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ABSTRACT

Pattern set mining has been successful in discovering small sets of
highly informative and useful patterns from data. To find good mod-
els, existing methods heuristically explore the twice-exponential
search space over all possible pattern sets in a combinatorial way,
by which they are limited to data over at most hundreds of features,
as well as likely to get stuck in local minima. Here, we propose a
gradient based optimization approach that allows us to efficiently
discover high-quality pattern sets from data of millions of rows and
hundreds of thousands of features.

In particular, we propose a novel type of neural autoencoder
called BinaPs, using binary activations and binarizing weights in
each forward pass, which are directly interpretable as conjunctive
patterns. For training, optimizing a data-sparsity aware reconstruc-
tion loss, continuous versions of the weights are learned in small,
noisy steps. This formulation provides a link between the discrete
search space and continuous optimization, thus allowing for a gradi-
ent based strategy to discover sets of high-quality and noise-robust
patterns. Through extensive experiments on both synthetic and real
world data, we show that BinaPs discovers high quality and noise
robust patterns, and unique among all competitors, easily scales to
data of supermarket transactions or biological variant calls.
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1 INTRODUCTION

The goal of pattern mining is to discover those patterns – eas-
ily interpretable symbolic statements about the data – that give
non-trivial insight in the process that generated it. Traditional ap-
proaches such as frequent pattern mining fail to deliver on this goal,

as by returning all patterns that satisfy a user-defined ‘interest-
ingness’ threshold they tend to swamp the analyst with extremely
many results, most of which are redundant or spurious.

Modern approaches hence reformulate patternmining as amodel
selection problem, in which we explicitly ask for a small set of
patterns that together generalize the data well. This solves one
problem, but creates another: the search space for pattern sets is
even larger than that of patterns alone – doubly exponential in
the number of features – and does not exhibit any structure that
permits efficient search. As a result, existing methods all rely on
heuristics, and are applicable only to modestly sized data of at most
a few hundred features, by which modern biological applications
such as genome-wide association studies or single-cell sequencing
data with hundreds of thousands of features are far out of reach.

In this paper we propose a radically different strategy to pattern
set mining that scales extremely well in both n andm, naturally
handles noise, and copes equally well with sparse and dense data.
We achieve this by taking a differentiable rather than a combinatorial
approach. Our key idea is to learn a special kind of interpretable
neural autoencoder for binary data, which we refer to as BinaPs,
short for Binary Pattern Networks. These networks consist of two
linear layers – the encoding hidden and the decoding output layer–
with continuous weights, sharing weights between encoder and
decoder. By using a novel type of binary activation function and
binarizing weights during each forward pass, we can interpret the
neurons in the hidden layer as ‘classic’ conjunctive patterns. Here,
we propose a reconstruction loss that properly accounts for dense
respectively sparse data, and as such the networks are equally well
applicable to dense biological datasets as well as classical sparse
transaction data.

One key benefit of our formulation is that it naturally allows
for discovering noisy patterns: the network is rewarded for recon-
structing the data, and hence automatically learns how much and
which parts need to occur for a pattern to be considered as ‘present’.
Similar to other pattern set mining approaches, such as tiling [11]
or boolean matrix factorization [21, 23], deciding the optimal size
of the pattern set – the size of the hidden layer – is NP-hard. We
however also show that in practice this is not a problem at all:
initialized with a sufficiently large capacity, our networks drive
the weights of edges towards ‘surplus’ neurons to zero and can so
find an (almost) optimal number of patterns, even when initialized
with as many hidden neurons as there are features. The overall
most important benefit of BinaPs in contrast to existing methods,
is however its massive scalability: the differentiable formulation is
not only much easier to optimize, but also allows us to leverage the
power of modern GPUs.

Evaluating BinaPs against the state-of-the-art on synthetic data,
we show that BinaPs accurately retrieves the ground truth, and is
robust to noise. BinaPs is the only method applicable on datasets

This work is licensed under a Creative Commons Attribution International 4.0 License.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467348

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

383

https://doi.org/10.1145/3447548.3467348
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3447548.3467348&domain=pdf&date_stamp=2021-08-14


with truly large n andm, on which we confirm that it discovers
meaningful patterns that provide on-trivial insight. It is also appli-
cable to moderately sized data, on which we show that it performs
at least as well as the state-of-the-art. As a case study, we consider a
recent biological dataset of over two hundred thousand features on
which BinaPs are able to mine patterns in mere minutes, recovering
structure which can be confirmed by the literature, and generating
new insights that could be leveraged by experts, such as potential
roles of genes for which the functions are so far unknown.

