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ABSTRACT
Curbing hate speech is undoubtedly a major challenge for online
microblogging platforms like Twitter.While there have been studies
around hate speech detection, it is not clear how hate speech finds
its way into an online discussion. It is important for a content
moderator to not only identify which tweet is hateful, but also
to predict which tweet will be responsible for accumulating hate
speech. This would help in prioritizing tweets that need constant
monitoring. Our analysis reveals that for hate speech to manifest
in an ongoing discussion, the source tweet may not necessarily be
hateful; rather, there are plenty of such non-hateful tweets which
gradually invoke hateful replies, resulting in the entire reply threads
becoming provocative.

In this paper, we define a novel problem – given a source tweet and
a few of its initial replies, the task is to forecast the hate intensity of
upcoming replies. To this end, we curate a novel dataset constituting
∼ 4.5𝑘 contemporary tweets and their entire reply threads. Our pre-
liminary analysis confirms that the evolution patterns along time
of hate intensity among reply threads have highly diverse patterns,
and there is no significant correlation between the hate intensity of
the source tweets and that of their reply threads. We employ seven
state-of-the-art dynamic models (either statistical signal processing
or deep learning based) and show that they fail badly to forecast the
hate intensity. We then propose DESSERT, a novel deep state-space
model that leverages the function approximation capability of deep
neural networks with the capacity to quantify the uncertainty of
statistical signal processing models. Exhaustive experiments and
ablation study show that DESSERT outperforms all the baselines
substantially. Further, its deployment in an advanced AI platform
designed to monitor real-world problematic hateful content has im-
proved the aggregated insights extracted for countering the spread
of online harms.

T. Chakraborty would like to acknowledge the support of Logically, the Ramanujan
Fellowship, and the Infosys Centre for AI, IIIT Delhi. We also thank Sarah Masud for
her help in writing the paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467150

CCS CONCEPTS
•Computingmethodologies→Machine learning algorithms;
• Information systems → Social tagging systems; • Human-
centered computing → Social network analysis.

KEYWORDS
Hate speech, Signal processing, State-space model, Time series
forecasting

ACM Reference Format:
Snehil Dahiya, Shalini Sharma, Dhruv Sahnan, VasuGoel, Emilie Chouzenoux,
Víctor Elvira, Angshul Majumdar, Anil Bandhakavi, Tanmoy Chakraborty.
2021. Would Your Tweet Invoke Hate on the Fly? Forecasting Hate Inten-
sity of Reply Threads on Twitter. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’21), August
14–18, 2021, Virtual Event, Singapore. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3447548.3467150

1 INTRODUCTION
Online discussion forums such as Twitter, and Reddit, provide users
with the opportunity to express their opinion freely and that too,
anonymously. Although freedom of speech enables users to seek,
express and impart information about ideas and opinions, its misuse
often leads to social instability both online and offline, resulting in
cyber-crimes such as hate speech and cyberbullying. Hate speech is
highly subjective – its nature varies across demography; its effect
varies across religion, identity and social groups. Therefore, most
of the hate speech detection models which leverage hand-crafted
lexicons in one form or the other, often struggle to generalize.
Recently, there has been a growing body of research in detection
and characterizing online hate speech and modeling its spread [11].

Although hate speech detection is highly pertinent towards the
broader goal of sanitizing online content, it is often observed that
a non-hate (benign) post, over the time, evolves as a source of
provocative discussion, fostering the generation of hateful or offen-
sive posts. For example, Figure 1(a) shows a (partial) reply thread
along with the hate intensity (defined in Section 3.2) of each reply.
As observed, although the source tweet is less hate intensive and is
not detected as hate speech by the hate speech classifier, the replies
generated under this tweet are highly hateful. Figure 1(b) shows
the hate intensity profile of the entire reply thread of the previous
example – it does not follow any particular pattern. None of the
hate speech detection models would be able to predict that such a
benign online post would ever invoke hatred in near future. This
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Figure 1: (a) An example reply thread with the hate inten-
sity per reply (within brackets). (b) Hate intensity profile of
three example reply threads, one of which is (a). We observe
that that the hate intensity of reply threads does not follow
any particular pattern. (c) Scatter plot of hate intensity of
the source tweets and their corresponding reply threads, in-
dicating they are uncorrelated (Pearson’s 𝑟 =0.11).

calls for an early prediction model to forecast whether a tweet will
invoke hate speech.

Hate intensity profiles of reply threads are diverse.We for-
mally pose the problem as follows: given a tweet (and the initial
history of its reply thread), we aim to forecast the hate intensity that
its upcoming replies will express. To this end, we curate entire reply
threads of ∼ 4.5𝑘 tweets; the average length of a thread is ∼ 200. We
quantify the hate intensity of a reply thread by leveraging a hate
speech classifier and a benchmark hate lexicon. We observe that the
hate intensity profiles of reply threads are non-uniform, exhibiting
diverse patterns (c.f. Figure 1(b)). Moreover, the hate intensity of
reply threads is not correlated with that of the source tweet (c.f.
Figure 1(c)), indicating that identifying hateful source tweet may
not be enough to predict the upcoming toxicity of a reply thread. It
is also uncertain which quarter of reply threads is more prone to
hate speech (c.f. Figure 5 in the Appendix).

Limitations of state-of-the-art methods. One can readily
map this into a dynamical modeling problem – given an ordered
sequence of data points representing hate intensity of current reply
thread of a source tweet, the aim is to predict the hate intensity of
the upcoming replies. One can borrow two off-the-shelf approaches
to address this problem. First is the classical signal processing mod-
els like auto-regressive moving average (ARMA) and its variants

(ARIMA, ARIMAX, etc.) or its state-space counterparts. The prob-
lem with such models is that one needs to apriori specify the un-
derlying dynamical function; this is not possible for the current
problem. The second approach is to use deep learning models such
as recurrent neural networks (such as LSTM and GRU) and genera-
tive adversarial network (GAN). These techniques do not require
specification of the underlying function; they can learn it from the
data. However, the problem with them is that they cannot quantify
the uncertainty about the prediction - which the signal processing
models can.

Our proposed approach: DESSERT. In this work, we propose
to keep the best of both worlds mentioned above – the function
approximation ability of neural networks and the uncertainty quan-
tification capability of state-space models. We propose DESSERT1,
a deep blind state-space model. Here ‘blind’ means that we do
not need to specify the underlying dynamical model / function;
we learn it from the data. However, learning one operator for the
state-evolution and one operator for the observation limits the
function approximation capability of the blind state-space model.
Moreover, by making the model deep, we aim to better capture the
non-linearity dynamics of online interactions.

Experimental results. We perform an exhaustive evaluation
of DESSERT with seven state-of-the-art baselines (borrowed from
both classical signal processing and deep learning domains) on our
curated dataset. We observe that DESSERT outperforms all the base-
lines across four evaluation metrics (both correlation-based and
error-based). DESSERT achieves 0.67 Pearson’s 𝑟 and 31.08 Mean Ab-
solute Percentage Error (MAPE), which is significantly better than
the best baseline [18] (𝑟 = 0.557, MAPE=43.47). We also present
a detailed ablation study of DESSERT. We further dig deeper into
the results to explain how the models respond to reply threads –
(i) whose source tweets are originated from across demography,
(ii) whose source tweets are posted by different types of users, (iii)
whose source tweets are of different types (hate, fake, controversial
and others), and (iv) with different thread length. Unlike other base-
lines, DESSERT also outputs a confidence score with each prediction,
which a content moderator may use to prioritize the tweets that
need constant inspection.

