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ABSTRACT

How do social networks differ across platforms? How do informa-
tion networks change over time? Answering questions like these
requires us to compare two or more graphs. This task is commonly
treated as a measurement problem, but numerical answers give lim-
ited insight. Here, we argue that if the goal is to gain understanding,
we should treat graph similarity assessment as a description prob-
lem instead. We formalize this problem as a model selection task
using the Minimum Description Length principle, capturing the
similarity of the input graphs in a commonmodel and the differences
between them in transformations to individual models. To discover
good models, we propose Momo, which breaks the problem into
two parts and introduces efficient algorithms for each. Through
an extensive set of experiments on a wide range of synthetic and
real-world graphs, we confirm that Momo works well in practice.
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1 INTRODUCTION

Comparing two or more graphs is important in many applications.
In biology, we might, for example, want to compare the protein
interaction networks of different human tissues so as to discover
common and specialized mechanisms, while in the social sciences,
comparing collaboration networks over time or across fields could
reveal knowledge dynamics. The task of comparing graphs is called
graph similarity assessment. It is commonly treated as a measure-

ment problem, i.e., a question to which a numerical answer suffices
(e.g., 0.42). While such an answer may be useful in certain down-
stream tasks like classification or clustering, it provides limited
insight and is thus generally dissatisfying to a domain expert.
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Figure 1: A commonmodel captures the structure shared be-

tween the individual models of the input graphs.

In this paper, we argue that if the goal is to gain understanding,
we should not ask “how similar are these graphs?” but rather “how
are these graphs similar?”. That is, we propose to treat graph simi-
larity assessment as a description problem, demanding an answer
that, in easily understandable terms, characterizes what is similar
and what is different between the input graphs at hand. We formal-
ize the problem in information-theoretic terms using the Minimum
Description Length (MDL) principle, by which we are after the
shortest lossless description of the input graphs using common and
specific structures (e.g., stars, cliques, bicliques, and starcliques) as
well as shared nodes and edges between these structures. Since we
can measure how many bits we gain by compressing the graphs
jointly, rather than individually, our formalization also allows for
an easily interpretable quantification of differences.

As an example of graph similarity description, consider Figure 1,
which depicts two toy graphs and the result returned by our method.
Even though the graphs are of different sizes, and no node alignment
is given, our method discovers that both graphs contain a star
(orange triangle) that is connected to a clique (blue circle) and a
starclique (pink diamond). We further see that the left graph is
different in that it additionally contains a biclique (red square), and
that the structures in the left graph all contain more nodes than
their counterparts in the right graph (larger shapes).

When assessing the similarity between graphs in practice, we
face a very large search space: There exist exponentially many sets
of nodes, i.e., potential structures, exponentially many sets of struc-
tures, and—unless a full node alignment is given—also exponen-
tially many alignments between the graphs. As our score exhibits
no structure that we could exploit to efficiently discover the optimal
solution, we propose a framework, called Momo (Model of models),
that breaks the problem into two parts and introduces efficient al-
gorithms for each: Beppo discovers interpretable summaries for the
individual input graphs, and Gigi uses them to unveil their shared
and specific structures, from which we can also compute an infor-
mative similarity score. Through an extensive set of experiments on
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a wide range of synthetic and real-world graphs, we confirm that
our algorithms perform well in practice: We discover summaries
that are useful for domain experts, identify meaningful similarities
between the protein interaction networks of different human tis-
sues, and reveal distinct temporal dynamics in the collaboration
networks of different scientific communities. Not unimportantly, in
practice, our methods scale near-linearly in the number of edges.

The remainder of the paper is structured as follows. Section 2
introduces our notation and gives a primer on MDL, and Sections 3,
4, and 6 present our main contributions. We cover related work
in Section 5, and round up with discussion and conclusions in
Section 7. All our data, code, and results are publicly available,1 and
further information for reproducibility is given in Appendix A.

2 PRELIMINARIES

We consider graphs Gi = (Vi , Ei ) with ni = |Vi | nodes,mi = |Ei |
edges, and adjacency matrix Ai , omitting the subscripts when clear
from context. An alignment Ai j between the graphs Gi and G j ,
denotedGi ∥A G j , is a bijection fromVi toVj . To allow comparisons
between graphs of different sizes or graphs for which no node
alignment is known, we allow this bijection to be partial or empty,
i.e., there can be nodes in Vi (Vj ) that have no image (preimage) in
Vj (Vi ) under Ai j . We assume that our input graphs are simple, i.e.,
undirected, unweighted, without loops or parallel edges, and that
only two input graphs are given, but our framework generalizes to
comparisons between more than two general graphs.

We build on the notion of Kolmogorov complexity. The Kol-
mogorov complexity of an object x , K(x), is the length in bits of the
shortest program computing x on a universal Turing machine, and
the conditional Kolmogorov complexity of x giveny, K(x | y), is the
length of such a program with y as auxiliary input [17]. The Infor-
mation Distance between x and y is (up to an additive logarithmic
term) the length of the shortest program transforming x into y and
y into x , i.e., ID(x,y) = max{K(x | y),K(y | x)} [16]. Dividing by
max{K(x),K(y)}, we obtain the Normalized Information Distance.

The Kolmogorov complexity is not computable, and hence, nei-
ther is the Normalized Information Distance. To describe and mea-

sure the similarity between graphs in practice, we thus instantiate
Kolmogorov complexity through the Minimum Description Length
(MDL) principle [10]. MDL is a practical version of Kolmogorov
complexity embracing the slogan Induction by Compression. Given
a model class M for some data D, the best model M ∈ M mini-
mizes L(M) + L(D | M), where L(M) is the description length of
M , L(D | M) is the description length of the data when encoded
usingM , and both are measured in bits under our encoding. This is
called crudeMDL, and it contrasts with refined MDL, which encodes
the model and the data together [10]. We opt for crude MDL not
only because it is computable but also because we are particularly
interested in the model: the structures shared by our input graphs,
and the transformations necessary to derive the individual graphs
from them. Finally, we require lossless descriptions to ensure fair
comparisons between competing models.

All logarithms are to base 2, and we define log 0 = 0. We use ⌊·⌉
for rounding to the closest integer, and summarize our notation in
Table 2 in the Appendix.

1http://eda.mmci.uni-saarland.de/prj/momo; https://doi.org/10.5281/zenodo.4780912

Clique Star Biclique Starclique

Figure 2: Graph structures are constraints over sets of (non-)

edges. They can be visualized as induced subgraphs (top), ad-

jacency submatrices (middle), or shapes (bottom). Each color

in the adjacency submatrix is associatedwith a different con-

straint, where the white constraint enforces loop-freeness.

3 THEORY

We now describe our first contribution, the MDL formulation of
graph similarity assessment. Our data is D = (G1,G2,A), where
G1 and G2 are our input graphs, and A is a (potentially partial or
empty) node alignment between G1 and G2.

3.1 Similarity Description, Informally

Our primary goal is to describe the similarity of our input graphs.
That is, we aim to find the key structures that are shared between
these graphs and contrast them with the structures that are specific
to the individual graphs. By structures, we mean subgraphs whose
connectivity follows distinct, interpretable patterns. Our structure
vocabulary Ω comprises four structure types: (approximate) cliques,
stars, bicliques, and starcliques. We choose these structure types
because they are simple and widespread in real-world graphs from
many different fields, but further structure types can easily be
included, e.g., to tailor our method to a particular domain.