The rest of this paper is organized as usual. We cover related
work in Sec. 2, introduce BinaPs in Sec. 3, and empirically evaluate
in Sec. 4. We round up with discussion and conclusions in Secs. 5
and 6. We provide additional details for reproducibility in the sup-
plementary appendix, and make all code and data publicly available
for research purposes.1

2 RELATEDWORK

Pattern mining, a core topic of data mining, aims to explain local
as well as global structures in data using easy to interpret patterns.
After the seminal work by Agrawal and Srikant [1] on frequent item-
set mining, research swiftly focused on more efficient techniques
to mine itemsets and providing summarizations of all frequent
patterns [2, 4, 13, 24]. Frequency alone, however, showed to be a
poor measure of interestingness, yielding a plethora of spurious
and redundant results [33]. Rather than using ad-hoc measures
of interestingness and treating each pattern individually, research
shifted to mine interesting sets of patterns that together describe the
properties of the data. Different methods have been suggested to
discover such pattern sets, leveraging constraint based approaches
[26], boolean matrix factorization [21, 23], or information theoretic
approaches that use the MDL principle [8, 9, 31, 34] or maximum
entropy modeling [6, 19]. These methods retrieve succinct and in-
terpretable summarizations of the data that do not suffer from the
same problems as frequency mining, at the cost of a twice exponen-
tial search space that does not expose any easy to exploit structure.
Hence, heuristic algorithms are employed that add patterns one
by one in a bottom-up fashion, and are thus likely to get stuck
in local minima. Furthermore, these approaches are sensitive to
noise, and do not scale to modern data such as retail databases or
bioinformatics data.

With the advent of Deep Learning, efficient GPU-based imple-
mentations to train neural networks experienced wide-spread adop-
tion. In unsupervised settings, autoencoders can be trained to yield
succinct representations of complex datasets, also providing local
information in analogy to patterns [16, 17, 20]. Such networks are,
however, inherently hard to interpret – especially with respect
to how the structures that the network acrually learned link to
the given input – and lack the clear interpretability of patterns
barring their use for exploration. For low resource and embedded
devices, network architectures with binarized {−1, 1} weights and
activations have been proposed, thus making model storage and
application much more memory efficient [5, 7, 14, 18, 27, 28], for
more information we refer to the review of Simons and Lee [30].
While they provide a discrete connection between neurons and
input, these networks have no incentive to learn easy to interpret

1http://eda.mmci.uni-saarland.de/binaps/

structures reflecting associations between input features. Prelim-
inary experiments confirm this: these networks do not learn any
evident easy-to-interpret relation between weights, neurons, and
actual ground truth patterns.

Inspired by the link between continuous optimization of an
objective and learning discrete variables, we propose to learn in-
terpretable patterns using a novel constrained network architec-
ture with {0, 1}-binarized weights and activations that reflect item-
pattern relationships, and propose an objective that is suited as
loss function for sparse transactional databases. The learned con-
tinuous versions of the weights, binarized for every forward pass
through the network, allow to explore the discrete, exponential
search space of patterns efficiently by gradient based continuous
optimization. On synthetic and real world data, we show that our
approach scales to large data sets far beyond what state-of-the-art
pattern set miners achieve, while at the same time recovering the
generating patterns more accurately even in the presence of noise.

3 THEORY

In this section, we propose BinaPs, a novel type of binarized neural
autoencoder capable of learning pattern sets. We start by briefly
introducing notation and then provide an informal overview of
how BinaPs work. After introducing them formally, we discuss
practical considerations, and provide theoretical analysis.

3.1 Notation

We consider binary input data D ∈ {0, 1}n×m of n samples andm
features. A sample si ∈ D denotes the ith row in the data matrix
D[i]. We denote the value of feature j ∈ {1, . . . ,m} for the ith
sample by D[i, j]. We are interested to find a set of patterns P ,
where each patternp ∈ P is a set of feature indicesp ⊂ {1, 2, . . . ,m}
representing feature co-occurrences. To learn good sets of patterns
P , we propose a binarized neural network architecture, where we
generally denoteW for a weight matrix,Wb for its binarized version,
b for a bias, and bd for its discretized version. Activation functions
are denoted as λ, functions applying a part of the network to an
input, e.g. the encoding layer, as f . To ease notation, whenever we
apply a univariate function to a vector, we apply it to every entry
in the vector. For instance, an activation function λ : R → {0, 1}
applied to x ∈ R3 yields λ(x) ∈ {0, 1}3. Partial derivatives of a
function f with respect to parameter x are written as df

dx , matrices
M are generally denoted with capital letters, and vectors v with
lower case letters.

3.2 The idea in a nutshell

For a given binary database, we aim to find that set of patterns P that
together succinctly describe the data. That is, a good set of patterns
should cover the database non-redundantly while minimizing the
reconstruction loss if we reconstruct the database from P alone. For
continuous and unstructured data, autoencoder proved to be a suc-
cessful tool to capture the main structure in the data by minimizing
reconstruction loss. An autoencoder is a neural network consisting
of task-specific encoding layers that end in an embedding layer, and
a symmetric decoder to reconstruct the input from the embedding
layer. The embedding layer is usually small compared to the input
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Figure 1: Example database and BinaPs. A binary database D is given in the top left, a binary pattern network with pattern

layer size k = 4 on the right. Example continuous weightsW and bias b used during backpropagation, and their binarized,

respectively discretized counterpartsWb and bd used during the forward pass, are given at the bottom, alongside the pattern

set P that we can directly derive from theseweights. Neuron activations (orange) for the orange sample inD are given according

to the example binarized weights and bias.

layer, thus imposing an information bottleneck and forcing the net-
work to learn relevant and shared structure between inputs. Neural
networks are, however, inherently hard to understand for a human,
as connections between input and neurons are non-symbolic and
often non-linear.

