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ABSTRACT

Knowledge graph completion aims to predict missing relations be-
tween entities in a knowledge graph. In this work, we propose a
relational message passing method for knowledge graph comple-
tion. Different from existing embedding-based methods, relational
message passing only considers edge features (i.e., relation types)
without entity IDs in the knowledge graph, and passes relational
messages among edges iteratively to aggregate neighborhood in-
formation. Specifically, two kinds of neighborhood topology are
modeled for a given entity pair under the relational message pass-
ing framework: (1) Relational context, which captures the relation
types of edges adjacent to the given entity pair; (2) Relational paths,
which characterize the relative position between the given two
entities in the knowledge graph. The two message passing modules
are combined together for relation prediction. Experimental results
on knowledge graph benchmarks as well as our newly proposed
dataset show that, our method PATHCON outperforms state-of-the-
art knowledge graph completion methods by a large margin. PATH-
Con is also shown applicable to inductive settings where entities
are not seen in training stage, and it is able to provide interpretable
explanations for the predicted results. The code and all datasets are
available at https://github.com/hwwang55/PathCon.
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1 INTRODUCTION

Knowledge graphs (KGs) store structured information of real-world
entities and facts. A KG usually consists of a collection of triplets.
Each triplet (h, r,t) indicates that head entity h is related to tail
entity t through relationship type r. Nonetheless, KGs are often
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(a) Consider we aim to predict whether Ron Weasley or Hedwig is
a Pet of Harry Potter. Both entities have the same relational path
(Lives with) to Harry Potter but they have distinct relational con-
text: Ron Weasley has {Brother of, Lives with}, while Hedwig has
{Bought, Lives with}. Capturing the relational context of entities
allows our model to make a distinction between Ron Weasley, who
is a person, and Hedwig, which is an owl.

(b) Two head entities Hermione Granger and Draco Malfoy have
the same relational context {Occupation, House}, but different
relational paths to the tail entity Harry Potter {(House, House),
(Occupation, Occupation)} vs. {(Occupation, Occupation)}, which
allows our model to predict friendship between Harry Potter and
Hermione Granger vs. Draco Malfoy.

Figure 1: (a) Relational context of an entity and (b) relational
paths between entities. Our model is able to capture both.

incomplete and noisy. To address this issue, researchers have pro-
posed a number of KG completion methods to predict missing
links/relations in KGs [3, 9, 12, 13, 19, 22, 24, 35, 36, 39, 40].

In general, relation types are not uniformly distributed over
a KG but spatially correlated with each other. For example, the
neighboring relations of “graduated from” in the KG are more
likely to be “person.birthplace” and “university.location” rather
than “movie.language”. Therefore, for a given entity pair (h, t),
characterizing the relation types of neighboring links of h and ¢
will provide valuable information when inferring the relation type
between h and t. Inspired by recent success of graph neural net-
works [11, 15, 34], we propose using message passing to capture
the neighborhood structure for a given entity pair. However, tra-
ditional message passing methods usually assume that messages
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are associated with nodes and messages are passed from nodes
to nodes iteratively, which are not suitable for KGs where edge
features (relation types) are more important.

Relational message passing. To address the above limitation, we
propose relational message passing for KG completion. Unlike tra-
ditional node-based message passing, relational message passing
only considers edge features (relation types), and passes messages
of an edge directly to its neighboring edges. Note that since rela-
tional message passing only models relations rather than entities, it
brings three additional benefits compared with existing knowledge
graph embedding methods [3, 13, 22, 24, 35, 39]: (1) it is inductive,
since it can handle entities that do not appear in the training data
during inference stage; (2) it is storage-efficient, since it does not
calculate embeddings of entities; and (3) it is explainable, since it
is able to provide explainability for predicted results by modeling
the correlation strength among relation types. However, a potential
issue of relational message passing is that its computational com-
plexity is significantly higher than node-based message passing
(Theorem 2). To solve this issue, we propose alternate relational
message passing that passes relational messages between nodes and
edges alternately over the KG. We prove that alternate message
passing scheme greatly improves time efficiency and achieves the
same order of computational complexity as traditional node-based
message passing (Theorem 1 and 3).

Relational context and relational paths. Under the alternate
relational message passing framework, we explore two kinds of
local subgraph topology for a given entity pair (h, t) (see Figure 1
for an illustrating example): (1) Relational context. It is important
to capture the neighboring relations of a given entity in the KG,
because neighboring relations provide us with valuable information
about what is the nature or the “type” of the given entity (Figure
1a). Many entities in KGs are not typed or are very loosely typed,
so being able to learn about the entity and its context in the KG
is valuable. We design a multi-layer relational message passing
scheme to aggregate information from multi-hop neighboring edges
of (h,t). (2) Relational paths. Note that modeling only relational
context is not able to identify the relative position of (h,t). It is
also important to capture the set of relational paths between (A, t)
(Figure 1b). Here different paths of connections between the entities
reveal the nature of their relationship and help with the prediction.
Therefore, we calculate all relational paths connecting h and ¢ in the
KG and pass relational messages along these paths. Finally, we use
an attention mechanism to selectively aggregate representations
of different relational paths, then combine the above two modules
together for relation prediction.

Experiments. We conduct extensive experiments on five well-
known KGs as well as a new KG proposed by us, DDB14 dataset. Ex-
perimental results demonstrate that our proposed model PATHCON
(short for relational PATHs and CONtext) significantly outperforms
state-of-the-art KG completion methods, for example, the absolute
Hit@1 gain over the best baseline is 16.7% and 6.3% on WN18RR
and NELL995, respectively. Our ablation studies show the effective-
ness of our approach and demonstrate the importance of relational
context as well as relational paths. Our method is also shown to
maintain strong performance in inductive KG completion, and it

Relational Path

Relational

Figure 2: An example of PATHCON considering both the rela-
tional context within 2 hops of the head and the tail entities
(denoted by red edges) and relational paths of length up to 3
relations that connect head to tail (denoted by green arrows).
Context and paths are captured based on relation types (not
entities) they contain. By combining the context and paths
PATHCON predicts the probability of relation r.

provides high explainability by identifying important relational
context and relation paths for a given predicted relation.

