skip to main content
10.1145/3447548.3467313acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Partial Label Dimensionality Reduction via Confidence-Based Dependence Maximization

Authors Info & Claims
Published:14 August 2021Publication History

ABSTRACT

Partial label learning deals with training examples each associated with a set of candidate labels, among which only one is valid. Most existing works focus on manipulating the label space by estimating the labeling confidences of candidate labels, while the task of manipulating the feature space by dimensionality reduction has been rarely investigated. In this paper, a novel partial label dimensionality reduction approach named CENDA is proposed via confidence-based dependence maximization. Specifically, CENDA adapts the Hilbert-Schmidt Independence Criterion (HSIC) to help identify the projection matrix, where the dependence between projected feature information and confidence-based labeling information is maximized iteratively. In each iteration, the projection matrix admits closed-form solution by solving a tailored generalized eigenvalue problem, while the labeling confidences of candidate labels are updated by conducting kNN aggregation in the projected feature space. Extensive experiments over a broad range of benchmark data sets show that the predictive performance of well-established partial label learning algorithms can be significantly improved by coupling with the proposed dimensionality reduction approach.

Skip Supplemental Material Section

Supplemental Material

KDD21-rst2088.mp4

mp4

31.4 MB

References

  1. K. Altun and B. Barshan. 2010. Human activity recognition using inertial/magnetic sensor units. In Proceedings of the 1st International Conference on Human Behavior Understanding. Istanbul, Turkey, 38--51.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. J. Amores. 2013. Multiple instance classification: Review, taxonomy and comparative study. Artificial intelligence, Vol. 201 (2013), 81--105.Google ScholarGoogle Scholar
  3. S. Boyd, S. P. Boyd, and L. Vandenberghe. 2004. Convex optimization. New York: Cambridge University Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. F. Briggs, X. Z. Fern, and R. Raich. 2012. Rank-loss support instance machines for MIML instance annotation. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Beijing, China, 534--542.Google ScholarGoogle Scholar
  5. M.-A. Carbonneaua, V. Cheplyginabc, E. Granger, and G. Gagnon. 2018. Multiple instance learning: A survey of problem characteristics and applications. Pattern Recognition, Vol. 77 (2018), 329--353.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. Chai, I. W. Tsang, and W. Chen. 2020. Large margin partial label machine. IEEE Transactions on Neural Networks and Learning Systems, Vol. 31, 7 (2020), 2594--2608.Google ScholarGoogle ScholarCross RefCross Ref
  7. B. Chang, U. Kruger, R. Kustra, and J. Zhang. 2013. Canonical correlation analysis based on hilbert-schmidt independence criterion and centered kernel target alignment. In Proceedings of the 30th International Conference on Machine Learning. Atlanta, Georgia, 316--324.Google ScholarGoogle Scholar
  8. C.-H. Chen, V. M. Patel, and R. Chellappa. 2018. Learning from ambiguously labeled face images. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 40, 7 (2018), 1653--1667.Google ScholarGoogle ScholarCross RefCross Ref
  9. J.-H. Chen, S.-W. Ji, B Ceran, Q Li, M.-R. Wu, and J.-P. Ye. 2008. Learning subspace kernels for classification. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, Nevada. 106--114.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Y.-C. Chen, V. M. Patel, R. Chellappa, and P. J. Phillips. 2014. Ambiguously labeled learning using dictionaries. IEEE Transactios on Information Forensics and Security, Vol. 9, 12 (2014), 2076--2088.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. T. Cour, B. Sapp, and B. Taskar. 2011. Learning from partial labels. Journal of Machine Learning Research, Vol. 12 (2011), 1501--1536.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. D. Dheeru and E. Karra Taniskidou. 2017. UCI Machine Learning Repository. http://archive.ics.uci.edu/mlGoogle ScholarGoogle Scholar
  13. L. Feng and B. An. 2019. Partial label learning with self-guided retraining. In Proceedings of the 13th AAAI Conference on Artificial Intelligence. Honolulu, Hawaii. 3542--3549.Google ScholarGoogle Scholar
  14. M. J. Gangeh, H. Zarkoob, and A. Ghodsi. 2017. Fast and scalable feature selection for gene expression data using hilbert-schmidt independence criterion. IEEE/ACM Transactions on Computational Biology and Bioinformatics, Vol. 14, 1 (2017), 167--181.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. B. Ghojogh, F. Karray, and M. Crowley. 2019. Eigenvalue and generalized eigenvalue problems: Tutorial. ArXiv:1903.11240 (2019).Google ScholarGoogle Scholar
  16. C. Gong, T. Liu, Y. Tang, J. Yang, J. Yang, and D. Tao. 2018. A regularization approach for instance-based superset label learning. IEEE Transactions on Cybernetics, Vol. 48, 3 (2018), 967--978.Google ScholarGoogle ScholarCross RefCross Ref