Here, we propose a novel kind of neural autoencoder, where
weights and activations are taking values in {0, 1} during the for-
ward pass. To learn in small noisy steps during backpropagation,
for training we use continuous versions of the weights, optimizing
reconstruction loss with respect to these continuous weights. The
autoencoder consists of one linear hidden layer – the pattern layer
– and one linear output layer. For each neuron in the hidden layer,
incoming binary weights indicate whether an input item is part of
the encoded pattern, e.g. binarized weightWb [i, j]means that input
item j is part of the pattern given by hidden neuron i . As such, each
neuron in the hidden layer corresponds to a pattern p, while all
neurons together correspond to the pattern set P .

We construct binarized versions of the weights forward pass, and
use these for reconstruction. To ensure that the hidden neurons cor-
respond to actual patterns, and that such patterns are interpretable,
two additional constraints are introduced. First, we introduce a
discrete negative bias to the pattern layer to make sure that a min-
imum number of items is required to be present in the input for
the neuron to fire – respectively the pattern to hold. Second, we
“mirror” the weight matrix, such that the weight of the decoding
layer is the weight of the encoding layer transposed. This ensures
that the input/output relation is fixed, thus avoids that if a neuron
fires – meaning a pattern over a set of input neurons holds – it
activates exactly those output neurons that are part of the pattern.
We give an example network along with a toy database in Fig. 1.

3.3 BinaPs – Binary Pattern Networks

We define Binary Pattern Networks (BinaPs) as autoencoder with
two linear layers. Each layer has binary weights and binary activa-
tions, and a continuous version of weights and bias for backprop-
agation. We first formally define the functions that this stack of
layers encodes given binary weights – corresponding to the for-
ward pass of the network – and then provide the derivatives of a
loss function with respect to the continuous version of the weights
– corresponding to the backward pass – and show how we can
binarize the continuous weights for the next iteration.

The forward pass. A binary linear layer is generally defined as

fWb (x) = xW
⊺
b ,

with input x and binarized weightsWb . For sample s ∈ {0, 1}m , in
the forward pass, the function of the encoding layer takes the form

fE (s) = λE (fWb (s)) ,

whereWb ∈ {0, 1}k×m is the binary weight matrix for the hidden
layer of size k , and λE : R→ {0, 1} is a binary activation function.

The function of the decoding layer, taking as input the result of
the encoding layer y ∈ {0, 1}k , is defined as

fD (y) = λD (fW ⊺
b
(y)) ,

whereWb is the same weight matrix as in the encoding layer.
The activation function consists of two parts, a learnable bias

term b that allows to train how many items of this pattern have to
be present in the input for the neuron to fire, and a binarization to
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produce the output signal. First, we define the clamping function

clamp(x,a,b) =


a if x < a ,

x if a ≤ x ≤ b ,

b if b < x .

The activation of the encoding layer is then given as

λE (x) = round(clamp(x + bd , 0, 1)) ,

where x ∈ Nk , and bd ∈ {−∞, . . . ,−2,−1}k is the discretized
bias parameter. The activation function of the decoding layer is
λD (x) = round(clamp(x, 0, 1)), where no bias is involved. This
concludes the definitions of all components of BinaPs in a forward
pass, which is thus computed by fD (fE (s)) for given input s .
The backward pass. To learn a good model – a good set of weights
and biases – for a given dataset D, our aim is to minimize the
reconstruction loss across all samples s ∈ D

L(D;W ,b) =
∑
s ∈D
| | fD (fE (s)) − s | | .

Given the loss term for a given batch of samples, we can then
compute derivatives with respect to the continuous weightsW
and biases b, and backpropagate through the network. Networks
are trained using gradient descent, for which the derivatives with
respect to the parameters can be obtained using the chain rule.
For the linear layer, the derivative with respect to the weightsW ,
input x and incoming gradient flow дo is similar to vanilla neural
networks, given as

d fWb

dW
= д
⊺
o x ,

d fWb

dx
= дoW .

The activation functions λ in each layer resemble a step function,
hence there does not exist an analytical solution to their derivative.
For the decoder activation λD we use a version of the straight-
through-estimator dλD

dx = 1дo as suggested by Bengio et al. [3].
For the hidden layer, the straight-through-estimator fails, as

wrongly predicted items backpropagate a negative gradient to
weights through the activation, even though the neuron was not
active. In other words, patterns get penalized for wrong recon-
struction, regardless of whether they were actually taking part in
the reconstruction. Thus, we propose the gated straight-through-
estimator, which distinguishes the two cases of whether λE was
activated on input x or not. For given input x and incoming gradient
flow дo , we define gradients with respect to bias b and input x as

dλE
db
=

{
дo if λE (x) = 1
0 if λE (x) = 0

,
dλE
dx
=

{
дo if λE (x) = 1
max(0,дo ) if λE (x) = 0

.