Contributions. Our key contributions are listed as follows:

e We propose alternate relational message passing framework
for KG completion, which is inductive, storage-efficient, ex-
plainable, and computationally efficient compared with exist-
ing embedding-based methods;

e Under the proposed framework, we explore two kinds of
subgraph topology: relational context and relational paths,
and show that they are critical to relation prediction;

e We propose a new KG dataset DDB14 (Disease Database with
14 relation types) that is suitable for KG-related research.

2 PROBLEM FORMULATION

Let G = (V, &) be an instance of a knowledge graph, where V
is the set of nodes and & is the set of edges. Each edge e has a
relation type r € R. Our goal is to predict missing relations in G,
i.e., given an entity pair (h, t), we aim to predict the relation of the
edge between them.! Specifically, we aim to model the distribution
over relation types given a pair of entities (h, t): p(r|h, t). This is
equivalent to modeling the following term

p(rih,t) o< p(h,t]r) - p(r) 1)
according to Bayes’ theorem. In Eq. (1), p(r) is the prior distribution

over relation types and serves as the regularization of the model.
Then the first term can be further decomposed to

p(hotlr) = 5 (p(hlr) - pCtlhr) +p(t1) - p(HED). (@)

Eq. (2) sets up the guideline for designing our model. The term
p(h|r) or p(t|r) measures the likelihood of an entity given a par-
ticular relation. Since our model does not consider the identity
of entities, we use an entity’s local relational subgraph instead to
represent the entity itself, i.e., p(C(h)|r) and p(C(t)|r) where C(-)

Some of the related work formulates this problem as predicting the missing tail (head)
entity given a head (tail) entity and a relation. The two problems are actually reducible
to each other: Given a model ®(-|h, ) that outputs the distribution over relation types
for an entity pair (h, ¢), we can then build a model T'(+ |k, r) = SortMax, (®(r|h, t))
that outputs the distribution over tail entities given h and r, and vice versa. Since the
two problems are equivalent, we only focus on relation prediction in this work.



Symbol Description
h,t Head entity and tail entity
r Relation type
sk Hidden state of edge e at iteration i
mi Message of node v at iteration i
N(e) Endpoint nodes of edge e
N (v) Neighbor edges of node v
S(ht) Context representation of the entity pair (h,t)
Shot Path representation of all paths from h to ¢
ap Attention weight of path P
Pht Set of paths from h to ¢

Table 1: Notation used in this paper.

denotes the local relational subgraph of an entity. This is also known
as relational context for h and t. The term p(t|h,r) or p(h|t,r) in
Eq. (2) measures the likelihood of how ¢ can be reached from h or
the other way around given that there is a relation r between them.
This inspires us to model the relational paths between h and ¢t in
the KG. In the following we show how to model the two factors in
our method and how they contribute to relation prediction.

3 OUR APPROACH

In this section, we first introduce the relational message passing
framework, then present two modules of the proposed PATHCON:
relational context message passing and relational path message
passing. Notations used in this paper are listed in Table 1.

3.1 Relational Message Passing Framework

Traditional node-based message passing. We first briefly re-
view traditional node-based message passing method for general
graphs. Assume that each node v is with feature x,. Then the mes-
sage passing runs for multiple timesteps over the graph, during
which the hidden state s, of each node v in iteration i is updated by

my =A ({si}ue/\/(u))’ ®)
sitl —y (sg, m;',) , ()

where ml is the message received by node v in iteration i, N'(v)
denotes the set of neighbor nodes of v in the graph, A(:) is message
aggregation function, and U(+) is node update function. The initial
hidden state sJ = x,,.

The above framework, though popular for general graphs and
has derived many variants such as GCN [15], GraphSAGE [11], and
GIN [34], faces the following challenges when applied to knowledge
graphs: (1) Unlike general graphs, in most KGs, edges have features
(relation types) but nodes don’t, which makes node-based message
passing less natural for KGs. Though node features can be set as
their identities (i.e., one-hot vectors), this will lead to another two
issues: (2) Modeling identity of nodes cannot manage previously
unseen nodes during inference and fails in inductive settings. (3) In
real-world KGs, the number of entities are typically much larger
than the number of relation types, which requires large memory
for storing entity embeddings.

Relational message passing. To address the above problems, a
natural thought is to perform message passing over edges instead

of nodes:
mi =4 ({58} pente)) (5)
sitl =y (sé, mé), (6)

where N (e) denotes the set of neighbor edges of e (i.e., edges
that share at lease one common end-point with e) in the graph,
and s0 = x, is the initial edge feature of e, i.e., the relation type.
Therefore, Egs. (5) and (6) are called relational message passing.

Relational message passing avoids the drawbacks of node-based
message passing, however, it brings a new issue of computational
efficiency when passing messages. To see this, we analyze the com-
putational complexity of the two message passing schemes (proofs
are given in Appendix A and B):

THEOREM 1 (COMPLEXITY OF NODE-BASED MESSAGE PASSING).
Consider a graph with N nodes and M edges. The expected cost of
node-based message passing (Eqs. (3) and (4)) in each iteration is
2M + 2N.

THEOREM 2 (COMPLEXITY OF RELATIONAL MESSAGE PASSING).
Consider a graph with N nodes and M edges. The expected cost
of relational message passing (Egs. (5) and (6)) in each iteration is
N - Var[d] + %, where Var[d] is the variance of node degrees in
the graph.

Alternate relational message passing. According to the above
theorems, the complexity of relational message passing is much
higher than node-based message passing, especially in real-world
graphs where node distribution follows the power law distribution
whose variance (Var[d]) is extremely large due to the long tail. To
reduce the redundant computation in relational message passing
and improve its computational efficiency, we propose the following
message passing scheme for KGs:

iy =Ai ({Sé}eeN(v)) ’ @
mi =Ay (mb,mh), o.u € N(e) (®)
AR (sé, mé) ) )

We decompose edge aggregation in Eq. (5) into two steps as Egs. (7)
and (8). In Eq. (7), for each node v, we aggregate all the edges that v
connects to by an aggregation function A;(-) and get message m,
where N(v) denotes the set of neighbor edges for node v. Then in
Eq. (8), we obtain message ml, of edge e by aggregating messages
from its two end-points v and u using function Az (), where N (e)
denotes the set of neighbor nodes for edge e. The hidden state of
edge e is finally updated using the message m’, as in Eq. (9).