Real-world deployment. DESSERT has been deployed in an
advanced AI platform at Logically2 designed to monitor real-world
problematic hateful content in large volumes of social media data. It
has been tested by integrating into proprietary and custom pipelines
that extract insights and intelligence to counter the spread of online
harms. We observe that DESSERT offers complementary insights
and has significant potential to improve the overall accuracy of the
pipelines in detecting patterns and extracting insights concerning
hate speech on real-world online content.

In particular, our contributions are five-fold: ▲ Novel problem
definition. To our knowledge, we are the first to address the prob-
lem of forecasting hate intensity of upcoming reply threads of
tweets. ▲ Novel model. Our proposed model, DESSERT leverages
the advantages of classical signal processing and recently proposed
deep learning techniques. ▲ New dataset: Our curated dataset
consists of contemporary tweets and the entire reply threads on

1DEep State-SpacE model for hate intensity prediction of Reply Threads.
2https://www.logically.ai (see Appendix for more details about Logically).



diverse topics that are posted across demography. ▲ Exhaustive
results. DESSERT outperforms seven state-of-the-art baselines with
significant margin. ▲ System deployment. DESSERT has been ex-
tensively tested and deployed by Logically in an advanced AI plat-
form for detecting real-world problematic hateful content to extract
insights for countering the spread of online harms (see Appendix).

Reproducibility.We present detailed hyper-parameter config-
urations in the Appendix. Source codes and datasets are available
at https://github.com/LCS2-IIITD/DESSERt_KDD21.

2 RELATEDWORK
We discuss the literature survey into three parts - hate speech
detection, other studies related to hate speech, and some of the
studies on time-series modeling which are pertinent to our paper.
We also present how our method is different from existing studies.

Hate speech detection. Initial studies on hate speech detection
[7] made use of n-gram based Logistic Regression and SVM; later
Badjatiya et al. [1] extended their work to LSTM. In last two years,
bigger datasets [12] and BERT-based models have shown to perform
better [27]. In addition, Gomez et al. [14] explored the impact of
multi-modality for hate detection. Over time, the focus also shifted
from English datasets to diverse regional languages like Indonesian
[17], Vietnamese [8], Urdu [32], etc. In order to make the results of
automatic hate speech classification explainable, Mathew et al. [23]
proposed to capture words and phrases contributing to hate class.
Poletto et al. [29] presented a comprehensive comparative study
of various hate detection models. Note, in this work, we do not
propose a new hate detection model, rather we leverage the existing
state of art hate classifiers [7, 12] for measuring hate intensity of a
post.

Other studies on hate speech. Apart from the task of hate
speech detection, hateful content has also been studied for analysing
user characteristics and countering hateful information. Ribeiro
et al. [31] performed various statistical analysis to characterise
hateful users on Twitter. Meanwhile, similar studies have been
conducted on platforms like Gab [40], BitChute [38], etc. To further
study the dynamics of hate speech diffusion, Bagavathi et al. [2]
performed exploratory analysis comparing hateful and non-hateful
information cascades on Gab. We recently proposed a prediction
model for hate speech diffusion on Twitter using exogenous signals
[21]. There have been studies around automatic hate countering on
Facebook [25] and Twitter [22]. The benchmark datasets [6] and
strategies [37] can be employed to build generative models that can
act as first line of defence in countering hateful content [30].

Time-series modeling. The classical techniques like ARMA
[33] and its variants (ARIMA, SARIMA) have shown outstanding
performance in modeling time-series signals. These models are
dependent on the assumption of data being linear and stationary,
neither of which hold for real-time scenarios. They are collectively
known as the Box-Jenkins method [3]. Another alternate approach
is the state-space model (SSM). Kalman filter is one such model
widely used to forecast time-series signals when the model is lin-
ear, and the noise is modeled as Gaussian. Real application such
as ours are even challenging for SSM as it requires prior knowl-
edge of the state and observation parameters. Real-time streaming
data is highly volatile; therefore, it becomes difficult to assume the

model parameters in advance. The inability of signal processing
techniques helped machine learning approaches gain popularity.
These approaches can successfully address the learning-based sys-
tem [16] with no prior assumptions on the model parameters. One
of its variant, RNNs are designed explicitly to address time-series
signals. However, the performance of RNN degrades when the se-
quences grows longer due to long-term dependencies. To overcome
this, Long Short Term Memory (LSTM) [9] came into existence.
LSTM still could not model the long-term dependencies well. These
limitations paved the path for 1D CNN [24]. The neural network
approaches do not require specifications and prior knowledge of the
model parameters. However, they do not provide any confidence
score on the point estimate. Most of the research in time-series
forecasting does not discuss the confidence score associated with
the prediction. In recent years, its necessity has become prominent
and has been considered crucial in addressing challenging applica-
tions [20]. Several recent studies of time-series modeling capture
the underlying non-linearity into the models [34].

Differences with the existing studies. Our work proposes
a novel learning-based approach to bridge the gap between the
state-space models and neural network approaches. Our proposed
approach, DESSERT is a learning-based approach to model time-
series signals using deep state-space. DESSERT needs no structural
details of model parameters and can model confidence score asso-
ciated with the next timestamp prediction, thereby keeping both
worlds’ best.

3 PRELIMINARIES
3.1 Problem formulation
Given a tweet 𝜏 and its reply thread till 𝑡 , denoted by R𝜏1,𝑡 =

⟨𝑟𝜏1 , 𝑟
𝜏
2 , . . . , 𝑟

𝜏
𝑡 ⟩, where 𝑟𝜏𝑡 denotes a reply tweet at time 𝑡 , we aim

to predict the intensity of hatredH(.) that the upcoming chunks
of replies (each chunk with size Δ time window) will express, i.e.,
H

(
R𝜏
𝑡+1,𝑡+Δ

)
,. . ., H

(
R𝜏
𝑡+(𝑛−1)Δ,𝑡+𝑛Δ

)
. Here, 𝑡 denotes an integer

index associated to 𝑡-th reply in the sequence, not the actual (con-
tinuous) time. A reply chunk is a set of Δ consecutive replies to a
source tweet 𝜏 . This problem can be readily mapped to a classical
time-series prediction problem as follows. We break R𝜏1,𝑡 into a
sequence of chunks each with size Δ and calculate the hate inten-
sity per window, i.e., H

(
R𝜏1,Δ

)
, H

(
R𝜏Δ+1,2Δ

)
, . . ., H

(
R𝜏
𝑡−Δ,𝑡

)
. This

constitutes the training data points. We then aim to predict the hate
intensity of the next chunks of replies.

3.2 Quantifying hate intensity
In order to quantify H

(
R𝜏
𝑘,𝑘+Δ

)
, the hate intensity of a chunk of

replies posted between 𝑘 and 𝑘 + Δ, with 1 ≤ 𝑘 ≤ 𝑡 − Δ, we rely on
two scores: a model-dependent score, and a lexicon-based score.
• Hate speech classifier:Weemploy a state-of-the-art hate speech
classifier C which takes a reply 𝑟 and classifies it into hate speech
with a score C(𝑟 ), indicating the probability of reply being a hate
speech. We consider C(𝑟 ) in calculatingH

(
R𝜏
𝑘,𝑘+Δ

)
.

