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ABSTRACT

Bid optimization for online advertising from single advertiser’s

perspective has been thoroughly investigated in both academic re-

search and industrial practice. However, existing work typically

assume competitors do not change their bids, i.e., the wining price

is fixed, leading to poor performance of the derived solution. Al-

though a few studies use multi-agent reinforcement learning to set

up a cooperative game, they still suffer the following drawbacks:

(1) They fail to avoid collusion solutions where all the advertisers

involved in an auction collude to bid an extremely low price on

purpose. (2) Previous works cannot well handle the underlying

complex bidding environment, leading to poormodel convergence.

This problem could be amplified when handling multiple object-

ives of advertisers which are practical demands but not considered

by previous work. In this paper,we propose a novel multi-objective

cooperative bid optimization formulation called Multi-Agent Co-

operative bidding Games (MACG). MACG sets up a carefully de-

signed multi-objective optimization framework where different ob-

jectives of advertisers are incorporated. A global objective to max-

imize the overall profit of all advertisements is added in order to

encourage better cooperation and also to protect self-bidding ad-

vertisers. To avoid collusion, we also introduce an extra platform

revenue constraint. We analyze the optimal functional form of the

bidding formula theoretically and design a policy network accord-

ingly to generate auction-level bids. Then we design an efficient

multi-agent evolutionary strategy for model optimization. Evolu-

tionary strategy does not need to model the underlying environ-

ment explicitly and is more suitable for bid optimization. Offline

experiments and online A/B tests conducted on the Taobao plat-

form indicate both single advertiser’s objective and global profit

have been significantly improved compared to state-of-art meth-

ods.
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1 INTRODUCTION

Online advertising [5, 7] is a marketing strategy utilizing the Inter-

net as a medium to help advertisers attract target audiences and

conversions via Real-Time Biding (RTB). E-commercial sponsored

search is a mainstream form of online advertising, for advertisers

to promote their products or services. E-commercial sponsored

search generally ranks candidate advertisements (ADs) by effect-

ive Cost Per Mille (eCPM) (i.e., the product of the predicted Click-

Through Rate (CTR) and the advertiser’s bid) and charges the win-

ner(s) via Generalized Second Price (GSP) once clicked. The ranking

and deduction together defines the auctionmechanism. It has been

proved that in a single auction with single winner, GSP is incent-

ive compatible that truthful bidding is the optimal choice for every

participant [3, 21]. However, in a sequential auction process with

coupled constraints such as budget, truthful bidding often yields

early exhaustion of budget and poor performance for advertisers.

In the highly dynamic marketing environment of e-Commerce

platforms, there are typically millions of advertisers, billions of

Page-Views (PVs) and hundreds of billions of auctions1 every day.

Bid optimization is an effective way to achieve customer objectives

and has been investigated thoroughly. Most existing works [1, 2, 5]

optimize the total utility (be it clicks, conversions or Gross Mer-

chandise Volume (GMV)) of a single customer across a day, given

the daily budget constraint and/or the Pay Per Click (PPC) con-

straint, assuming competitors do not change their bids. Such sep-

arate optimization process often leads to sub-optimal solutions be-

cause in an auction competitors easily change the winning price of

1We assume there is only one winner in each auction. For multiple winners in a single
auction, we can treat it as multiple auctions with the same bidding.
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each other. Some recent works [12, 24] try to solve this problem by

setting up amulti-agent cooperative game via Reinforcement Learn-

ing (RL). Nevertheless, they still suffer the following drawbacks:

(1) They fail to avoid collusion solutions where all the advertisers

involved in an auction collude to bid an extremely low price on

purpose. Such collusion solutions will not reduce the global profit

of advertisers and easily satisfy the cost constraints. However, it

deprives the motive of the platform to optimize for common good.

Although self-bidding advertisers help alleviate this issue, it is non-

negligible as more and more advertisers opt in bid optimization. (2)

They cannot well handle the underlying complex bidding environ-

ment, leading to poor model convergence. Specifically, the under-

lying transition mechanisms could be very different between, e.g.,

weekdays and weekends (or different seasons). This problem could

be amplified exponentially when handling multiple objectives of

advertisers which are practical demands but not considered by pre-

vious work.

The goal of bid optimization is to satisfy different demands of

the advertisers, as well as to keep the ecosystem healthy. In light

of this, building cooperative bidding agents with different object-

ives of advertisers is challenging. Firstly, cooperation in an auction

might leads to the collusion solutions discussed above. Secondly,

optimizing the bidding strategies of multiple ADs simultaneously

inflate the solution space exponentially. For example, given the pos-

sible � bid choices, " ADs and # auctions, the possible solution

space is in the scale of O(�"# ). Thirdly, how to incorporate dif-

ferent advertisers’ objectives together is also crucial. These advert-

isers might include not only those who opt in bid optimization but

also those who do not. For those who already opted in, it motiv-

ates them to willingly keep using the bid optimization service to

let the game roll on. For the remaining self-bidding advertisers,

their profit must also be taken care of in an indirect way such that

they can also acquire appropriate PVs.

In this paper, we explicitly model the multi-AD optimization

problem in a novel multi-objective cooperative bid optimization

formulation calledMulti-Agent Cooperative biddingGames (MACG).

ADs equipped with different private objectives are optimized to-

gether. To avoid trivial collusion solutions, we introduce an addi-

tional platform revenue constraint, i.e., the Revenue Per Mille (RPM)

constraint. In addition to smart-bidding advertisers, we also set the

GMV of all advertisers as a global objective, to avoid extreme low

utility of self-bidding advertisers. Furthermore, we establish an ex-

plicit lower bound on the utility achieved by smart-bidding advert-

isers, to keep them motivated. We give a theoretical analysis of the

MACG problem to discuss the optimal functional form of the bid-

ding formula. A policy net is then designed based on this optimal

bidding form. The policy net sets up an agent net for each object-

ive to generate real-time bids for all the ADs with that objective

(agent sharing helps save parameter space and avoid overfitting).

The generated bids are further adjusted by the output of a shared

net which aims to achieve the global objective. We also design an

efficient multi-objective evolutionary strategy (ES) to optimize net-

work parameters for large-scale industrial environments. Since ES

does not need to model the underlying environment explicitly, it

would not suffer the aforementioned problem of RL.

The major contributions can be summarized as follows: (1) We

propose a novel multi-AD cooperative games formulation for bid

optimization in e-commercial sponsored search. MACG considers

not only multi-objectives of smart-bidding advertisers but also the

benefits of self-bidding advertisers and the platform. (2) We the-

oretically analyze the optimal functional bidding formula under

MACG. A multi-agent policy net is designed based on the optimal

bidding form to solve MACG, encoding both selfish and global ob-

jectives. In order to achieve timely training of the model for large-

scale industrial environments, we heuristically design an efficient

multi-agent ES to update network parameters. In each iteration, it

simply tries to move towards Pareto optimal solutions, i.e., trying

to optimize the lowest objective together with the global object-

ive, without degenerating the other objectives. (3) For empirically

evaluation, we deploy MACG in a distributed computation envir-

onment in Taobao’s search auction platform which possesses bil-

lions of online auctions and millions of active ADs every day. Off-

line evaluation and standard online A/B tests prove the superiority

of MACG compared to state-of-art methods.

2 RELATED WORK

2.1 Bid optimization

Existing work for bid optimization can mainly be divided into two

categories: static optimization methods assuming that the other

advertisers’ bids will not change, and dynamic optimization meth-

ods taking into account the coupling of advertisers. As for static

optimization methods, Perlich et al. [16] introduced a linear bid-

ding strategy; Zhang et al. [23] explored the non-linear relation-

ship between optimal bid and auction evaluation. Kitts et al. [14]

focused on keywords’ utility estimation in sponsored search RTB.

Zhu et al. [27] proposed the Optimized Cost Per Click (OCPC) bid-

ding algorithm for display advertising, which has beenwidely used

in real-world applications.More recent bid optimization algorithms

modeled the sequential auction process in theMarkov Decision Pro-

cess (MDP) framework and took RL to optimize bidding strategy.

Cai et al. [2] and Zhao et al. [24] utilized RL to learn the optimal

bid for a single AD in display advertising and sponsored search,

respectively. These methods learned the optimal bidding strategy

for each AD separately, and therefore failed to consider bidding

interactions in the complex auction environment.

As for dynamic optimization, Zhao et al. [24] designed amassive-

agent RL model which used a global cooperative objective to in-

corporate agents’ interactions. However, it is still difficult to be ap-

plied to millions of ADs due to prohibitive computational complex-

ity of training one model for each AD and data sparsity for “long

tail” ADs (i.e., no sufficient data for training their separate agent

models). Jin et al. [13] clustered millions of ADs by layered daily

revenue to reduce parameter space and proposed a practical Dis-

tributed Coordinated Multi-Agent Bidding (DCMAB) framework.

However, DCMAB (and also [24]) failed to avoid collusion solu-

tions which are harmful for the platform. Furthermore, since RL

cannot well handle the complex bidding environment, they are dif-

ficult to converge even for the single-objective case, not tomention

the more complicated multi-objective case.



2.2 Multi-objective Optimization

The goal of aMulti-Objective Optimization (MOOP) problem is gen-

erally to find the Pareto optimal solutions. A solution is said to

dominate another one if for every objective the utility is no less.

A Pareto optimal solution is the solution which cannot be domin-

ated by other solutions. All Pareto optimal solutions constitute the

Pareto optimal solution set. Existing solutions to MOOP can be di-

vided into three categories by how they deal with different object-

ives. The first category of methods prioritizes different objectives

according to corresponding constraints and optimizes each object-

ive from high priority to low priority, e.g., [6]. The second one

is to convert multiple objective functions into a single objective

function through linearly weighted summation with non-negative

weights, and then apply single-objective optimization techniques

e.g., [28]. The third category consists of Multi-objective evolution-

ary algorithms [17, 28]. For MACG, there is no priority trade-off

between different objectives; linear combination of objectives re-

quires searching for properweights, which is time-consuming. Hence,

we choose to design an efficient multi-objective evolutionary al-

gorithm for optimization. Evolutionary algorithms can naturally

explore a balance between the cooperation and competition among

advertisers’ multiple objectives and the global objective.

In [20], a Multi-Objective Optimization (MOO) framework is

proposed to optimize the profit of platform, advertisers and query

users together by tuning the ranking function (i.e., auction mech-

anism). Our work is orthogonal to theirs in that we aim to achieve

different objectives of advertisers and keep auctions healthy by op-

timizing their bidding policies while keeping the auction mechan-

ism fixed. MOO is not directly applicable to our problem.

2.3 Evolutionary Strategies

Evolution Strategy (ES) [10] is considered as a particular set of op-

timization algorithmswhich has the properties of no need for back-

propagating gradients and tolerance of potentially arbitrarily long

time horizons. In each iteration of ES, a set of parameter vectors

will be generated, and their objective function values will be evalu-

ated. The parameter vectors with the highest scores are then reor-

ganized to form the next-generation population, and this process

is repeated until the objective converges. Covariance matrix adapt-

ation evolution strategy (CMA-ES) [9, 11] and Natural Evolution

Strategies (NES) [18, 19] are two most widely known memebers of

ES for the single objective case. In order to solve multi-objective

problems, Zitzler et al. [28] proposed a non-dominated sorting ge-

netic algorithmwhich suffered computational complexity of$ ("∗

# 3), where" is the number of objectives and # is the population

size. Afterwards, the non-dominated sorting genetic algorithm � �

(#(���� ) was proposed in [4]. It reduced the computational com-

plexity to $ (" ∗ # 2). In large-scale industrial bidding environ-

ments, the complexity of (#(���� ) is still high. In this paper we

heuristically design amore flexible and lightweight multi-objective

ES with$ (# ) to optimize MACG.