An intuitive understanding of alternate relational message pass-
ing is that nodes here serve as “distribution centers” that collect
and temporarily store the messages from their neighbor edges, then
propagate the aggregated messages back to each of their neighbor
edges. Therefore, we call Eqs. (7)-(9) alternate relational message
passing, as messages are passed alternately between nodes and
edges.

The complexity of alternate relational message passing is given
as follows (proof is given in Appendix C):



THEOREM 3 (COMPLEXITY OF ALTERNATE RELATIONAL MESSAGE
PASSING). Consider a graph with N nodes and M edges. The expected
cost of alternate relational message passing (Egs. (7)-(9)) in each
iteration is 6M.

From Theorem 3 it is clear to see that alternate relational message
passing greatly reduces the time overhead and achieves the same
order of complexity as node-based message passing.

Remarks. We present the following two remarks to provide more
insight on the proposed framework:

REMARK 1 (RELATIONSHIP WITH BELIEF PROPAGATION). Alternate
relational message passing is conceptually related to belief propaga-
tion (BP) [37], which is also a message-passing algorithm that passes
messages between nodes and edges. But note that they are signifi-
cantly different in: (1) application fields. BP is used to calculate the
marginal distribution of unobserved variables in a graphical model,
while our method aims to predict the edge type in KGs; (2) the purpose
of using edge-node alternate message passing. BP uses this because of
the special structure of factor graphs, while we use this to reduce the
computational overhead.

REMARK 2 (UTILIZING NODE FEATURES). Though our proposed
framework is claimed to only use edge features, it can be easily ex-
tended to the case where node features are present and assumed to
be important, by additionally including the feature vector of node v
in Eq. (7), i.e, ml = A ({sé}eeN(u),xU), where x, is the feature of
node v. As long as node features do not contain node identities, our
proposed framework is still inductive. We do not empirically study
the performance of our method on node-feature-aware cases, because
node features are unavailable for all datasets used in this paper. We
leave the exploration of this extension to future work.

3.2 Relational Context

For a KG triplet (h,r,t), relational context of h and ¢ is usually
highly correlated with r. For example, if r is “graduated from”,
it’s reasonable to guess that the surrounding relations of h are
“person.birthplace”, “person.gender”, etc., and the surrounding rela-
tions of ¢ are “institution.location”, “university.founder”, “univer-
sity.president”, etc. Therefore, the context of h and ¢ will provide
valuable clues when identifying the relation type of the edge be-
tween them, and here we use the proposed message passing method
to learn from relational context.

Denote s, as the hidden state of edge e in iteration i, and m},
as the message stored at node v in iteration i. We instantiate the
alternate relational message passing in Egs. (7)-(9) to learn the
representation of each edge:

i i
i —Zee/v(m o, (10)
sé“ =0 ([mé, mfl,sé] W bi)’ v,u € Ne), an

where [] is the concatenation function, Wi, b, and o(-) are the
learnable transformation matrix, bias, and nonlinear activation
function, respectively.? s0 = x, is initial feature of edge e, which

2We shall discuss other implementations of Eqgs. (7)-(9) in Section 3.6 and examine
their performance in experiments.

can be taken as the one-hot identity vector of the relation type that
e belongs to.®
Relational context message passing in Egs. (10) and (11) are

repeated for K times. The final message th(_l and mf‘l

are taken
as the representation for head h and tail ¢, respectively. We also
give an illustrative example of relational context message passing
in Figure 2, where the red/pink edges denote the first-order/second-

order contextual relations.

3.3 Relational Paths

We follow the discussion in Section 2 and discuss how to model the
term p(t|h, r) or p(h|t,r). Note that we do not consider node/edge
identity in relational context message passing, which leads to a
potential issue that our model is not able to identify the relative
position between h and ¢ in the KG. For example, suppose for a
given entity pair (h, t), h is surrounded by “person.birthplace”, “per-
son.gender”, etc., and t is surrounded by “institution.location”, “uni-
versity.founder”, “university.president”, etc. Then it can be inferred
that h is probably a person and ¢ is probably a university, and there
should be a relation “graduated_from” between them because such
a pattern appears frequently in the training data. However, the per-
son may have no relationship with the university and they are far
from each other in the KG. The reason why such false positive case
happens is that relational context message passing can only detect
the “type” of h and ¢, but is not aware of their relative position in
the KG.

To solve this problem, we propose to explore the connectivity
pattern between h and ¢, which are represented by the paths con-
necting them in the KG. Specifically, a raw path from A to t ina KG s
a sequence of entities and edges: h(vo) &, 01 o, VUL a,
t(vr), in which two entities v; and v;;1 are connected by edge e;,
and each entity in the path is unique.* The corresponding rela-
tional path P is the sequence of relation types of all edges in the
given raw path, ie., P = (reo, Teps oo reL—l)’ where re; is the rela-
tion type of edge e;. Note that we do not use the identity of nodes
when modeling relational paths, which is the same as for relational
context.

Denote Pj,_,; as the set of all relational paths from A to ¢ in the
KG. Our next step is to define and calculate the representation of
relational paths. In PATHCON, we assign an independent embed-
ding vector sp for each relational path P € P}_,,.°> A potential
concern here is that the number of different paths increases expo-
nentially with the path length (there are |r|¥ k-hop paths), however,
in practice we observe that in real-world KGs most paths actually
do not occur (e.g., only 3.2% of all possible paths of length 2 occur
in FB15K dataset), and the number of different paths is actually
quite manageable for relatively small values of k (k < 4).

An illustrative example of relational paths is shown in Figure 2,
where the two green arrows denote the relational paths from head
entity h to tail entity ¢.

3In cases where relation types have names, initial features can also be bag-of-words
(BOW) or sentence embeddings learned by language models like BERT [7]. We shall
investigate the performance of different initial feature types in experiments.
“Entities in a path are required to be unique because a loop within a path does not
provide additional semantics thus should be cut off from the path.

>Other methods for calculating path representations are also possible. We shall discuss
them in Section 3.6.



