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Abstract

Individual Treatment Effect (ITE) estimation is an extensively researched problem, with
applications in various domains. We model the case where there exists heterogeneous non-compliance
to a randomly assigned treatment, a typical situation in health (because of non-compliance to
prescription) or digital advertising (because of competition and ad blockers for instance). The
lower the compliance, the more the effect of treatment prescription − or individual prescription
effect (IPE) − signal fades away and becomes hard to estimate. We propose a new approach for
the estimation of the IPE that takes advantage of observed compliance information to prevent
signal fading. Using the Structural Causal Model framework and do-calculus, we define a general
mediated causal effect setting and propose a corresponding estimator which consistently recovers
the IPE with asymptotic variance guarantees. Finally, we conduct experiments on both synthetic
and real-world datasets that highlight the benefit of the approach, which consistently improves
state-of-the-art in low compliance settings.

1 Introduction

Individual Treatment Effect (ITE) estimation is an important task in various applications such as
healthcare (Foster et al., 2011), online advertising (Diemert et al., 2018) or socio-economics (Xie et al.,
2012). As it is often the case in practice, we assume that we cannot directly control the treatment
intake but only the treatment prescription: we therefore focus on the Individual Prescription Effect
(IPE), which designates the effect of the treatment prescription P on the outcome Y for an individual
described by covariates X (c.f. Equation (1), assuming random prescription assignment).

IPE(x) = E[Y |X = x, P = 1]− E[Y |X = x, P = 0] (1)

We also assume that we observe the treatment intake (or equivalently, the compliance to prescription),
denoted by T , which acts as a mediator of the causal effect of P on Y . The effect of T on Y will
henceforth be referred to as ITE.

Table 1 illustrates various settings in which non-compliance to treatment prescription may occur
(Gordon et al., 2019; Jin et al., 2008; Parker, 2000). This happens for instance when individuals have
the choice not to abide by the prescription or if there exists conflicting interests. Of course one can
choose to focus the study on actually treated individuals only (ITE). But from a decision making point
of view it often makes sense to consider that future treatment decisions need to take into account the
possibility of non-compliance so as to accurately predict future expected outcomes. For example a
policy maker would want to take into account that not all individuals would abide by the new policy
(as can be estimated from a pilot study) to predict the expected impact of a roll-out of said policy.

Now we argue that IPE estimation can be hampered by non-compliance. Indeed, note that individuals
who did not actually receive the treatment contribute only through noise to the default IPE estimator,
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Table 1: Examples of Covariates (X), Outcome (Y ), Treatment Prescription (P ) and Evidence of
Treatment Acceptance (T )

Var. Medicine Online adv. Job training

X patient info purchase history schooling
P drug prescription bid placement training offer
T drug intake ad displayed training done
Y recovery sale/visit employment

as their observed outcome is not effectively influenced. The variance of the IPE estimator therefore
increases as the compliance level decreases.

Besides, individual treatment (whether prescription or intake) effect models are often considered
as prescriptive tools. Indeed, treatment effect predictions can be used in order to target treatment to
individuals for which it is the most beneficial (Devriendt et al., 2018; Radcliffe & Surry, 2011). This
calls for an evaluation metric that measures by how much the average treatment effect would have
been improved, had the treatment been targeted not by a random instrument, but by the predictions
of the considered model instead. For that purpose Rzepakowski & Jaroszewicz (2012), Rzepakowski
& Jaroszewicz (2010), and Radcliffe & Surry (2011) have proposed the Area Under the Uplift Curve
(AUUC) metric that sums the benefits over individuals ranked by predictions. An interesting property
of this metric is that it can be used on real data for which we observe a given individual in either
treated or untreated conditions but never both.

Confronted with the challenges of (i) learning IPE models in conditions of (possibly high) non-
compliance and (ii) evaluating them as prescriptive tools, we pose the problem in the setting of
causal inference and derive an IPE estimator that takes advantage of observed compliance. Our main
contributions are as follows.

1. Formalization of IPE estimation in a setting of observed compliance described using structural
causal models, which extends to more general cases of mediated causal effect estimation (Section
3)

2. Proposition of a meta-estimator (in which can be plugged any ITE estimator) for IPE estimation in
presence of non-compliance, proof of consistency (Section 4.1) and asymptotic variance properties
(Section 4.2)

3. Thorough empirical evaluation of this meta-estimator on synthetic and real world datasets
(Section 5)

2 Related work

We review three main domains that are concerned with research questions similar to our work: ITE
modeling, non compliance in causal inference and evaluation metrics for ITE modeling.

First, we note that ITE models are a pervasive concept in different research fields such as marketing
- under the name uplift models (Radcliffe & Surry, 2011), statistics - as conditional average treatment
effect estimators (Künzel et al., 2019) or econometrics - heterogeneous treatment effect models (Jacob
et al., 2019; Wager & Athey, 2018). A simple yet highly scalable approach consists in learning a
regression of Y on X separately in both treatment (P = 1) and control (P = 0) populations and return
the difference, known as T-learner studied by Künzel et al. (2019) or “Two Models” studied by Radcliffe
& Surry (2011). A variation of this approach with larger model capacity have been proposed through a
shared representation (SDR) for the treatment and control group by Betlei et al. (2018). Also, a prolific
series of work exists on adapting decision trees and random forests to the causal inference framework
(Athey & Imbens, 2016; Wager & Athey, 2018; Athey et al., 2019). Further in the same vein and
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building on work done on double machine learning by Chernozhukov et al. (2018), Oprescu et al. (2019)
generalize the idea of causal forests, allowing for high-dimensional confounding. Finally, another recent
trend is to study theoretical limits in ITE estimation and especially generalization bounds (Shalit et al.,
2017; Alaa & Van Der Schaar, 2018).

Then regarding the concept of non compliance, many algorithms have been studied in order to
recover (individual) causal effects in non-compliance settings, however to our knowledge, works tackling
this problem (e.g. Gordon et al. (2019)) focus solely on effect of the treatment intake T − and not
the treatment prescription P − on the outcome Y . In that context, the effect of P on Y is sometimes
studied in an instrumental variable framework to recover the effect of T on Y (Imbens & Angrist, 1994;
Syrgkanis et al., 2019). Our work however focuses on estimating the effect of the treatment prescription
P on the variable Y , taking advantage of the observed treatment intake T , in the spirit of individual
intention-to-treat (ITT) analysis (Montori & Guyatt, 2001; Gupta, 2011) or per-protocol effect (Hernán
et al., 2017). The idea of taking advantage of a mediation variable for causal effect estimation has
triggered many recent works (Hill et al., 2015), in settings sometimes similar to ours (Loeys et al.,
2015). However, the associated assumptions (T and Y are unconfounded) are more restrictive than the
ones we propose, as we allow all the covariates (X) to be confounders between the mediation variable
T (representing the treatment intake) and Y , and state a result holding for individual (and not only
average) treatment effect.

Finally, treatment effect estimators performance is typically done using synthetic data, in which a
pointwise error measure − Precision Estimation of Heterogeneous Effect (PEHE) defined by Shalit et al.
(2017) − is available. However in real world cases, the fundamental problem of causal inference states
that the ground truth of individual treatment effect cannot be observed (since an individual is either
treated or untreated but never both at the same time), preventing to use such metrics beyond simulation
studies. Since our main motivation is to determine which individuals are good candidates for treatment
prescription, we choose to evaluate the performance of our estimators on real data using the AUUC
metric, which evaluates the ranking of individuals implied by corresponding ITE or IPE predictions.
One can view the resulting measure as a prediction of the expected benefit of prescribing treatment
according to the model prediction instead of a random uniform prescription. Overall, AUUC has been
used in recent years in machine learning research to evaluate baseline ITE models vs SDR (Diemert
et al., 2018), flavors of Support Vector Machines for ITE estimation (Kuusisto et al., 2014) or direct
treatment policy optimization (Yamane et al., 2018). A normalized variant of AUUC also exists under
the name Qini coefficient introduced by Radcliffe & Surry (2011), but we choose to focus on AUUC in
this work.