  17. D. Greenfeld and U. Shalit. 2020. Robust learning with the hilbert-schmidt independence criterion. In Proceedings of the 37th International Conference on Machine Learning, Virtual Event. 3759--3768.Google ScholarGoogle Scholar
  18. A. Gretton, O.r Bousquet, A. Smola, and B. Schölkopf. 2005. Measuring statistical dependence with Hilbert-Schmidt norms. In Proceedings of the 16th International Conference on Algorithmic Learning Theory. Berlin, Heidelberg, 63--77.Google ScholarGoogle Scholar
  19. M. Guillaumin, J. Verbeek, and C. Schmid. 2010. Multiple instance metric learning from automatically labeled bags of faces. In Lecture Notes in Computer Science 6311, K. Daniilidis, P. Maragos, and N. Paragios (Eds.). Springer, Berlin, 634--647.Google ScholarGoogle Scholar
  20. M. J. Huiskes and M. S. Lew. 2008. The MIR Flickr retrieval evaluation. In Proceedings of the 1st ACM International Conference on Multimedia Information Retrieval. Vancouver, Canada, 39--43.Google ScholarGoogle Scholar
  21. E. Hüllermeier and J. Beringer. 2006. Learning from ambiguously labeled examples. Intelligent Data Analysis, Vol. 10, 5 (2006), 419--439.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S.-W. Ji and J.-P. Ye. 2009. Linear dimensionality reduction for multi-label classification. In Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, California, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. L. Jie and F. Orabona. 2010. Learning from candidate labeling sets. In Advances in Neural Information Processing Systems 23, J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta (Eds.). MIT Press, Cambridge, MA, 1504--1512.Google ScholarGoogle Scholar
  24. R. Jin and Z. Ghahramani. 2003. Learning with multiple labels. In Advances in Neural Information Processing Systems 15, S. Becker, S. Thrun, and K. Obermayer (Eds.). MIT Press, Cambridge, MA, 897--904.Google ScholarGoogle Scholar
  25. I. Katakis, G. Tsoumakas, and I. Vlahavas. 2008. Multilabel text classification for automated tag suggestion. In Proceedings of the ECML/PKDD 2008 Discovery Challenge. Antwerp, Belgium.Google ScholarGoogle Scholar
  26. J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney. 2009. Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics, Vol. 6, 1 (2009), 29--123.Google ScholarGoogle ScholarCross RefCross Ref
  27. L. Liu and T. Dietterich. 2012. A conditional multinomial mixture model for superset label learning. In Advances in Neural Information Processing Systems 25, P. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Eds.). MIT Press, Cambridge, MA, 557--565.Google ScholarGoogle Scholar
  28. J. Lv, M. Xu, L. Feng, G. Niu, X. Geng, and M. Sugiyama. 2020. Progressive identification of true labels for partial-label learning. In Proceedings of the 37th International Conference on Machine Learning. Virtual Conference, 6500--6510.Google ScholarGoogle Scholar
  29. G. Lyu, S. Feng, T. Wang, and C. Lang. 2021, in press. A self-paced regularization framework for partial-label learning. IEEE Transactions on Cybernetics (2021, in press).Google ScholarGoogle Scholar
  30. N. Nguyen and R. Caruana. 2008. Classification with partial labels. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Las Vegas, NV, 381--389.Google ScholarGoogle Scholar
  31. G. Panis and A. Lanitis. 2015. An overview of research activities in facial age estimation using the FG-NET aging database. In Lecture Notes in Computer Science 8926, C. Rother L. Agapito, M. M. Bronstein (Ed.). Springer, Berlin, 737--750.Google ScholarGoogle Scholar
  32. R. B. Pereira, A. Plastino, B. Zadrozny, and L. H. Merschmann. 2018. Categorizing feature selection methods for multi-label classification. Artificial Intelligence Review, Vol. 49, 1 (2018), 57--78.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. B.-Y. Qian and I. Davidson. 2010. Semi-supervised dimension reduction for multi-label classification. In Proceedings of the 24th AAAI Conference on Artificial Intelligence. Atlanta, GA, 569--574.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. X. Ren, W. He, M. Qu, C. R. Voss, H. Ji, and J. Han. 2016. Label noise reduction in entity typing by heterogeneous partial-label embedding. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, CA, 1825--1834.Google ScholarGoogle Scholar
  35. J. D. M. Rennie and R. Rifkin. 2001. Improving multiclass text classification with the support vector machines. Technical Report AIM-2001-026. Artificial Intelligence Laboratory, Massachusetts Institute of Technology.Google ScholarGoogle Scholar
  36. C. G. M. Snoek, M. Worring, J. C. van Gemert, J.-M. Geusebroek, and A. W. M. Smeulders. 2006. The challenge problem for automated detection of 101 semantic concepts in multimedia. In Proceedings of the 14th ACM International Conference on Multimedia. Santa Barbara, CA, 421--430.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. H. Soleimani and D. J. Miller. 2016. Semi-supervised multi-label topic models for document classification and sentence labeling. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. Indianapolis, IN, 105--114.Google ScholarGoogle Scholar