3.4 Combining Relational Context and Paths

For relational context, we use massage passing scheme to calculate
the final message mff 1 and m{( ~1 for h and ¢, which summarizes

their context information, respectively. mX~1 and m{( ~1are further
combined together for calculating the context of (h, t) pair:

S(ht) =0 ([mf_l,mf_l] Swk bK_l), (12)

where s(p, ;) denotes the context representation of the entity pair
(h, t). Note here that Eq. (12) should only take messages of h and ¢
as input without their connecting edge r, since the ground truth
relation r should be treated unobserved in the training stage.

For relational paths, note that there may be a number of relational
paths for a given (h, t) pair, but not all paths are logically related to
the predicted relation r, and the importance of each path also varies.
In PATHCON, since we have already known the context s(p, ;) for
(h, t) pair and it can be seen as prior information for paths between
h and t, we can calculate the importance scores of paths based on
S(h,t)- Therefore, we first calculate the attention weight of each
path P with respect to the context sy, ;)

exp (sPTS(hJ))

ap = s (13)

Spepy P (7S

where Py,_,, is the set of all paths from ¢ to t. Then the attention
weights are used to average representations of all paths:

where sj_,; is the aggregated representation of relational paths for
(h, ). In this way, the context information sy, ;) is used to assist in
identifying the most important relational paths.

Given the relational context representation s(j ;) and the rela-
tional path representation s,_,;, we can predict relations by first
adding the two representation together and then taking softmax as
follows:

p(rlh, t) = SoFTMAX (S(h),) + 5h—>t) . (15)

Our model can be trained by minimizing the loss between pre-
dictions and ground truths over the training triplets:

mnL= > J(p(riht), ), (16)
(hrt)eD

where D is the training set and J(-) is the cross-entropy loss.

It is worth noticing that the context representation sy ;) plays
two roles in the model: It directly contributes to the predicted
relation distribution, and it also helps determine the importance of
relational paths with respect to the predicted relation.

3.5 Discussion on Model Explainability

Since PATHCON only models relations without entities, it is able to
capture pure relationship among different relation types thus can
naturally be used to explain for predictions. The explainability of
PaTHCON is two-fold:

On the one hand, modeling relational context captures the cor-
relation between contextual relations and the predicted relation,
which can be used to indicate important neighbor edges for the

given relation. For example, “institution.location”, “university.founder”,

and “university.president” can be identified as important contextual
relations for “graduated from”.

On the other hand, modeling relational paths captures the cor-
relation between paths and the predicted relation, which can indi-
cate important relational paths for the given relation. For example,
(“schoolmate of”, “graduated from”) can be identified as an impor-
tant relational path for “graduated from”.

It is interesting to see that the explainability provided by rela-
tional paths is also connected to first-logic logical rules with the
following form:

Bi(h,x1) A Ba(x1,x2) A+ -+ ABL(xp-1,t) = r(ht),

where A B; is the conjunction of relations in a path and r(h, t) is
the predicted relation. The above example of relational path can
therefore be written as the following rule:

(h, schoolmate of, x) A (x, graduated from, t)
= (h, graduated from, t).

Therefore, PATHCON can also be used to learn logical rules from
KGs just as prior work [9, 12, 19, 36, 40].

3.6 Design Alternatives

Next we discuss several design alternatives for PATHCoN. In our
ablation experiments we will compare PATHCoN with the following
alternative implementations.

When modeling relational context, we propose two alternatives
for context aggregator, instead of the Concatenation context aggre-
gator in Egs. (11) and (12):

Mean context aggregator. It takes the element-wise mean of the
input vectors, followed by a nonlinear transformation function:

, 1.
sil=¢ g(m;+mfl+sé)w+b , o,u € N(e), (17)

The output of Mean context aggregator is invariant to the permuta-
tion of its two input nodes, indicating that it treats the head and
the tail equally in a triplet.

Cross context aggregator. It is inspired by combinatorial features
in recommender systems [31], which measure the interaction of
unit features (e.g., AND(gender=female, language=English)). Note
that Mean and Concatenation context aggregator simply transform
messages from two input nodes separately and add them up to-
gether, without modeling the interaction between them that might
be useful for link prediction. In Cross context aggregator, we first
calculate all element-level pairwise interactions between messages
from the head and the tail:

. m;(l)ma(l) mz(l)ma(d)

mymy, = . (18

mz(d) mic(l) m;’)(d)m;(d)
where we use superscript with parentheses to indicate the element
index and d is the dimension of m}, and mj,. Then we summarize
all interactions together via flattening the interaction matrix to a
vector then multiplied by a transformation matrix:

sl =5 (ﬂatten(mﬁ,mLT)Wli + LWy + bi) ,o,ue N(e). (19)



It is worth noting that Cross context aggregator preserves the order
of input nodes.

Learning path representation with RNN. When modeling rela-
tional paths, recurrent neural network (RNN) can be used to learn
the representation of relational path P = (r1,ry, ...):

sp =RNN (rq,73,...), (20)

instead of directly assigning an embedding vector to P. The advan-
tage of RNN against path embedding is that its number of parame-
ters is fixed and does not depend on the number of relational paths.
Another potential benefit is that RNN can hopefully capture the
similarity among different relational paths.

Mean path aggregator. When calculating the final representation
of relational paths for (h, t) pair, we can also simply average all the
representations of paths from h to t instead of the Attention path
aggregator in Egs. (13) and (14):

$hoot = D pep, ., P (21)

Mean path aggregator can be used in the case where representa-
tion of relational context is unavailable, since it does not require
attention weights as input.

4 EXPERIMENTS

In this section, we evaluate the proposed PATHCON model, and
present its performance on six KG datasets.

4.1 Experimental Setup

Datasets. We conduct experiments on five standard KG bench-
marks: FB15K, FB15K-237, WN18, WN18RR, NELL995, and one
KG dataset proposed by us: DDB14.

FB15K [4] is from Freebase [2], a large-scale KG of general hu-
man knowledge. FB15k-237 [23] is a subset of FB15K where inverse
relations are removed. WN18 [4] contains conceptual-semantic
and lexical relations among English words from WordNet [18].
WN18RR [6] is a subset of WN18 where inverse relations are re-
moved. NELL995 [33] is extracted from the 995th iteration of the
NELL system [5] containing general knowledge.