Intuitively, cliques are subgraphs with relatively homogeneous
connectivity whose density stands out against the background
distribution (e.g., echo chambers in social networks). Stars are sub-
graphs in which one node, the hub, is connected to all other nodes,
the spokes, and the spokes are hardly connected among themselves
(e.g., influencers and their followers). Bicliques are subgraphs whose
nodes can be partitioned into two sets, left (L) and right (R), such
that L and R are densely connected, the nodes in L are sparsely
interconnected, and the nodes in R are sparsely interconnected (e.g.,
predators and prey in food webs). Starcliques are bicliques whose
left nodes are densely, rather than sparsely, interconnected—i.e.,
stars whose hub is a clique (e.g., core and periphery in infrastruc-
ture networks). To describe real-world graphs accurately, we allow
structures to overlap on nodes and on edges.

As depicted in Figure 2, each structure imposes a set of con-
straints on the connectivity in the adjacency submatrix it identifies.
We think of the node set sizes of a structure as node fractions (rel-
ative to a reference n) and of its connectivity constraints as edge
densities (relative to the maximum possible number of edges).

We represent the structures we find in G1 and G2 individually
as lists S1 and S2 in their individual models M1 and M2, and the
structures that are shared between G1 and G2 as a list S12 in their
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common model M12. To decide which structures to include in S12,
we construct a matching M ⊆ S1 × S2, requiring that matched
structures have the same type. For each (s1, s2) ∈ M, we include
one structure s of its type in S12, writing φ1(s) = s1 and φ2(s) = s2
for the mappings from the shared structures to their counterparts.
The node fractions (edge densities) of s are the averages of the node
fractions (edge densities) in s1 and s2. For example, if s1 ∈ S1 is a
clique with node fraction 0.1 and edge density 0.9, and s2 ∈ S2 is
a clique with node fraction 0.2 and edge density 0.7, s ∈ S12 is a
clique with node fraction 0.15 and edge density 0.8.

To link the common model to the individual models, we trans-
late M12 into M1 and M2 using transformations ∆1 and ∆2, i.e.,
∆1(M12) = M1 and ∆2(M12) = M2. Our transformation vocabulary

Σ contains edit operations to (1) add unmatched structures con-
tained in individual models, and (2) morph structures fromM12 into
those fromM1 andM2, i.e., reverse the averaging we perform when
specifying the shared structures. For example, if a clique s ∈ S12
has node fraction 0.15 and edge density 0.8, and φ1(s) = s1 ∈ S1
has node fraction 0.1 and edge density 0.9, we need to shrink the
node fraction and grow the edge density of s to match those in s1.

To discover our common modelM12, individual modelsM1,M2,
and transformations ∆1, ∆2, we leverage the MDL principle. We
seek to optimize L(M12) + L(∆1,∆2) + L(G1 ∥A G2 | M12,∆1,∆2).
For this purpose, we have to define several encodings.

3.2 Similarity Description Encodings

We need to describe how we encode (1) the graphs G1, G2 under
their individual models M1, M2, (2) the models M1, M2, (3) the
common modelM12, and (4) the transformations ∆1, ∆2 in bits.

Encoding a Graph Under an Individual Model. Given a modelM of a
graph G, rather than using an ad-hoc encoding of the graph under
the model (as is common practice), we seek to encode G optimally,
leveraging the knowledge contained inM . As depicted in Figure 2,
this knowledge primarily comes as constraints on the total number
of edges in the parts of the adjacency submatrix identified by the
structures inM : A clique imposes one constraint, a star imposes two
constraints, and a biclique or starclique imposes three constraints.

The probability distribution over the adjacency matrix A of G
that represents the knowledge imparted by M (which includes n,
m, and loop-freeness) without any bias is the distribution with the
largest entropy among all distributions fulfilling the constraints
imposed byM . Under this maximum entropy distribution, Pr(ai j |

M) =
exp(

∑
λ∈Λ(i , j ) λ)

1+exp(
∑
λ∈Λ(i , j ) λ)

, where Λ(i, j) is the set of Lagrange mul-
tipliers associated with the constraints covering ai j ∈ A in the
optimization problem finding the maximum entropy distribution
for A givenM . The Shannon-optimal code based on this distribu-
tion minimizes the worst-case expected length of a message coming
from the true distribution [7]. Hence, the length ofG givenM under
an optimal encoding is

L(G | M) =
∑

ai j ∈A1

− log Pr(ai j | M) +
∑

ai j ∈A0

− log(1 − Pr(ai j | M)) ,

where Ax = {ai j ∈ A | (ai j = x) ∧ (i < j)} for x ∈ {0, 1}.

Encoding an Individual Model. To encode an individual modelM for
a graph G, we communicate n,m, and |S | using LN, the universal

code for positive integers [23]. We then transmit the number of
structures per type, and for each structure, in order, its type and its
length. Thus, the length of an individual modelM for a graph G is

L(M) = LN(n + 1) + LN(m + 1) + LN(|S | + 1) + log
(
|S | + |Ω | − 1
|Ω | − 1

)
+

∑
s ∈S

(
− log Pr(type(s) | S) + L(s)

)
.

Each structure is defined abstractly by its constraints (cf. Figure 2),
and when we seek to find an MDL-optimal individual model, it is
further identified by concrete node IDs (typeset in grey). Assuming
that all structures contain a positive number of nodes, the detailed
encoding of our structures is as follows.

Cliques. To communicate a clique s , we transmit its number of
nodes ns , its number of edgesms or non-edgesms , and the node
IDs. Therefore, withm∗s = ns (ns − 1)/2, the length of a clique is

L(s) = LN(ns ) + 1 + log log
⌊
m∗s
2

⌋
+ log(min{ms ,ms }) + log

(
n

ns

)
.

Stars. To communicate a star s , we transmit its number of spokes
ns −1, the number of edges between its spokes xs =ms −ns +1, the
hub’s ID, and the spokes’ IDs. Hence, with x∗s = (ns − 1)(ns − 2)/2,
the length of a star is

L(s) = LN(ns − 1) + log logx∗s + logxs + logn + log
(
n − 1
ns − 1

)
.

Bicliques and Starcliques. To communicate a biclique s , we trans-
mit (1) its number of nodes ns , (2) its number of left nodes nL , (3)
its number of edges between left nodesmL , (4) its number of edges
between right nodesmR , (5) its number of non-edges between left
nodes and right nodesm∗A−mA (wherem∗A := nLnR ), and (6) the IDs
of its left nodes and its right nodes. Thus, withm∗L = nL(nL − 1)/2
andm∗R = nR (nR − 1)/2, the length of a biclique is

L(s) = LN(ns ) + logns + log logm∗L + logmL + log logm∗R + logmR

+ log logm∗A + log(m
∗
A −mA) + log

(
n

nL

)
+ log

(
n − nL
ns − nL

)
.

To transmit a starclique s , we replacemL bymL =m
∗
L −mL .

Encoding a Common Model. When communicatingM12, w.l.o.g., we
assume that n1 ≥ n2, and we transmit the node fractions and edge
densities of all shared structures with reference to n1. Since we
explicitly want to handle unaligned graphs and graphs of different
sizes, their common model does not include node IDs. To encode
M12, we hence use the expression for individual models, with the
node ID parts omitted, and the terms for n andm replaced by

LN(n1 + 1)+LN(n1 −n2 + 1)+LN(m1 + 1)+LN(|m1 −m2 | + 1)+ 1 .