With the partial derivatives defined, the chain rule allows us
to propagate gradients through the network and update the con-
tinuous parametersW and b accordingly. After backpropagation,
we clamp the weights to be in range [0, 1], which allow us to use
a stochastic binarization. We clamp the bias to be at maximum
−1, which means that the bias acts as a learnable threshold for a
minimum number of items to be present for a pattern to fire.
From continuous to discrete. In the next forward pass, we then bi-
narize respectively discretize the weight and bias parameter. As

Algorithm 1: BinaPs training

input :dataset D, initial BinaPs (W 1,b1), number of
epochs emax, batch size l

output :pattern set P
1 t ← 0 ; // Step
2 for e = 1 . . . emax do // Epochs
3 for i = 1 . . .n do // For each sample

// Forward pass

4 W t
b ← B(W

t ) ; // Binarize weights
5 btd ← ⌈b

t ⌉ ; // Discretize bias
6 yi ← round(clamp(D[i](W t

b )
⊺ + btd , 0, 1)); // fE

7 zi ← round(clamp(yiW t
b , 0, 1)); // fD

8 L(D[i];W ,b); // Compute loss
// Backward pass

9 дW ←
dL
dW ; // Weight gradient

10 дb ←
dL
db ; // Bias gradient

11 W t+1 ← update(W t ,дW ); // Optimizer step
12 bt+1 ← update(bt ,дb );
13 t ← t + 1;

14 P = {{j | round(W t [i, j]) = 1} | i ∈ 1 . . .k}; // Pattern set
15 return P

the weights are in range [0, 1], we can use a stochastic interpreta-
tion and treat them as a Bernoulli variable, the binarization thus
becomes a draw from a Bernoulli B,

Wb [i, j] = B(W [i, j]) .

Hence, the binary versions of the weights change probabilistically
in every iteration. For the discretization of the bias we ceil the
values bd [i] = ⌈b[i]⌉.

The algorithm. With all information in place, we are able to train a
binary pattern network, for which we provide pseudocode as Alg.
1. In practice, we use batch learning, where line 3 is replaced by an
appropriate batch slicing of the database, and all operations become
the corresponding tensor operations. The pattern set P encoded by
the network is given by a binarization of the final weight matrix
WP = round(W ), where row i encodes a pattern that contains each
item j for whichWP [i, j] = 1.

Reconstruction loss for transaction data. Binary matrices, and in par-
ticular sparse transaction databases, impose an additional challenge
when optimizing the loss. In analogy to a classification problem
with imbalanced class labels, where there is an intrinsic bias towards
correctly classifying the overrepresented class, sparsity introduces
a huge imbalance when it comes to reconstruction as 1s are highly
underrepresented yet most important for mining patterns. In ex-
treme cases, such as very sparse data usually given by supermarket
transaction data, a model achieves very low reconstruction loss by
predicting 0s everywhere – similar to always predicting the over-
represented class in the classification analogy. We thus propose
a sparsity dependent reconstruction loss, which for given sample
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D[i], and reconstruction zi , is

Lα (D[i];W ,b) =
∑

j ∈[1,m]

(
(1−D[i, j])α+D[i, j](1−α)

)
|zi j −D[i, j]| ,

where α = #1s
#1s+#0s is the sparsity of the data, and zi j is the re-

constructed feature j for sample i . The loss function thus avoids
aforementioned intrinsic biases by properly modeling sparsity in
the reconstruction.
Escaping poor local minima. The probabilistic nature of our bina-
rization allows us to escape poor local minima due to the stochas-
ticity introduced by drawing the binarized weights each round. By
bounding the continuous version of the weights by a very small
but positive value from below, we ensure that with low probability,
every item could potentially still be learned for a neuron. In partic-
ular, we adapt the clamping of weights after updating the weights
during backpropagation in iteration t such that

W t+1 = clamp(W t+1, 1/m, 1) ,

where the minimum 1/m is chosen such that on expectation 1
out of m items is randomly assigned to the pattern of a neuron,
independent of data dimensions. This helps to escape poor local
minima by e.g. preventing neurons from dying – meaning that the
gradient of corresponding weights and biases would always be zero.
Initialization. To initialize themodel, we can again take advantage of
the stochasticity of the weights. By setting the initial weightsW 1

i j =

1/m for data of size m, we have uniform chances of setting any
particular weight to 1, and have an initialization that is insensitive
to the number of features m, thus allowing to learn even small
patterns properly early on in the optimization. To enforce learning
of proper patterns at the beginning of the optimization, we set all
bias terms in the encoding layer to −1, which means that at least
two items have to be present for a neuron to fire.
Size of hidden layer. So far, we assumed the architecture, and in
particular the size of the hidden layer c , to be fixed. This hyperpa-
rameter, which we call capacity, corresponds to the maximum size
a retrieved pattern set can attain. Existing work, often assumes the
size of the optimal pattern set k∗ to be given, as deciding k∗ for
BMF [22] and related problems such as minimum tiling of databases
is NP-hard [11], where the optimal pattern set is the smallest set of
patterns that together reconstruct the database. Similarly, to decide
if the hidden layer capacity c corresponds to the size of an optimal
pattern set, is NP-hard.