  38. A. N. Srivastava and B. Zane-Ulman. 2005. Discovering recurring anomalies in text reports regarding complex space systems. In Proceedings of the 26th IEEE Aerospace Conference. Big Sky, MT, 3853--3862.Google ScholarGoogle Scholar
  39. K. Sun, Z. Min, and J. Wang. 2019. PP-PLL: Probability propagation for partial label learning. In Lecture Notes in Computer Science 11907, U. Brefeld, E. Fromont, A. Hotho, A. Knobbe, M. Maathuis, and C. Robardet (Eds.). Springer, Berlin, 123--137.Google ScholarGoogle Scholar
  40. L. Sun, S.-W. Ji, and J.-P. Ye. 2013. Multi-label Dimensionality Reduction. CRC Press.Google ScholarGoogle Scholar
  41. C.-Z. Tang and M.-L. Zhang. 2017. Confidence-rated discriminative partial label learning. In Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, CA, 2611--2617.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. D.-B. Wang, L. Li, and M.-L. Zhang. 2019. Adaptive graph guided disambiguation for partial label learning. In Proceedings of the 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Anchorage, AK, 83--91.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. J.-H. Wu and M.-L. Zhang. 2019. Disambiguation enabled linear discriminant analysis for partial label dimensionality reduction. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, 416--424.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. M. Xu and L.-Z. Guo. 2021. Learning from group supervision: the impact of supervision deficiency on multi-label learning. Science China Information Sciences, Vol. 64, 3 (2021), 1--13.Google ScholarGoogle ScholarCross RefCross Ref
  45. F. Yu and M.-L. Zhang. 2017. Maximum margin partial label learning. Machine Learning, Vol. 106, 4 (2017), 573--593.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. K. Yu, S. Yu, and V. Tresp. 2005. Multi-label informed latent semantic indexing. In Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Salvador, Brazil, 258--265.Google ScholarGoogle Scholar
  47. Z. Zeng, S. Xiao, K. Jia, T.-H. Chan, S. Gao, D. Xu, and Y. Ma. 2013. Learning by associating ambiguously labeled images. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition . Portland, OR, 708--715.Google ScholarGoogle Scholar
  48. M.-L. Zhang and F. Yu. 2015. Solving the partial label learning problem: An instance-based approach. In Proceedings of the 24th International Joint Conference on Artificial Intelligence. Buenos Aires, Argentina, 4048--4054.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. M.-L. Zhang, F. Yu, and C.-Z. Tang. 2017. Disambiguation-free partial label learning. IEEE Transactions on Knowledge and Data Engineering, Vol. 29, 10 (2017), 2155--2167.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. M.-L. Zhang and Z.-H. Zhou. 2007. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition, Vol. 40, 7 (2007), 2038--2048.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. M.-L. Zhang and Z.-H. Zhou. 2014. A review on multi-label learning algorithms. IEEE Transactions on Knowledge and Data Engineering, Vol. 26, 8 (2014), 1819--1837.Google ScholarGoogle ScholarCross RefCross Ref
  52. Y. Zhang and Z.-H. Zhou. 2010. Multilabel dimensionality reduction via dependence maximization. ACM Transactions on Knowledge Discovery from Data, Vol. 4, 3 (2010), 1--21.Google ScholarGoogle Scholar
  53. S. Zhao, P. Ni, H. Chen, C. Li, and Z. Dai. 2021, in press. Partial label learning via conditional-label-aware disambiguation. Journal of Computer Science and Technology (2021, in press).Google ScholarGoogle Scholar
  54. D. Zhou, Z. Zhang, M.-L. Zhang, and Y. He. 2018. Weakly supervised POS tagging without disambiguation. ACM Transactions on Asian and Low-Resource Language Information Processing, Vol. 17, 4 (2018), Article 35.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. X.-Y. Zhou and M. Belkin. 2014. Semi-supervised learning. In Academic Press Library in Signal Processing. Vol. 1. Elsevier, 1239--1269.Google ScholarGoogle Scholar
  56. Z.-H. Zhou. 2018. A brief introduction to weakly supervised learning. National Science Review, Vol. 5, 1 (2018), 44--53.Google ScholarGoogle ScholarCross RefCross Ref
  57. Z.-H. Zhou and M.-L. Zhang. 2017. Multi-label learning. In Encyclopedia of Machine Learning and Data Mining, C. Sammut and G. I. Webb (Eds.). Springer, Berlin, 875--881.Google ScholarGoogle Scholar
  58. X.-J. Zhu and A. B. Goldberg. 2009. Introduction to semi-supervised learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, Vol. 3, 1 (2009), 1--130.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Partial Label Dimensionality Reduction via Confidence-Based Dependence Maximization

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        KDD '21: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining
        August 2021
        4259 pages
        ISBN:9781450383325
        DOI:10.1145/3447548

        Copyright © 2021 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 14 August 2021

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate1,133of8,635submissions,13%

        Upcoming Conference

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader