
formance metrics. (1) We report area under the receiver operating
characteristic curve (AUROC). This was also chosen in prior liter-
ature [6, 10, 15]. We tested whether the improvement in AUROC
is statistically significant via DeLong’s test [11]. (2) We further re-
port area under the precision-recall curve (AUPRC). The AUPRC
is frequently used in the clinical literature as it focuses on the
performance relative to detecting a negative event (i. e., mortality).

4.4 Baselines

We compare our At#tDMM against an extensive series of baselines
that have been carefully crafted for mortality prediction in ICU
settings. We first implemented SAPS-II representing current prac-
tice [25].3 Formally, SAPS-II provides predefined decision rules that
make use of the most critical lab measurements of the last 48 hours.

In addition, we implemented naive baselines for performance
comparisons. These are a multilayer perceptron (MLP) and a ran-
dom forest (RF). Both are fed with summary statistics (mean, max,
min, std. dev.) of the same features used by current practice. Hence,
the naive baselines are intended to reflect the power of the predic-
tion heuristics from clinical practice.

We further adapt latent variable models to ICU mortality predic-
tion. A hidden Markov model (HMM) is utilized with two hidden
states, referring to discharge and mortality. Additionally, we use an
HMM with multiple hidden states and feed these states into a long
short-term memory, denoted as HMM+LSTM. Finally, we crafted
a DMM for the prediction task, in which the last latent variable is
fed into the predictor network (the same network of the A#{DMM).

We use the following ICU-specific state-of-the-art models: a long
short-term memory network for ICU prediction (ICU/LSTM) [15];
a gated recurrent unit for ICU prediction (ICU/GRU) [10]; and
a gated recurrent unit with decay mechanism for ICU prediction
(ICU/GRU-D) [6]. These models can, by nature of the underlying
model, handle sequential input of variable-length and are, thus,
trained with the same data as A#tDMM. We use implementations
analogous to those in the prior literature that have been tailored
to handle the specific time-series structure in ICU settings (e. g.,
with regard to missing values, sampling frequency). Appendix C
describes details about the implementation and evaluation of all
baseline models as well as AttDMM.

3We also considered the use of APACHE and MPM; however, these are known to rely
upon features that are not available as part of the preprocessed MIMIC-III dataset.
Hence, we followed prior literature and compared our model against SAPS-II as a
baseline from clinical practice.

5 RESULTS

5.1 Task 1: Mortality prediction (48 hours after
ICU admission)

Table 1 lists the results of in-hospital mortality prediction based
on the measurement data from the first 48 hours after ICU admis-
sion. The best baseline is given by the ICU/GRU-D with an AU-
ROC of 0.857. In contrast, At#tDMM achieves an AUROC of 0.876,
which is an improvement over the best baseline by 2.2 %. The im-
provement is statistically significant (p<0.001). Similarly, A#‘DMM
achieved the highest AUPRC with 0.465. Compared to the best base-
line (ICU/GRU-D with an AUPRC of 0.454), this is an improvement
of 2.4 %.

Table 1: Performance in prediction task 1 where in-hospital
mortality risk is estimated at 48 hours after ICU admission.

Model AUROC AUPRC
SAPS-II [25] 0.747 £ 0.007 0.255+0.014
MLP 0.832+0.014 0.395 +0.027
Random forest 0.826 +£0.010 0.416 +0.020
HMM 0.711 £ 0.007 0.173 +£0.003
HMM+LSTM 0.774 +0.022 0.289 +0.029
DMM 0.839+0.013 0.387 +0.036
ICU/LSTM [15] 0.831+0.017 0.403 +0.028
ICU/GRU [10] 0.838 +0.019 0.412+0.029
ICU/GRU-D [6] 0.857+£0.012 0.454+0.014
Proposed AttDMM 0.876 = 0.004 0.465 +0.010

Higher is better. Best value in bold.

We further provide a sensitivity analysis in which we study how
the prediction performance varies after ICU admission. For this,
Figure 3 depicts the evolution of both the AUROC and AUPRC from
12 to 48 hours (in steps of 2 hours) after ICU admission. All the
baselines are outperformed by the proposed AttDMM. The improve-
ment of AttDMM over the baselines is particularly pronounced for
time periods after the first 24 hours. We further compare the models
in their minimum time needed after the ICU admission in order to
achieve a specific prediction performance. To achieve an AUROC
of 0.85, the ICU/GRU-D needs 44 hours of patient data, whereas
the same AUROC is achieved by A#tDMM 12 hours earlier. For
AUPRC, the /GRU-D performs better shortly after ICU admission,
but after 18 hours, it is outperformed by A#tDMM. An AUPRC of
0.45 is achieved by the ICU/GRU-D 46 hours after ICU admission,
whereas the same AUROC is achieved by At#tDMM after 40 hours,
i.e., 6 hours earlier.