Theorem 3.1 (Estimating hidden layer size c∗ is NP-hard).
For a given database D consisting of patterns P , estimating the small-
est hidden layer size c∗ = |P |, which would still result in smallest
reconstruction loss, is NP-hard.

Proof. We prove the theorem by introducing the concept of
bipartite dimensions of a graph, which is known to be NP-hard, on
which we reduce our problem.

Definition 3.2 (Bipartite Dimension). For a bipartite graph G =
(V1 ∪ V2, E), the bipartite dimension is the minimum number of
bicliques between V1 and V2 required to cover all edges E.

Lemma 3.3. Deciding the bipartite dimension for a graph G is
NP-hard [10, GT18].

For a given database D of items I and sample identifier S =
{1, 2, . . . ,n}, the binary database matrix corresponds to an adja-
cency matrix of the (undirected) bipartite graph spanned by the
two node sets of all items and all sample identifiers, with an item
and an identifier having an edge iff the item occurs in the corre-
sponding sample. More formally, we define GD = (I ∪ S, {(i, j) ∈
I × S | D[i, j] = 1}). The perfect reconstruction of the database D
with minimal number of patterns thus corresponds to the minimal
number of bicliques of GD , with each biclique corresponding to
a pattern. Hence, the minimal number of patterns k∗ and thereby
the hidden layer size c∗ required to achieve perfect reconstruction
corresponds to the bipartite dimension of the underlying graph,
which is NP hard to decide (Lemma 3.3). □

The good news is, however, that binary pattern networks – as
opposed to other approaches such as BMF – are robust to optimistic
estimates of k∗, i.e. the capacity c of the network only serves as an
upper bound for the number of patterns it will retrieve. In practice,
we can set e.g. c =m and the network simply sets incoming weights
to surplus neurons to 0, thus shrinking the pattern set to an almost
optimal size. It is important to note that by setting c to the number
of items, the network does not memorize the input, as it is forced
to learn proper patterns due to the bias term b ≤ −1.
Complexity. The complexity of learning binary pattern networks
is the same as for vanilla neural networks, which is O(t ×m2c) for
t iterations and data of n samples and m items and a BinaPs of
capacity c . This term is dominated by the matrix multiplication, for
simplicity we assumed naive matrix multiplication. As the search
space for pattern sets is twice exponential in the number of fea-
tures and usually does not lend itself for easy to exploit structure,
a low-degree polynomial complexity is great news. State-of-the-art
approaches based on e.g. information theory do not provide differ-
entiable objectives, the major issue being the discreteness of the
search space, hence they resort to heuristic algorithms. Here, by
having a link between the discrete search space and the continuous
loss, we circumvent this problem, thus resulting in a differentiable
objective optimizable in polynomial time. In practice, GPUs drasti-
cally speed up the optimization even further, allowing us to scale
up to and beyond hundreds of thousands of features.

4 EXPERIMENTS

Here, we empirically evaluate BinaPs on both synthetic as well as
real world data. For that, we implemented our approach in PyTorch
and compare to state of the art pattern mining methods that lever-
age different objectives and approaches. We use the publicly avail-
able implementations of all methods, and make our implementa-
tion available.2 All experiments of existing methods were carried
out on Intel Xeon E5-2643 v3 machines with 256GB RAM run-
ning Linux, BinaPs were trained on an NVIDIA A100-SXM4 GPU
with 40GB memory. Existing methods supporting multithreading
were executed in parallel on 16 cores. In particular, we compare
to Asso, which is based on boolean matrix factorization, and use
an automated rank selection approach [23], Slim, an information
theoretic pattern set miner based on the Minimum Description
Length principle [31], and Desc, which mines pattern sets using

2http://eda.mmci.uni-saarland.de/binaps/
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Figure 2: BinaPs is scalable. For synthetic data with known ground truth of varying number of features and planted patterns,

we show the F1 score (a) and the runtime (b) for all methods. Experiments were aborted when exceeding 3 days of runtime.

maximum entropy modeling [6]. Preliminary experiments showed
that vanilla binary networks (BNNs) [5], do not yield any evident
easy-to-interpret relation between weights, neurons, and ground
truth patterns. Individual experiments were stopped if taking more
than 3 days. Asso is given the maximum k , and BinaPs capacity c ,
equal to the number of featuresm for all experiments. Despite being
large overestimates of the actual pattern set sizes, both methods
show to be robust to this choice, hence we did not optimise these
parameters further. For all methods, we optimised hyperparamters
for each dataset separately, for details we refer to App. A.1.

4.1 Recovering ground truth

To evaluate all methods with respect to scalability and robustness
to noise, we first generate synthetic data with known ground truth.
We consider data with various number of planted patterns, where
each pattern is assigned 2 to 10 features at random, and a random
subset of the samples of size drawn from N(.05n, .005n). Here,
.05 corresponds to the mean density of patterns, similar to sparse
real world data, and n is the number of samples. In a first set of
experiments, we vary the number of samplesn, to show that BinaPs
can handle small data well. In a second set of experiments, we vary
the number of planted patterns, comparing BinaPs with existing
methods with respect to scalability. In a third set of experiments,
we introduce varying amounts of noise, to evaluate how well the
approaches can cope with noise. To evaluate how well the planted
pattern sets are retrieved, we consider F1 – the harmonic mean
between precision and recall – which is defined as

F1(Pd , Pд) =
|Pd ∩ Pд |

|Pd ∩ Pд | +
1
2 |Pd −⃝ Pд |

,

measuring how well discovered pattern set Pd matches the ground
truth Pд , with −⃝ the symmetric difference between two sets. An
intersection of two pattern sets P, P ′ is defined as true matches
between individual patterns, i.e. P ∩ P ′ = {p | p ∈ P ∧ p ∈ P ′}.