Encoding Transformations. The common modelM12 contains only
structures that are shared between G1 andG2, and structures may
be sharedwithout being isomorphic. Consequently,M12 is generally
different fromM1 andM2, even if we define all models without node
IDs. Transformations linkM12 toM1 andM2 such that ∆1(M12) =
M1 and ∆2(M12) = M2. That is, for i ∈ {1, 2}, ∆i morphsM12 into
Mi by growing or shrinking the node fractions and edge densities
of the structures in S12 to match those in Si as well as adding those
structures from Si that have no counterpart in S12.
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To derive the necessary content for the transformations, we
reason as follows. The node fractions and edge densities of each
structure s ∈ S12 are the average of its representatives in S1 and
S2, φ1(s) and φ2(s). Hence, for each structure in s ∈ S12, we expect
a structure of the same type in S1 and S2. For each node fraction
x in s , we expect the size of its counterpart in φi (s) to be ⌊x · ni ⌉,
and for each edge density y in s , we expect the number of edges in
its counterpart in φi (s) to be ⌊y ·m∗y ⌉, wherem∗y is the maximum
number of edges in the associated area of Ai (for i ∈ {1, 2}).

The transformation ∆i is the deviation ofMi from our expecta-
tion based onM12, and since the node fractions and edge densities
of each structure in S12 are the average of its representatives in S1
and S2, for the shared structures, we can infer ∆2 from ∆1. Hence, to
communicate ∆1 and ∆2, for each node fraction x (edge densityy) in
each structure s ∈ S12, we transmit the number of nodes (edges) we
need to add or subtract from ⌊x · n1⌉ (⌊y ·m∗y ⌉) to arrive at the size
of its counterpart in φ1(s), along with the change direction (grow
or shrink). Finally, we transmit the structures in S1 := S1 \ φ1(S12)
and the structures in S2 := S2 \ φ2(S12).

Therefore, if L(δ1 : δ1(s) = φ1(s)) is the description length of
the transformation δ1 morphing s into φ1(s), and T is the total
number of change directions we need to transmit, the length of the
transformations ∆1 and ∆2 is

L(∆1,∆2) =
∑
s ∈S12

L
(
δ1 : δ1(s) = φ1(s)

)
+ logT +

∑
i ∈{1,2}

LN(|Si | + 1)

+
∑

i ∈{1,2}

(
log

(
|Si | + |Ω | − 1
|Ω | − 1

)
+

∑
s ∈S i

(
− log Pr(type(s) | Si ) + L(s)

))
.

Although we have defined the individual modelsM1 andM2, the
common modelM12, and the transformations ∆1 and ∆2 for simi-
larity description, we can also use them for similarity measurement.

3.3 Similarity Measurement

For similarity measurement, our score should reflect the extent to
which the structure of the input graphs can be captured by their
common model. Since graphs have many permutation-invariant
representations (unlike, e.g., strings), and computable instantia-
tions of the Normalized Information Distance typically use opaque
compressors, defining such a score is not straightforward. To guar-
antee computability and interpretability, we thus instantiate the
Normalized Information Distance using our models as compressors.

Let G1 and G2 be our input graphs with alignment A and in-
dividual modelsM1 andM2 (encoded without node IDs). LetM12
be their best A-respecting common model, and let ∆1 and ∆2 be
transformations such that ∆1(M12) = M1 and ∆2(M12) = M2. The
Normalized Model Distance (NMD) between G1 and G2 is

NMD(G1,G2) =
L(M12) + L(∆1,∆2) −min{L(M1), L(M2)}

max{L(M1), L(M2)}
.

The NMD is 0 ifM12 = M1 = M2 (with ∆1 = ∆2 = ∅), and it is 1 if
M12 = ∅ (with ∆1 = M1 and ∆2 = M2). It allows us to compare our
method with other similarity measurement methods even though
our primary goal is similarity description, which we formalize next.

3.4 Similarity Description, Formally

We are now ready to formally state our problem.

TheGraph Similarity Description Problem.Given graphs
G1, G2, and a (full, partial, or empty) alignment A : V1 → V2, find
individual modelsM1,M2, common modelM12, and transformations

∆1, ∆2 minimizing L(M12)+L(∆1,∆2)+L(G1 ∥A G2 | M12,∆1,∆2).

The search space is huge: Even if we searched for one individual
model only, limited the number of structures to k , set the minimum
size of a structure to r , and required the union of all structures
to form a partition of V , we would need to search over 4k times
the number of partitions of n into k parts of size at least r . These
partitions are in bijection with the partitions of n − k(r − 1) into k
parts, and hence, there are S(n −k(r − 1),k) of them, where S is the
Stirling number of the second kind. Since we are looking for three
models with intricate interconnections, the search space for our
problem is even larger—not to mention the NP-hard subproblems
we need to solve to identify optimal structures (e.g.,MaxCliqe).
Furthermore, our search space exhibits no structure such as (weak)
(anti-)monotonicity of the total description length that would allow
us to search it efficiently. Hence, we resort to heuristics.

4 ALGORITHM

We now introduce our second contribution, an algorithmic frame-
work, called Momo (Model of models), to approximate the graph
similarity description problem. To discover good models in practice,
we break this problem into two parts:

(1) Approximate the individual modelsM1 andM2 minimizing
L(M1) + L(G1 | M1) and L(M2) + L(G2 | M2). Since these
models can be thought of as graph summaries, we refer to
this task as graph summarization.

(2) Given individual modelsM1 andM2, approximate the com-
mon modelM12 and the associated transformations ∆1 and
∆2minimizingL(M12)+L(∆1,∆2)+L(G1 ∥A G2 | M12,∆1,∆2).
Since we require there to be a unique structure in bothM1
andM2 for each structure inM12, this means we search for
an optimal alignment between the structures in M1 andM2.
Hence, we refer to this task as model alignment.

GivenM1,M2,M12, ∆1, and ∆2, the NMD can be readily computed.
Our architecture is flexible in that (1) any algorithm generating

graph summaries using the structure vocabulary Ω can be used
in the first step, (2) any algorithm finding a common model and
transformations based on individual graph summaries using the
structure vocabulary Ω and the transformation vocabulary Σ can be
used in the second step, and (3) all alphabets can be replaced with
other alphabets (if they are mutually compatible and the encoding
is suitably amended), just as the NMD can be substituted with an
alternative measure, e.g., to adapt our method to a specific domain.

4.1 Step One: Graph Summarization (Beppo)

We begin by summarizing each of our input graphs individually.
That is, our input is a single graphG with node setV and edge set E,
and our output is a modelM approximatelyminimizing L(M)+L(G |
M). Our procedure, called Beppo, is given as Algorithm 1.
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To start, we decompose our graph into a set C of connected
components of diameter at most three (l. 1). We do this by itera-
tively selecting the node v with the highest degree in the currently
largest connected component to form a component C ∈ C with its
neighbors, then deleting all edges incident with v , until no more
components can be formed. This procedure is similar to the Slash-
Burn algorithm [18], but we recurse on the globally, rather than
the locally largest connected component to ensure that all our com-
ponents have small diameter. The generated components are used
as seeds to produce candidates for each structure type from our
structure vocabulary Ω, where we merge candidates of the same
type if they overlap on a large fraction of their nodes (l. 3–7). We
sort the remaining candidates, which can overlap on nodes and
edges, from largest to smallest (l. 8). Finally, for each structure s , in
order, we add s toM if this reduces our description length (l. 9–11),
i.e., if L(s) + L(G | M ∪ {s}) < L(G | M).