3 PROBLEM DEFINITION

In this section, wemathematically formulate the problem ofMACG

in sponsored search. We consider MACG as an episodic bidding

process with auction set J across a day. Let I and I be the sets

Table 1: Common notations

Notations Description

8 / 9 an AD/auction

I / I the set of smart-bidding/self-bidding ADs

J the set of auctions in a day

58 (·) objective of AD 8 , ∀8 ∈ I

50 (·) global GMV objective

: (index of) an formulated objective

I (:) the set of ADs with objective :

I9 the set of ADs under auction 9

I
(:)
9 the set of ADs with objective : under auction 9

 the number of different objectives

48 9 indicator: whether AD 8 win auction 9

18 9 the generated bid of AD 8 for auction 9

F8 9 the winning price of AD 8 for auction 9

6: (8, 9) the objective function in type : of AD 8 for auction 9

Sij the feature vector of AD 8 under auction 9

S.j the summarized feature vector under auction 9

" (:) /" (0) Objective score of objective :/global objective

of smart-bidding advertisers and self-bidding advertisers, respect-

ively. Without loss of generality, advertisers can be replaced with

their advertisements (ADs), as long as the objective and constraints

hold upon an AD. Accordingly, we use 8 ∈ I ∪I and 9 ∈ J to rep-

resent an AD and an auction, respectively. I can be grouped into

different clusters according to their objectives, i.e., I = I (1) ∪· · ·∪

I ( ) , where I (:) ∩ I (:′)
= ∅, ∀: ≠ : ′. We use I9 to denote the

set of ADs involved in auction 9 , and I
(:)
9 = I9 ∩ I (:) to denote

the set of ADs with objective : under auction 9 . The generated

bid of AD 8 for auction 9 is denoted by 18 9 . Under each auction 9 ,

the ranking score of an AD 8 ∈ I9 in typical GSP is calculated by

�)'8 9 ∗ 18 9 (i.e., eCPM) and the top ranked AD winning 9 will be

presented to the user. Here, �)'8 9 is the predicted click-through

rate of the user-query-item triple [25, 26]. In this paper, our focus

is not on how to estimate CTR and we treat it as known constant

here. We also define a set of indicator variables {48 9 }:

48 9 =

{

1, if AD 8 wins auction 9,

0, otherwise.
(1)

For the typical GSP mechanism [21] in sponsored search, the ex-

pected costF8 9 for AD 8 to win auction 9 is:

F8 9 = �)'8 9 ∗
�)'=4GC ∗ 1=4GC

�)'8 9
= �)'=4GC ∗ 1=4GC , (2)

where �)'=4GC and 1=4GC are the estimated CTR and bid for the

next ranking position according to eCPM. From the definitions

of {48 9 } and {F8 9 }, we can see that they are both determined by

{18 9 }. Different from the single AD case, in MACG {F8 9 } cannot

be treated as constant and it is one of the major difficulties faced

here.

The objective of AD 8 ∈ I (:) is calculated as follows

58 (·) =
∑

9 ∈J

48 96: (8, 9), ∀8 ∈ I (:)



Table 2: Objectives and calculations

Objectives Calculation

�! 8 9 �)'8 9
��')8 9 �)'8 9 ·,�+'8 9
�"+8 9 �)'8 9 ·�+'8 9 · �%8 9

Typical objectives of 6: (8, 9) and their calculations in sponsored

search are summarized in Tab. 2. �+'8 9 , �%8 9 ,,�+'8 9 represent

predicted conversion rate, item price, predicted weak conversion

rate (i.e., favorite or adding to shopping cart) for AD 8 under auc-

tion 9 , respectively. Similar with�)'8 9 , we treat�+'8 9 and,�+'8 9
as known variables obtained from an oracle.

Besides single AD’s objective, we also include an additional 50 (·)

in the objective. It represents the global GMV of the whole AD

set I ∪ I earned from auction set J . Such explicit global profit

emphasizes the importance of purchases in a performance-based

advertising platform. Furthermore, we also encode self-bidding ad-

vertisers’ GMV in it, to encourage explicit cooperation. 50 (·) can be

calculated as follows.

50 (·) =
∑

8 ∈I∪I

∑

9 ∈J

48 9 · 60 (8, 9),

where 60 (8, 9) = �)'8 9 ·�+'8 9 · �%8 9 = �"+8 9 .

For constraints, each AD has its own budget constraint �8 and

PPC constraint �8 set by advertisers (if not, �8 and �8 are infin-

ite). The additional lower bound of platform revenue constraint

(RPM constraint) to avoid collusion is denoted as [ , which can be

interpreted as a reasonable take-rate of the global GMV. We use

the dynamic lower bound to constrain platform revenue to avoid

the ambiguity and risk in determining a fixed lower bound. Fur-

thermore, to motivate the smart-bidding advertisers to keep in the

game, we introduce a lower bound for 58 (·) as �8 for each AD 8 . �8
is reasonable only when it is no less than self-bidding and can be

estimated from our historical auction logs. We give the complete

problem formulation as:

max
{18 9 }

F(48 9 ) = [50 (·), 51 (·), ..., 5 |I | (·)]
)

B .C .
∑

9 ∈J

48 9 ·F8 9 ≤ �8 ,∀8 ∈ I,

∑

9 ∈J
48 9 ·F8 9

∑

9 ∈J
48 9 ·�)'8 9

≤ �8 ,∀8 ∈ I,

58 (·) ≥ �8 ,∀8 ∈ I,
∑

8 ∈I∪I

∑

9 ∈J

48 9 ·F8 9 ≥ [ 50 (·),

∑

8 ∈I∪I

48 9 ≤ 1,∀9 ∈ J .

(3)

It should be pointed out that the set {48 9 ,∀8 ∈ I ∪ I} is determ-

ined by the bidding set {18 9 ,∀8 ∈ I ∪ I}, where the latter is only

partially controlled by the platform (only the smart-bidding ADs).

Note that we assume that there is only one winner in each auction

in the final constraint (it is an inequality since there could be no

winner due to out of budget). Common notations defined above

are summarized in Tab. 1 for clarity.

4 THEORETICAL ANALYSIS

In Eq. (3) we can see that there are two kinds of objectives, the

global objective 50 (·) and private objectives {58 (·)}. The two kinds

of objectives are constrained by the coupled RPM constraint and

the assignment constraint. Fortunately, the two constraints are lin-

ear with respect to the assignment variables {48 9 }.