In addition, we present a new dataset DDB14 that is suitable
for KG-related tasks. DDB14 is collected from Disease Database®,
which is a medical database containing terminologies and concepts
such as diseases, symptoms, drugs, as well as their relationships.
We randomly sample two subsets of 4,000 triplets from the original
one as validation set and test set, respectively.

The statistics of the six datasets are summarized in Table 2. We
also calculate and present the mean and variance of node degree
distribution (i.e., E[d] and Var[d]) for each KG. It is clear that
Var[d] is large for all KGs, which empirically demonstrates that
the complexity of relational message passing is fairly high, thus
alternate relational message passing is necessary for real graphs.

Baselines. We compare PATHCON with several state-of-the-art
models, including TransE [3], ComplEx [24], DistMult [35], Ro-
tatE [22], SimplE [13], QuatE [39], and DRUM [19]. The first six

Shttp://www.diseasedatabase.com

FB15K FB15K-237 WN18 WNI18RR NELL995 DDB14
#nodes 14,951 14,541 40,943 40,943 63,917 9,203
#relations | 1,345 237 18 11 198 14
#training | 483,142 272,115 141,442 86,835 137,465 36,561
#validation| 50,000 17,535 5,000 3,034 5,000 4,000
#test 59,071 20,466 5,000 3,134 5,000 4,000
E[d] 64.6 37.4 6.9 4.2 4.3 7.9
Var[d] |32,441.8 12336.0 236.4 64.3 750.6 978.8

Table 2: Statistics of all datasets. E[d] and Var[d] are mean
and variance of the node degree distribution, respectively.

models are embedding-based methods, while DRUM only uses re-
lational paths to make prediction. The implementation details of
baselines (as well as our method) is provided in Appendix D.

We also conduct extensive ablation study and propose two re-
duced versions of our model, Con and PaTH, which only use rela-
tional context and relational paths, respectively, to test the perfor-
mance of the two components separately.

The number of parameters of each model on DDB14 are shown
in Table 3. The result demonstrates that PATHCoN is much more
storage-efficient than embedding-based methods, since it does not
need to calculate and store entity embeddings.

Method | TransE ComplEx DisMult RotatE SimplE QuatE PaTHCON
#param.| 3.7M 7.4M 37M  74M  74M 147M  0.06M

Table 3: Number of parameters of all models on DDB14.

Evaluation Protocol. We evaluate all methods on relation predic-
tion, i.e., for a given entity pair (h, t) in the test set, we rank the
ground-truth relation type r against all other candidate relation
types. It is worth noticing that most baselines are originally de-
signed for head/tail prediction, therefore, their negative sampling
strategy is to corrupt the head or the tail for a true triple (h, r, 1), i.e.,
replacing h or ¢ with a randomly sampled entity h” or ¢’ from KGs,
and using (h’,r,t) or (h,r,t’) as the negative sample. In relation
prediction, since the task is to predict the missing relation for a
given pair (h, t), we modify the negative sampling strategy accord-
ingly by corrupting the relation r of each true triplet (h,r,t), and
use (h,r’,t) as the negative sample where r’ is randomly sampled
from the set of relation types. This new negative sampling strat-
egy can indeed improve the performance of baselines in relation
prediction.

We use MRR (mean reciprocal rank) and Hit@1, 3 (hit ratio
with cut-off values of 1 and 3) as evaluation metrics.

4.2 Main Results

Comparison with baselines. The results of relation prediction on
all datasets are reported in Table 4. In general, our method outper-
forms all baselines on all datasets. Specifically, the absolute Hit@1
gain of PATHCON against the best baseline in relation prediction
task are 0.2%, 0.6%, 0.9%, 16.7%, 6.3%, and 1.8% in the six datasets, re-
spectively. The improvement is rather significant for WN18RR and
NELL995, which are exactly the two most sparse KGs according to
the average node degree shown in Table 2. This empirically demon-
strates that PATHCON maintains great performance for sparse KGs,
and this is probably because PATHCoON has much fewer parameters
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FB15K FB15K-237 WN18 WNI18RR NELL995 DDB14
MRR Hit@1 Hit@3| MRR Hit@1 Hit@3| MRR Hit@1 Hit@3| MRR Hit@1 Hit@3| MRR Hit@1 Hit@3| MRR Hit@1 Hit@3
TransE | 0.962 0940 0982 | 0.966 0.946 0.984 | 0.971 0955 0.984 | 0.784 0669 0870 | 0.841 0.781 0.889 | 0.966 0.948 0.980
ComplEx | 0.901 0.844 0.952 | 0.924 0.879 0.970 | 0.985 0.979 0.991 | 0.840 0.777 0.880 | 0.703 0.625 0.765 | 0.953 0.931 0.968
DistMult | 0.661 0.439 0.868 | 0.875 0.806 0.936 | 0.786 0.584 0.987 | 0.847 0.787 0.891 | 0.634 0524 0.720 | 0.927 0.886 0.961
RotatE | 0.979 0.967 0.986 | 0.970 0.951 0.980 | 0.984 0.979 0.986 | 0.799 0.735 0.823 | 0.729 0.691 0.756 | 0.953 0.934 0.964
SimplE | 0.983 0.972 0.991 | 0.971 0.955 0.987 | 0.972 0.964 0.976 | 0.730 0.659 0.755 | 0.716 0.671 0.748 | 0.924 0.892 0.948
QuatE |0.983 0.972 0.991 | 0.974 0.958 0.988 | 0.981 0.975 0.983 | 0.823 0.767 0.852 | 0.752 0.706 0.783 | 0.946 0.922 0.962
DRUM | 0.945 0.945 0.978 | 0.959 0.905 0.958 | 0.969 0.956 0.980 | 0.854 0.778 0.912 | 0.715 0.640 0.740 | 0.958 0.930 0.987
Con | 0962 0934 0988 [ 0.978 0961 0.9950.960 0927 0992 | 0.943 0894 0993 | 0.875 0.815 0928 | 0.977 0.961 0.994
+ 0.000 +0.000 =+ 0.000 |+ 0.000 +0.001 =+ 0.000 |+ 0.002 =+ 0.005 =+ 0.001 |+ 0.002 =+ 0.004 + 0.003|=+ 0.003 +0.004 =+ 0.003 |+ 0.000 +0.001 =+ 0.001
Parm | 0.937 0918 0951 | 0.972 0957 0986 | 0.961 0.971 0.989 | 0.933 0.897 0.961 | 0.737 0.685 0.764 | 0.969 0.948 0.991
+0.001 +0.001 =+ 0.001|+0.001 +0.001 =+ 0.001 |+ 0.000 =+ 0.005 =+ 0.001 |+ 0.000 + 0.001 + 0.001|=+ 0.001 + 0.002 =+ 0.002 |+ 0.000 + 0.001 =+ 0.000
ParHCon | 0:984 0.974 0.995 | 0.979 0.964 0.994 (0.993 0.988 0.998 [0.974 0.954 0.994 (0.896 0.844 0.941 0.980 0.966 0.995
+0.001 +0.002 =+ 0.001 |+ 0.000 +0.001 =+ 0.001 |+ 0.001 =+ 0.001 =+ 0.000 |+ 0.001 =+ 0.002 + 0.000|=+ 0.001 + 0.004 =+ 0.004 |+ 0.000 + 0.001 =+ 0.000