3 Framework

We briefly recall causality notions used throughout the paper, such as structural causal model, causal
graph, intervention and valid adjustment set first introduced by Pearl (2009), and more recently
presented by Peters et al. (2017).

Definition 1 Structural Causal Model (SCM) A SCM of variables X = {X1, . . . , Xd} is an object
C := (S,PN) where:
(1) S is a set of d structural assignments Xi = fi(PAi, Ni), with the fi’s deterministic functions and
PAi the set of parents (direct causes) of Xi.
(2) PN = PN1,...,Nd

is a joint distribution over the noise variables {Ni}1≤d, which we require to be
jointly independent.

As shown in Chapter 6 of Peters et al. (2017), a SCM C induces a unique causal graph GC − defined as
the directed acyclic graph (DAG) obtained by creating a vertex for each Xi and drawing directed edges
from each PAi to Xi (thus justifying the term ‘parents’ for the sets PAi) − and a unique entailed
distribution PC over variables X1, . . . , Xd such that for each i, Xi = fi(PAi, Ni) in distribution.
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A SCM can be used to define interventional distributions. A (hard) intervention do(Xi = xi) is
a forced assignment of variable Xi to the value xi, which implies a change in the distribution of the
variables X1, . . . , Xd. Formally, an intervention do(Xi = xi) is equivalent to modifying C in two ways:
(1) change the structural assignment Xi = fi(Xi,PAi) to Xi = xi in S and (2) replace Xi by xi in all
other structural assignments implying Xi in S.
We will denote by PC;do(Xi:=xi) the probability distribution entailed by the SCM C under the intervention
do(Xi := xi).

Let Xi, Xj ∈ X, Z ⊆ X\{Xi, Xj} is called a valid adjustment set (VAS) for the ordered pair
(Xi, Xj), if

PC;do(Xi)(Xj) =
∑
z

PC(Xj |Xi, z)PC(z),

where the sum is over the range of Z.
Notations. For sake of compactness, we use the following notations for any binary variable W
and multi-dimensional variable X: P(W ) , P(W = 1), P(W ) , P(W = 0), P(x) , P(X = x),
do(W ) , do(W := 1).

3.1 Non-compliance setting

The setting of non-compliance we consider in this work is entirely defined by a SCM of variables
X,P, T, Y, U for which example values where proposed in Table 1: X, belonging to a multi-dimensional
space X , contains the individual’s descriptive features, or covariates (by simplicity, we will confuse
individuals and their covariates, referring for example to ‘an individual x’), P is the binary treatment
prescription variable, Y is the binary outcome variable, T is the binary treatment intake (or acceptation)
− which acts as a mediator of the causal effect of P on Y − and U represents (allowed) unobserved
confounders between X and Y .

In what follows, we define the structural causal model C = (S,PN), which is henceforth assumed
to represent the causal mechanisms underlying the variables of interest in this work. The associated
causal graph GC is given in Figure 1.

P T Y

X U

Figure 1: Causal Graph GC Induced by SCM C

S is defined in Equations (2):

P = ÑP

U = NU

X = fX(U,NX)

T = fT (X,NT )× P
Y = fY (X,T, U,NY ).

(2)

PN satisfies the following mild conditions: NU , NX , NT , NY are noise consistent with variables definitions,
and ÑP is distributed according to a Bernoulli distribution with parameter p = PC(P ), consistent with
a randomized controlled experiment setting.
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In the next proposition, we list four assumptions implied by C about the variables of interest.

Proposition 1 The SCM C defined in Equations (2) implies the following assumptions on variables
P , T , Y and X:

(Randomized prescription) P ⊥⊥ X
(Exclusive treatment effect) P ⊥⊥ Y | {X,T}
(One-sided non-compliance) P = 0⇒ T = 0

(Valid covariate adjustment) {X} is a VAS for (T, Y )

(3)

The complete proof of Proposition 1, including definitions of the associated notions, is given in
appendix.

Detailed review of assumptions mentioned in Proposition 1 . We now review in details the
assumptions presented in Equation (3) and their connections to applications and usual theoretical
settings.

• Randomized prescription translates the fact that each individual is randomly allocated to a
prescription (P = 1) or a non-prescription/control (P = 0) group, allowing us to infer the
causal effect of P on Y without worrying about confounding bias. This is a typical situation in
experiments such as A/B tests or randomized controlled clinical trials.

• Exclusive treatment effect captures the fact that the prescription to treatment P has an effect on
the outcome Y only if the treatment is actually taken T = 1. More generally, this assumption
translates the fact that the effect of P on Y is fully mediated by T . This is typically assumed to
be the case in online advertising, in which case P is the allocation to a given advertising engine,
and T is the actual exposure to advertisement from this engine, as in the study of Gordon et al.
(2019).

• One-sided non-compliance defined by Gordon et al. (2019) states that P = 0 =⇒ T = 0, but
that P = 1 6=⇒ T = 1. In other words, treatment is only taken (T = 1) in cases where it was
originally assigned (P = 1). This assumption is typically satisfied in the instrumental variable
setting where P plays the role of the instrument for the estimation of the effect of T on Y as
explained by Syrgkanis et al. (2019).

• Valid covariate adjustment : every confounder for the effect of T on Y is observed (and contained
in X). This assumption is classically made in causal inference works (Alaa & Van Der Schaar,
2018, 2019) and is sometimes referred to as ignorability (Shalit et al., 2017). Under the potential
outcome framework (Rubin, 2005), this assumption is equivalent to

Y (T = 1), Y (T = 0) ⊥⊥ T |X.

Strong ignorability (where we additionally assume that 0 < P(T |x) < 1 for all x) has been proven
to be sufficient to recover the individual causal effect of T on Y (Imbens & Wooldridge, 2009;
Pearl, 2017).

Relation to the IV setting . The One-sided non-compliance assumption (Gordon et al., 2019) −
stating that P = 0 =⇒ T = 0, but that P = 1 6=⇒ T = 1, i.e. treatment is only taken if it was
originally prescribed − is typically satisfied in the instrumental variable (IV) setting, where P plays
the role of the instrument for the estimation of the effect of T on Y (Syrgkanis et al., 2019). There are
essential differences with our work, notably (i) we are interested in the effect of P on Y (IPE) and not
in the effect of T on Y , and (ii) exclusive treatment effect − stating that the effect of P on Y is fully
mediated by T − is not assumed in typical IV settings.
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3.2 IPE in presence of non-compliance

Notations. For all x ∈ X , we formally define the individual prescription effect τ IPE(x), the individual
treatment effect τ ITE(x) and the individual compliance probability γ(x) as follows:

τ IPE(x) = PC;do(P )(Y |x)− PC;do(P )(Y |x),

τ ITE(x) = PC;do(T )(Y |x)− PC;do(T )(Y |x),

γ(x) = PC;do(P )(T |x).

(4)

We also define the relative ITE β(x) and relative IPE α(x) as:

α(x) =
(
PC(Y |P, x)− PC(Y |P , x)

) /
PC(Y |P , x),

β(x) =
(
PC(Y |T, x)− PC(Y |T , x)

) /
PC(Y |T , x).

We propose to exploit the mediation variable T by splitting the P to Y path into two subpaths (from
P to T and from T to Y ), both with a higher signal-to-noise ratio. Indeed, under C we can insert T
into the PC;do(P )(Y |x) expression as presented in the next lemma.

Lemma 1 Assuming C, and for any x ∈ X , the positive outcome probability under treatment,
PC;do(P )(Y |x), can be written as follows:

PC;do(P )(Y |x) = PC(Y |x, T ) + τ ITE(x)γ(x). (5)

The proof of Lemma 1 is fully detailed in appendix. It relies on valid covariate adjustment, random-
ized prescription, and exclusive mediation assumptions, that we have proven to be implied by C in
Proposition 1.

The first term on the right hand side of Equation (5) is the individual probability of positive outcome
of an individual x given they did not receive treatment, and is referred to as the organic probability of
positive outcome.
In a nutshell: for a given individual, Lemma 1 states that their probability of positive outcome given
treatment prescription is equal to their organic probability of positive outcome, plus the product of
their individual treatment (intake) effect and their compliance.

In Proposition 2, we present a result linking the IPE, the ITE and the individual compliance:

Proposition 2 Assuming C and for any x ∈ X , the IPE decomposes as follows:

τ IPE(x) = τ ITE(x)γ(x) (6)

The proof of Proposition 2 is fully detailed in appendix. It relies on the identity PC;do(P )(Y |x) =
PC(Y |x, T ), which holds under C thanks to the exclusive treatment effect and one-sided non-compliance
assumptions.
In intuitive terms, Proposition 2 states that the effect of treatment prescription on a given individual is
equal to the effect of treatment intake on this individual, multiplied by their compliance.

4 Proposed Approach

4.1 Definition and basic properties

The expression proven in Proposition 2 calls for a novel way to estimate τ IPE(x), by first estimating
separately both factors τ ITE(x) and γ(x), then multiplying these estimators to form a compliance-aware
individual prescription effect (C-IPE) estimator.
Formally, let τ̂ ITE be an estimator of τ ITE and γ̂ be an estimator of γ. We define the associated
C-IPE estimator τ̂C−IPE , for any x, as:

τ̂C−IPE(x) = τ̂ ITE(x)γ̂(x). (7)
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In practice, τ̂ ITE may be any individual treatment effect estimator. Indeed, under C, the individual
causal effect of T on Y given X is identifiable since {X} is a valid adjustment set for (T, Y ) as explained
in Section 3. C-IPE is not an estimator per say, but rather a meta-estimator : a black-box in which any
classical ITE and compliance estimators can be plugged-in.

Assuming that for all x, τ̂ ITE(x) and γ̂(x) are consistent estimators of resp. τ ITE(x) and γ(x),
Proposition 2 then ensures that τ̂C−IPE(x) is a consistent estimator of the associated τ IPE(x).

4.2 Asymptotic variance properties

Thanks to its expression as a function of an ITE estimator, the C-IPE estimator focuses on the
individuals who actually received treatment, who are exclusively contributing to the signal (Exclusive
treatment effect assumption in Proposition 1). We therefore expect the C-IPE estimator to have lower
variance than any standard IPE estimator which does not exploit observable compliance.
Comparing C-IPE and IPE estimators is all the more fair than we use an analogous version of the
standard IPE estimator τ̂ IPE for the ITE estimator τ̂ ITE which is plugged in the C-IPE estimator
τ̂C−IPE(x). Doing so is feasible since the valid covariate adjustment assumption guarantees that both
τ IPE and τ ITE are identifiable and therefore estimable with standard treatment effect estimators.
We refer to this approach as symmetrically formed estimators comparison, and use it to conduct our
experiments in Section 5.
In the following proposition, we compare the asymptotic variance of estimators τ̂C−IPE and τ̂ IPE in
the following simple yet realistic setting:
Single-stratum setting. We focus on the IPE estimation for a single value x0 of X, for which we
assume to observe n i.i.d. samples {(x0, Pi, Ti, Yi)}1≤i≤n. All stated results generalise to any stratum
S ⊂ X for which there exists xS ∈ X such that the reducted feature variable X ′ , xSI{X∈S}+XI{X/∈S}
still defines a valid adjustment set for (T, Y ).
Notations. Consistently with notations presented in Equations (4), α(x0), β(x0) refer respectively
to the relative IPE and relative ITE in stratum {X = x0} (and are assumed to be positive in this
illustrative setting), and we denote γ̂(x0), τ̂ IPE(x0) and τ̂ ITE(x0) respectively the maximum-likelihood
estimator (MLE) of γ(x0), and the MLE-based two-model estimators (difference of two MLE estimators)
of τ IPE(x0) and τ ITE(x0). We define the associated C-IPE estimator as τ̂C−IPE(x0) , γ̂(x0)τ̂ ITE(x0).
Note that we use the MLE-based Two-Model estimator for both τ̂ ITE and τ̂ IPE , thus satisfying the
symmetrically formed estimators comparison setting. Lastly, we denote p1(x0) = PC(Y |P, x0).
In the following Proposition, we present an asymptotic bound for the ratio of the standard deviation
(sd) of C-IPE and IPE estimators.

Proposition 3 Under C defined in Section 3.1 with PC(P ) = 1
2 , assuming we observe n i.i.d. samples

in stratum {X = x0}, we have:

lim
n→∞

sd(τ̂C−IPE)

sd(τ̂ IPE)
≤

√(
2(1 + β)

(1− p1)(2 + α)

)
γ (8)

where we dropped the reference to x0 for clarity.

This theoretical bound shows that the ratio of standard deviations of C-IPE and IPE estimators gets
smaller when the compliance factor γ decreases, which was expected.

Additional assumptions however need to be made on β and p1 in order to derive an informative
bound in practice. In real-world datasets (presented in Section 5 and in appendix), we consistently

observe β̂(x) ≤ 12 and p̂1(x) ≤ 0.05, with estimators described in Section 5. Under such assumptions
on the orders of magnitude of β and p1, we can derive a useful-in-practice bound, as presented in the
following remark.
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Remark 1 If we additionally assume β ≤ 12, and p1 ≤ 0.05 we have:

lim
n→∞

sd(τ̂C−IPE)

sd(τ̂ IPE)
≤ 4
√
γ. (9)

where we dropped the reference to x0 for clarity.

This bound is derived from loose upper-bounds on β and p1 and is only presented for illustrative
purposes. It is however still informative in case of low compliance γ. For instance, if γ ≤ 10−2,
Equation (9) reveals that the asymptotic standard deviation of τ̂C−IPE is more than twice smaller
than the one of τ̂ IPE .

5 Experiments

To qualify the performance of the C-IPE estimator, we study its benefits in a variety of settings. Firstly
we study its properties on simulation-based studies, hereafter denoted by ‘Synthetic Datasets’, for
which (i) the IPE ground truth is known (ii) the level of compliance can be controlled and (iii) we can
appreciate performance with respect to an Oracle. Lastly we apply our approach to transform baseline
IPE estimators and compare their performance (AUUC) on three real-world, large scale datasets: an
open dataset from Criteo, named ‘CRITEO-UPLIFT1 Dataset’1, and two private datasets on which we
have privileged access, designated by ‘Private datasets’ and for which full results are given in appendix.

In each experiment we take care of comparing symmetrically formed estimators: we consider baseline
treatment effect estimators which we use both as (i) an IPE estimator and as (ii) an ITE estimator to
be plugged in the C-IPE decomposition. To simplify experiments we chose two baseline estimators:
Two Models (2M) and Shared Data Representation (SDR) as they easily scale to large datasets and
have been found competitive in prior studies by Betlei et al. (2018). For reproducibility sake we have
implemented all models using the Scikit-Learn Python library (Pedregosa et al., 2011) and provide
all code as supplementary material. All experiments were run on a machine with 48 CPUs (Intel(R)
Xeon(R) Gold 6146 CPU @ 3.20GHz), with 2 Threads per core, and 500Go of RAM. Finally, we note
that the state of the art is always evolving and improving. We did not use the most advanced models
because we do not aim at outperforming them. Instead, we claim that the C-IPE estimator can improve
any IPE estimator if plugged-in as the ITE factor in (7) in a low compliance setting.

5.1 Datasets

Synthetic Datasets We define a simulation setting in which X = {0, 1}10, n = 2.106. The outcome
is generated according to:

Y ∼ Bern (p0 (1 + PTβ(x))) , (10)

where P ∼ Bern(0.5), T ∼ Bern(γ(x)), and p0 = PC(Y |T , x) = 0.1, using notations from Equations (4).
This procedure allows for varying γ(x) and β(x) to simulate different levels of compliance and relative
ITE, respectively.

CRITEO-UPLIFT1 Dataset This open dataset from Criteo contains online advertising data from
a randomized controlled trial. Key statistics for this dataset are summarized in Table 2 and 3. Notably,
average treatment prescription E[P ] ≈ .85 indicates that 15% of users were assigned to the control
group and shown no advertisement. For the rest of the population, the advertisers participated in
online ad auctions. Among the users that advertisers tried to expose (P = 1), only 3.65% actually saw
an ad, which corresponds to a very low average compliance level E[γ(X)], which we expect to highlight
C-IPE estimator benefits. Effective exposure to ads is encoded by the T variable in this setup, while
the outcome Y encodes ‘at least one visit on the advertiser website’. As illustrated in Figure 2, the
mean of Y is more than 10 times higher for exposed users (T = 1) than for non-exposed ones (T = 0).

1http://cail.criteo.com/criteo-uplift-prediction-dataset/
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Table 2: Distribution of Users Effectively Treated (T = 1) and Visits (Y = 1) on CRITEO-UPLIFT1
Split on Treatment Groups

treatment (P ) exposure (T ) outcome (Y )

0 (2’096’236) - 3.82% (79’986)
1 (12’161’477) 3.65% (444’384) 4.93% (599’170)

Table 3: Distribution of Visits (Y = 1) on CRITEO-UPLIFT1 Projected on Exposure Groups

exposure (T ) outcome (Y )

0 (13’813’329) 3.58% (495’003)
1 (444’384) 41.4% (184’153)

P = 0 P = 1

Y = 1 T = 1

T = 0

Figure 2: Illustration of the Exclusive Treatment Effect Assumption in the CRITEO-UPLIFT1
Dataset: the effect of P on Y goes mainly through the realization of T

Private Datasets We have access to two private datasets of roughly 90M instances, which contain
binary treatment prescription P and outcome Y , and a suitable variable T that embodies an observable
compliance. They have a higher average compliance γ (7.8% and 10.4%), higher number of features (48)
and similar signal strength than the CRITEO-UPLIFT1 dataset. The purpose of extending the study to
these datasets is to verify the relationship between compliance level and performance, predicted by the
theoretical study in Section 4.2. The corresponding data has been collected in the same geographical
location, during two separate time periods).

5.2 Experiments

In all experiments, nuisance models required by the 2M and SDR estimators are learned as regularized
logistic regressions using second order cross-features. This is also the case for the additional nuisance
model needed for the C-IPE estimator: the compliance γ̂(.). Hyperparameters (regularization norm
and strength) of each of these models is carefully selected using internal cross validation, as detailed in
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appendix.

Compliance Sensitivity Experiment (Simulation) We aim to highlight how the compliance
level γ influences the performance of both standard IPE estimators and C-IPE estimators. For this
purpose we use a wide range of values γ ∈ [10−4; .99], and generate synthetic datasets as described
in Section 5.1 with a different relative ITE values β ∈ {−1, 0, 1, 2, 3, 4, 5, 6, 7, 8} for each of the 10
contexts. We report the PEHE metric for both IPE2M and C− IPE2M estimators, and approximate
their variance by repeating the experiment with 51 random test/train splits. Recall that PEHE is the
mean squared difference between the IPE ground truth and the estimators predictions.

0.990.50.10.050.010.001

0

1

2

3

·10−3

γ

√
P

E
H

E

IPE2M

C− IPE2M

Figure 3: Compliance Sensitivity (Simulation study). PEHE (lower is better) of IPE vs C-
IPE estimators at varying compliance level γ. Solid line represents the median, and dashed line

represents 5% and 95% of confidence intervals. , and : compliance level γ for resp.
CRITEO-UPLIFT1 and private datasets 1 & 2. The x-axis has a simlog scale.

We observe on Figure 3 that the C-IPE estimator significantly outperforms the standard IPE esti-
mator when the level of compliance γ is low, and has similar performance when γ gets closer to 1. This
shows that our compliance-aware approach significantly reduces the noise induced by non-compliance
and is able to detect smaller IPE signals. This is true in particular for compliance levels γ in the range
that is observe on the real datasets that we are using.

Baseline Experiment (Simulation) We simulate a realistic scenario where there exists hetero-
geneity in compliance γ and treatment effects τ IPE . More precisely, for each instance value x, we
draw once and for all γ ∈ {0.01, 0.005} and β ∈ {−1, 1, 3, 5, 7} uniformly and independently. The
associated outcome Y is computed according to (10). We study four methods: standard two-models
(IPE2M), shared data representation (IPESDR) and their compliance-aware variants (C− IPE2M, and
C− IPESDR). We focus on the AUUC metric, which measures the capacity of the model to rank
individuals according to their IPE . The AUUC has the important advantage of not requiring access
to the causal effect ground truth, which is typically the case in real-world applications. For more
meaningful performance representation, we substract the AUUC of a ‘random model’ to all raw AUUC
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values, obtaining ∆AUUC. Finally, for scaling purposes, we also report in Figure 4 results for an Oracle
estimator that has access to the drawn (β, γ), and for IPEbest, the best possible estimator which does
not exploit the observable compliance T (it predicts for each x its empirical IPE average based on the
training set). Again, variance is estimated by repeating the experiment with 51 random test/train
splits.
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Figure 4: Baseline Experiment (Simulation). ∆AUUC (higher is better) of two IPE estimators,
corresponding C-IPE estimators and Oracle model (theoretical truth). Box plots are done on 51 random
splits, whiskers at 5/95 percentiles. Note how C-IPE systematically increases AUUC of base estimators.

Figure 4 assesses the performance of IPE estimators versus their C-IPE variants, using the ∆AUUC
metric. C-IPE estimators yield a higher ∆AUUC on more than 90% of the random splits. Moreover the
Oracle (best model possible) does not significantly outperform C-IPE estimators, note that even the
Oracle can misrank users because the validation set is noisy and empirical IPEs do not always follow the
expected ranking. Overall, Figure 4 does not show any limitation of the IPE2M and IPESDR estimators,
but rather highlights the ineffectiveness of such direct IPE estimators in low compliance settings. This
phenomenon can be improved by our compliance-aware approach thanks to the higher signal of the
causal effect of T on Y . Of course, this synthetic data encodes a simpler setting than real-world
data, but the fact that our proposed compliance-aware approach performs that well still confirms our
theoretical analysis.

Real-world Experiment (CRITEO-UPLIFT1) To qualify the benefit of C-IPE versus standard
IPE for real-world applications we report ∆AUUC on the CRITEO-UPLIFT1 dataset. We study four
methods: two IPE estimators (IPE2M, and IPESDR) and their compliance-aware variants (C− IPE2M,
and C− IPESDR). For the additional γ̂(x) model, care is taken to weight the LLH as there is a high
imbalance between T = 1 and T = 0 classes. We use as an hyper-parameter grid the Cartesian product
of {L1, L2} (regularization) and {0.01, 1, 102, 105} (C, inverse of regularization strength) for γ̂(x). Best
hyper-parameters found are L1 regularization and C = 100. Results are presented on Figure 5.