• Lexical hate score: Wiegand et al. [39] proposed a domain-
independent hate lexicon with 2, 895 hate words. They also as-
signed hate score to each word in the lexicon. Given a reply 𝑟 ,
we check the presence of such hate words and sum up their hate

https://github.com/LCS2-IIITD/DESSERt_KDD21


scores to obtain a model-independent lexicon-based hate score
per reply, denoted by L(𝑟 ).
The hate intensity of a reply 𝑟 is measured as,

H(𝑟 ) = 𝑤C(𝑟 ) + (1 −𝑤)L(𝑟 ), (1)

where𝑤 (0 ≤ 𝑤 ≤ 1) adjusts the weights of two components.
The hate intensity of a chunk of replies is measured by the sum

of hate intensity of all the replies in that chunk, i.e.,

H
(
R𝜏
𝑘,𝑘+Δ

)
=

∑
𝑟∈R𝜏

𝑘,𝑘+Δ

H(𝑟 ) = 𝑤
©«

∑
𝑟∈R𝜏

𝑘,𝑘+Δ

C(𝑟 )
ª®®¬+(1−𝑤)

©«
∑

𝑟∈R𝜏
𝑘,𝑘+Δ

L(𝑟 )
ª®®¬ .

(2)
Note that 0 ≤ H

(
R𝜏
𝑘,𝑘+Δ

)
≤ ∞. Section 7.2 will show the results

with different hate speech classifiers C, and varying 𝑤 . For the
chunks of replies till 𝑡 in the training set, we measure the hate
intensity of each chunk, H

(
R𝜏1,Δ

)
,H

(
R𝜏Δ+1,2Δ

)
, . . .,H

(
R𝜏
𝑡−Δ,𝑡

)
.

3.3 Feature extraction from a reply chunk
In the training set, from a given chunk R𝜏

𝑘,𝑘+Δ, we measure the
hate intensity score of its constituent replies, i.e., H

(
𝑟𝜏
𝑘
), H

(
𝑟𝜏
𝑘+1),

. . .,H
(
𝑟𝜏
𝑘+Δ). From this, we extract five quantities, namely:

(i) sum of hate intensities,H
(
R𝜏
𝑘,𝑘+Δ

)
,

(ii) hate intensity of the first reply for the chunk,H
(
𝑟𝜏
𝑘

)
,

(iii) hate intensity of the last reply for the chunk,H
(
𝑟𝜏
𝑘+Δ

)
,

(iv) max hate intensity, H
(
R𝜏
𝑘,𝑘+Δ

)
max

= max𝑟∈R𝜏
𝑘,𝑘+Δ

H(𝑟 ) ,

(v) min hate intensity, H
(
R𝜏
𝑘,𝑖+Δ

)
min

= min𝑟∈R𝜏
𝑘,𝑘+Δ

H(𝑟 ) .
This results in a 5-dimensional observed feature vector associated

to R𝜏
𝑘,𝑘+Δ:

x𝑘 =

[
H

(
R𝜏
𝑘,𝑘+Δ

)
,H

(
𝑟𝜏
𝑘

)
,H

(
𝑟𝜏
𝑘+Δ

)
,H

(
R𝜏
𝑘,𝑖+Δ

)
max

,H
(
R𝜏
𝑘,𝑖+Δ

)
min

]
.

The training set is formed by (x𝑘 )1≤𝑘≤𝐾 where each x𝑘 ∈ R5,
and 𝐾 = 𝑡 − Δ is the number of chunks in the training set.

4 PROPOSED MODEL: DESSERT
Our objective is to predict the hate intensity of a reply thread for
a given source tweet. We formulate this problem as a dynamical
modeling problem. Off-the-shelf approaches to address such prob-
lems like ARMA, its variants, and state-space models, are proposed
either in classical signal processing or in machine learning, namely
RNN and its variants like LSTM and GRU. The disadvantage of
signal processing approaches is that the underlying dynamical evo-
lution function needs to be specified. This may be inappropriate in
a typical scenario such as ours as the underlying evolution function
is non-stationary and highly volatile in nature. On the other hand,
machine learning approaches learn the underlying function from
the data [15]. However, the shortcoming of off-the-shelf RNNs is
that unlike state-space models, they cannot predict the confidence
score around the estimate. The confidence score is highly relevant
to our problem as based on this, the online content moderators may
decide which thread to inspect manually.

To overcome the limitations of both, we propose DESSERT, a
Deep State-Space (DSS) model. DESSERT is built on the advantages
of both schools of methods. First, unlike the standard state-space

model where the state evolution and the observation operators
are supposed to be known apriori, we will learn it from the data.
Second, in order to handle non-linearity, we introduce multiple
layers of learnable parameters for both the observation and the state
evolution. DESSERT keeps the ability of function approximation of
neural networks (since it learns the parameters from the data) and
the capacity to model uncertainty from classical state-space models.
The schematic diagram of DESSERT is shown in Figure 2

4.1 Basis architecture
We consider (x𝑘 )1≤𝑘≤𝐾 the observed time-ordered sequence vector
of size 𝑁𝑥 , (z𝑘 )1≤𝑘≤𝐾 is the latent state-space vector of size 𝑁𝑧 that
we want to infer, and (v𝑘 )1≤𝑘≤𝐾 models the noise. As explained in
Section 3.3, we consider 𝑁𝑥 = 5 features. Moreover, we consider
the possibility of a multivariate hidden feature space, i.e., 𝑁𝑧 can
be greater than 1. The original linear state-space model is given by,{

z𝑘 = Az𝑘−1 + v1,𝑘 ,
x𝑘 = Hz𝑘 + v2,𝑘 ,

(3)

where the matrices, A and H, are the learnable parameters. When A
and H are known, the solution is the celebrated Kalman filter. When
the parameters are unknown, the solution to the blind Kalman
filtering problem has been recently investigated in [36]. A limitation
of this aforementionedwork is that it cannot handle non-linearity in
the dynamical system. In this present study, we propose to account
for the non-linearity by introducing multiple layers (3 layers in our
case) in the model. The DSS model is given as follows. For every
𝑘 ∈ {1, . . . , 𝐾}, {

z𝑘 = A0A1A2z𝑘−1 + v1,𝑘 ,
x𝑘 = H0H1H2z𝑘 + v2,𝑘 ,

(4)

where A0,A1,A2 and H0,H1,H2 can be understood as latent fac-
tors for the state matrix A and the observation matrix H, respec-
tively. Process noise (v1,𝑘 )1≤𝑘≤𝐾 is zero-mean Gaussian with co-
variance matrix Q, and the observation noise (v2,𝑘 )1≤𝑘≤𝐾 is zero-
mean Gaussian with covariance matrix R. Then Equation 4 de-
scribes a first-order Markovian multi-linear Gaussian model, where
(z𝑘 )1≤𝑘≤𝐾 is the sequence of 𝐾 unknown states, which can be
seen as learned features for describing the data. The goal is the
joint inference from the observed sequence (x𝑘 )1≤𝑘≤𝐾 of the fac-
tors A0 ∈ R𝑁𝑧×𝑁𝑧 , A1 ∈ R𝑁𝑧×𝑁𝑧 , A2 ∈ R𝑁𝑧×𝑁𝑧 , H0 ∈ R𝑁𝑥×𝑁𝑧 ,
H1 ∈ R𝑁𝑧×𝑁𝑧 , H2 ∈ R𝑁𝑧×𝑁𝑧 and of the hidden state sequence
(z𝑘 )1≤𝑘≤𝐾 .

This problem can be considered as blind filtering inference where
both the estimated series and model parameters are unknown ini-
tially, and will be learnt and estimated from the data. The model is
expected to understand trends and update its parameters for every
chunk from the data. This can be done following an expectation-
majorization algorithm [35]. The problem is solved in an alternating
manner where we alternate between (i) the estimation of the state,
considering operators A0,A1,A2,H0,H1,H2 being fixed, and (ii)
the update of the parameters, assuming fixed state. Both steps are
elaborated below.

4.2 State update
This is the first step where we consider the parameters A0, A1, A2,
H0, H1, H2 to be fixed and known, and the goal is to infer the latent



Figure 2: Schematic diagram of DESSERTwhere x𝑘 represents the input (ordered sequence of vectors), z𝑘−1 represents the hidden
state-space vector (i.e. feature) for previous timestamp. A0,A1,A2,H0,H1,H2 are the learnable parameters, and z𝑘 represents the
hidden state-space vector for current timestamp.

state. Assume that the initial state follows z0 ∼ N(z̄0, P0), where P0
is a symmetric definite positive matrix of R𝑁𝑧×𝑁𝑧 and z̄0 ∈ R. Then,
Equation 4 reads as a first-order Markovian multi-linear Gaussian
model, where (z𝑘 )1≤𝑘≤𝐾 is the sequence of 𝐾 unknown states. The
Kalman filter provides a probabilistic estimate of the hidden state
at each time step 𝑘 , conditioned to all available data up to time 𝑘 ,
through the filtering distribution:

𝑝 (z𝑘 |x1:𝑘 ) = N(z𝑘 ; z̄𝑘 , P𝑘 ). (5)

where z̄𝑘 ∈ R𝑁𝑧 and P𝑘 ∈ R𝑁𝑧×𝑁𝑧 are the mean and covariance,
respectively, of the filtering distribution. For every 𝑘 ∈ {1, . . . , 𝐾},
z̄𝑘 and P𝑘 can be computed bymeans of the Kalman filter recursions
as follows: For 𝑘 = 1, . . . , 𝐾
Predict state: {

z−
𝑘
= A0A1A2z̄𝑘−1,

P−
𝑘
= A0A1A2P𝑘−1 (A0A1A2)⊤ + Q.

(6)

Update state:
y𝑘 = x𝑘 − H0H1H2𝑧−𝑘 , S𝑘 = H0H1H2P−

𝑘
(H0H1H2)⊤ + R,

K𝑘 = P−
𝑘
(H0H1H2)⊤S−1

𝑘
,

z̄𝑘 = z−
𝑘
+ K𝑘y𝑘 ,

P𝑘 = P−
𝑘
− K𝑘S𝑘K⊤

𝑘
.

(7)

The Rauch-Tung-Striebel (RTS) smoother [35] makes a backward
recursion on the data which makes use of the filtering distributions
computed by the Kalman filter to obtain the smoothing distribution
𝑝 (z𝑘 |x1...𝐾 ). Below, we summarize the RTS recursions:
For 𝑘 = 𝐾, . . . , 1
Backward Recursion (Bayesian Smoothing):

z−
𝑘+1 = A0A1A2z̄𝑘 , P−

𝑘+1 = A0A1A2P𝑘 (A0A1A2)⊤ + Q,
G𝑘 = P𝑘 (A0A1A2)⊤ (P−

𝑘+1)
−1,

z𝑠
𝑘
= z𝑘 + G𝑘 [z𝑠𝑘+1 − z−

𝑘+1 ],
P𝑠
𝑘
= P𝑘 + G𝑘 (P𝑠𝑘+1 − P−

𝑘+1)G
⊤
𝑘
.

(8)

As a result, the smoothing distribution at each time 𝑘 is a multivari-
ate Gaussianwith closed-form given by, 𝑝 (z𝑘 |x1...𝐾 ) = N(z𝑘 ; z𝑠

𝑘
, P𝑠
𝑘
).

4.3 Parameter updates
The training procedure of DESSERT requires an alternating iteration
of Kalman filter/smoother, considering parameters to be known and
fixed initially (E-step), followed by the model/state parameters esti-
mation assuming latent states to be fixed (M-step) [35]. It starts with
an initialization stage A[0]

0 ,A[0]
1 ,A[0]

2 and H[0]
0 ,H[0]

1 ,H[0]
2 . For ev-

ery iteration 𝑖 , it runs the RTS scheme, presented in Section 4.2, then
computes the updatesA[𝑖+1]

0 ,A[𝑖+1]
1 ,A[𝑖+1]

2 andH[𝑖+1]
0 ,H[𝑖+1]

1 ,H[𝑖+1]
2 ,

given their estimates at previous EM iteration, i.e., A[𝑖 ]
0 ,A[𝑖 ]

1 ,A[𝑖 ]
2

and H[𝑖 ]
0 ,H[𝑖 ]

1 ,H[𝑖 ]
2 . This amounts to maximizing this lower bound,

so as to increase the marginal log-likelihood of these six deep la-
tent factors, given the observed data. Let us introduce some useful
quantities, defined from the RTS recursion:

𝚺
[𝑖 ] =

1
𝐾

𝐾∑
𝑘=1

P𝑠
𝑘
+ z𝑠

𝑘
(z𝑠
𝑘
)⊤; 𝚽[𝑖 ] =

1
𝐾

𝐾∑
𝑘=1

P𝑠
𝑘−1 + z𝑠

𝑘−1 (z
𝑠
𝑘−1)

⊤,

B[𝑖 ] =
1
𝐾

𝐾∑
𝑘=1

x𝑘 (z𝑠𝑘 )
⊤; D[𝑖 ] =

1
𝐾

𝐾∑
𝑘=1

P𝑠
𝑘

G⊤
𝑘−1 + z𝑠

𝑘
(z𝑠
𝑘−1)

⊤, (9)

𝚪
[𝑖 ] =

1
𝐾

𝐾∑
𝑘=1

x𝑘x⊤
𝑘
.

Then, the computation of A[𝑖+1]
0 ,A[𝑖+1]

1 ,A[𝑖+1]
2 and H[𝑖+1]

0 , H[𝑖+1]
1 ,

H[𝑖+1]
2 amounts to solving the following subproblems (see Appen-

dix B for detailed derivations):

A[𝑖+1]
0 = argminA0

(
K
2 tr

(
Q−1

𝚺
[i] − D[i] (A0A[i]

1 A[i]
2 )⊤

−A0A[𝑖 ]
1 A[𝑖 ]

2 (D[𝑖 ] )⊤ + A0A[𝑖 ]
1 A[𝑖 ]

2 𝚽
[𝑖 ] (A0A[𝑖 ]

1 A[𝑖 ]
2 )⊤

))
,



A[𝑖+1]
1 = argminA1

(
K
2 tr

(
Q−1

𝚺
[i] − D[i] (A[i+1]

0 A1A[i]
2 )⊤

−A[𝑖+1]
0 A1A[𝑖 ]

2 (D[𝑖 ] )⊤ + A[𝑖+1]
0 A1A[𝑖 ]

2 𝚽
[𝑖 ] (A[𝑖+1]

0 A1A[𝑖 ]
2 )⊤

))
,

A[𝑖+1]
2 = argminA2

(
K
2 tr

(
Q−1

𝚺
[i] − D[i] (A[i+1]

0 A[i+1]
1 A2)⊤

−A[𝑖+1]
0 A[𝑖+1]

1 A2 (D[𝑖 ] )⊤ + A[𝑖+1]
0 A[𝑖+1]

1 A2𝚽
[𝑖 ] (A[𝑖+1]

0 A[𝑖+1]
1 A2)⊤

))
.

And,

H[𝑖+1]
0 = argminH0

(
K
2 tr

(
R−1

𝚪
[i] − B[i] (H0H[i]

1 H[i]
2 )⊤

−H0H[𝑖 ]
1 H[𝑖 ]

2 (B[𝑖 ] )⊤ + H0H[𝑖 ]
1 H[𝑖 ]

2 𝚺
[𝑖 ] (H0H[𝑖 ]

1 H[𝑖 ]
2 )⊤

))
,

H[𝑖+1]
1 = argminH1

(
K
2 tr

(
R−1

𝚪
[i] − B[i] (H[i+1]

0 H1H[i]
2 )⊤

−H[𝑖+1]
0 H1H[𝑖 ]

2 (B[𝑖 ] )⊤ + H[𝑖+1]
0 H1H[𝑖 ]

2 𝚺
[𝑖 ] (H[𝑖+1]

0 H1H[𝑖 ]
2 )⊤

))
,

H[𝑖+1]
2 = argminH2

(
K
2 tr

(
R−1 (𝚪 [i] − B[i] (H[i+1]

0 H[i+1]
1 H2)⊤

−H[𝑖+1]
0 H[𝑖+1]

1 H2 (B[𝑖 ] )⊤ + H[𝑖+1]
0 H[𝑖+1]

1 H2𝚺
[𝑖 ] (H[𝑖+1]

0 H[𝑖+1]
1 H2)⊤

))
.

where tr(·) denotes the trace operator, Q is covariance matrix for
the process noise, and R is the covariance matrix for the observation
noise.

Due to the quadratic form of the above problems, the update of
each deep factor takes a closed form:

A[𝑖+1]
0 = D[𝑖 ] (A[𝑖 ]

2 )⊤ (A[𝑖 ]
1 )⊤

(
A[𝑖 ]

1 A[𝑖 ]
2 Φ[𝑖 ] (A[𝑖 ]

2 )⊤ (A[𝑖 ]
1 )⊤

)−1
,

A[𝑖+1]
1 =

(
(A[𝑖+1]

0 )⊤Q−1A[𝑖+1]
0

)−1
(A[𝑖+1]

0 )⊤Q−1D[𝑖 ] (A[𝑖 ]
2 )⊤(

A[𝑖 ]
2 𝚽

[𝑖 ] (A[𝑖 ]
2 )⊤

)−1
,

A[𝑖+1]
2 =

(
(A[𝑖+1]

1 )⊤ (A[𝑖+1]
0 )⊤Q−1A[𝑖+1]

0 A[𝑖+1]
1

)−1
(A[𝑖+1]

1 )⊤

(A[𝑖+1]
0 )⊤Q−1D[𝑖 ] (𝚽[𝑖 ] )−1 .

And,

H[𝑖+1]
0 = B[𝑖 ] (H[𝑖 ]

2 )⊤
(
H[𝑖 ]

1 )⊤ (H[𝑖 ]
1 H[𝑖 ]

2 𝚺
[𝑖 ] (H[𝑖 ]

2 )⊤ (H[𝑖 ]
1 )⊤

)−1
,

H[𝑖+1]
1 =

(
(H[𝑖+1]

0 )⊤R−1H[𝑖+1]
0

)−1
(H[𝑖+1]

0 )⊤R−1B[𝑖 ] (H[𝑖 ]
2 )⊤(

H[𝑖 ]
2 𝚺

[𝑖 ] (H[𝑖 ]
2 )⊤

)−1
,

H[𝑖+1]
2 =

(
(H[𝑖+1]

1 )⊤ (H[𝑖+1]
0 )⊤R−1H[𝑖+1]

0 H[𝑖+1]
1

)−1
(H[𝑖+1]

1 )⊤

(H[𝑖+1]
0 )⊤R−1B[𝑖 ] (𝚺 [𝑖 ] ] )−1 .

4.4 On the fly training
A limitation of the EM strategy is that it requires reprocessing the
full dataset to compute the updates for the state and observation
model parameters. On top of being computationally cumbersome,
this strategy implicitly assumes the static values of these parame-
ters over time during the processing of the whole sequence which
may not be a well-suited practice due to the lack of stationarity
in the data. Indeed, tweeter trends are expected to evolve over
time. Moreover, in real-time applications, users may want rapid
feedback on the hate intensity evolution. We thus propose here a

strategy to make DESSERT suitable for online training, reminiscent
of recent implementations of stochastic majorization-minimization
algorithms [5]. We set a window (or mini-batch) size 𝛼 ≥ 1. At each
time step 𝑘 , the static parameters are estimated using the last 𝛼
observations contained in the set X𝑘 = {x𝑗 }𝑘𝑗=𝑘−𝛼+1. In particular,
we run RTS only on the recent 𝛼 observed data; then we update the
parameters using the smoothing results. This sliding-window strat-
egy presents two advantages. First, introducing 𝛼 leads to faster
processing. Second, it also allows better modeling of piece-wise
linear processes that vary faster. The price to pay is that a smaller
number of observations also limits the estimation capabilities. For
initializing the RTS iterations, we use a warm start strategy. We set
the parameters to their last updated values for the next timestamp.
We initialize the mean and covariance of the state at 𝑘 −𝛼 + 1 using
the smoothing results from the last update of the parameters in this
window. Note that if 𝛼 = 𝐾 , the algorithm goes back to the original
offline version.

4.5 Forecasting
As explained in Section 4.1, we proceed in a sliding window fashion.
For each particular observed window X𝑘 , the training of DESSERT
allows to extract features and finds the update for parameters by
iterating alternatively EM steps. After stabilization of the EM it-
erations (for this task, 10 iterations were sufficient for the EM to
reach convergence), we can then use the output to predict the hate
intensity of upcoming chunk of replies. More precisely, for every
𝑘 ∈ {0, . . . , 𝐾 − 𝛼}, we apply DESSERT on {x𝑗 }𝑘𝑘≤ 𝑗≤𝑘+𝛼 which pro-
vides the estimate,

x̂𝑘+𝛼+1 = H0H1H2z−
𝑘+𝛼 , (10)

associated with a covariance matrix S𝑘+𝛼 , for the immediate next
reply chunk indexed by 𝑘 + 𝛼 + 1. Note that although DESSERT will
perform the prediction on the whole 5-dimensional vector, we will
particularly be interested in the ability of our model to perform
prediction on a single entry of the vector of interest, i.e., the overall
hate intensity of the chunk H

(
R𝜏
𝑘,𝑘+Δ

)
.

4.6 Model confidence
Due to the probabilistic approach in Kalman filter, our DESSERT
model can estimate the confidence score associated with the predic-
tion. DESSERT indeed provides distribution of the next observation
conditioned to the previously seen data, which is also called predic-
tive distribution of the observation. Such probabilistic validation
allows to quantify how much the model is (un)certain while pre-
dicting the next chunk hate intensity. Let us express, for every
chunk index 𝑘 , the distribution of the forecasted x̂𝑘 given the past
observations:

𝑝 (x̂𝑘 |x1:𝑘−1) = N
(
x̂𝑘 ; H0H1H2z−

𝑘
, S𝑘

)
, (11)

where S𝑘 = H0H1H2 ((A1A2A3)P𝑘−1 (A1A2A3)⊤ + Q) + R, and z−
𝑘
,

P𝑘 are byproducts of the Kalman filter, defined in Section 4.2 (see
[10] for more details about the predictive distribution of the ob-
servations). In our case, we would like to quantify our confidence
score about the prediction given by the model for the hate intensity.
More precisely, we focus on forecasting the sum of hate inten-
sity, as defined in Section 3.3, for the next chunk of replies, i.e.,



predicting the first entry of x̂𝑘 , denoted by x̂𝑘 [0]. The value of
the first row/column of S𝑘 , denoted by S𝑘 [0, 0], gives us the un-
certainty quantification about such prediction. Unless otherwise
stated, DESSERT puts 95% of confidence on x̂𝑘 [0] to belong to the
interval [H0H1H2z−