Considering the following sub-problem for the global objective:

max
{18 9 }

50 (·)

B .C .
∑

8 ∈I∪I

∑

9 ∈J

48 9 ·F8 9 ≥ [ 50 (·),

∑

8 ∈I∪I

48 9 ≤ 1,∀9 ∈ J .

(4)

For a single auction, it is obvious that if each AD bids as:

18 9 = U 9 ·�+'8 9 · �%8 9 ,∀8 ∈ I, 9 ∈ J ,

then all the ADs are ranked based on U 9 ∗�"+8 9 (eCPM). In this

sense, we can assure 50 (·) over auction 9 is maximized even we do

not control all the bids. Considering the RPM constraint, letting

the AD with the largest�"+ win the auction also makes it easier

to satisfy the RPM constraint since we can control the second price

via smart-bidding advertisers. The optimal value of 50 (·) depends

on the specific value of U 9 . And U 9 is determined by the linear con-

straints. We argue that the optimal functional form preserves.

For each private 58 (·), the related sub-problem is (we omit con-

straint 58 (·) ≥ �8 since it does not affect the optimal solution form):

max
{18 9 }

58 (·)

B .C .
∑

9 ∈J

48 9 ·F8 9 ≤ �8 ,

∑

9 ∈J
48 9 ·F8 9

∑

9 ∈J
48 9 ·�)'8 9

≤ �8 ,

48 9 ≤ 1,∀9 ∈ J .

(5)

If all the competitors stay unchanged, the optimal bidding formula

for 58 (·) can be calculated as [22]:

18 9 = V8 ·
6: (8, 9)

�)'8 9
+ W8�8 ,∀8 ∈ I,

where the first term optimizes the private objective and the second

term tackles the PPC constraint. The parameter pair (V8 ,W8 ) is de-

termined by the auction distribution, winning price distribution,

budget constraint �8 and PPC constraint �8 .

Our problem in (3) is a combination of the above global object-

ive and private objectives. However, due to the coupled constraints

and partial control of multiple ADs, obtaining an optimal bidding

form directly for MACG seems intractable. We heuristically con-

struct our optimal bidding formula as:

18 9 = _0U 9 ·�+'8 9 · �%8 9 + _1V8 ·
6: (8, 9)

�)'8 9
+ _2W8�8 ,∀8 ∈ I, (6)



Figure 1: The architecture of MACG. |I | ADs are firstly clustered by their objectives: {I (:) },∀: . Under each auction 9 , each

AD 8 ∈ I
(:)
9 obtains an initial bid (1�� )8 9 from �64=C (:) #4C based on features vector Sij. The bid is further modified by the

output (10)8 9 of a shared net which aims to achieve the global objective by taking into account the summarized features S.j.

This modification is achieved by an �;;>20C8>= #4C by using S.j to assess real-time interpolation weights for �64=C (:) #4C and

Bℎ0A43 #4C . We use ES to update the policy net based on objective scores " (0) and {" (:) } accumulated in an episode.

where (_0, _1, _2) are undetermined weight parameters to be learned.

We argue that the above formula forms a superset for the Pareto

optimal solution set of problem (3).

5 METHODOLOGY

The overall architecture of MACG is shown in Fig. 1. The ADs are

clustered by their objectives. ADs with the same objective share

the same agent model (Agent Net in the policy net). Agent sharing

helps save parameter space and avoid overfitting (ADs in the long-

tail show little training information). The policy net is designed

according to the optimal bidding formula in Eq.(6) and will be de-

scribed in Section 5.1. Section 5.2 discusses objective scores and

model optimization.

5.1 Bidding Policy Net

As aforementioned, the optimal bidding formula in Eq.(6) is gener-

ally a combination of two parts, accounting for selfish and global

objectives respectively. Motivated by this, under each auction 9 ∈

J each AD 8 ∈ I
(:)
9 obtains its real-time bid 18 9 from the out-

puts of�64=C (:) #4C (selfish bid) and (ℎ0A43 #4C (cooperative bid),

which are properly weighted by the output of�;;>20C43 #4C . Sij is

the input feature vector of AD 8 and S.j represents the summarized

features for I9 , i.e., mean and variance of each feature in Sij for

ADs in I9 . The detail features are described in the appendix. Next,

we will elaborate the design of these sub-models.

5.1.1 Agent Net. The agent-specific network �64=C (:) #4C (abbr.

�� (:) ) for each objective: takes Sij as input. Firstly, its benchmark

bid refers to the term related to selfish objective in Eq.6:
6: (8, 9)
�)'8 9

. In

order to fit the coefficients in Eq.(6) and expand the solution space,

we use a neural network ~ (:) (Sij) to generate a personalized cor-

rection factor for AD 8 based on Sij. The finally formula of �� (:)

to generate selfish bid (1�� )8 9 for an AD 8 ∈ I
(:)
9 is:

(1�� )8 9 = ��
(:) (8, 9, Sij) =

6: (8, 9)

�)'8 9
∗ ~ (:) (Sij) (7)

Since ~ (:) (Sij) is a multiplicative factor, we use the sigmoid func-

tion and transformation to normalize the output of the neural net-

work to keep ~ (:) (Sij) in [1 − '0=64, 1 + '0=64], where '0=64 is a

hyperparameter.

5.1.2 Shared Net. In order to optimize the overall GMV of ADs,

the(ℎ0A43 #4C (abbr.(� ) takes AD-specific features Sij (only�+'8 9
and �%8 9 ) and the summarized features S.j as input, and generates

a bid for an AD 8 from the global objective’s perspective. It refers

to the term related to global objective (i.e., �+'8 9 ∗ �%8 9 ) in Eq.(6)

as benchmark. Furthermore, to portray the overall bidding envir-

onment, we introduce the average value C: . 9 of {C:8 }∀8 ∈I9 , where

C:8 is the reciprocal of AD 8’s ROI and is calculated based on his-

torical purchase transactions of AD 8 as accumulated GMV divided

by accumulated cost. Similar to the Agent net, we also use a neural

network~ (0) (S.j) as a correction factor for calculating the bid from

global perspective:

(10)8 9 = (� (8, 9, Sij, S.j) = �+'8 9 ∗ �%8 9 ∗ C: . 9 ∗ ~
(0) (S.j) (8)

where ~ (0) (S.j) is again forced to be in [1−'0=64, 1+'0=64]. The

decomposition of U 9 of (6) into C: . 9 and ~
(0) (S.j) here can be seen

as a normalization process to reduce the search space of U 9 . Next,

we show the connection between (10)8 9 and optimizing global ob-

jective. If we assume that AD 8 only bids based on (10)8 9 , we can



obtain the following ranking score in auction 9 according to 4�%" :

4�%"8 9 = �)'8 9 ∗�+'8 9 ∗ �%8 9 ∗ C: . 9 ∗ ~
(0) (S.j)

= �"+8 9 ∗ C: . 9 ∗ ~
(0) (S.j)

(9)

Note that C: . 9 ∗~
(0) (S.j) is the same for all the involved ADs, which

means we are intrinsically ranking ADs by�"+8 9 . Therefore, (ℎ0A43 #4C

naturally favor ADs that lead to high GMV.