The C-IPE version of each estimator has a lower ∆AUUC variance. This was expected from
Proposition 3 and Remark 1. Moreover, although the confidence intervals are slightly superposed,
C-IPE estimators outperform their IPE counterparts on each of the 51 splits.
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Figure 5: Real-World Experiment (CRITEO-UPLIFT1). ∆AUUC (higher is better) on test for
two IPE estimators and corresponding C-IPE estimators. Box plots computed on 51 random splits,
whiskers at 5/95 percentiles. Note the higher ∆AUUC and reduced variance of C-IPE estimators.

Real-world Experiment (Private Datasets) For the private datasets, we repeat the same pro-
cedure and compare the same metrics. Results (given in appendix) again highlight the fact that the
C-IPE estimators perform significantly better than their IPE counterparts.
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Figure 6: Real-world Experiment (Private Datasets). AUUC (higher is better) of two IPE models
and one C-IPE model (based on two models) from which we subtracted the AUUC of a random model.
Box plots are done on 33 bootstraps, whiskers at 5/95 percentiles.

Figure 6 illustrates the differences in ∆AUUC of the learned models and a random model on
33 bootstraps. The C-IPE models performs better than the two IPE models by having an AUUC
significantly better than the random model, when the two IPE models do not perform better than the
random model. An interesting finding of this experiment is that, in practice, the mild expected benefit
of C-IPE, predicted by the theory (because of a higher compliance than in CRITEO-UPLIFT1 dataset)
does not seem discernible. This is however only an indication as there are multiple differences between
the two datasets that might explain such a behavior.
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6 Conclusion and Future Work

We propose a novel approach on individual prescription effect (IPE ) estimation exploiting observed
compliance to the treatment prescription.
Using the structural causal model framework, we define assumptions under which the IPE can be
expressed as a product of the individual treatment effect (ITE) and the individual level of compliance.
In this setting, our post-mediation individual treatment effect (C-IPE) estimator is consistent. Moreover
its asymptotic variance improves with the level of compliance. Experimentally, we show how the
performance of several baseline IPE estimators improve when plugged in the C-IPE meta-estimator.
We also observe the relationship between performance and compliance as predicted by our theoretical
results.
Finally, this work opens several perspectives among which: i) stability of our results under variations of
assumptions, ii) bound tightness and properties in high-dimensional contexts, and iii) exploration of
how representation learning approaches may uncover by themselves C-IPE-like estimator decomposition
under weaker causal assumptions.
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A Proofs

To ensure a comfortable appendix read we quickly remind, for each lemma and proposition, vocabulary
and notations introduced in the main text that are used in the associated proofs.

A.1 Proposition 1

The structural causal model C = (S,PN) is assumed to represent the causal mechanisms underlying the
variables of interest in our work.
S is defined in Equations (2), and PN satisfies the following mild conditions: NU , NX , NT , NY are noise
consistent with variables definitions, and ÑP is distributed according to a Bernoulli distribution with
parameter p = PC(P ), consistent with a randomized controlled experiment setting.

In Proposition 1, we list four assumptions implied by the C about the variables of interest.
Proof.
The proof of Proposition 1 relies on the notions of valid adjustment set (Definition 6.38 of Peters et al.
(2017)), its relation to the back-door criterion (Proposition 6.41 of Peters et al. (2017)), the notion
of d-separation (Definition 6.1 of Peters et al. (2017)) and the Markov property (Proposition 6.21 of
Peters et al. (2017)).
First of all, the SCM C is Markovian with respect to its own entailed distribution (Proposition 6.31 of
Peters et al. (2017)): this implies that every conditional independence encoded in the graph GC holds
in distribution PC.
Randomized prescription , is implied by the Markov property and the fact that P and X are
d-separated by the empty set in GC: all paths between P and X contain either → T ← or → Y ←,
which are blocked by not including neither T nor Y .
Exclusive treatment effect is implied by the Markov property and the fact that the set {X,T}
d-separates P and Y in GC. This is shown by listing all paths between P and Y and observing that
they are all blocked by the set {X,T}.
One-sided non-compliance is straightforwardly implied by the structural assignment of T given in
Equations (2).
Valid covariate adjustment relies on the back-door criterion for valid adjustment sets. We remark
that {X} satisfies the back-door criterion for (T ,Y ) because (i) it is not a descendant of T and (ii) it
blocks all paths from T to Y that enter Y through the backdoor: it is therefore a valid adjustment set
for the ordered pair (T, Y ).

�

A.2 Lemma 1

The proposed method exploits the mediation variable T , i.e. the treatment intake, by splitting the
prescription to outcome path into a product of two subpaths, both with a higher noise-to-signal ratio.
In particular, based on the causal graphical model displayed in Figure 1, we can insert T into the
PC;do(P )(Y |x) as presented in Lemma 1.
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Proof.
Assuming the SCM C truly describes the relationships between P,X, T, Y , we have:

PC;do(P )(Y |x) = PC;do(P )(Y, T |x) + PC;do(P )(Y, T |x)

= PC;do(P )(Y |x, T )︸ ︷︷ ︸
PC(Y |x,T )

PC;do(P )(T |x) + PC;do(P )(Y |x, T )︸ ︷︷ ︸
PC(Y |x,T )

PC;do(P )(T |x)

= PC(Y |x, T )PC;do(P )(T |x) + PC(Y |x, T )PC;do(P )(T |x)

= PC(Y |x, T )PC;do(P )(T |x) + PC(Y |x, T ) PC;do(P )(T |x)︸ ︷︷ ︸
1−PC;do(P )(T |x)

= PC(T |x, P )
(
PC(Y |x, T )− PC(Y |x, T )

)
+ PC(Y |x, T ),

where we used assumptions described Equation 3, namely:

• PC;do(T )(Y |x) = PC(Y |T, x) (Valid covariate adjustment),

• PC;do(P )(·|x, ·) = PC(·|x, P, ·) (Randomized prescription),

• PC(Y |x, P, T ) = PC(Y |x, T ) (Exclusive treatment effect),

and the claim follows. �

A.3 Proposition 2

For all x ∈ X , we define the individual treatment prescription effect τ IPE(x), treatment intake effect
τ ITE(x), as well as the individual compliance γ(x) probability in Equations (4).

In Proposition 2, we propose a result linking the IPE, the ITE and the compliance probability,
namely:

τ IPE(x) = τ ITE(x)γ(x).

Proof
We have an analogous version of (5) for the term PC;do(P )(Y |x):

PC;do(P )(Y |x) = PC(Y |x, T ) + PC(T |x, P )
(
PC(Y |x, T )− PC(Y |x, T )

)
.

Since P ⇒ T (One-sided non-compliance assumption), we get that, ∀x ∈ X , PC(T |x, P ) = 0, and
finally:

PC;do(P )(Y |x) = PC(Y |x, T ).

Then:

τ IPE(x) = PC;do(P )(Y |x)− PC;do(P )(Y |x)

= PC(T |x, P )
(
PC(Y |x, T )− PC(Y |x, T )

)
+ PC(Y |x, T )− PC(Y |x, P )︸ ︷︷ ︸

PC(Y |x,T )

= PC(T |x, P )
(
PC(Y |x, T )− PC(Y |x, T )

)
.

which completes the proof.
�
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A.4 Proposition 3

Single-stratum setting. We focus on the IPE estimation for a single value x0 of X, for which we
assume to observe n i.i.d. samples {(x0, Pi, Ti, Yi)}1≤i≤n.
Notations. Consistently with notations presented in Equations 4, α(x0), β(x0) refer respectively to the
relative IPE and relative ITE in stratum {X = x0} (and are assumed to be positive in this illustrative
setting), and we denote γ̂(x0), τ̂ IPE(x0) and τ̂ ITE(x0) respectively the maximum-likelihood estimator
(MLE) of γ(x0), and the MLE-based two-model estimators (difference of two MLE estimators) of
τ IPE(x0) and τ ITE(x0). We define the associated C-IPE estimator as τ̂C−IPE(x0) , γ̂(x0)τ̂ ITE(x0).
Lastly, we denote p1(x0) = PC(Y |P, x0).
In Proposition 3, we present an asymptotic bound for the ratio of the standard deviation (sd) of
C-IPE and IPE estimators (additionally assuming PC(P ) = 1

2 for simplicity), namely:

lim
n→∞

sd(τ̂C−IPE(x0))

sd(τ̂ IPE(x0))
≤

√(
2(1 + β(x0))

(1− p1(x0))(2 + α(x0))

)
γ(x0)

Proof.
The proof is splitted in four steps:

1. Maximum-Likelihood and treatment effect estimators

2. Variance of estimators derivation

3. Variance upper and lower bounds

4. Wrap up

Every random quantity is henceforth implicitly considered to be ‘with respect to x0’.