𝑘
] [0] ± S𝑘 [0, 0]. We can even go further in the

analysis. For instance, we can define the confidence score about an
increase of the hate intensity as:

𝑝𝑘 =

∫ +∞

x̂𝑘 [0]
N

(
𝑦;

[
H0H1H2z−

𝑘

]
[0], S𝑘 [0, 0]

)
𝑑𝑦 (12)

= 1 − CDF(x̂𝑘 [0] |
[
H0H1H2z−

𝑘

]
[0], S𝑘 [0, 0]), (13)

where CDF denotes the cumulative distribution function for the
multivariate Gaussian model. Equation 12 quantifies the probability
that the hate intensity will grow in the next time step. Once we
have determined 𝑝𝑘 for every chunk index 𝑘 , we can validate the
method by using the standard cross-entropy loss as:

log-loss = 1
𝐾

𝐾∑
𝑘=1

−
(
𝐿𝑘 [𝑖] log(𝑝𝑘 )

)
, (14)

where 𝐿𝑘 ∈ {0, 1} represents the ground-truth at time 𝑘 for increase
(i.e., 𝐿𝑘 = 1) /decrease (i.e., 𝐿𝑘 = 0) of x𝑘 [0] from 𝑘 − 1 to 𝑘 .

4.7 Time complexity
� Training. Let us express the complexity for training DESSERT in
a given window of length 𝛼 . To this aim, we rely on the complexity
analysis for Kalman-based approaches available in [26], which leads
to a complexity of O(𝛼𝑁 2.376

𝑧 ). � Testing. The testing phase just
amounts to evaluating the multi-linear equation (Equation 10). This
has complexity of O(𝑁𝑥𝑁 2

𝑧 ) for each chunk. It can be reduced to
O(𝑁 2

𝑧 ) if we want to forecast only one feature (which is the case
in our setting, i.e., only the overall hate intensity).

5 DATASET DESCRIPTION
For our problem setting, we require reply threads of tweets. Since
existing Twitter API does not provide the entire reply thread of a
tweet, we first identified source tweets and systematically scraped
timelines of users who replied to these tweets. To identify the
source tweets, we searched with hashtags related to 2020 US presi-
dential elections (e.g., #MagaTerrorists, #StopTheSteal), COVID-19
(e.g., #ChinaVirus, #TrumpVirus), the Brexit referendum in the UK
(e.g., #brexitshambles, #stopbrexit), and other political issues in the
US, the UK and India (e.g., #BorisResign, #ToryCovidCatastrophe,
#CAA, #NRC). We focused on the US and the UK more to avoid
tweets in regional/code-mixed languages. The data collection was
carried out during October 2020 to January 2021. The complete
dataset contains 4, 533 reply threads. In the Appendix, Figures 6(a)
and 6(b) show the length distribution of reply threads and the dis-
tribution of the number of unique users involved in reply threads,
respectively. The average thread length is 213, and the average
number of unique users per thread is 187.

In Section 7.2, we study how the hate intensity of reply threads
varies across different types of source tweets such as hate, fake, and
controversial (these labels were provided by Logically’s content
moderators). Each reply thread is split into two parts: first 70%
replies are used for training and remaining 30% for forecasting.

Model 𝑟 RMSE ↓ MAPE (%) ↓ SMAPE (%) ↓
ARIMA 0.138 0.584 70.17 54.73
LSTM 0.331 0.515 76.53 46.34
CNN 0.251 0.454 54.68 43.40
N-Beats 0.322 0.388 47.25 39.94
DeepAR 0.308 0.386 48.95 38.56
TFT 0.511 0.413 45.88 40.39
ForGAN 0.557 0.397 43.47 38.58
DESSERT (1 layer) 0.671 0.342 32.28 35.28
DESSERT (2 layers) 0.665 0.394 32.69 35.66
DESSERT (3 layers) 0.670 0.332 31.08 34.01
Table 1: Overall performance (↓: lower value is better).

6 BASELINE METHODS
To the best of our knowledge, there is no prior work on forecasting
hate intensity of a reply threads on Twitter. We, therefore, consider
statistical and deep learning based time-series and temporal pattern
modeling approaches.
ARIMA. It is one of the classical time-series prediction models
based on auto regressive integrated moving average.
LSTM. We use a stacked 2-layer LSTM with 50 cells each. We use
a dense layer with ReLU activation for final prediction [9].
CNN. We use a 1D Convolutional layer with 64 filters and a kernel
size of 2. This is followed by a max-pooling layer which feeds
result into a fully-connected layer with ReLU activation for final
prediction [24].
N-Beats. It uses the idea that the base architecture should be sim-
ple and generic, yet expressive (deep). It does not rely on time-series
specific feature engineering or input scaling [28].
DeepAR. It aims to produce probabilistic forecasts specifically on
a large number of related time series [34].
TFT. Temporal Fusion Transformers is an attention-based architec-
ture which combines high-performance multi-horizon forecasting
with interpretable insights into temporal dynamics [19].
ForGAN. It utilizes conditional generative adversarial network to
learn the data generating distribution and compute probabilistic
forecasts [18].

7 EXPERIMENTAL RESULTS
For comparison, we use one correlation-based metric (higher is
better) – Pearson correlation coefficient (𝑟 ), and three metrics
for error calculation (lower is better) – Root mean square error
(RMSE), Mean Absolute Percentage Error (MAPE) and Sym-
metric Mean Absolute Percentage Error (SMAPE).

Default setup. Unless otherwise mentioned, we consider the
following setup as default: 𝑤 = 0.5, Δ = 10, 𝛼 = 20, 𝑁𝑧= 5, 𝑁𝑥=5
and DESSERTwith 3 layers, and hyperparameters Q = 𝜎2

𝑄
I, R = 𝜎2

𝑅
I,

P0 = 𝜎2
𝑃

I, with (𝜎𝑄 , 𝜎𝑅, 𝜎𝑃 ) = (10−5, 10−1, 10−1), 𝑧0 = 0 (I : identity
matrix), and the hate speech classifier C by Founta et al. [13].

7.1 Overall performance
Table 1 shows the performance of the competing models. Clearly,
DESSERT outperforms all the baselines with a significant margin.
DESSERT (3 layers) achieves 0.113 points gain in Pearson’s 𝑟 , 0.065
points drop in RMSE, and 12.39% and 4.57% drop in MAPE and



Figure 3: Performance (MAPE) of DESSERT and ForGAN w.r.t
(a) demography, (b) types of source tweets, (c) types of source
users, (d) length of reply threads, (e) foreseeability, (f) hate
speech classifiers (Founta et al. [13] and Davidson et al. [7]),
(g) weight𝑤 , and (h) chunk size Δ. See the Appendix for the
correlation-based (Pearson’s 𝑟 ) performance.

SMAPE respectively compared to ForGAN (the best baseline). Among
the baselines, ARIMA and LSTM/CNN perform the worst.