5.2 Task 2: Mortality prediction (complete
hospital stay after ICU admission)

Table 2 lists the results of in-hospital mortality prediction based on
the complete hospital stay. The best baseline is given by the random
forest with an AUROC of 0.846. In contrast, A#tDMM achieves
an AUROC of 0.865. Therefore, AttDMM yields an improvement
over the best baseline by 2.2 %. The improvement is statistically
significant (p<0.001). For the AUPRC, our proposed model again
achieves the best score amounting to 0.545. In this case, AitDMM
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Figure 3: Sensitivity of prediction performance across vary-
ing time periods after ICU admission. Shown are two perfor-
mance metrics: AUROC (top) and AUPRC (bottom).

yields an improvements over the best baseline (ICU/GRU-D with
an AUPRC of 0.517) by 5.4 %.

Table 2: Performance in prediction task 2 in which in-
hospital mortality risk is estimated throughout the com-
plete hospital stay.

Model AUROC AUPRC
SAPS-II [25] 0.829 +0.008 0.449+0.014
MLP 0.821+0.013 0.439 +0.022
Random forest 0.846 +0.010 0.467 £ 0.023
HMM 0.672+0.032 0.161+0.012
HMM+LSTM 0.759 +£0.022 0.249 + 0.034
DMM 0.815+0.010 0.403 +0.026
ICU/LSTM [15] 0.829+0.012 0.470 +0.026
ICU/GRU [10] 0.842+0.016 0.473 +0.034
ICU/GRU-D [6] 0.834 +0.016 0.517 £ 0.025
Proposed AtDMM 0.865 +0.010 0.545 +0.029

Higher is better. Best value in bold.

Figure 4 depicts the evolution of prediction performance across
different time periods. For both the AUROC and AUPRC, At#tDMM
yields favorable results. In comparison, the baseline models vary
in their performance at different steps. The random forest has an
AUROC similar to At#tDMM until 84 hours to discharge/death. Af-
ter that, AttDMM outperforms the random forest. The ICU/GRU
and ICU/GRU-D show increases in AUROC for the last 24 hours
of hospital stays, but are ranked consistently below the A#tDMM.

For the AUPRC, AttDMM and the ICU/GRU-D show a similar per-
formance for the last 24 hours of hospital stays. However, prior
to that, the ICU/GRU-D and the other baselines are consistently
outperformed by At#fDMM. For both AUROC and AUPRC, the other
sequential networks (i. e., ICU/LSTM, ICU/GRU, and ICU/GRU-D)
show a lower performance level compared to At#DMM when focus-
ing on the time window of more than 24 hours to discharge/death
(i.e., from —120 hours to —24 hours). Overall, we see consistent
gains from using A##{DMM over existing baselines.
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Figure 4: Sensitivity of prediction performance across vary-
ing time windows, that is, when making predictions hours
ahead of an ICU discharge/mortality. Shown are two perfor-
mance metrics: AUROC (top) and AUPRC (bottom).

5.3 Example predictions

The risk score is crucial for the decision-making of clinical practi-
tioners in ICUs. It provides early warnings of the deterioration in a
patient’s health so that preventive measures can be taken. For this,
our AttDMM outputs the probability of in-hospital mortality over
time. This can inform physicians in ICU regarding the risk scores
of each patient and, thus, influence the treatment.

Figure 5 presents risk scores for two example patients, namely
one example patient with in-hospital mortality (top) and one ex-
ample patient with a hospital discharge (bottom). As shown by
both patients, At#tDMM produces proper risk scores several hours
before death or discharge. For the patient who died in the hospital,
AttDMM outputs a risk score that peaks quickly, thereby informing
that the patient is at high risk. In this case, the risk score from
AttDMM exceeds a mortality probability of 90 % and this risk score
is retrieved even 52 hours before death. For the patient who has
been discharged from the hospital, the risk scores produced by
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Figure 5: Evolution of risk scores over time for two example
patients, namely a patient with in-hospital mortality (top)
and a patient with hospital discharge (bottom).

AttDMM suggests that the patient had a moderate risk of mortality
during the first 30 hours of the ICU stay. After that, the health con-
dition stabilized further, as is shown by the fact that the associated
risk score approaches zero. In contrast, for the second patient, the
clinical practice (SAPS-II) estimates a fairly constant risk through-
out the entire hospital stay. As SAPS-II is computed based on the
most critical measurements, it cannot properly model the temporal
changes when the measurements are indicating a better health con-
dition. Therefore, SAPS-II does not capture such recovery in the
health condition of the patient.