1. Maximum-Likelihood and treatment effect estimators We remind that for two categorical
random variables X and Y , for which we observe n i.i.d. samples {(Xi, Yi)}1≤i≤n, we have the
following Maximum-Likelihood estimators for p(x) = P (X = x), p(x, y) = P (X = x, Y = y) and
p(y|x) = P (X = x|Y = y):

p̂(x) =
1

n

n∑
i=1

IXi=x

p̂(x, y) =
1

n

n∑
i=1

IXi=xIYi=y

p̂(y|x) =

n∑
i=1

IXi=xIYi=y

n∑
i=1

IXi=x

.

(11)

Since
n∑
i=1

IXi=x = 0⇒
n∑
i=1

IXi=xIYi=y = 0, we adopt the convention P̂ (X = x|Y = y) = 0 in case of null

denominator for a ratio estimator such as p̂(X = x|Y = y), ensuring they are well defined for any samples.

In our context, we have n i.i.d. samples {(Pi, Ti, Yi)}1≤i≤n of variables (P, T, Y ), and that we
suppose PC(P ) = 1

2 .
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We first define the following compact notations:

t = PC(P ) γ = PC(T |P )

p0 = PC(Y |P ) p1 = PC(Y |P )

q0 = PC(Y |T ) q1 = PC(Y |T )

Associated MLEs p̂0, p̂1, q̂0, q̂1, t̂ and γ̂ are given by Equations (11). For instance:

t̂ =
1

n

n∑
i=1

Pi γ̂ =
1

n∑
i=1

Pi

n∑
i=1

Ti

p̂0 =
1

n∑
i=1

(1− Pi)

n∑
i=1

(1− Pi)Yi p̂1 =
1

n∑
i=1

Pi

n∑
i=1

PiYi

q̂0 =
1

n∑
i=1

(1− Ti)

n∑
i=1

(1− Ti)Yi q̂1 =
1

n∑
i=1

Ti

n∑
i=1

TiYi

Direct estimators for τ IPE , τ ITE are given by applying the two-model approach to MLEs given in
these equations, i.e.

τ̂ IPE = p̂1 − p̂0
τ̂ ITE = q̂1 − q̂0

and the corresponding τC−IPE estimator therefore writes:

τ̂C−IPE = (q̂1 − q̂0)γ̂.

In what follows, we will now write
∑
i instead of

n∑
i=1

when there is no ambiguity.

2. Variance of estimators derivation

2.a. τ̂ IPE variance derivation
For any random variables X,Y , we remind that:

Var(X) = Var(E[X|Y ]) + E[Var(X|Y )]. (12)

Which applied with X = τ̂ IPE = p̂1 − p̂0 and Y = {Pk}k := {P1, . . . , Pn}, gives:

Var(τ̂ IPE) = E
[
Var(τ̂ IPE |{Pk}k)

]︸ ︷︷ ︸
A

+ Var
[
E(τ̂ IPE |{Pk}k)

]︸ ︷︷ ︸
B

. (13)

Computation of A

The term Var(τ̂ IPE |{Pk}k) decomposes as:

Var(τ̂ IPE |{Pk}k) = Var(p̂1|{Pk}k)︸ ︷︷ ︸
A1

+ Var(p̂0|{Pk}k)︸ ︷︷ ︸
A2

−2 Cov(p̂1, p̂0|{Pk}k)︸ ︷︷ ︸
A3

. (14)
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For A1 , we write:

Var(p̂1|{Pk}k) = Var

(
1∑
i Pi

∑
i

PiYi|{Pk}k

)

=

(
1∑
i Pi

)2

Var

(∑
i

PiYi|{Pk}k

)

=

(
1∑
i Pi

)2∑
i

Var(PiYi| {Pk}k︸ ︷︷ ︸
Pi (since i.i.d.)

)

=

(
1∑
i Pi

)2∑
i

PiVar(Yi|Pi)︸ ︷︷ ︸
Var(Y |P=1)Pi (since i.i.d.)

=

(
1∑
i Pi

)2

Var(Y |P = 1)
∑
i

Pi

=
1∑
i Pi

Var(Y |P = 1)

=
1∑
i Pi

p1(1− p1).

For A2 , we analogously get:

Var(p̂0|{Pk}k) =
1∑

i(1− Pi)
p0(1− p0).

For A3 , using the bi-linearity of covariance, we write:

Cov (p̂1, p̂0|{Pk}k) = Cov

 1∑
i Pi

∑
i

PiYi,
1∑

j(1− Pj)
∑
j

(1− Pj)Yj |{Pk}k


=

1∑
i Pi

1∑
j(1− Pj)

Cov

∑
i

PiYi,
∑
j

(1− Pj)Yj |{Pk}k


=

1∑
i Pi

1∑
j(1− Pj)

∑
i

∑
j

(1− Pj)Pi Cov (Yi, Yj |{Pk}k)︸ ︷︷ ︸
6=0 only if i=j (since i.i.d.)

=
1∑
i Pi

1∑
j(1− Pj)

∑
i

(1− Pi)PiCov(Yi, Yi| {Pk}k︸ ︷︷ ︸
Pi (since i.i.d.)

)

=
1∑
i Pi

1∑
j(1− Pj)

∑
i

(1− Pi)Pi︸ ︷︷ ︸
=0

Var(Yi|Pi)

= 0.

Injecting values of A1 , A2 and A3 in Equation (14) we get:

Var(τ̂ IPE |{Pk}k) =
1∑
i Pi

p1(1− p1) +
1∑

i(1− Pi)
p0(1− p0). (15)
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Which leads to the following expression for A :

E
[
Var(τ̂ IPE |{Pk}k)

]
= E

[
1∑
i Pi

]
p1(1− p1) + E

[
1∑

i(1− Pi)

]
p0(1− p0). (16)

Computation of B
We may write

E(τ̂ IPE |{Pk}k) = E(p̂1|{Pk}k)︸ ︷︷ ︸
B1

−E(p̂0|{Pk}k)︸ ︷︷ ︸
B2

.

For B1 , we write:

E(p̂1|{Pk}k) = E

(
1∑
i Pi

∑
i

PiYi|{Pk}k

)

=
1∑
i Pi

∑
i

E (PiYi|{Pk}k)

=
1∑
i Pi

∑
i

Pi E(Yi|Pi)︸ ︷︷ ︸
p1

=
1∑
i Pi

(∑
i

Pi

)
p1

= p1.

For B2 , we analogously get: E(p̂0|{Pk}k) = p0.