An advantage of DESSERT over other deep learning based base-
lines is that it estimates a confidence score along with the pre-
diction (which statistical signal processing models also produce).
As discussed earlier in Section 4.6, DESSERT helps to estimate the
probabilistic validation. One can estimate the (un)certainty of the
prediction of an increase/decrease of the hate intensity, from the
log-loss value (Equation 14). Smaller is the loss, more accurate is the
model for its prediction of an increase/decrease of hate intensity.
This information helps the practitioners to understand the impact,
in terms of hate causality, for a given thread. For instance, in our
dataset, the log-loss associated to a thread (i.e., ‘Hate’ category, c.f.
Section 7.2) is 2.51, meaning that the consequences of this category
of thread is highly predictable. It is expected as ‘Hate’ content will
tend to generate more hateful reactions. In contrast, the broader

category ‘Others’, corresponding to another thread, seems more
difficult to assess, having a log-loss of 5.38.

7.2 Detailed analysis
Further, we delve deeper into the results of DESSERT and the best
baseline (ForGAN) to understand how they generalize.
Results across demography. Figure 3(a) shows how DESSERT and
ForGAN perform on the reply threads of the source tweets origi-
nated from different countries – the US, the UK, and others (India,
Brazil, Australia). DESSERT is consistent across geographic loca-
tions.
Types of Source tweets. The content moderation team at Logi-
cally further annotated 1830 randomly selected source tweets into
‘fake’ (518), ‘hate’ (582), ‘controversial’ (550) and ‘others’ (180). We
aim to understand how the models perform for different types of
source tweets. Once again, DESSERT shows steady performance
across different types (c.f. Figure 3(b)).
Types of source users. One may wonder if the prestige of online
users drives the toxicity of the reply thread. To check this, we divide
the reply threads into five equal bins based on the follower count
of the users who posted the source tweets. Figure 3(c) shows that
unlike ForGAN, DESSERT is agnostic to types of the source users.
Length of reply threads. One may wonder how the forecasting
varies with the overall length of the reply threads. Here, we divide
the reply threads into five equal bins based on the length of the
threads. Figure 3(d) shows that although ForGAN improves with
the increase of length, DESSERT remains highly consistent.
Foreseeability & early prediction. So far, we have considered
reply tweets till 𝑡 and reported the prediction for the immediate
reply thread, i.e., R𝜏

𝑡,𝑡+Δ. Here, we are interested to check that with
the same training data, how far the models can predict. We further
allow the models to predict for R𝜏

𝑡+(𝑛−1)Δ,𝑡+𝑛Δ, with 𝑛 = 1, 3, 5, 7.
Also, it captures how early our model can predict. Figure 3(e) shows
that DESSERT does not deteriorate much even at 𝑛 = 7.
Hate speech classifier. To compute hate intensity, we have used
a hate speech classifier C in Equation 1. Here, we check how the
models respond if we change C. We replace our default C [12] by
the hate speech detection method proposed by Davidson et al. [7]
and observe that DESSERT still outperforms ForGAN (Figure 3(f)).
Varying 𝑤 . In Eq. 1, the weight 𝑤 balances the effect of the hate
speech classifier and the lexicon to measure hate intensity. Figure
3(g) shows that DESSERT’s accuracy does not depend much on𝑤 .
Varying Δ. Figure 3(h) shows that with the increase of chunk size
Δ, both ForGAN and DESSERT improve.

7.3 Ablation study
Varying layers. Table 1 shows that DESSERT performs the best
with three layers.
Varying 𝛼 . In DESSERT, the parameter 𝛼 indicated how much his-
torical data we consider for prediction. As expected, Figure 4(a)
shows that increasing 𝛼 results in better prediction.
Changing training size.We experiment with three different sizes
of the training set – 50%, 60% and 70%. Fig. 4(b) shows that unlike
ForGAN, DESSERT remains effective with varying training size.



Figure 4: Model ablation w.r.t. (a) 𝛼 and (b) training size.

8 CONCLUSION
In this paper, we attempted to predict the hate intensity of up-
coming replies for a source tweet. We employed a series of time-
series forecasting models and showed that they do not perform well
on the dataset we curated. We further proposed DESSERT, a deep
state-space model that significantly outperforms all the baselines.
Detailed study further brought out how DESSERT generalizes w.r.t.
several decision choices. Further, DESSERT has been deployed in
Logically’s advanced AI platform for monitoring online problematic
hateful content and recommend countermeasures to minimise its
reach and reduce the damage (see Appendix). In future, we intend
to capture user metadata and graph-level signals to enhance the
accuracy.
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Figure 5: Heatmap showing the hate intensity per quarter of
the reply threads (sorted by the hate intensity of the source
tweets). We divide each reply thread into four equal quar-
ters andmeasure hate intensity per quarter. It indicates that
there is no single quarter which is alwaysmore hateful than
the others across reply threads.

Figure 6: Distribution of (a) the length of reply threads and
(b) the number of unique users involved in reply threads.

A ADDITIONAL RESULTS
Figure 6 shows the distribution of the reply thread length and
the number of unique users per reply thread. Figure 5 shows that
there is not single quarter of the threads which is most hateful
across all the threads. This indicates that the forecasting is not
straightforward, and there is no underlying function which models
the hate intensity pattern. Figure 7 shows the detailed analysis of
the results in terms of Pearson’s 𝑟 . Figure 8 shows the ablation
results in terms of Pearson’s 𝑟 .

B EXPECTATION-MINIMIZATION
The training of DESSERT requires the estimation of the matrices
A0,A1,A2 and H0,H1,H2 jointly with the state. This problem can
be solved efficiently using an expectation-maximization (EM) al-
gorithm [35], that alternates classic Kalman filtering/smoothing
and the update of matrix parameters, with the aim of reaching the
maximum likelihood (ML) estimator of those parameters. With the
proposed DESSERT model in Eq. 4, the EM consists in searching for
A0,A1,A2 andH0,H1,H2 maximizing𝑝 (A0,A1,A2,H0,H1,H2 |x1:𝐾 )
or, equivalently, maximizing 𝜑𝐾 (A0,A1,A2,H0,H1,H2)

= log𝑝 (x1:𝐾 |A0,A1,A2,H0,H1,H2). The EM algorithm is a type of
majorization-minimization [5] approach. It allows to compute a
lower bound 𝑄 of the marginal likelihood, satisfying that, for any
A0,A1,A2, and H0,H1,H2, 𝜑𝐾 (A0,A1,A2,H0,H1,H2)
≥ Q(A0,A1,A2,H0,H1,H2; Θ[𝑖 ] ), where Θ[𝑖 ] gathers the outputs
of the RTS smoother at previous EM iterate 𝑖 , listed in Equation 9.
The application of [35, Theo.12.4] to our DESSERTmodel in Equation
4 and the cancellation of constant terms, leads to the function

Q(A0,A1,A2,H0,H1,H2,Θ[𝑖 ] ) =

− 𝐾

2 tr
(
Q−1

𝚺
[𝑖 ] − D[𝑖 ] (A0A1A2)⊤ − A0A1A2 (D[𝑖 ] )⊤

+A0A1A2𝚽
[𝑖 ] (A0A1A2)⊤

)
− 𝐾

2 tr
(
R−1

𝚪
[𝑖 ] − B[𝑖 ] (H0H1H2)⊤ − H0H1H2 (B[𝑖 ] )⊤

+H0H1H2𝚺
[𝑖 ] (H0H1H2)⊤

)
.