To generate a candidate of a certain structure type from a given
component C with node set VC (l. 5), we proceed as follows.

For a clique with node set Vs , we first find the maximum clique
in C and include its nodes in Vs , then we iteratively add the node
fromV \Vs with the highest degree inG that is connected to at least
50% of the nodes in Vs until no more nodes fulfill this criterion.

For a star with spoke set V ′s , we declare a node with the highest
degree inC to be the hubv , setV ′s = VC \{v}, and then iteratively (1)
identify the nodes inV ′s that have more than 0.05 · |V ′s | neighbors in
V ′s , and (2) remove the min{(0.1 + 0.01i), 1} fraction of these nodes
from V ′s that has the most neighbors in V ′s in iteration i .

For a biclique with node sets L and R, to start, we set the right
node set to be the (at most) 5 nodes in a maximal independent set
(MIS) ofVC that have the highest degree inG . We then identify the
set L′ ⊆ V \ R of nodes that are connected to at least 50% of the
nodes in R, and set L to be the (at most) 5 nodes in an MIS of L′ that
have the highest degree in G. If |L| < 3 or |R | < 5, we discard the
candidate early. For the surviving candidates, we then iteratively
(1) identify the set X of nodes from V \ (L ∪ R) that are connected
to at most 5% of the nodes in L and at least 50% of the nodes in R,
adding to L the node from X (if any) with the most neighbors in R,
and (2) perform (1), switching the roles of L and R, until no more
nodes satisfy our criteria for addition to L or R.

For a starclique with node sets L and R, to start, we set L to be
the set of nodes contained in the maximum clique of C . We then
identify the set R′ ⊆ V \L of nodes that are connected to at least 50%
of the nodes in L, and set R = MIS(R′). Subsequently, we iteratively
(1) identify the set X of nodes from V \ (L ∪ R) that are connected
to at least 50% of the nodes in L and to at least 50% of the nodes in
R, adding to L the node from X (if any) with the most neighbors
in R, and (2) identify the set Y of nodes from V \ (L ∪ R) that are
connected to at most 5% of the nodes in R and to at least 50% of
the nodes in L, adding to R the node from Y (if any) with the most
neighbors in L, until no more nodes can be added.

Running Beppo on the graphsG1 andG2, we obtain interpretable
individual modelsM1 andM2. Our next task is to align these models.

4.2 Step Two: Model Alignment (Gigi)

For the model alignment step, our inputs are the graphs G1, G2,
the node alignment A, and the models M1, M2. Our outputs are

Algorithm 1: Graph summarization with Beppo
Input: Graph G; structure vocabulary Ω
Output: ModelM with structure list S

1 C ← Connected components of G from decomposition
2 S ′, S ← [], []

3 forall structure types ω ∈ Ω do

4 forall components C ∈ C do

5 Generate candidate of type ω from C

6 Merge generated candidates if they have large overlap
7 Append remaining candidates to S ′

8 Sort structures s ∈ S ′ by (ns ,ms ) (descending)
9 forall structures s ∈ S ′ do
10 if L(s) + L(G | M ∪ {s}) < L(G | M) then
11 Append s to S

12 returnM

Algorithm 2: Model alignment with Gigi
Input: Individual modelsM1,M2 with structures S1, S2;

node alignment A; transformation vocabulary Σ
Output: Common modelM12 and transformations ∆1, ∆2

such that ∆1(M12) = M1, ∆2(M12) = M2
1 Compute constrained matchingM ⊆ S1 × S2 // Alg. 3

2 M12,∆1,∆2 ← [], [], []
3 forall structures (s1, s2) ∈ M do

4 Compute the common structure s for (s1, s2)
5 Compute δi such that δi (s) = si for i ∈ {1, 2}
6 Append s toM12 and δi to ∆i for i ∈ {1, 2}
7 for i ∈ {1, 2} do
8 forall structures s ∈ Si \ {s ∈ Si | ∃p ∈ M : s ∈ p} do
9 Append s to ∆i

10 returnM12, ∆1, ∆2

a common model M12 and the transformations ∆1, ∆2, which to-
gether minimize L(M12) + L(∆1,∆2) + L(G1 ∥A G2 | M12,∆1,∆2)
approximately. Our procedure, called Gigi, is given as Algorithm 2.

In the critical first step, detailed below, Gigi computes a (bipar-
tite) matchingM ⊆ S1×S2, pairing structures in S1 with structures
in S2 (l. 1). The matching is constrained because we require that
paired structures have the same typeω ∈ Ω. For each structure pair
(s1, s2) ∈ M, we then compute its common structure s as well as
transformations δ1 and δ2 such that δ1(s) = s1 and δ2(s) = s2, which
we add toM12, ∆1, and ∆2, respectively (l. 3–6). Finally, we add the
unpaired structures from both S1 and S2 to ∆1 and ∆2, ensuring
that ∆1(M12) = M1 and ∆2(M12) = M2 (l. 7–9).

Typically, the matchingM is not uniquely defined. We are in-
terested in the matching that helps us minimize the description
length. Sweeping the search space naïvely is not an option: For a
structure vocabulary Ω, there exist

∏
ω ∈Ω(ωmax − ωmin)! ·

(ωmax
ωmin

)
different maximal matchings alone, where, for f ∈ {min,max},
ωf = f {|{s ∈ S1 | type(s) = ω}|, |{s ∈ S2 | type(s) = ω}|}. Hence,

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

189



we propose a matching heuristic,MaximalGreedy, whose detailed
pseudocode is given as Algorithm 3 in the Appendix.

If no node alignment is present, for i ∈ {1, 2}, MaximalGreedy
constructs node overlap graphs Hi . The nodes of these graphs are
the structures in Si , and the weights of their edges Fi are the Jaccard
similarities between the node sets of the structures (l. 3). Maximal-
Greedy then builds a variant of the product graph of H1 and H2,
whose nodes are the subset of S1×S2 that agrees on type, and whose
edge weights are the product of the edge weights in H1 and H2
(l. 4–6).MaximalGreedy then iteratively selects the heaviest edges
in the product graph and removes all nodes that are incompatible
with these edges (l. 7–12). Finally, it pairs the remaining structures
of the same type in descending order of their size (l. 13–19).

If a (partial) node alignment A is present, MaximalGreedy
iteratively matches those structures s1 and s2 of the same type
whose node sets have the largest average Jaccard similarity under
A (l. 20–27). For cliques, this equals the standard Jaccard similarity.
For structures of other types, it is defined as

JaccardA (s1, s2) =
1
2
·

∑
i ∈{1,2}

|A(Vi (s1)) ∩Vi (s2)|

|A(Vi (s1)) ∪Vi (s2)|
,

where V1 and V2 are the hub and spoke sets (for stars) or the left
and right node sets (for bicliques and starcliques), respectively.

MaximalGreedy is designed to ensure interpretability: In the
presence of a node alignment, it honors the node overlap of struc-
tures between graphs, and in the absence of such an alignment,
it honors the node overlap of structures within graphs, all while
respecting the constraints imposed by the structure types.

4.3 Computational Complexity

Having specified Beppo andGigi as the main components of Momo,
we now analyzeMomo’s complexity. Here, we assume that the total
number of structures is O(1), which is required for interpretability.