Therefore E(τ̂ IPE |{Pk}k) = p1 − p0 is constant relatively to {Tk}k, and we have computed B :

Var
[
E(τ̂ IPE |{Pk}k)

]
= 0. (17)

Combining Equations (13), (16) and (17) we end up with:

Var(τ̂ IPE) = E
[

1∑
i Pi

]
p1(1− p1) + E

[
1∑

i(1− Pi)

]
p0(1− p0). (18)

2.b. τ̂C−IPE variance derivation
Using Equation (12) with X = τ̂C−IPE = γ̂(q̂1 − q̂0) and Y = {Pk, Tk}k we may write:

Var(τ̂C−IPE) = E
[
Var(τ̂C−IPE |{Pk, Tk}k)

]︸ ︷︷ ︸
C

+ Var
[
E(τ̂C−IPE |{Pk, Tk}k)

]︸ ︷︷ ︸
D

. (19)

Computation of C

Using the fact that τ̂C−IPE = γ̂(q̂1 − q̂0), and remarking that E[γ̂|{Pk, Tk}k] = γ̂, we may write:

Var(γ̂(q̂1 − q̂0)|{Pk, Tk}k) = γ̂2Var((q̂1 − q̂0)|{Pk, Tk}k)
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By analogy with Equation (15), we have

Var(q̂1 − q̂0)|{Pk, Tk}k) =
1∑
i Ti

q1(1− q1) +
1∑

i(1− Ti)
q0(1− q0),

which gives

Var(γ̂(q̂1 − q̂0)|{Pk, Tk}k) = γ̂2(
1∑
i Ti

q1(1− q1) +
1∑

i(1− Ti)
q0(1− q0)). (20)

Injecting γ̂ =
∑

i Ti∑
i Pi

=
∑

i TiPi∑
i Pi

in (20), we get:

Var(γ̂(q̂1 − q̂0)|{Pk, Tk}k) =

∑
i Ti

(
∑
i Pi)

2 q1(1− q1) +
(
∑
i Ti)

2

(
∑
i Pi)

2∑
i(1− Ti)

q0(1− q0).

Taking the expectancy, we therefore get the following expression for C :

E
[
Var(τ̂C−IPE |{Pk, Tk}k)

]
= E

[ ∑
i Ti

(
∑
i Pi)

2

]
q1(1− q1) + E

[
(
∑
i Ti)

2

(
∑
i Pi)

2∑
i(1− Ti)

]
q0(1− q0). (21)

Computation of D

Using the fact that γ̂ is {Pk, Tk}k−measurable, we get:

E(τ̂C−IPE |{Pk, Tk}k) = γ̂(E(q̂1|{Pk, Tk}k)︸ ︷︷ ︸
D1

−E(q̂0|{Pk, Tk}k)︸ ︷︷ ︸
D2

). (22)

For D1 , a few mechanical computations bring:

E(q̂1|{Pk, Tk}k) = E

(
1∑
i Ti

∑
i

TiYi|{Pk, Tk}k

)

=
1∑
i Ti

E

(∑
i

TiYi|{Pk, Tk}k

)

=
1∑
i Ti

∑
i

TiE (Yi|{Pk, Tk}k)

=
1∑
i Ti

∑
i

TiE (Yi|Pi, Ti)︸ ︷︷ ︸
TiE[Y |T=1]

= E[Y |T = 1]︸ ︷︷ ︸
q1

1∑
i Ti

∑
i

Ti

= q1

For D2 , we analogously get:

E(q̂0|{Pk, Tk}k) = q0.

Injecting these values in (22):

E(τ̂C−IPE |{Pk, Tk}k) = γ̂(q1 − q0).
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which gives the following expression for D :

Var
(
E(τ̂C−IPE |{Pk, Tk}k)

)
= (q1 − q0)2Var(γ̂).

Using the fact that Var(γ̂) = E(Var(γ̂|{Pk})) + Var(E[γ̂|{Pk}]), we get:

Var(γ̂) = E
(

1∑
i Pi

)
γ(1− γ).

We end up with the final expression for D :

Var
(
E
[
τ̂C−IPE |{Pk, Tk}k

])
= (q1 − q0)2E

[
1∑
i Pi

]
γ(1− γ). (23)

Combining Equations (19), (21) and (23), we have:

Var(τ̂C−IPE) = E

[ ∑
i Ti

(
∑
i Pi)

2

]
q1(1−q1)+E

[
(
∑
i Ti)

2

(
∑
i Pi)

2∑
i(1− Ti)

]
q0(1−q0)+(q1−q0)2E

(
1∑
i Pi

)
γ(1−γ).

(24)

3. Asymptotic variance upper and lower bounds
3.a Asymptotic lower bound of Var(τ̂ IPE) With a slight rewriting of (18),

nVar(τ̂ IPE) = E
[

1
1
n

∑
i Pi

]
p1(1− p1) + E

[
1

1
n

∑
i(1− Pi)

]
p0(1− p0).

Then because t = PC(P ) = 1
2 , by the law of large numbers , we get

lim
n→∞

nVar(τ̂ IPE) = 2 (p1(1− p1) + p0(1− p0)) . (25)

Now, using p1 = (1 + α)p0, we can write:

lim
n→∞

nVar(τ̂ IPE) = 2p0 (1− p0 + (1 + α)(1− p1))

≥ 2p0 (1− p1 + (1 + α)(1− p1))

= 2p0(1− p1)(2 + α),

where the first inequality uses α ≥ 0. In summary, we have the following asymptotic lower bound for
Var(τ̂ IPE):

lim
n→∞

nVar(τ̂ IPE) ≥ 2p0(1− p1)(2 + α). (26)

3.a Asymptotic upper bound of Var(τ̂C−IPE)
From (24), we have

nVar(τ̂C−IPE) = E

[
1
n

∑
i Ti(

1
n

∑
i Pi
)2
]
q1(1− q1) + E

[ (
1
n

∑
i Ti
)2(

1
n

∑
i Pi
)2 1

n

∑
i(1− Ti)

]
q0(1− q0)

+ (q1 − q0)2E
(

1
1
n

∑
i Pi

)
γ(1− γ). (27)

Again, using the law of large numbers , we get

lim
n→∞

nVar(τ̂C−IPE) = 2γq1(1− q1) + 2
γ2

2− γ
q0(1− q0) + 2γ(1− γ)(q1 − q0)2. (28)
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Now, using that for any q ∈ [0, 1], q(1− q) ≤ q, and reminding that q1 = (1 + β)q0 ≤ 1 where β ≥ 0 by
assumption, we get:

lim
n→∞

nVar(τ̂C−IPE) = 2γq1(1− q1) + 2
γ2

2− γ
q0(1− q0) + 2γ(1− γ)(q1 − q0)

≤ 2γ

 q1︸︷︷︸
βq0

+
γ

2− γ︸ ︷︷ ︸
≤γ≤1

q0 + (q0(1 + β))2︸ ︷︷ ︸
≤q0(1+β)


≤ 2γq0 (1 + β + 1 + β)

= 4q0γ(1 + β).

In summary, we have the following asymptotic upper bound for Var(τ̂C−IPE):

lim
n→∞

nVar(τ̂C−IPE) ≤ 4q0γ(1 + β). (29)

4. Wrap up
Combining Equations (26) and (29) (ratio of positive values), we get

lim
n→∞

nVar(τ̂C−IPE)

lim
n→∞

nVar(τ̂ IPE)
≤ 4q0γ(1 + β)

2p0(1− p1)(2 + α)

= 2
1 + β

(1− p1)(2 + α)
γ.

Where we remind that One-sided non-compliance and Exclusive treatment effect imply straightforwardly
that p0 = q0 (as shown in the beginning of the proof of Proposition 2). Since the limits of both the
numerator and denominator exist, this implies that

lim
n→∞

Var(τ̂C−IPE)

Var(τ̂ IPE)
≤ 2

1 + β

(1− p1)(2 + α)
γ.

Taking the square root of this equation gives the wanted result.
�

B Additional Results and Experimentation Details

B.1 AUUC

AUUC (Rzepakowski & Jaroszewicz, 2012, 2010; Radcliffe & Surry, 2011) is the Area Under the Uplift
Curve. It is obtained by ranking the users of a test set according to their predicted uplift, in descending
order. In what follows, we will focus on the evaluation of IPEmodels (effect of IPE on Y ).