Small n. We start by confirming whether BinaPs can cope with
small data. To this end we generate synthetic data density and distri-
bution as above, planting 100 different patterns in n = {1000, 1100,
. . . , 10 000} samples, flipping 0.1% of data entries at random, corre-
sponding to a signal to noise ratio of 20. Although 1000 samples
may not sound very small, the probability for creating spurious but
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Figure 3: BinaPs is applicable on data with few samples. F1

score for pattern sets discovered byBinaPs on synthetic data

with varying number of samples.

statistically significant co-occurrences for just one pattern when
planting 100 patterns is already 23% (see App. A.2 for the deriva-
tion). In other words, considering fewer than 1000 samples does
not make sense.

We report the results in terms of the F1 score in Fig. 3. We see that
BinaPs robustly retrieves nearly all patterns even when the data
consists of just a few thousand samples, already ably recovers 75% of
the patterns completely from just 1000 samples. When investigating
the retrieved pattern sets for the data of 1000 samples, we see that
as expected by the above analysis, some of the retrieved patterns
correspond to frequent co-occurences of ground truth patterns,
which are counted as errors in the F1 score.
Recovering ground truth.To evaluate all methodswith respect to scal-
ability, we generate data with pattern sizes and densities as before,
distributing patterns over n = 10 000 samples uniformly at random,
varying the number of different planted patterns in {10, 30, . . . , 90}.
As above, we introduce .1% of noise. Scaling further, we generate
data of n = 100 000 samples and plant {100, 300, . . . , 900, 1000, 3000,
5000} patterns, all of same frequency and level of noise. Here, we
generate large data sets in terms of number of samples to avoid
introducing spurious pattern sets, as two ground truth patterns are
likely to co-occur significantly in small samples.

The results show that state-of-the-art methods Slim and Desc
have trouble retrieving the ground truth (see Fig. 2a). They overfit
respectively underfit. Asso as well as BinaPs do retrieve ground
truth pattern sets accurately. We observe that Asso, Slim, and Desc
all scale unfavourably, with Asso performing overall weakest in
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terms of runtime (Fig. 2b), taking days for relatively small data
sets, similar to Slim, and not being able to process even medium
sized data sets. Desc shows to scale slightly better, being able to
process moderately sized data sets, the retrieved patterns however
not matching ground truth. In contrast, BinaPs scales to tens of
thousands of patterns while retrieving pattern sets accurately, being
able to process datasets with 100k samples and close to 20k features
in slightly more than an hour.
Noise robustness. Next, we investigate the impact of noise on how
well methods are able to retrieve the correct pattern set. We gen-
erate data of n = 100 000 samples and 100 planted patterns with
distributions as above, but now varying the percentage of noise
in {0, 0.001, 0.002, . . . , 0.009, 0.01, 0.02, . . . , 0.05}, where 0.05 cor-
responds to a signal to noise ratio of 1. We visualize the results in
Fig. 4a-4b. Both Asso and BinaPs are robust even to high amounts
of noise, even for a signal to noise ratio of 1. Slim and Desc, on
the other hand, are very sensitive to noise, both retrieving tremen-
dous amounts of false patterns the more noise is present. On these
datasets BinaPs run for minutes, whereas the competitors take up
to several hours.

4.2 Quantitative results on real data

To evaluate BinaPs on real data, we consider 5 datasets of differ-
ent dimensions. In particular, we consider click-stream data of the
hungarian on-line news portal Kosarak,3 data on Belgian traffic Ac-
cidents [12], DNA-amplification data [25], online grocery shopping
data from Instacart, for which we give more information in App.
A.3, and single nucleotide polymorphisms in genomes of human
individuals from the 1000 Genomes project [32]. We provide details
on how we processed Genomes in App. A.4. We provide statistics
about the data and results in Table 1.

Whereas all methods are able to handel the small DNA and
Accidents data, there are already orders of magnitude differences
in runtime, with BinaPs finishing in minutes and Asso and Slim
taking hours up to a day. With increasing number of columns,
existing approaches fail to scale beyond small data, Asso not being
able to handle Instacart. On larger data such as Kosarak, all existing
approaches fail to terminate within 3 days, or run out of memory.
BinaPs being the only approach to reliably handle large – both in
n as well asm – databases, retrieving patterns for Kosarak, and the
challenging Genomes data.