For Beppo, due to the set intersection operations involved, con-
structing structure candidates is Õ(nm), where Õ hides polyloga-
rithmic factors. To decide whether to add a candidate to our model,
we need to find the maximum entropy distribution for the adja-
cency matrix of the graph given that model, which is O(1) since
the number of Lagrange multipliers is O(1). We also need to keep
track of the mapping of Lagrange multipliers to potential edges,
which is O(n2) with O(1) candidates. Hence, Beppo runs in Õ(nm).

Gigi’s complexity is driven by O(1) Jaccard similarity computa-
tions, which together takeO(n2) in theworst case (O(n) on average),
where n = max{n1,n2}. Given individual modelsM1,M2, and their
model alignment (M12,∆1,∆2), computing the NMD takes O(1)
basic arithmetic operations, i.e., its total complexity is O(1).

Overall, Momo’s complexity is dominated by Beppo, and hence
Õ(nm) in the worst case. However, as we show in Section 6, in prac-
tice, Momo’s performance is near-linear in the number of edges.

5 RELATEDWORK

To the best of our knowledge, we are the first to treat graph simi-
larity assessment primarily as a description problem, rather than as
a measurement problem. Related work broadly falls into two cate-
gories: graph similarity measurement and graph summarization.

Graph Similarity Measurement. Early work on graph similarity
measurement uses global measures that capture graph structure,
e.g., graph edit distance and maximum common subgraphs [11,
22, 29]. Later research also explores measures that capture graph
connectivity [14], leverage graph decompositions [20], or aggregate
local similarities via node feature distributions [1, 2]. Building on
prior work concerning graph kernels [3, 25], recent contributions
investigate similarity learning via deep graph kernels [19, 21, 27, 28].

In contrast to the existing literature, first, our primary goal is
graph similarity description, not measurement. Second, our perspec-
tive emphasizes interpretability, which leads us to build on intu-
itive meso-level structures, rather than (overwhelmingly numerous)
micro-level node features, motifs, or (opaque) macro-level graph
features. Third, our approach is novel in that it formalizes graph
similarity as a model selection task using the MDL principle.

When evaluating Momo, we compare the NMD to another nor-
malized similaritymeasure that is also based on information-theoret-
ic principles: the Network Portrait Divergence (NPD) [1]. The NPD is
the Jensen-Shannon divergence of the probability distributions of
the input graphs that describe how many nodes have x neighbors
at distance y. We show that the NMD and the NPD often capture
similar trends, but only the NMD is intuitively interpretable.

MDL-Based Graph Summarization. Although novel in graph sim-
ilarity assessment, the MDL principle has been used extensively
in graph summarization. Starting with the SUBDUE system [4], a
rich line of work has sought to move summarization beyond clus-
tering using more expressive vocabularies to identify meaningful
structures in static graphs [8, 9, 13, 18]. MDL has also been used to
find partitions in graph streams [26] or structures ranging across
multiple aligned snapshots of dynamic graphs [12, 24].

Going beyond the existing literature, first, we allow our struc-
tures to overlap not only on nodes but also on edges, and we can
handle multiple graphs even if they are unaligned. Second, we im-
prove the methodology of previous static summarization methods,
leveraging more noise-tolerant structure definitions and an optimal
encoding of the data under the model. Third, in our structure search,
we emphasize result quality, reflecting the need for accurate graph
summaries as inputs to our comparison algorithm.

When evaluatingMomo, we compare Beppo to VoG [13], a static
graph summarizer built on a similar graph decomposition method
and vocabulary of interpretable structures (including cliques, bi-
cliques, stars, and chains) that neither uses maximum entropy mod-
eling or component post-processing nor allows edge overlap. We
show that Beppo discovers more informative summaries than VoG.

6 EXPERIMENTS

We now present our third contribution, an extensive evaluation of
the framework presented in Section 4. To this end, we implement
Beppo in Julia and all other parts of Momo in Python. We run our
experiments on Intel E5-2643 CPUs with 256 GB RAM. All data,
code, and results are publicly available.2 We answer three questions:

Q1 Does Beppo create useful graph summaries?
Q2 Does Gigi discover interpretable common models?
Q3 Does Momo yield informative similarity scores?

2http://eda.mmci.uni-saarland.de/prj/momo; https://doi.org/10.5281/zenodo.4780912
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To ensure interpretability, we limit our summaries to at most 100
structures, although allowing more would give better compression.

In our experiments, we use real-world graphs from seven collec-
tions (cf. Appendix Table 3): Graphs in the asb and asp collections
represent peering relations between Autonomous Systems, each in
9 different weeks from 2001 [15]; graphs in the bio collection repre-
sent physical interactions between human proteins in 144 different
tissues, where the protein identities induce partial node alignments
between all pairs of graphs in the collection [30]; graphs in the clg
and csi collections represent arXiv collaboration networks of cs.LG
and cs.SI in each year from 2011 to 2020 [5]; and graphs in the lus
and lde collections represent references between sections of the
United States Code and the Code of Federal Regulations or their
German equivalents in each year from 1998 to 2019 [6]. We also
include two collections of synthetic random graphs, rba and rer,
based on the Barabási-Albert (BA) model and the Erdős-Rényi (ER)
model. Our graphs vary in size and density, containing up to 160K
nodes and up to 525K edges (cf. Appendix Figure 10).

Q1: Does Beppo create useful graph summaries? In our
context, graph summaries are useful if they capture the essence
of a graph in an easily comprehensible manner. To assess whether
Beppo creates such summaries, we start by comparing with VoG,
which has been shown to produce useful graph summaries, on
graphs from the VoG paper [13]. As shown in Table 1, in all ex-
periments, Beppo saves more bits relative to the original encoding
length than VoG-k for the same k , i.e., it achieves a better compres-
sion L%. Moreover, Beppo’s compression is comparable to that of
VoG-Greedy, although it uses much fewer structures. That is, even
though our encoding of the data under the model is optimal, we
manage to save more bits per structure than VoG. We also observe
that while Beppo uses its entire vocabulary to summarize its input
graphs, VoG finds almost only stars. As we show in Figure 3, despite
doing more work than VoG, Beppo is near-linear in practice.

In the left panel of Figure 4, we tally howmany structures of each
type we find and what compression we achieve, on average, in each
graph from our collections. Since the edges of ER graphs are chosen
uniformly at random, and BA graphs are grown using preferential
attachment, it comes as no surprise that we find at most one star
(with minimal gain) in ER graphs and only stars in BA graphs,
achieving no or little compression. The highest fraction of cliques
occurs in the collaboration graphs (clg, csi), where papers with
many authors induce cliques. The hubs of the stars in these graphs
correspond to well-known researchers with many independent
collaborations, e.g., Yoshua Bengio, Yang Liu, and Sergey Levine in
clg 2020. Some researchers occur in several structures, e.g., in csi

2020, 6 of the spokes in the star around Christos Faloutsos, shown
in the right panel of Figure 4, reappear in the star around Danai

Koutra, and some of them are also connected. This demonstrates
the importance of allowing structures to overlap on nodes and on
edges, a feature absent from other state-of-the-art summarizers like
VoG. For the law graphs (lde, lus), analysis by the first author (who
happens to hold a PhD in law) and discussion with legal scholars
revealed that we can classify stars based on the ratio of the in-
and out-degree of their hubs to uncover their legal function. Thus,
Beppo produces summaries that are useful to domain experts even
for directed graphs, which sets it further apart from other methods.