5.1.3 AllocationNetwork. The intuitions behind theAllocationNet-

work are: (1) It could make the exploration of the solution space

more flexible. (2) When trained to optimize the multi-objectives, it

could intelligently assess the relative importance between (1�� )8 9
and (10)8 9 . For instance, when the�"+8 9 ’s for ADs in I9 are sim-

ilar (i.e., who wins the auction does not affect the overall GMV),

it would emphasize (1�� )8 9 for these ADs so as to optimize their

respective objectives. Formally, let �! denote the function of the

network and 0 9 = �!(S.j) ∈ (0, 1) be the output real-time weight

to assess the importance of (1�� )8 9 . The final bid 18 9 generated by

the Policy Net for each AD 8 ∈ I9 is computed as follows:

18 9 = 0 9 ∗ (1�� )8 9 + (1 − 0 9 ) ∗ (10)8 9 (10)

Note in the optimal bidding formula of Eq.(6) the third term W8 ∗�8
only refers to the constant �8 in the constraints. Hence, it can be

easily accounted for by the generated factors of the policy net.

5.2 Objective Scores and Optimization

5.2.1 Objective Scores. In this paper, we consider three popular

objectives2 of ADs: optimizing click volume under the constraint

of PPC (Objective 1), optimizing GMVunder the constraint of cost

(Objective 2) and optimizing volume of adding to shopping cart

(CART) under the constraint of cost (Objective 3). The objective

scores of these objectives are calculated by accumulation in one

episode, i.e. J . For clarity, we first define an accumulating func-

tion:

0({48 9 }, :,+ ) =
∑

9 ∈J

∑

8 ∈I
(: )
9

48 9 ∗+8 9 (11)

where {48 9 } represents the RTB results of our policy net,+ denotes

the target value to accumulate and : means we accumulate only

among ADs with objective : . For example, 0({48 9 }, 1, �)') means

we accumulate the CTR values of winning ADs with objective 1,

corresponding to the predicted click volume of these ADs in an

episode3; 0({48 9 }, 2,F) means the accumulated cost of ADs with

objective 2.

The design ideas for objective scores are as follows: (1) They

should take the corresponding constraints into consideration, e.g.,

as regularization penalties. (2) Since ADs with the same objective

share the same agent model, it is more reasonable to take them

as a whole. (3) to facilitate optimization we should keep different

objectives/constraints in a similar scale. Hence, we define objective

scores using relative ratio values between two bidding policies: the

optimal bidding policy to be learned vs. the benchmark bidding

2They are popular combinations of objectives and constraints on Taobao. This makes
the scopes of AD constraints slightly different from those of Eq. (3).
3Note that since training can only be done on offline data by simulation, the objective
scores are calculated by predicted results.

policy. In this work, we take OCPC [27] as the benchmark bidding

policy. Let {4
′

8 9 } represent the RTB results of the OCPC policy. The

objective score for objective 1 is defined as:

" (1)
=
0({48 9 }, 1,�)')

0({4
′

8 9 }, 1,�)')
−
0({48 9 }, 1,F)/0({48 9 }, 1,�)')

0({4
′

8 9 }, 1,F)/0({4
′

8 9 }, 1,�)')
(12)

Note that Eq. (12) takes the form of "objective − constraint", where

the first and second terms are ratios of aggregated click volume and

PPC, respectively, between the two polices. The score definitions

for the other objectives, Eqs. (13) and (14), are similar to Eq. (12):

" (2)
=
0({48 9 }, 2,�"+ )

0({4
′

8 9 }, 2,�"+ )
−
0({48 9 }, 2,F)

0({4
′

8 9 }, 2,F)
(13)

" (3)
=
0({48 9}, 3,��') )

0({4
′

8 9}, 3,��') )
−
0({48 9}, 3,F)

0({4
′

8 9}, 3,F)
(14)

As for the global objective, we maximize global GMV under the

constraint to keep the platform revenue (i.e., cost of ADs). The cor-

responding objective scores is defined as follows:

" (0)
=
0({48 9 }, 0,�"+ )

0({4
′

8 9 }, 0,�"+ )
− 1 − |

0({48 9 }, 0,F)

0({4
′

8 9 }, 0,F)
− 1| (15)

Note that : = 0 in the accumulating function means we aggregate

w.r.t ADs in I (0) where we define I (0)
= I∪I, i.e., the whole AD

set containing self-bidding ADs. The constraint is introduced in a

different way. When the platform revenue drops below that of the

OCPC policy, the “−” between the two terms turns into “+” due to

the absolute value operation, which means we should increase the

revenue to avoid collusion among ADs. If it goes beyond OCPC,

we also punish it since advertisers would not be happy to achieve

higher profit with higher cost. In order to be consistent with the

" (1) ," (2) and " (3) ratio, we subtract 1 from the target.

5.2.2 Model Optimization. In order to reduce the search space of

multi-objective optimization and keep optimization flexible for dif-

ferent numbers of ADs’ objectives, we propose to optimize ADs’

multiple objectives by focusing on the minimum one in each itera-

tion. The detailed mathematical definition is as follows:

"�� =<8=(" (1) , " (2) , " (3) ) (16)

Based on this optimization strategy, we transform the problem into

optimizing the minimum score of ADs’ objectives together with

the score for global objective in each iteration. In order to achieve

better efficiency for large-scale industrialization, we further com-

bine them by introducing a hyperparameter _" :

"0;; = "
(0) + _" ∗"�� (17)

"0;; will be used as the evaluation score for seeking optimal para-

meters in ES.