The uplift curve starts at the point (0, 0), then for each user (in decreasing order of the predicted
uplift) it goes up of 1 point if the user is in group P = 1 with Y = 1, it goes down of 1 point if the user
is in group P = 0 with Y = 1, and it stays flat if the user has zero outcome (Y = 0). So the label l is
Y ∗ (2P − 1). We normalise the x-axis so that it goes from 0 to 1.

The aim of an IPEmodel is to rank first the users with positive outcome and assigned to prescription
(P = 1), then the users with negative outcome, and finally the users with positive outcome and assigned
to non-prescription (P = 0). A model respecting such a ranking would have a maximal AUUC.

The value of the AUUC highly depends on the dataset it is computed on (the test set in the
experiments presented in the main text). The first point of the uplift curve is always (0, 0) and the
last one is always (1, U) were U =

∑
Y P −

∑
Y (1− P ). The variability of the test set (when we do

different splits such as in the experiments presented in the main text) accounts for an important part of
the variability of the metric on different splits, which we handle by subtracting the (average) AUUC of
a random model − equal to U

2 − to the AUUC of the evaluated models: this measure is called ∆AUUC.
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Figure 7: Example of uplift curves for (i) a perfect model (blue), a random model (green) and an
example IPE model (red). The AUUC of these models correspond to the area under their respective
uplift curves.

B.2 Model training

Our goal is to compare the performance of two approaches for the esimation of the IPE (Individual
Treatment Prescription Effect): (1) our proposed C-IPE (compliance-aware Individual Treatment Effect)
approach, which exploits observed compliance, and (2) standard IPEestimators which do not exploit
observed compliance. We implement two kinds of models for both IPE and ITE (Individual Treatment
Intake Effect) factors used inside C-IPEestimators. These models are (1) the Two-Models, with one
model learned on the group P = 1 and one model learned on the group P = 0, and (2) Shared Data
Representation (SDR) (Betlei et al., 2018), which is inspired from multi-task learning and has more
capacity than the basic Two-Models approach.
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Figure 8: ∆AUUC (higher is better) of two IPE models, corresponding C-IPE models and Oracle model
(theoretical truth). Box plots are done on 51 random splits, whiskers at 5/95 percentiles. Note how
C-IPE systematically increases the AUUC of standard IPE estimators

On synthetic data, we also compare the models to two theoretical models: IPEbest and Oracle:

• IPEbest is the best possible model learn-able using training data but without exploiting informa-
tion from variable T (or equivalently, compliance). In short, this model predicts the difference
between the empirical positive outcome rate in the group P = 1 and in the group P = 0, and
does so for each user context x ∈ X . This approach is valid in the case of our synthetic dataset
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since we observe a high number of users for each possible context x.
This is indeed the best possible learnable model, because the dataset is generated with one
different probability of positive outcome per category: there is no additional information any
model could capture without exploiting the variable T .
IPEbest allows us to show that, in our synthetic dataset, two models and SDR perform close to the
best possible IPE approach. In that specific low-dimensional case, there is therefore no need to
implement more complex models (Figure 8) such as doubly-robust methods or tree/forest-based
methods.

• Oracle predicts the theoretical ground truth uplift (used to generate the dataset). Its AUUC
represents the maximum theoretically reachable AUUC (expected). In practice, we observe that
it is however not the best model on all random splits. This can be explained by the fact that the
(test) dataset is randomly generated, and that the ranking of users in the test set can therefore
differ slightly from the theoretical ranking.

All learned models (IPE, C-IPE and IPEbest) suffer from the randomness of the training dataset.

B.3 Model testing

In addition of the randomness of the training dataset, the test dataset is also random. This adds
noise to the AUUC values that are computed in practice. We design a metric called, AUUCthout that
computes the AUUC on a theoretical test set. This metric may only be implemented on synthetic data.
It uses the ”Theoretical Outcome” (thout) of each category of users as a label, thus circumventing the
randomness inherent to the test set generation.

Figure 9 represents the performance of the same models as in Figure 8 but with the AUUCthout

metric (AUUC on a theoretical test set).
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Figure 9: ∆AUUCthout (higher is better) of two IPE models, corresponding C-IPE models and Oracle
model (theoretical truth). Box plots are done on 51 random splits, whiskers at 5/95 percentiles. Note
how C-IPE systematically increases the AUUC of standard IPE estimators

As expected, the Oracle has no variance because it does not − by design − suffer from the randomness
of the training set and the AUUCthout metric gets rid of the variance of the test set.
C-IPE models also have little to no AUUCthout variance in practice. This can be explained by the fact
that these models learn treatment intake effect (ITE ) signal, which is far less noisy than the IPE signal
in low-compliance settings, and therefore suffer from less random variability.
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B.4 Hyper-parameters tuning

For the open dataset CRITEO-UPLIFT12, we first learn γ̂(x) − modeling the true individual compliance
γ(x) = PC;do(P )(T |x) probability − from a separate process. Namely, the γ̂(x) model is learned in a
classical supervized learning way, as the compliance label T is accessible. In terms of losses, we use
a rebalanced LLH to account for the fact that classes T = 1 and T = 0 are very imbalanced. This
step is crucial, as a good γ̂ model ensures the superiority of C-IPE-based algorithms. The models
are implemented using the logistic regression from Scikit-Learn (Pedregosa et al., 2011). The hyper-
parameter grid considers (1) penalty regularization, (2) regularization strength and (3) the rebalancing
(or not) of the LLH, as presented in Table 4.

Table 4: Table of hyper-parameters for the compliance model

parameter values

penalty regularization {L1, L2}
C: inverse of regularization strength {0.01, 1, 102, 105}

class weight: weights associated with classes {balanced,None}

Hyper-parameters are selected by internal 11-fold cross-validation on the training set. The best
hyper-parameter triplet found is: L1 regularization, C = 100 and class weight = ’balanced’.

Then, we tune the two individual treatment effect models τ̂ IPE and τ̂ ITE , by again performing
internal cross-validation on the training set. We rank the hyper-parameters configuration according
to the ∆AUUC metric. The hyper-parameters grid considers (1) penalty regularization and (2)
regularization strength, as presented in Table 5.

Table 5: Table of hyper-parameters for the individual treatment effect models

parameter values

penalty regularization {L1, L2}
C: inverse of regularization strength {0.01, 0.1, 1, 10, 102, 103, 104, 105}

Remark For the plot of Figure 5, we only show the penalization L2, with an inverse regularization
strength C = 10 as we found that the ∆AUUC was not sensitive to these parameters (see subscript

COMP in Table 6). For clarity, we display in Table 6 the best hyper-parameters tuples for each method,
and the associated ∆AUUC metric.

Table 6: Table of hyper-parameters for the models. The metric is ∆AUUC

method Cbest penaltybest ∆AUUCbest Ccomp penaltycomp ∆AUUCcomp

IPE2M 100000.0 L1 20484.044762 10.0 L2 20249.085940
IPESDR 1.0 L1 20596.476241 10.0 L2 20179.615970
C− IPE2M 10.0 L2 21507.813960 10.0 L2 21507.813960
C− IPESDR 1.0 L2 21454.981632 10.0 L2 21333.441887

The corresponding performance the the best configuration are presented in Figure 10.
Note that the order of magnitude for each method is very similar with those presented in Figure 5,

i.e. for penalization L2 and C = 10, which shows that the fine tuning of the hyper-parameters has a
negligible impact on graphical displays.

2http://cail.criteo.com/criteo-uplift-prediction-dataset/
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Figure 10: ∆AUUC (higher is better) for the best hyper-parameter configurations. Box plots are
done on 100 random splits, whiskers at 5/95 percentiles. Note how C-IPE systematically increases the
∆AUUC of standard IPE estimators
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