Looking at the statistics, BinaPs retrieves succinct and non-
redundant pattern sets. Furthermore, these easy-to-interpret pat-
tern sets are much smaller than the initial capacity c given to the
network, despite not explicitly penalizing model complexity. While
retrieving equally succinct pattern sets,Asso fails to scale to moder-
ately sized data. Slim, an MDL based approach, finds thousands of
partially redundant patterns already for medium sized data, which
make it hard to analyze as a whole. Desc underfits for Accidents
respectively Instacart only returning patterns of length 2.

4.3 Qualitative results on real data

Here, we will compare the results on two small datasets quantita-
tively, and then move on to analyze the insights gained for the new
Genomes data set based on patterns found by BinaPs.
3http://fimi.uantwerpen.be/

DNA On this dense data, BinaPs and Asso discover compact pat-
terns that exhibit a block structure, with consecutive items merged
into a feature. Such block-like structures correspond to the larger
chromosomal areas where DNA copy number amplification hap-
pens, and hence represent biologically meaningful patterns. For
this particular data set, we can see the disadvantages of iterative
heuristics such as from Slim, which learns parts of this block struc-
ture early on, but then overfits to overly large patterns that only
appear in few samples and without evident block structure. These
co-occurrences of larger patterns are however likely due to random
co-occurrences. Desc here only finds short patterns, likely being
caught in a local minimum.

Instacart BinaPs discover patterns describing dense, noisy blocks,
for example a pattern spanning dozens of fruits, which are bought
together in arbitrary combinations. Slim breaks such dense blocks
in many (thousands) of individual patterns, each containing a small
subset of items. Desc again underfits, finding patterns of length 2
only. BinaPs also discover small patterns that reveal the general
buying behaviour of customers such as a pattern of different pre-
pared dishes {Pizza,Ceasar salad, Hummus wrap, Filled wrap}, or
certain food styles, such as {Chicken Wrap, Chile con queso}.

Genomes Last, we consider a dataset that motivated this work. The
data contains information about variants of a population of human
individuals for single nucleotide position within genes, and, with
over 200 thousand features, Genomes is far beyond what existing
methods can consider. BinaPs, however, is able to discover a suc-
cinct pattern set in mere minutes. Here, we analyze the discovered
patterns in more detail.

Biologically, we expect sequence stretches to be conserved and
hence variants to be inherited “together”. A first positive observa-
tion is that most patterns that BinaPs discovers indeed show such
blocks of variants that are close-by on the genome.

Within such blocks, the rare variants often lie on the same allele
– indicated by consecutive “0|1” variants – meaning that often one
parent has the “common” reference variants for consecutive sites,
whereas the other parent has the “rare” variants. Encouragingly,
individual BinaPs patterns show this, but interestingly BinaPs
often discovers a second pattern for the same sites that show the
opposite, for example most sites to be “1|0”. Whether this is due to
phasing or has biological meaning, we leave to the experts.

Taking a closer look at individual patterns, we find interesting
connections between variants and the genes they occur in. For
example, we find a pattern spanning multiple variants in the genes
NUCB2, NCR3LG1, ABCC8, and ROMO1. Variants at NUCB2 and
ABCC8 have together been associated with type 2 diabetes and
high blood pressure in Japanese population [29]. For NCR3LG1 we
know that it is close-by to ABCC8, but similar to ROMO1 there has
not been any connection made between the variants of these genes,
and hence could provide interesting insights for experts.

Another highly interesting pattern is over SF3A1, RRP7A, and
Z82190, where SF3A1 and RRP7A encode proteins that are part of
the ribosomal complex, the factory that produces proteins in a cell.
Z82190 is a so far uncharacterized gene, and this pattern hence
suggests what its role could be, which can guide future studies.

BinaPs discovers both large patterns of many variants within
few genes, but also discover associations over many genes at once.
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Figure 4: BinaPs is robust to noise. For synthetic data with known ground truth and varying the level of noise, we show the F1

score (a) and the runtime (b) for all methods. With 5% noise, we have a 1:1 ratio of signal-to-noise.

# Patterns Runtime

Dataset # rows # cols Asso BinaPs Desc Slim Asso BinaPs Desc Slim

DNA 2458 391 134 131 345 281 4m 26s 20s 2s
Accidents 340183 468 133 78 215 12261 12h 6m 14m 21h
Instacart 2704831 1235 n/a 328 712 8119 ∞ 44m 25m 8h
Kosarak 990002 41270 n/a 302 n/a n/a ∞ 5h ∞ ∞

Genomes 2504 226623 n/a 42 n/a n/a ∞ 9m ∞ ∞

Table 1: Results on Real World Data. For five real world datasets, we give the number of rows, number of columns, and for

Asso, BinaPs, Desc, and Slimwe report the number of discovered patterns and runtime required to do so rounded to the most

significant order of magnitude. Individual experiments were aborted after 3 days, resp. when exceeding the available 256GB

of RAM, corresponding entries are marked with n/a and∞.

As last example, we consider the pattern of variants in FUBP1, SE-
LENOI, ZKSCAN5, TMEM225B, ASPN, SOX6, PLEKHA7, and ALX3.
ASPN and ALX3 are taking part in chondrogenesis, an essential
developmental process producing elastic tissue covering ends of
bones and joints. FUBP1 and SOX6 are also genes linked to other
developmental processes. For ZKSCAN5 and TMEM225B only lit-
tle is known so far. These results encourage for further in-depth
analysis by domain experts.