6 DISCUSSION

Theory-informed model: We present a novel generative deep
probabilistic model for predicting mortality risk in ICUs. Our
AttDMM outperformed existing baselines due to the way the model
is formalized. Specifically, our A#{DMM is modeled so that it jointly
captures (1) long-term disease dynamics (via an attention network)
and (2) different latent disease states in patient trajectories (via
a latent variable model). By combining these two characteristics,
AttDMM presents a powerful tool for modeling health progression
in ICUs, as was confirmed in a superior prediction performance.

Clinical relevance: A#tDMM outperformed both baselines
from clinical practice (e. g., SAPS-II [25]) and state-of-the-art ma-
chine learning for ICU mortality prediction [6, 10, 15]. In prac-
tice, such an improvement in performance allows the triggering of
warnings when health conditions deteriorate several hours earlier.
Thereby, our model provides ICU practitioners with more time for
early intervention in order to save patient lives.

Precision of real-time risk score: The real-time risk score
provided by A#tDMM provides the health trajectory of an ICU
patient over time. Thereby, ICU practitioners can track the course of

the disease, and, by identifying patients at risk, adapt their decision-
making concerning treatment planning. Owing to our probabilistic
setting, A#tDMM additionally outputs the confidence interval of
the predicted risk score. Thus, ICU practitioners are informed about
the precision of the prediction and they might postpone a discharge
until more measurements are available. This is a particular benefit
over risk scoring (e. g., SAPS, APACHE) in clinical practice, in which
similar confidence intervals are lacking.

Generalizability: We developed AttDMM as a generative deep
probabilistic model tailored for ICU mortality. Needless to say,
AttDMM is not limited to an ICU setting and might facilitate other
use cases, in which inferences from time-series have to be made that
have long-term dependencies and are driven by latent dynamics,
such as clickstream analytics or churn prediction.

7 CONCLUSION

In intensive care units (ICUs), patients are subject to constant mon-
itoring in order to guide clinical decision-making. While state-of-
the-art models can capture long-term dependencies, these cannot
formally account for latent disease states in health trajectories. To
fill this gap, we developed a novel probabilistic generative model,
specifically, an attentive deep Markov model (A#tDMM). To the
best of our knowledge, this is the first attentive deep Markov model.
AttDMM was co-developed with clinical researchers who empha-
sized the benefit of real-time risk scoring. In our numerical ex-
periments, AttDMM yielded performance improvements in both
AUROC and AUPRC over the state of the art by more than 2 %.
Altogether, this enables more accurate risk scoring so that lives of
patients at risk of mortality can be saved.
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A ESTIMATION PROCEDURE

The true posterior of the latent variables p(z1.7 | x1.7, my.1, 5) is
computationally intractable. Because of this, we adopted stochas-
tic variational inference and leverage the approximated posterior
q(z1.7 | x1.T, m1.T, s) as the proxy of the true posterior. Through-
out the iterations, the approximated posterior is getting closer, in
terms of Kullback-Leibler (KL) divergence, to the true posterior.
This is achieved by maximizing the ELBO. For this, we use stochas-
tic optimization via unbiased Monte Carlo estimates of the gradient,
details are found in [39]. For the ICU mortality prediction task, we
incorporate the maximization of the ELBO into the loss function
as a regularization term. Overall, in the following, we show how
to estimate A##DMM via an end-to-end training task by a tailored
ELBO.
Loss function: The loss function of A#fDMM is given by

L(y,9,x) = €(y, §) - « ELBO(x), (29)

where the two terms ¢(y, §) and the ELBO are described below.

Cross-entropy loss: The term ¢(y, §) denotes weighted cross-
entropy loss between the observed label y and the corresponding
mortality prediction g. It is given by

0y, 9) = —pylog (§) - (1 -y) log (1-7) (30)
[{yeY:y="discharge"}|
|[{yeY:y="death"}|
death ratio. Introducing such weight further helps in discriminating

the minority class (i. e., in-hospital mortality) in the imbalanced
dataset.

ELBO: We denote the evidence lower bound via ELBO. It serves
as the regularization term of the loss function. The strength of the
regularization is parametrized by a. The ELBO formulation is given
by

with a weight p = denoting the discharge-to-

ELBO(x) = Eq(zl;r | x1.7, my.T, S) [log p(x1.7 | z1.7)]
—KL(q(z1.7 | x1.7 my1, 8) || pl211)). (31)
The expectation term denotes the expected log-likelihood of x;.1
given the latent variables z;.7. The KL-divergence measures the
similarity between the posterior approximation and the prior for-
mulation of the latent variables z;.t.