Table 1: Beppo compresses graphs more efficiently than

VoG. |S | is the number of structures, and L% is the compres-

sion (in percent of the uncompressed encoded length).

Beppo VoG-k VoG-G

Graph n m |S | L% |S | L% |S | L%

Epinions 75879 405740 100 20 100 5 2746 19
Enron 79870 288364 100 18 100 7 2331 25
AS-Oregon 13579 37448 100 28 100 21 399 29
Chocolate 2877 5467 55 9 100 7 101 12
Controversy 1093 2942 20 15 100 4 35 13
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Figure 3: Beppo is near-linear and output-sensitive. Its com-

putation time is shown as a function of m, with markers

scaled by the number of discovered structures |S |.

Coll. ĉl ŝt b̂c ŝc L̂%

asb 1 96 0 1 29
asp 3 91 0 6 29
bio 6 52 1 2 9
clg 24 36 0 2 8
csi 13 48 0 1 16
lde 0 98 1 1 1
lus 0 95 4 1 4
rba 0 68 0 0 3
rer 0 1 0 0 0
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Figure 4: Beppo identifies meaningful structures. We show
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(left), and an example star discovered in csi 2020 (right).

Since we allow structures to overlap, Beppo’s summaries can
be visualized intuitively as node overlap trees. Node overlap trees
are the maximum spanning trees of node overlap graphs, i.e., each
vertex in them represents a structure, the edge weights are the
Jaccard similarities between the node sets of the structures, and we
remove all edges that are lightest in a cycle. To ensure connectivity,
we introduce a root vertex that connects to the vertex with the
largest degree inside each component. We depict the node overlap
trees for selected digestive tract tissues from the bio collection in
Figure 5. Here, larger shapes indicate larger structures, and thicker
edges indicate higher Jaccard similarities. From the vertices and
the connectivity structure of the trees, it is immediately apparent
that the top-row tissues are very similar, and indeed, the functions
performed by the organs they represent are closely related.
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Q2: DoesGigi discover interpretable commonmodels? As
Gigi builds on Beppo, the common models it discovers are com-
posed of easily comprehensible structures. By construction, this
ensures a certain degree of interpretability. To understand the com-
position of a common model M12 and its relationship to individual
models M1 and M2, we can further visualize these models using
treemaps. We show an example from the bio collection in Figure 6,
contrasting the individual models for esophagus and colon with
their common model. We see that esophagus and colon have many
common structures, most of them stars, but the esophagus has more
complex or dense structures (cliques, bicliques, and starcliques),
while the colon has more simple sparse structures (stars). Using the
node alignments between the bio graphs to annotate the shared
structures with their average Jaccard similarities, we observe that
all stars that are shared between esophagus and colon have a shared
hub (indicated by a similarity above 0.5). Similar observations can
be made for other tissues, e.g., the largest cliques in the top-row
tissues from Figure 5 all have a Jaccard similarity of at least 0.58.
This indicates that housekeeping proteins might be expressed as
housekeeping structures that recur across tissues, but a detailed
investigation of this hypothesis lies outside the scope of this paper.

Beyond bilateral graph similarity assessment, Gigi’s output en-
ables comparisons between multiple graphs. As an example, in
Figure 7, we display the composition of the common models for
comparisons of the esophagus with the tissues from Figure 5 as
a triptych of stacked bar charts. The graphic illustrates that the
relationship between esophagus and colon, shown in Figure 6, is
comparable to that of the esophagus and any top-row organ from
Figure 5, and that all bottom-row organs share a biclique structure.

To further explore the relationships between shared structures,
we can leverage common node overlap graphs, i.e., node overlap
graphs induced by our structure matchingM, with nodes (s1, s2) ∈
M, edges ((s1, s2), (t1, t2)), and edgeweights

∏
i ∈{1,2} Jaccard(si , ti ).

These graphs convey an interpretable notion of equivalence be-
tween the matched structures. To visualize common node overlap
graphs, we again use node overlap trees, and Figure 11 in the Ap-
pendix shows an example from the lde collection. While not all
patterns from the individual trees recur in the common tree, the
trees induced by the common tree in the individual node overlap
graphs typically weigh a large fraction of the individual node over-
lap trees, i.e., the alignments discovered by Gigi respect much of
the node overlap shared between the structures in our input graphs.

Q3: Does Momo yield informative similarity scores? Al-
though our focus is similarity description, we can also use our
similarity score, the NMD, for similarity measurement. As depicted
in Figure 12 in the Appendix, experiments on synthetic models
show that the NMD is almost scale-invariant when the graphs con-
tain rescaled versions of the same structures and their size differs
within one order of magnitude, with larger size differences leading
to larger NMD values. The NMD also behaves intuitively for mod-
els of varied compositions, showing a strong correlation with the
number of structures that can be matched across graphs.

When we compare NMDs to Network Portrait Divergence values
(NPDs), on the yearly snapshots of the IBM GitHub collaboration
network from 2013 to 2017 used in [1], the general trends are quite
similar, but some years are more similar and others are less similar

Colon Intestine L Intestine S Liver Pancreas

Appendix Cecum Duodenum Esophagus Stomach

Figure 5: Beppo creates similar summaries with similar

node overlap structure for similar graphs. The node overlap

trees for selected digestive tract organs in the bio collection
mirror the functional (dis)similarity between these organs.
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Figure 7: Gigi allows multi-graph comparisons. Here, we

juxtapose shared (left) and specific (middle, right) structures

for the esophagus and the tissues from Figure 5.

under NMD than under NPD (cf. Appendix Figure 13). However,
only our results are also interpretable: In 2014, for example, the
network only has one star structure, explaining its high dissimi-
larity to 2015, which features one starclique and two cliques. The
differences between NMD values and NPD values are likely due
to the dependence of NPD on graph size, but since the underlying
statistics are not intuitively comprehensible, we cannot be sure.

In Figure 8, we depict the distribution of NMDs for all pair-
wise comparisons of different graphs in our real-world collections.
We see that NMDs span the whole range, and their distribution
differs depending on the type of comparison (cross-sectional vs.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

192



asb asp bio clg csi lde lus
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
M

D
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radical change (clg, csi) or cross-sectional comparisons (bio).
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Figure 9: NMDs yield nuanced insights. The NMDs for the

clg and csi graphs from 2011 (top/left) to 2020 (bottom/right)

show the arrow of time within each collection (left, right)

and the lag between clg and csi from 2015 onwards (middle).

cross-temporal) and the type of change (gradual vs. radical) expe-
rienced by the system we study. To illustrate radical change, we
show the NMDs of the collaboration graphs (clg, csi) from 2011 to
2020 in Figure 9. Both collections display the arrow of time, but self-
similarity drops faster in clg than in csi from about 2015 onwards,
and when comparing across collections, csi 2015 is most similar to
clg 2015 but csi 2020 is most similar to clg 2017. Thus, while both
communities have picked up tremendous pace in the past ten years,
development in clg has been measurably more rapid than in csi.

7 CONCLUSION

We study graph similarity assessment as a description problem,
guided by the question “how are these graphs similar?”. Formaliz-
ing the problem using the MDL principle, we capture the similarity
of the input graphs in their common model and the differences
between them in transformations to individual models. Since our
search space is huge and unstructured, we propose a framework,
Momo, which breaks the problem into two parts: Beppo creates
graph summaries that are useful to domain experts, andGigi discov-
ers interpretable common models, from which we can also derive
informative similarity scores. Through experiments on undirected
and directed graphs of radically varying sizes from diverse domains,
we confirm that Momo works well and is near-linear in practice.

However,Momo also leaves room for improvement. For example,
we would like to handle richer graph types, including weighted and
attributed graphs, using encodings that fully leverage the available
information. Ideally, Beppo and Gigi would discover their structure
and transformation vocabularies on the fly, integrating domain-
specific background knowledge in the process. An improved struc-
ture encoding might account for the overlap between structures,
which is currently considered explicitly only by Gigi. Our NMD
score focuses on the models of the input graphs, and a more com-
prehensive measure could integrate the data under these models.

Finally, MDL forces us to take a binary decision when consid-
ering structure candidates, which can result in large differences
between models based on small differences between description
lengths. To eliminate these artifacts and still retain interpretability,
we could consider the full set of high-quality structure candidates
and compress it using structures of structures. This could lead to an
interpretable graph kernel, which—like overcomingMomo’s other
limitations—constitutes an engaging topic for future work.

REFERENCES

[1] J. P. Bagrow and E. M. Bollt. 2019. An information-theoretic, all-scales approach
to comparing networks. Applied Network Science 4, 1 (2019), 45:1–45:15.

[2] M. Berlingerio, D. Koutra, T. Eliassi-Rad, and C. Faloutsos. 2013. Network simi-
larity via multiple social theories. In ASONAM. ACM, 1439–1440.

[3] K. M. Borgwardt and H.-P. Kriegel. 2005. Shortest-path kernels on graphs. In
ICDM. IEEE, 8 pp.

[4] D. J. Cook and L. B. Holder. 1994. Substructure Discovery Using Minimum
Description Length and Background Knowledge. JAIR 1 (1994), 231–255.

[5] Cornell University. 2020. arXiv Dataset, Version 18 (2020/11/22). (2020). https:
//www.kaggle.com/Cornell-University/arxiv

[6] C. Coupette, J. Beckedorf, D. Hartung, M. Bommarito, and D. M. Katz. 2021.
Measuring Law Over Time. Frontiers in Physics (2021). DOI:http://dx.doi.org/10.
3389/fphy.2021.658463

[7] T. De Bie. 2011. Maximum entropy models and subjective interestingness: an
application to tiles in binary databases. Data Min. Knowl. Disc. 23, 3 (2011),
407–446.

[8] J. Feng, X. He, N. Hubig, C. Böhm, and C. Plant. 2013. Compression-based graph
mining exploiting structure primitives. In ICDM. IEEE, 181–190.

[9] S. Goebl, A. Tonch, C. Böhm, and C. Plant. 2016. MeGS: Partitioning meaningful
subgraph structures using minimum description length. In ICDM. IEEE, 889–894.

[10] P. Grünwald. 2007. The Minimum Description Length Principle. MIT Press.
[11] F. Kaden. 1990. Graph distances and similarity. In Topics in Combinatorics and

Graph Theory. Springer, 397–404.
[12] S. Kapoor, D. K. Saxena, and M. van Leeuwen. 2020. Online summarization of

dynamic graphs using subjective interestingness for sequential data. Data Min.

Knowl. Disc. 35, 1 (2020), 1–39.
[13] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos. 2015. Summarizing and under-

standing large graphs. Stat. Anal. Data Min. 8, 3 (2015), 183–202.
[14] D. Koutra, N. Shah, J. T. Vogelstein, B. Gallagher, and C. Faloutsos. 2016. DeltaCon:

principled massive-graph similarity function with attribution. ACM TKDD 10, 3
(2016), 1–43.

[15] J. Leskovec, J. Kleinberg, and C. Faloutsos. 2007. Graph evolution: Densification
and shrinking diameters. ACM TKDD 1, 1 (2007), 2:1–2:41.

[16] M. Li, X. Chen, X. Li, B. Ma, and P. Vitanyi. 2004. The similarity metric. IEEE TIT

50, 12 (2004), 3250–3264.
[17] M. Li and P. Vitányi. 1993. An Introduction to Kolmogorov Complexity and its

Applications. Springer.
[18] Y. Lim, U. Kang, and C. Faloutsos. 2014. SlashBurn: Graph compression and

mining beyond caveman communities. IEEE TKDE 26, 12 (2014), 3077–3089.
[19] G. Ma, N. K. Ahmed, T. L. Willke, and P. S. Yu. 2019. Deep Graph Similarity

Learning: A Survey. (2019). arXiv:cs.LG/1912.11615
[20] G. Nikolentzos, P. Meladianos, S. Limnios, and M. Vazirgiannis. 2018. A Degener-

acy Framework for Graph Similarity. In IJCAI. 2595–2601.
[21] S. Ok. 2020. A graph similarity for deep learning. In NeurIPS, Vol. 34.
[22] J. W. Raymond, E. J. Gardiner, and P. Willett. 2002. Rascal: Calculation of graph

similarity using maximum common edge subgraphs. Comput. J. 45, 6 (2002),
631–644.

[23] J. Rissanen. 1983. A Universal Prior for Integers and Estimation by Minimum
Description Length. Annals Stat. 11, 2 (1983), 416–431.

[24] N. Shah, D. Koutra, T. Zou, B. Gallagher, and C. Faloutsos. 2015. Timecrunch:
Interpretable dynamic graph summarization. In KDD. ACM, 1055–1064.

[25] N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borgwardt. 2009.
Efficient graphlet kernels for large graph comparison. In Artificial Intelligence

and Statistics. 488–495.
[26] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu. 2007. GraphScope: parameter-

free mining of large time-evolving graphs. In KDD. 687–696.
[27] M. Togninalli, E. Ghisu, F. Llinares-López, B. Rieck, and K. Borgwardt. 2019.

Wasserstein weisfeiler-lehman graph kernels. In NeurIPS. 6439–6449.
[28] P. Yanardag and S. Vishwanathan. 2015. Deep graph kernels. In KDD. ACM,

1365–1374.
[29] Z. Zeng, A. K. Tung, J. Wang, J. Feng, and L. Zhou. 2009. Comparing stars: On

approximating graph edit distance. PVLDB 2, 1 (2009), 25–36.
[30] M. Zitnik and J. Leskovec. 2017. Predicting multicellular function through multi-

layer tissue networks. Bioinformatics 33, 14 (2017), i190–i198.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

193

https://www.kaggle.com/Cornell-University/arxiv
https://www.kaggle.com/Cornell-University/arxiv
http://dx.doi.org/10.3389/fphy.2021.658463
http://dx.doi.org/10.3389/fphy.2021.658463
https://arxiv.org/abs/cs.LG/1912.11615


A APPENDIX

In this Appendix, we provide further details on our algorithms,
our data (i.e., graph collections), and our experiments. The basic
notation used throughout our paper is summarized in Table 2. We
make all our data, code, and results publicly available.3

Algorithms. In the following, we provide implementation details for
all components of Momo: Beppo, Gigi, and the NMD computation.

Beppo. Beppo has a size threshold, which allows us to stop de-
composing connected components or discard generated candidates
when they are too small. We set this threshold to 10 for all our
experiments except when comparing NMDs with NPDs, where we
set it to 3 because the input graphs are relatively small.

When deciding whether to merge candidates due to large overlap
between their node sets in the final candidate generation step, we
choose our merge thresholds such that we can reduce redundancy
amongst candidates without harming structure quality. For cliques,
we set the merge threshold to 90% of the nodes. For bicliques and
starcliques, we require both the left sets and the right sets of two
candidates to overlap on 90% of the nodes. We do not merge stars
even for large overlaps because this would result in structures of a
different type, which we generate separately.

We allow Beppo to stop early if (1) it has added a given maxi-
mum number of structures to our model, or (2) we have tested a
given maximum number of candidates without adding them to our
model. As described at the beginning of Section 6, to guarantee
that our summaries are interpretable, we set their maximum num-
ber of structures to 100. We set the maximum number of rejected
candidates to 300, but in our experiments, this becomes relevant
only for graphs from the bio collection. Because these graphs are
relatively dense, Beppo creates many overlapping candidates, but
few of them suffice to cover most of the nodes and edges. With
early stopping, we can thus shorten the running time of Beppo
without compromising the quality of our graph summaries.

Gigi. In Section 4.2, we give a verbal description of theMaximal-
Greedy matching heuristic used by Gigi. Supplementing this de-
scription, we provide the detailed pseudocode of MaximalGreedy
as Algorithm 3. To speed up the computation when no node align-
ment is given and structures do not overlap, our implementation
has a no-overlap flag which, when set, allows us to skip directly to
the greedy matching (l. 13–19).

NMD Computation. If we compute the NMD naïvely, it is in rare
cases possible to obtain a value above 1. This occurs when the
models for the two graphs are so different that encoding them indi-
vidually is cheaper than encoding them using a common model and
transformations, i.e., when L(M12) + L(∆1,∆2) > L(M1) + L(M2).
As any value above 1 signals that we do not gain any bits by com-
pressing G1 and G2 together, we set the NMD to 1 in this situation.

For the bio collection, the NMD distribution we report in Figure 8
is based on structure matchings using node alignments induced
by protein identities. For all other collections, the distributions re-
ported are based on structure matchings without node alignments.

3http://eda.mmci.uni-saarland.de/prj/momo; https://doi.org/10.5281/zenodo.4780912

Table 2: Basic notation.

Symbol Description

Gi = (Vi , Ei ) graph i with node set (edge set) Vi (Ei )
ni = |Vi | number of nodes in Gi
mi = |Ei | number of edges in Gi
Ai adjacency matrix of Gi
Ai j alignment between Vi and Vj
L(x) number of bits to describe x using our encoding
LN(x) number of bits to describe x using the universal

code for integers
log binary logarithm with log(0) = 0
⌊x⌉ x rounded to the closest integer

Algorithm 3: Structure matching with MaximalGreedy
Input: Structure lists S1, S2; node alignment A
Output: Structure matchingM ⊆ S1 × S2

1 M ← ∅

2 if A = ∅ then

3 Hi ← (Si , Fi ,wi ) for i ∈ {1, 2},wi ((s, t)) = Jaccard(s, t)
4 V ←

{
(s1, s2) ∈ S1 × S2 | type(s1) = type(s2)

}
5 E ←

{(
(s1, s2), (t1, t2)

)
| (s1, t1) ∈ F1, (s2, t2) ∈ F2

}
6 G← (V , E,w),w

( (
(s1, s2), (t1, t2)

) )
=

∏
i ∈{1,2}wi ((si , ti ))

7 while E , ∅ do
8 (u,v) ← argmax(u ,v)∈E w((u,v))
9 Add u and v toM

10 X ← {x ∈ V \M | (x ∩ u , ∅) ∨ (x ∩v , ∅)}

11 E ← E \ {(u,v)}

12 G ← G[V \ X ]

13 Si ← Si \ {s ∈ Si | ∃p ∈ M : s ∈ p} for i ∈ {1, 2}
14 forall structures s1 ∈ S1 do
15 forall structures s2 ∈ S2 do
16 if type(s1) = type(s2) then
17 Add (s1, s2) toM
18 Si ← Si \ {si } for i ∈ {1, 2}
19 break

20 else

21 Si ← Si for i ∈ {1, 2}
22 while true do

23 U ← {(s1, s2) ∈ S1 × S2 | type(s1) = type(s2)}
24 if U = ∅ then break

25 (s1, s2) ← argmax(s1,s2)∈U JaccardA (s1, s2)
26 Add (s1, s2) toM
27 Si ← Si \ {si } for i ∈ {1, 2}

28 returnM
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Table 3: Our experiments are based on graph collections

from highly diverse domains. N is the number of networks

in the respective collection.

Coll. Description N Distinction Source

asb AS Oregon RouteViews basic 9 2001/03/31–05/26, [15]asp AS Oregon RouteViews plus 9 weekly

bio physical protein interactions 144 human tissues [30]

clg arXiv cs.LG collaborations 10 2011–2020, [5]csi arXiv cs.SI collaborations 10 yearly (11/01)

lde German federal law 22 1998–2019, [6]lus United States federal law 22 yearly

rba Barabási-Albert random graphs 50 10 sizes, –
rer Erdős-Rényi random graphs 50 5 seeds –

asb asp bio clg csi lde lus rba rer
Collection
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Figure 10: We consider graphs of radically varying sizes.

Data. Beyond the implementation details of our algorithms, to
facilitate the interpretation of our results, we provide additional
background on the graph collections we use in our experiments.
Supplementing the description at the beginning of Section 6, we
give an overview of our graph collections in Table 3, and show their
distributions of n andm in Figure 10. For all collections except asb
and asp, we perform some preprocessing to transform the data pro-
vided into the graphs we use, which is documented in our codebase.
All random graphs are generated with graph generators available
in the Python library networkx.

Experiments. We complete our additional remarks by delivering the
details we deferred in Section 6. Full results for all our collections,
including further visualizations, are provided along with our code.

When comparing Beppo with VoG in Table 1 of Q1, we state
the n andm we found in the original input data, which sometimes
differs slightly from those reported in [13].

As promised when answering Q2, we juxtapose common and
individual node overlap trees for an example from the lde collec-
tion in Figure 11. Here, the trees induced by the common tree in
the individual node overlap graphs weigh more than 4/5 of the
individual node overlap trees.

Supplementing the discussion in Q3, in Figure 12, we provide
a single-linkage hierarchical clustering of the NMDs of synthetic
graphs with n ∈

⋃10
i=1{i · 10

4} nodes that contain ⌊100/|S|⌋ struc-
tures of each type inS, forS ∈ P(Ω)\∅ (150 graphs in total). Finally,
we visualize our comparison of NMDs with NPDs in Figure 13.

lde 2018 | 2019 lde 2018 lde 2019

Figure 11: Gigi discovers common models retaining much

of the node overlap shared by the structures in the individ-

ual graphs, as can be seen by comparing common (left) and

individual (middle, right) node overlap trees.
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Figure 12: NMDs are (almost) scale-invariant (light strip

along the diagonal) and correlate strongly with the number

of structures that are matched across graphs (seven distinct

shades of red). Row and column colors indicate model com-

position (mixed proportionally using blue, yellow, red, and

magenta as the base colors for our structures); labels show

structure counts per type and graph size (represented by i).
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Figure 13: NMD and NPD detect similar trends, but where

they differ, only NMD values are easy to interpret. Here, we

compare NMD values (left) with NPD values (right) on the

IBM GitHub collaboration network from [1].
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