Table 4: Results of relation prediction on all datasets
highlighted with underlines.

than baselines and is less prone to overfitting. In contrast, perfor-
mance gain of PATHCoN on FB15K is less significant, which may be
because the density of FB15K is very high so that it is much easier
for baselines to handle.

In addition, the results also demonstrate the stability of PATHCON
as we observe that most of the standard deviations are quite small.

Results in Tables 4 also show that, in many cases CoN or PATH
can already beat most baselines. Combining relational context and
relational paths together usually leads to even better performance.

Inductive KG completion. We also examine the performance of
our method in inductive KG completion. We randomly sample a
subset of nodes that appears in the test set, then remove these
nodes along with their associated edges from the training set. The
remaining training set is used to train the models, and we add back
the removed edges during evaluation. The evaluation transforms
from fully conductive to fully inductive when the ratio of removed
nodes increases from 0 to 1. The results of PATHCON, DistMult,
and RotatE on relation prediction task are plotted in Figure 3. We
observe that the performance of our method decreases slightly in
fully inductive setting (from 0.954 to 0.922), while DistMult and
RotatE fall to a “randomly guessing” level. This is because the two
baselines are embedding-based models that rely on modeling node
identity, while our method does not consider node identity thus
being naturally generalizable to inductive KG completion.

4.3 Model Variants

The number of context hops and maximum path length. We
investigate the sensitivity of our model to the number of context
hops and maximum path length. We vary the two numbers from 0
to 4 (0 means the corresponding module is not used), and report the
results of all combinations (without (0, 0)) on WN18RR in Figure 4. It
is clear to see that increasing the number of context hops and max-
imum path length can significantly improve the result when they
are small, which demonstrates that including more neighbor edges
or counting longer paths does benefit the performance. But the
marginal benefit is diminishing with the increase of layer numbers.
Similar trend is observed on other datasets too.

. Best results are highlighted in bold, and best results of baselines are

Context aggregators. We study how different implementations
of context aggregator affect the model performance. The results of
Mean, Concat, and Cross context aggregator on four datasets are
shown in Figure 5 (results on FB15K and WN18 are omitted as they
are similar to FB15K-237 and WN18RR, respectively). The results
show that Mean performs worst on all datasets, which indicates
the importance of node orders when aggregating features from
nodes to edges. It is also interesting to notice that the performance
comparison between Concat and Cross varies on different datasets:
Concat is better than Cross on NELL995 and is worse than Cross
on WN18RR, while their performance is on par on FB15K-237 and
DDB14. However, note that a significant defect of Cross is that
it has much more parameters than Concat, which requires more
running time and memory resource.

Path representation types and path aggregators. We imple-
ment four combinations of path representation types and path ag-
gregators: Embedding+Mean, Embedding+Attention, RNN+Mean,
and RNN+Attention, of which the results are presented in Figure
6. Different from context aggregators, results on the six datasets
are similar for path representation types and path aggregators, so
we only report the results on WN18RR. We find that Embedding
is consistently better than RNN, which is probably because the
length of relational paths are generally short (no more than 4 in our
experiments), so RNN can hardly demonstrate its strength in mod-
eling sequences. The results also show that Attention aggregator
performs slightly better than Mean aggregator. This demonstrates
that the contextual information of head and tail entities indeed
helps identify the importance of relational paths.

Initial edge features. Here we examine three types of initial edge
features: identity, BOW, and BERT embedding of relation types. We
choose to test on NELL995 because its relation names consist of
relatively more English words thus are semantically meaningful
(e.g., “organization.headquartered.in.state.or.province”). The results
are reported in Figure 7, which shows that BOW features are slightly
better than identity, but BERT embeddings perform significantly
worse than the other two. We attribute this finding to that BERT
embeddings are better at identifying semantic relationship among
relation types, but our model aims to learn the mapping from BERT
embeddings of context/paths to the identity of predicted relation
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Figure 7: Results of Con,
PatH, and PaTHCoON with
different initial features of
relations on NELL995.

types. In other words, BERT may perform better if the predicted
relation types are also represented by BERT embeddings, so that
this mapping is learned within the embedding space. We leave the
exploration as future work.

4.4 Case Study on Model Explainabilty

We choose FB15K-237 and DDB14 as the datasets to show the ex-
plainability of PATHCoN. The number of context hops is set to 1
and the maximum path length is set to 2. When training is com-
pleted, we choose three relations from each dataset and list the
most important relational context/paths to them based on the trans-
formation matrix of the context/path aggregator. The results are
presented in Table 5, from which we find that most of the identified
context/paths are logically meaningful. For example, “education
campus of” can be inferred by “education institution in”, and “is as-
sociated with” is found to be a transitive relation. In addition, more
visualized results and discussion on DDB14 dataset are included in
Appendix E.

5 RELATED WORK
5.1 Knowledge Graph Completion

KGs provide external information for a variety of downstream tasks
such as recommender systems [27-29] and semantic analysis [26].
Most existing methods of KG completion are based on embeddings,
which normally assign an embedding vector to each entity and rela-
tion in the continuous embedding space and train the embeddings
based on the observed facts. One line of KG embedding methods
is translation-based, which treat entities as points in a continuous

maximum path length

Figure 4: Results of PATHCoON with
different hops/length on WN18RR.