Let \ denote the vector containing all the parameters of the bid-

ding policy network.We first initialize a set of� parameter vectors

{\?ℎ}
�
ℎ=1

from the standard normal distribution for the first itera-

tion ? = 1, and simulate RTB by an offline simulator for each \1ℎ .

In the appendix, we will elaborate the offline simulator in detail.

We then calculate the"0;; scores for these parameter vectors, and

select the, parameter vectors with the highest "0;; scores (for

? ≥ 2, we first filter these parameter vectors by retaining only

those with both" (0) and"�� scores no less than the best results



Table 3: Results for the offline simulator across different days. The percentage values denote the improvement ratios of the

methods versus OCPC.

August 9, 2020 July 16,2020

" (0) " (1) " (2) " (3) " (0) " (1) " (2) " (3)

OCPC 100% 100% 100% 100% 100% 100% 100% 100%

MKB 86.7% 87.6% 88.1% 87.4% 87.1% 86.6% 85.8% 86.3%

M-RMDP 104.5% 94.5% 104.3% 98.7% 103.4% 93.6% 103.3% 97.5%

DCMAB 106.7% 96.6% 106.4% 99.4% 105.9% 95.6% 105.7% 98.7%

MACG 111.6% 106.2% 107.2% 112.9% 110.4% 107.5% 107.1% 113.2%

in the last iteration. In this way, we can guarantee the best perform-

ing \ in each iteration does not have degenerated objective scores,

and converges to a Pareto optimal solution with ? increasing.). For

the selected parameter vectors, we perform random perturbation

(i.e. nℎ ∼ # (0, � ) where nℎ is a perturbation parameter) to generate

a new population {\ (?+1)ℎ}
�
ℎ=1

of parameter vectors for the next

iteration. The above process is repeated until the "0;; score con-

verges and finallywe select the top parameter vector as the optimal

model. With such a parameter exploration scheme, the training

would converge faster compared to the previous RL-based meth-

ods based on action space exploration, since ES is less affected by

the complex bidding environment. In practice, we implement the

training of MACG in a distributed computation environment. The

pseudo-code is shown in Algorithm 1 in the appendix.

6 EXPERIMENTS

In this section, we evaluate the proposed bid optimization algorithm

in MACG by conducting a comprehensive suite of experiments on

a large-scale offline dataset, and via online A/B tests in Taobao.

6.1 Dataset

We collected a real-world dataset from Taobao sponsored search

platform for offline evaluation. The dataset contains auctions data

and ADs’ features, of 4 days (July 15th, 2020, July 16th, 2020, Au-

gust 8th, 2020 and August 9th, 2020). For each day, we randomly

sampled 109 auctions with nearly 106 ADs. We perform two paral-

lel groups of experiments and treat the data of July 15th (August

8th) as the training set, and the corresponding next day, July 16th

(August 9th) as the test set for the first (second) group. The percent-

ages of ADs with the GMV, CART and click objectives are 52%, 11%

and 38%, respectively.

6.2 Compared Methods and Evaluation Setting

Our MACG is compared with the following methods.

ManualKeyword-levelBidding (MKB) sets bids on each keyword

and all the auctions corresponding to the keyword use the fixed

bids.

Optimized Cost Per Click (OCPC) [27] ranks the multiple ADs

with respect to the optimization objective. Then the ranked AD

list is examined sequentially to check if the required bids lie in the

feasible bid ranges. OCPC is a single-auction solution with only

bid limits constraint. In our experiments, we treat OCPC as the

fundamental baseline with GMV as the optimization objective.
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Figure 2: Training convergence on August 8th, 2020 and July

15th, 2020.

Massive-agent RL with Robust MDP (M-RMDP) [24] is an RL-

based method which considers each AD as an agent and trains a

multi-agent deep Q-learning network [8] to bid. In order to apply it

to our scenario with millions of ADs, we divide ADs into multiple

clusters according to different objectives, and then assign an agent

to an AD cluster.

Distributed Coordinated Multi-Agent Bidding (DCMAB) [15]

firstly groups ADs and constructs an agent for each cluster. Then

all agents’ bidding actions are fed into the critic function Q. Finally,

a distributed coordinatedmulti-agent deep deterministic policy gradi-

ent technique is utilized to update the actor network.

M-RMDP and DCMAB were proposed for the single objective

case. As aforementioned, RL-based methods suffer from poor con-

vergence due to very complex environment. And the situation be-

comes much worse when handling multi-objective optimization.

Thereby, we set their objective as maximizing GMV under budget

constraints and split all-day auction data into 24 time slices, which

is consistent with their experiment settings. For fair comparison,

we set an agent for each AD cluster (I (1) , I (2) , I (3) ).

We evaluate the performance from two aspects, i.e., ADs’ ob-

jectives and the global objective. For ADs’ objectives including the

click volume under PPC constraint, GMV under cost constraint and

volume of CART under cost constraint, we assess them on the cor-

responding AD clusters I (1) , I (2) , I (3) by scores" (1) ," (2) and

" (3) defined in Section 5.2, respectively. " (0) calculated on the

whole set of ADs is utilized to evaluate the global objective. We

report the improvement ratios of all the methods compared with

OCPC.



Table 4: Results of offline ablation experiments across different days. The percentage values denote the improvement ratios

of the methods versus OCPC.

August 9, 2020 July 16,2020

" (0) " (1) " (2) " (3) " (0) " (1) " (2) " (3)

OCPC 100% 100% 100% 100% 100% 100% 100% 100%

MACG-g 105.3% 104.9% 106.4% 107.8% 104.2% 105.3% 104.5% 108.1%

MACG-l 112.4% 101.3% 109.9% 103.2% 114.3% 102.1% 110.7% 102.6%

MACG-a 110.4% 105.6% 106.3% 111.7% 109.9% 106.1% 106.7% 112.8%

MACG 111.6% 106.2% 107.2% 112.9% 110.4% 107.5% 107.1% 113.2%
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Figure 3: Online experiment results on continuous 15 days (Sep. 12th, 2020 - Sep. 26th, 2020).