The proposed update in Section 4.3 amounts tomaximizingQ(·,Θ[𝑖 ] ),
for 𝑖 = 1, 2, . . ., using a coordinate descent algorithm, i.e.,

A[𝑖+1]
0 = argminA0 − Q(A0,A

[𝑖 ]
1 ,A[𝑖 ]

2 ,H[𝑖 ]
0 ,H[𝑖 ]

1 ,H[𝑖 ]
2 ,Θ[𝑖 ] )

A[𝑖+1]
1 = argminA1 − Q(A[𝑖+1]

0 ,A1,A
[𝑖 ]
2 ,H[𝑖 ]

0 ,H[𝑖 ]
1 ,H[𝑖 ]

2 ,Θ[𝑖 ] )

A[𝑖+1]
2 = argminA2 − Q(A[𝑖+1]

0 ,A[𝑖+1]
1 ,A2,H

[𝑖 ]
0 ,H[𝑖 ]

1 ,H[𝑖 ]
2 ,Θ[𝑖 ] )

H[𝑖+1]
0 = argminH0 − Q(A[𝑖+1]

0 ,A[𝑖+1]
1 ,A[𝑖+1]

2 ,H0,H
[𝑖 ]
1 ,H[𝑖 ]

2 ,Θ[𝑖 ] )

H[𝑖+1]
1 = argminH1 − Q(A[𝑖+1]

0 ,A[𝑖+1]
1 ,A[𝑖+1]

2 ,H[𝑖+1]
0 ,H1,H

[𝑖 ]
2 ,Θ[𝑖 ] )

H[𝑖+1]
2 = argminH2 − Q(A[𝑖+1]

0 ,A[𝑖+1]
1 ,A[𝑖+1]

2 ,H[𝑖+1]
0 ,H[𝑖+1]

1 ,H2,Θ[𝑖 ] ),

which leads to the six sub-problems provided in Section 4.3. This
procedure is theoretically sound (see [4, 35] for more details). In
particular, it is guaranteed to yield a monotonic increase of the mar-
ginal log-likelihood function 𝜑𝐾 and convergence to a stationary
point of it.

C HYPER-PARAMETERS
ARIMA. We use the python library pmdarima. For the hyper-
parameters (𝑠𝑡𝑎𝑟𝑡_𝑝 , 𝑠𝑡𝑎𝑟𝑡_𝑞,𝑚𝑎𝑥_𝑝 ,𝑚𝑎𝑥_𝑞,𝑚, 𝑠𝑡𝑎𝑟𝑡_𝑃 , 𝑑 and 𝐷),
we set them to 0, 0, 5, 5, 12, 0, 𝑓 𝑎𝑙𝑠𝑒 , 0 and 1 respectively. The
non-seasonal version of ARIMA works best for our task.
LSTM. We use a stacked LSTM with 2 layers, each with 50 units
followed by a dense layer for final prediction. We use ReLU for
activation in both layers. The model is trained on a batch size 16
for 100 epochs. We add an early stopping layer to avoid overfitting.
CNN. We use a CNN with 1-D convolutional layer of filter size 64
and kernel size of 2. We pass it through a max-pooling 1D layer of
pool size 2. We train the model on a batch size of 16 for 100 epochs.
To avoid overfitting, we use early stopping.
N-Beats. We use the default implementation and run the model
in the interpretable mode, with the 3 blocks per stack, 3 fully-
connected layers per block ofwidth chosen from [32, 512] (whichever
works best). We set 𝑙𝑜𝑔_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 , 𝑙𝑜𝑔_𝑣𝑎𝑙_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ,𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑐𝑎𝑦 to
10, 1, 0.01 respectively. We run the trainer for a maximum of 100
epochs on a batch size of 16.
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Figure 7: Performance (Pearson’s 𝑟 ) of DESSERT and ForGAN
w.r.t (a) demography, (b) types of source tweets, (c) types of
source users, (d) length of reply threads, (e) foreseeability, (f)
hate speech classifiers (Founta et al. [13] and Davidson et al.
[7]), (g) weight𝑤 , and (h) chunk size Δ.

Figure 8: Model ablation w.r.t. (a) 𝛼 and (b) training size.

DeepAR. We use the default implementation for this model, with
2 RNN layers having LSTM cells with the hidden recurrent size
as 10. We set 𝑙𝑜𝑔_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 , 𝑙𝑜𝑔_𝑣𝑎𝑙_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ,𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑐𝑎𝑦 to 10, 1,
0.01 respectively. We run the trainer for a maximum of 200 epochs
on a batch size of 16.
TFT. We use the default implementation, with the number of LSTM
layers set to 2 and the hidden size of the network set to 8. We set
the 𝑙𝑜𝑔_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 , 𝑙𝑜𝑔_𝑣𝑎𝑙_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 and 𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑐𝑎𝑦 to 10, 1, 0.01
respectively. The model runs for a maximum of 200 epochs.

ForGAN. We use the default architecture, with LSTM layers of
sizes 8 and 64 for the RNN based generator and discriminator,
respectively. The model runs for a maximum of 800 epochs.
DESSERT. Thanks to our warm start strategy, the initialisation of
hyper-parameters A[0]

0 ,A[0]
1 ,A[0]

2 and H[0]
0 ,H[0]

1 ,H[0]
2 is only re-

quired for the very first chunk of the training set, i.e., for 𝑘 = 𝑡 = 0.
In practice, we initialized A[0]

0 ,A[0]
1 ,A[0]

2 with identity matrix, and
H[0]

0 ,H[0]
1 ,H[0]

2 with uniform independent entries in [0, 1]. All re-
sults are averaged over a set of four random initializations. More-
over, we empirically tuned hyper-parameters 𝜎𝑄 , 𝜎𝑅 , 𝜎𝑃 , 𝑁𝑧 , 𝑁𝑥
and window size 𝛼 to 10−5, 10−1, 10−1, 5, 5, 20 respectively.

D DEPLOYMENT DETAILS
Logically’s advanced AI platform is a real-world system that can
ingest and analyse data from millions of media sources as well as
social media posts. Proprietary models and custom pipelines in the
platform harness state-of-the-art machine learning and NLP to iden-
tify and analyse online problematic harmful content at-scale. Built
on cutting-edge, secure and highly scalable cloud infrastructure, the
platform brings together Logically’s capabilities in granular analy-
sis, classification and detection of damaging harmful content, its
origins and impact. It also provides access to a diverse set of stake-
holders in different market segments, a suite of countermeasures to
tackle identified problematic content by leveraging in-house expert
analysts in fact-checking and OSINT research.

The technology side of the platform is uniquely developed by
implementing state-of-the-art in AI research and industry best
practices in software architecture and engineering. In order to
achieve high-quality analytical throughput on large volumes of
data, the platform leverages cutting-edge cloud technologies such as
Kubernetes, which works with a range of container tools including
Docker to make software applications highly scalable. On the other
hand, the platform applies state-of-the-art AI research to customise
and iteratively evolve its methodologies for effective modelling
of heterogeneous (articles, social media posts, multimedia) data
sources to build reliable AI models that can augment its expert
intelligence network of editors, fact checkers, content moderators
and OSINT analysts.

Deployment of multiple AI models is possible in the platform
as it implements micro services architecture to empower a range
of products built by Logically with AI-based insights through an
ensemble of REST based machine learning services. This feature of
the platform offered the flexibility to integrate DESSERT as a REST
micro-service to evaluate its hate speech intensity annotations
alongside the company’s proprietary models and custom pipelines
for problematic hateful content analysis. Further, the evaluation
revealed that the intensity scores from DESSERT offer additional
knowledge to the proprietary models for ranking and prioritization
of high risk online harms for enforcement of countermeasures to
minimize their impact and damage. We plan to further test DESSERT
extensively on multiple heterogeneous social media data streams
ingested by the platform to understand its abilities to generalise
in accurately and reliably detecting hate speech patterns. Also we
intend to evaluate DESSERT and its future enhanced versions in the
AI platform to extract insights to better detect custom online harms
across domains such as health, finance and geopolitics.
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