4 " FB15K-237 WN18RR  NELL995 DDB14
Dataset

Figure 5: Results of Con with differ-
ent context aggregators.

space and each relation translates the entity point. The objective is
that the translated head entity should be close to the tail entity in
real space [3], complex space [22], or quaternion space [39], which
have shown capability to handle multiple relation patterns and
achieve state-of-the-art result. Another line of work is multi-linear
or bilinear models, where they calculate the semantic similarity by
matrix or vector dot product in real [35] or complex space [24].
Besides, several embedding-based methods explore the architec-
ture design that goes beyond point vectors [6, 21]. However, these
embedding-based models fail to predict links in inductive setting,
neither can they discover any rules that explain the prediction.

5.2 Graph Neural Networks

Existing GNNs generally follow the idea of neural message passing
[10] that consists of two procedures: propagation and aggregation.
Under this framework, several GNNs are proposed that take inspi-
ration from convolutional neural networks [8, 11, 15, 25], recurrent
neural networks [17], and recursive neural networks [1]. However,
these methods use node-based message passing, while we propose
passing messages based on edges in this work.

There are two GNN models conceptually connected to our idea
of identifying relative position of nodes in a graph. DEGNN [16]
captures the distance between the node set whose representation
is to be learned and each node in the graph, which is used as extra
node attributes or as controllers of message aggregation in GNNs.
SEAL [38] labels nodes with their distance to two nodes a and b
when predicting link existence between (a, b). In contrast, we use
relational paths to indicate the relative position of two nodes.

Researchers also tried to apply GNNs to knowledge graphs. For
example, Schlichtkrull et al. [20] use GNNs to model the entities
and relations in KGs, however, they are limited in that they did
not consider the relational paths and cannot predict in inductive
settings. Wang et al. [30, 32] use GNNs to learn entity embeddings
in KGs, but their purpose is to use the learned embeddings to en-
hance the performance of recommender systems rather than KG
completion.

6 CONCLUSION AND FUTURE WORK

We propose PATHCON for KG completion. PATHCON considers two
types of subgraph structure in KGs, i.e., contextual relations of the
head/tail entity and relational paths between head and tail entity.
We show that both relational context and relational paths are critical
to relation prediction, and they can be combined further to achieve



Predicted relation

Important relational context

Important relational paths

award winner

FB15K-237 film written by

education campus of

award honored for, award nominee
film release region
education major field of study

(award nominated for), (award winner, award category)
(film edited by), (film crewmember)
(education institution in)

may cause
DDB14 is associated with
may be allelic with

may cause, belongs to the drug family of
is associated with, is a risk factor for
may be allelic with, belong(s) to the category of

(is a risk factor for), (see also, may cause)
(is associated with, is associated with)
(may cause, may cause), (may be allelic with, may be allelic with)

Table 5: Examples of important context/paths identified by PATHCoN on FB15K-237 and DDB14.

state-of-the-art performance. Moreover, PATHCON is also shown to
be inductive, storage-efficient, and explainable.

We point out four directions for future work. First, as we dis-
cussed in Remark 2, it is worth studying the empirical performance
of PATHCON on node-feature-aware KGs. Second, as we discussed
in Section 4.3, designing a model that can better take advantage
of pre-trained word embeddings is a promising direction; Third,
it is worth investigating why RNN does not perform well, and
whether we can model relational paths better; Last, it is interesting
to study if the context representation and path representation can
be assembled in a more principled way.
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APPENDIX
A Proof of Theorem 1

Proor. In each iteration of node-based message passing:

The aggregation (Eq. (3)) is performed for N times, and each
aggregation takes E[d] = % elements as input in expectation,
where E[d] is the expected node degree. Therefore, the expected
cost of aggregation in each iteration is N - E[d] = 2M;

The update (Eq. (4)) is performed for N times, and each update
takes 2 elements as input. Therefore, the cost of update in each
iteration is 2N.

In conclusion, the expected cost of node-based message passing
in each iteration is 2M + 2N. ]

B Proof of Theorem 2

For relational message passing, it actually passes messages on the
line graph of the original graph. The line graph of a given graph G,
denoted by L(G), is a graph such that each node of L(G) represents
an edge of G, and two nodes of L(G) are adjacent if and only if their
corresponding edges share a common endpoint in G. We show by
the following lemma that the line graph is much larger and denser
than the original graph:

LEMMA 1. The number of nodes in line graph L(G) is M, and the
expected node degree of L(G) is
N -Varg|d
—g[] + ﬂ -2, (22)
M N

where Varg [d] is the variance of node degrees in G.

Ep (g ld] =

ProoF. It is clear that the number of nodes in line graph L(G)
is M because each node in L(G) corresponds to an edge in G. We
now prove that the expected node degree of L(G) is E(g)[d] =
N-Varg[d] | 4Mm
— Y + N 2.

Let’s first count the number of edges in L(G). According to
the definition of line graph, each edge in L(G) corresponds to an
unordered pair of edges in G connecting to a same node; On the
other hand, each unordered pair of edges in G that connect to a
same node also determines an edge in L(G). Therefore, the number
of edges in L(G) equals the number of all unordered pairs of edges
connecting to a same node:

#edgesinL(g):Z(ii):Z@:%Zd?_”f,

where d; is the degree of node v; in G and M = 2 }}; d; is the number
of edges. Then the the expected node degree of L(G) is

#edgesin L(G) _ 2i d? —2M

Er(g)ld] 22'#nodes inl(G) M
NBle) N(Varg[d]+E2g[d]) .,
= M - M
2
N -Varg[d) + N (1)
_ -2
M
N -V d
_N-Vargld] aM
M N

From Lemma 1 it is clear to see that Er (g) [d] is at least twice of

Egld] = % i.e. the expected node degree of the original graph
G, since Varg[d] > 0 (-2 is omitted). Unfortunately, in real-world
graphs (including KGs), node degrees vary significantly, and they
typically follow the power law distribution whose variance is ex-
tremely large due to the long tail (this is empirically justified in
Table 2, as we can see that Varg[d] is quite large for all KGs). This
means that Ey () [d] > Eg[d] in practice. On the other hand, the
number of nodes in L(G) (which is M) is also far larger than the
number of nodes in G (which is N). Therefore, L(G) is generally
much larger and denser than its original graph G. Based on Lemma
1, Theorem 2 is proven as follows:

ProOF. In each iteration of relational message passing:

The aggregation (Eq. (5)) is performed for M times, and each
aggregation takes Er(g)[d] = %g[d] + % — 2 elements as
input in expectation. So the expected cost of aggregation in each
iteration is M - Bp (g, [d] = N - Varg[d] + 2 _ 2;

The update ((Eq. (6))) is performed for M times, and each update
takes 2 elements as input. Therefore, the cost of update in each
iteration is 2M.