6.3 OFFLINE EVALUATION

In the offline experiments, for all auctions J in the test set, we

first obtain the winning ADs of different methods through offline

simulator. Then we combine the historical data, such as �)' and

�+' to calculate the estimated objective scores.

6.3.1 Model Comparison. Tab. 3 shows the experimental results

of different methods. First, MKB performs the worst. This reveals

the importance of auction-level real time bidding. Second, RL based

methods (M-RMDP, DCMAB) outperform OCPC on the " (0) and

" (2) scores. This is intuitive since OCPC learns the optimal bid-

ding strategy for each AD separately in each auction, and therefore

fails to consider bidding interactions in the complex auction envir-

onment. On the contrary, M-RMDP and DCMAB use multi-agent

DQN and multi-agent DDPG to characterize the complex bidding

interactions in this environment. Third, the" (1) and " (3) scores

of M-RMDP and DCMAB exhibit large differences compared with

their " (0) and " (2) scores. The reason might be that " (0) and

" (2) correspond to the global and ADs’ GMV, which is also the op-

timization objective of M-RMDP and DCMAB. However," (1) and

" (3) scores evaluate ADs’ other objectives. The results show that

the single objective methods are difficult to satisfy ADs’ person-

alized objectives. Finally, MACG significantly outperforms all the

comparedmethods on all the objectives. This confirms that the pro-

posed multi-objective cooperative bidding strategy improves both

single advertiser’s objective and global profit.

6.3.2 Ablation Experiments. Next we conduct ablation experiments

to verify the effectiveness of different parts ofMACG, including the

sub-networks for the global objective and ADs’ objectives, as well

as the allocation network: 1) MACG-g (MACG without shared

net). To prove the global objective can achieve better global profit

with the shared network of MACG, we remove the shared network

and the allocation network to construct MACG-g. The allocation

network is designed to allocate the weights of shared network and

agent networks. When the shared network or (agent networks)

is removed, the allocation network will naturally be removed. 2)

MACG-l (MACG without agent nets). To verify the effective-

ness of our multi-objective cooperative strategy, we remove the

agent networks and the allocation network to construct another

variant, i.e., MACG-l. This corresponds to sorting smart-bidding

ADs always according to GMV. Due to the existence of self-bidding

ADs, we could still optimize the effect of smart-bidding ADs by op-

timizing the shared network. 3) MACG-a (MACG without the

allocation net). In MACG-a, the output of the allocation network

is replaced by a single parameter 0.

Tab. 4 shows the results. There are two important observations:

1) MACG outperforms MACG-g and MACG-a on all evaluation

scores. The global score " (0) of MACG-g drops sharply. This in-

dicates without shared net, ADs more easily suffer ineffective com-

petition. In addition, the evaluation scores for ADs’ objectives also

decrease. The reason is that compared with the multi-AD coopera-

tion in MACG, the competition mode in MACG-g causes a smaller

solution space. This influences model optimization. MACG-a uses

static weight parameters 0, which cannot fit the real-time auction

environment. 2) For MACG-l, only the global GMV objective is op-

timized, resulting in the improvement in GMV related scores," (0)

and " (2) , but the other scores are influenced seriously.

6.3.3 ConvergenceAnalysis. Themulti-objective optimization prob-

lem in MACG is solved by evolution strategies. Here we analyse its

empirical convergence properties. Fig. 2 shows the global objective

and ADs’ multi-objective scores against the number of iterations.

We find that at the beginning the objective scores increase rapidly



and then become stable in about 10 iterations. Experimental res-

ults verify that MACG has a strong learning ability in exploring

the optimal solutions. The reason could be that the search space

of MACG is small (the parameter number of MACG is less than

200, which is elaborated in the Appendix). Therefore, MACG can

efficiently explore the optimal solutions via parameter space ex-

ploration.

6.4 ONLINE EVALUATION

We now test MACG in the real auction environment of the Alibaba

search auction platform. Nearly 107 ADs participate in the online

real-time bidding, with 1011 auctions requests on an ordinary day.

Considering the volatility of online traffic, we conduct the online

experiments from Sep. 12th, 2020 to Sep. 26th, 2020 (15 days in

total). For model training, we use the records of the previous day to

update the parameters in day level. We use a standard A/B testing

configuration and still consider OCPC as the benchmark bucket.

We randomly sample 20% online traffics as the experimental bucket

and another 20% online traffics as the benchmark bucket.

6.4.1 Result Analysis. Fig. 3 shows the online experiment results

and we can get the following observations: 1) MACG still signific-

antly outperforms the baselinemethod. For instance, MACGachieves

on average 4.42% improvement of" (0) . 2)MACGmaintains a relat-

ively stable improvement ratio in 15 days (The standard deviations

of" (0) ," (1) ," (2) and" (3) in this period are 0.75%, 0.34%, 0.91%

and 0.84%, respectively). This proves the effectiveness and robust-

ness of our model in the online environment.

6.4.2 Experimental Difference Analysis. Note that there exist per-

formance differences for MACG between online and offline exper-

iments. For example, the online " (0) scores are about 5% lower

than offline scores. The reasons might be: 1) The objective scores in

offline environment are calculated based on predicted values, and

there could be a gap between the predicted values and the real res-

ults. For instance, the predicted GMV score depends on predicted

CVR (�"+ = �)' ∗�+' ∗ �% ). However, since the transaction be-

havior is extremely sparse, the estimation error in CVR prediction

is inevitable. 2) In the offline data collection, if an AD’s budget is

used up, the ADwill quit and the follow-up auctions do not involve

this AD. The optimization of themodel is somehow affected by this

phenomenon in the offline simulator, while this phenomenon does

not exist in the online setting. Such a discrepancy could also lead

to degenerated performance.

7 CONCLUSIONS

In this paper, we propose a novel multi-AD cooperative games for-

mulation for bid optimization in e-commercial sponsored search.