In this ELBO formulation, q(z1.7 | x1.1, my.T, $) is decomposed
into further terms, which are produced by the posterior approxi-
mation, given by

T
q(zi.T | x1.7, myT, 8) = l_l q(zt | zt-1, S, Xp.7, Me.T). (32)
t=1

Similarly, p(x1.7 | z1.7) is decomposed into individual terms of
x¢, which are produced by the emission network. Specifically, we

can rewrite
T

pCar | zur) = [ oG | 20)- (33)

t=1
We make further adjustments to handle missing measurements
inside the vector x;. For this, A#tDMM is specified to train on actual
measurements (i. e., ignoring imputed values), which is achieved by

pGe L 2= || plxui | 20). (34)

imyi=1
Sampling: Computation of the above ELBO is analytically in-
tractable due to latent variables being modeled by a continuous

distribution and the non-linearity encoded in A#tDMM. Therefore,
we leverage Monte Carlo sampling and, thereby, we estimate ELBO
via stochastic variational inference based on sampled latent vari-
ables.

B DESCRIPTIVE STATISTICS OF MIMIC-III

Table 3: Features from MIMIC-III used in predictions

Feature Type Missingness (%)
Glasgow coma scale time-series 70.04
Systolic blood pressure time-series 49.36
Heart rate time-series 48.69
Body temperature time-series 70.46
Pa0,/FiO, time-series 93.88
Urinary output time-series 57.16
Serum urea nitrogen level  time-series 88.88
White blood cells count time-series 89.84
Serum bicarbonate level time-series 89.11
Sodium level time-series 87.63
Potassium level time-series 85.29
Bilirubin level time-series 97.47
Age static 0.00
Acquired  immunodefi- static 0.00
ciency syndrome

Hematologic malignancy  static 0.00
Metastatic cancer static 0.00
Admission type static 0.00

200 300 400 500 700
Length of hospital stay after ICU admission (in hours)

Figure 6: Histogram of length of hospital stay after ICU ad-
mission. Recall that hospital stays with less than 48 hours
were removed during preprocessing as in [6, 38]

C IMPLEMENTATION DETAILS

The dataset is split randomly into 5 separate folds. Each fold has
the same ratio of in-hospital mortality and hospital discharge. To
quantify the uncertainty regions for the predictions, we used the
following approach: each model was trained 5 times on each fold,
in which one fold represents the test set and the remaining 4 folds
were randomly split into a training set (3 folds) and a validation
set (1 fold; for early stopping). Afterwards, the performance was



Table 5: Hyperparameters used for tuning the baseline mod-
els.

Model Tuning parameters Tuning range

MLP Dimension of hidden layer 2, 4, 8, 12
Number of hidden layers 1,2,3
Learning rate 0.00002, 0.0002,

0.001, 0.01
Batch size 64, 128, 256
RF Number of trees 50, 100, 500, 1000
Maximum depth 3,5,7,9, 11
Class weight none, balanced
HMM+LSTM* Number of states 2,3,..,10
ICU/LSTM, Dimension of cell state 8, 16, 24, 48
ICU/GRU, Dropout rate 0,0.1,0.2, 0.5
ICU/GRU-D  Learning rate 0.00002, 0.0002,
0.001, 0.01
Batch size 64, 128, 256

* LSTM of HMM+LSTM is tuned based on the same parameter space of ICU/LSTM.

aggregated over the different folds via macro averaging. Later, we
report the standard deviation across folds.

The hyperparameters of the models are tuned according to per-
formance on validation set. We use the hyperparameter set that
provides the best overall validation score. Details on hyperparame-
ter tuning are presented in Appendix D.

All the models were implemented in Python. We employed the
following libraries: Pyro for AttDMM; PyTorch for the LSTM, GRU
and MLP; Tensorflow for the GRU-D; and Scikit-learn for the ran-
dom forest. Training and evaluations were performed on TITAN V
GPU from NVIDIA with 12 GB of memory.

D TRAINING DETAILS

Due to the large hyperparameter space across all the models, it
was computationally expensive to perform a grid search. Therefore,
we adopted a ceteris paribus strategy which formally means that
we tuned each parameter individually while keeping the other
parameters fixed. We ran this procedure for a few loops, until we
had observed the convergence of the score. The tuning parameters
with the corresponding tuning ranges are listed for the A##DMM in
Table 4 and for the baselines in Table 5.

For both A#tDMM and the baselines of the sequential neural
network (ICU/LSTM, ICU/GRU, and ICU/GRU-D) we used the Adam
optimizer. These models were trained using early stopping with
patience set to 20 epochs.

Table 4: Hyperparameters used for tuning AttDMM.

Tuning parameters Tuning range

Dimension of latent variable 8, 16, 24, 48
Dimension of emission hidden layer 16, 32, 48, 96
Dimension of transition hidden layer 32, 64, 96, 192
Dimension of RNN cell 8, 16, 24, 48
Dimension of attention mechanism 16, 24, 36, 48
Dimension of MLP hidden layer 2,4,8,12
Regularization strength of ELBO (a) 0.001, 0.01, 0.1, 1
Number of Monte Carlo samples (N) 1, 2, 5, 10, 20

Learning rate

Batch size 64, 128, 256

0.00002, 0.0002, 0.001, 0.01
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