In conclusion, the expected cost of relational message passing in

2
each iteration is N - Varg [d] + %. O

C Proof of Theorem 3

ProOF. In each iteration of alternate relational message passing:

The edge-to-node aggregation operation (Eq. (7)) is performed
for N times, and each aggregation takes E[d] = % elements as
input in expectation. Therefore, the expected cost of edge-to-node
aggregation in each iteration is N - E[d] = 2M;

The node-to-edge aggregation (Eq. (8)) is performed for M times,
and each aggregation takes 2 elements as input. So the cost of
node-to-edge aggregation in each iteration is 2M;

The update (Eq. (9)) is performed for M times, and each update
takes 2 elements as input. Therefore, the cost of update in each
iteration is 2M.

In conclusion, the expected cost of alternate relational message
passing in each iteration is 6M. O

D Implementation Details

Baselines. The implementation code of TransE, DistMult, Com-
plEx, and RotatE comes from https://github.com/DeepGraphLearning/
KnowledgeGraphEmbedding; the implementation code of SimplE
is at https://github.com/baharefatemi/SimplE; the implementation
code of QuatE is at https://github.com/cheungdaven/QuatE, and we
use QuatE? (QuatE without type constraints) here; the implemen-
tation code of DRUM is at https://github.com/alisadeghian/DRUM.
For fair comparison, the embedding dimension for all the baselines
are set to 400. We train each baseline for 1,000 epochs, and report
the test result when the result on validation set is optimal.

Our method. Our proposed method is implemented in TensorFlow
and trained on single GPU. We use Adam [14] as the optimizer
with learning rate of 0.005. L2 regularization is used to prevent
overfitting and the weight of L2 loss term is 107, Batch size is
128, the number of epochs is 20, and the dimension of all hidden


https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
https://github.com/baharefatemi/SimplE
https://github.com/cheungdaven/QuatE
https://github.com/alisadeghian/DRUM
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Figure 8: The learned correlation between all relational paths with length < 2 and the predicted relations on DDB14.

FB15K FB15K-237 WN18 WN18RR NELL995 DDB14
#context hops| 2 2 3 3 2 3
Max. pathlen.| 2 3 3 4 3 4

Table 6: Dataset-specific hyper-parameter settings: the num-
ber of context hops and the maximum path length.

states is 64. Initial relation features are set as their identities, while
BOWY/BERT features are studied in Section 4.3. The above settings
are determined by optimizing the classification accuracy on the
validation set of WN18RR, and kept unchanged for all datasets.
During experiments we find that performance of different num-
ber of context hops and the maximum path length largely depends
on datasets, so these hyper-parameters are tuned separately for
each dataset. We present their default settings in Table 6, and search
spaces of hyper-parameters as follows:
e Dimension of hidden states: {8, 16,32, 64};
o Weight of L2 loss term: {1078,1077,107%,107°};
o Learning rate: {0.001, 0.005,0.01,0.05,0.1};
e The number of context hops: {1, 2,3,4};
e Maximum path length: {1, 2, 3, 4}.
Each experiment of PATHCON is repeated for three times. We
report average performance and standard deviation as the results.

E More Results of Explainability on DDB14

After training on DDB14, we print out the transformation matrix
of the context aggregator and the path aggregator in PATHCON, and
the results are shown as heat maps in Figures 9 and 8, respectively.
The degree of darkness of an entry in Figure 9 (Figure 8) denotes
the strength of correlation between the existence of a contextual
relation (a relational path) and a predicted relation. Relation IDs as
well as their meanings are listed as follows for readers’ reference:

0: belong(s) to the category of 7: interacts with

1: is a category subset of 8: belongs to the drug family of
2: may cause 9: belongs to drug super-family
3: is a subtype of 10: is a vector for

4: is a risk factor for 11: may be allelic with

5: is associated with 12: see also

6: may contraindicate 13: is an ingredient of

Figure 9 shows that most of large values are distributed along
the diagonal. This is in accordance with our intuition, for example,
if we want to predict the relation for pair (h, ?,t) and we observe

|| |
H N
L | |

predicted relation type

e e
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.
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neighbor relation of head neighbor relation of tail

Figure 9: The learned correlation between the contextual re-
lations of head/tail and the predicted relations on DDB14.

that h appears in another triplet (h,is a risk factor for,t’),
then we know that the type of h is risk factor and it is likely to be
a risk factor of other entities in the KG. Therefore, “?” are more
likely to be “is a risk factor for”than “belongs to the drug
family of” since h is not a drug. In addition, we also find some
large values that are not in the diagonal, e.g., (belongs to the
drug family of,belongs to the drug super-family)and (may
contraindicate, interacts with).

We also have some interesting findings from Figure 8. First, we
find that many rules from Figure 8 is with the form:

(a,see also,b) A (b,R,c) = (a,R,¢),

where R is a relation type in the KG. These rules are indeed mean-
ingful because (a, see also,b) means a and b are equivalent thus
can interchange with each other.

We also find PATHCON learns rules that show the relation type
is transitive, for example:

(a,is associated with,b) A (b,is associated with,c)

=(a,is associated with,c);

(a,may be allelic with,b) A (b,may be allelic with,c)
=(a,may be allelic with,c).

Other interesting rules learned by PaTHCoN include:
(a,belong(s) to the category of,b) = (a,is a subtype of,b);

(a,is a risk factor for,b) = (a,may cause,b);

(a,may cause,c)A(b,may cause,c) = (a,may be allelic with,b);

(a,is a risk factor for,c) A (b,is a risk factor for,c)
=(a,may be allelic with,b).
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