MACG considers not only multi-objectives of smart-bidding ad-

vertisers but also the benefits of self-bidding advertisers and the

platform. Furthermore, we theoretically analyze the optimal func-

tional bidding formula under MACG. A multi-agent policy net is

designed based on the optimal bidding form to solve MACG, en-

coding both selfish and global objectives. In order to achieve timely

training of the model for large-scale industrial environments, we

heuristically design an efficient multi-agent ES to update network

parameters. For empirically evaluation, we deploy MACG in a dis-

tributed computation environment in Taobao’s search auction plat-

form and offline evaluation and standard online A/B tests prove the

superiority of MACG compared to state-of-art methods. In the fu-

ture, we will explore more efficient multi-objective optimization

algorithms to pursue optimal solutions.
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APPENDICES

A REPRODUCIBILITY

We will provide details of our implementation and experimental

setup to help reproduce the findings in this work. Though we can-

not release the codes and datasets due to business secret and pri-

vacy issues, the proposedmodels are rather standard without soph-

isticated techniques. Hence, we believe it is easy to re-implement

them with the information here.

B DISTRIBUTED COORDINATED MACG
ALGORITHM

In this section, we summarize the distributed coordinated MACG.

We distribute billions of auction data into the cluster platform, and

let each CPU process partial data. The details of the distributed

coordinated MACG are shown in Algorithm 1.

Algorithm 1 Distributed Coordinated MACG

Require:

Learning rate U ,

Noise standard deviation X ,

The numbers of multi-workers, ,

Times of perturbations in each epoch � ,

Total numbers of auctions |� |.

1: Initialization: initialize parameters population {\1F}
F=,
F=1 ran-

domly and send � /, auctions in order fromJ for eachworker.

2: for episodic for p = 1,2, ..., P do

3: for parameter w = 1,2,...,, do

4: for parameter h = 1,2,...,�/, do

5: Sample nℎ ∼ # (0, � ).

6: Update \?ℎ = \?F + X ∗ nℎ .

7: end for

8: end for

9: Send the parameters set {\?ℎ}
�
ℎ=1

to each worker

10: for multiple workers w = 1,2, ...,, do

11: for each worker j = 1, 2, ..., |J |/W do

12: Simulate 9th auction with parameters and save scalar

48 9 ,F8 9 ,�)'8 9 for winning AD 8 .

13: end for

14: end for

15: Send all scalars 48 9 , F8 9 ,�)'8 9 from each worker to every

other workers.

16: Compute" (1) " (2) ," (3) and" (0) corresponding to policy

parameters through Eq. (12), (13),(14), (15).

17: Compute"0;; corresponding to policy parameters through

Eq. (16),(17) .

18: Select topW\?F through"0;; fromparameters set {\?ℎ}
�
ℎ=1

when" (0) and "�� are both greater than last epoch.

19: Save the seed parameters {\ (?+1)F}
F=,
F=1 for next epoch.

20: end for



Table 5: Hyperparameter settings

Hyper-parameter Setting

�64=C (:) Net [8,4,1]

Shared Net [8,4,1]

Allocation Net [8,4,1]

H 10000

Learning Rate 0.001

Number of Workers 2000

Range 0.3

_" 1.2

C IMPLEMENTATION DETAILS

C.1 Offline Simulator

For the offline simulator construction, firstly, we need to record

the complete online bidding information for each auction, includ-

ing all ADs in the bidding queue, and related model-based features,

such as CTR and CVR. These features do not change in the offline

environment. We calculate the multi-objective scores of historical

bid strategy as a benchmark. For simulated re-bidding of all auc-

tions, the new bids are ordered by eCPM. Top ADwins the auction

and the cost is made according to GSP. And then, we calculate the

multi-objective scores caused by the new bids and evaluate the bid-

ding strategy. The offline simulator essentially re-orders the ADs

in the bidding queue by re-bidding. Alibaba platform uses OCPC

strategy as the online bidding policy, so the multi-objective scores

of OCPC are employed as the benchmark of offline simulator.

C.2 Details of Features

To help reproduce the experiments, we provide detailed data char-

acteristics. The features of AD 8 under auction 9 is defined as Sij. It

contains related real-time contextual features: �)'8 9 , �+'8 9 , �%8 9 ,

,�+'8 9 , �"+8 9 , �$()8 9 , %%�8 9 and C: 9 . S.j denotes the average

of {Sij}8 ∈I9 .

C.3 Hyper-parameter Settings

Tab. 5 exhibits the settings of key hyper-parameters. For each agent,

we use the same network structure with agent-specific parameters.

C.4 Details of Policy Net

As show in Tab.5, the�64=C (:) Net, the Shared Net and the Alloca-

tion Net are three-layer neural networks with the same network ar-

chitecture. The network setting [8,4,1] denotes the dimensionality

of the input layer, hidden layer and output layer. We adopt the sig-

moid function as the activation function for all the networks. For

�64=C (:) Net and Shared Net, we transform their outputs G into [1-

A0=64 , 1+A0=64] interval through [1− A0=64 ∗ (2 ∗ 1/(1+ 4−G ) − 1),

1 + A0=64 ∗ (2 ∗ 1/(1 + 4−G ) − 1)]. The total number of parameters

in the policy network is 180 (180 = 5 ∗ (8 ∗ 4 + 4)).

C.5 Training Strategy

Based on the offline simulator, we first initialize � groups of para-

meters {\?ℎ}
�
ℎ=1

for the first epoch ? = 1. Then we collect the

predicted objective values throughout the epoch and use the multi-

objective score "0;; to select top, groups of parameters as the

seed parameters for the next epoch. We perform random perturb-

ation (i.e., nℎ ∼ # (0, � ) where nℎ is a perturbation parameter) to

generate a new population {\ (?+1)ℎ}
�
ℎ=1

of parameter vectors for

the next iteration and simulate the above bidding process until all

the objectives converge.

C.6 Hardware and Software

We deploy MACG on a cluster with 2000 CPUs and TensorFlowRS

(TFRS) platform provided by Alibaba. TFRS is a distributed deep

learning platformbased on TensorFlow 1.7 used internally inAlibaba.

In our experiments, the trainable dataset is distributed on 2000

workers (20 CPU cores for each worker), compute corresponding

objective scores asynchronously and accumulate the objective score

of each worker to update the model parameters.
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