Overall, BinaPs retrieve informative patterns over variant sites,
which can give interesting insights to relations between variants,
genes, and their function.

5 DISCUSSION

Experiments show that BinaPs discover succinct descriptions of
the data while scaling to hundreds of thousands of samples and
features. On synthetic data, BinaPs reliably discover the ground
truth pattern sets, even in the presence of large amounts of noise. On
real data, BinaPs find succinct pattern sets that describe interesting
structures in the data.

The results show that BinaPs discover patterns of varying length
and frequency, that describe true structure of the given data, on
sparse and dense data as well as small to large n, as well asm. Al-
though naturally related to BinaPs, boolean matrix factorization
shows good results on small data sets, but fails to scale beyond
small data. Furthermore, it requires the rank of the factorization –
the size of the pattern sets – to be given, wheras BinaPs needs a
large enough capacity of the pattern layer, and shrinks the number

of patterns – or factors – if necessary. State-of-the-art informa-
tion theoretic methods, based on the Minimum Description Length
principle or Maximum Entropy distributions, tend to over- or un-
derfit, which is likely due to their heuristic combinatorial search
rather than their objective. These methods do often recover (many)
small fragments of ground truth patterns, which may be puzzled
together by domain experts. In contrast, BinaPs tend to discover
entire patterns, or larger chunks.

With BinaPs, we provide a link between the discrete, exponential
search space and continuous optimization, which allows the use
of gradient-based techniques to explore the large search space of
pattern sets efficiently. In contrast to existing work, BinaPs are thus
well equipped for the large datasets emerging e.g. in the biological
domain, where exploring and understanding the given data is of
great interest. Here, we considered a dataset of human variation
stemming from the 1000 Genomes project, which deeply sequenced
thousands of human individuals. Considering single nucleotide
polymorphisms occuring within genes, resulting in several hundred
thousand features, BinaPs retrieved a succinct pattern set that upon
close inspection revealed known biological structure, as well as
interesting new relationships between variant sites, genes, and their
function. These pattern sets could generally help experts to better
understand and explore their data, and could guide experimental
design to elucidate the function of genes and their proteins, for
many of which the function is not known.
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6 CONCLUSION

We considered the problem of pattern set mining and propose Bi-
naPs, a novel kind of binarized neural networks that are capable of
discovering a compact set of interpretable patterns that together
describe the data well. Overall, BinaPs show to reliable recover
ground truth and show promising results on several large scale real
world datasets. With their ability to learn patterns using continu-
ous, gradient-based optimization, BinaPs paves the way towards
exploratory studies of challenging data sets comprising hundreds of
thousands of features that state-of-the-art algorithms for pattern set
mining fail to process, while providing patterns in the interpretable
language of conjunctions over input symbols.

While BinaPs can reveal interesting structure in data and pro-
vide insights for human experts, it would make interesting future
work to extend BinaPs for richer pattern languages, including for
example patterns over mutual exclusive items, which recently have
been proposed to mine. Such more expressive patterns can help
to get an even deeper understanding of the data at hand. Besides,
investigating deeper networks would make for engaging future
work. Simply making the network larger however comes at the
cost of reduced interpretability of the patterns, thus beating the
purpose of their design, however more involved architectures could
for example allow to extract pattern hierarchies from the data.
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A APPENDIX

A.1 Training parameters

For Slim, we use the proposed default candidate ordering from their
manuscript and provide a minimum support threshold of 10 for
pruning. For Asso, we test T = {0.1, 0.2, · · · , 1}, as suggested in
their example experiment setup in the codebase. We implemented
BinaPs in Pytorch, and for all experiments train the networks using
Adam [15], with an initial learning rate of 0.01, and an adaptive
learning rate schedule lowering the base learning rate to 0.001 and
0.0001 after epoch 5 and 7, respectively, and train for overall 10
epochs. The exception is Instacart, with relatively few features but
comparatively many samples. There, we observe a saturation of
loss in the third epoch and hence stop after that. As discussed in
the main text, Asso is trained for rank selection testing k up to the
number of features in the data, similarly we set the capacity c of
BinaPs to the number of features. For Kosarak and Genomes, we
provide the methods with k = c = 1000. For medium sized data
with less than 20k features, such as the synthetic data and the DNA
data set, we use a batch size of 64, for all other data we use a batch
size of 32. In general, we recommend these as default values as
this setup proved robust about the wide range of experiments we
carried out. It is however easy to carry out a parameter grid search
evaluating reconstruction loss on a test set. To extract pattern sets
from the network, we binarize the weights at a threshold of .2.

A.2 BinaPs with small n
Here we provide a derivation of the claim that already a single
pattern is likely (> 23%) to co-occur with other patterns when
planting 100 patterns in 1000 samples with a density of .05 uni-
formly at random over the transactions. For a patterns p and any
other pattern q with marginal frequencies np = 50 and nq = 50,
we are interested in the minimum joint frequency npq such that
the pattern occur statistically significant. To test the hypothesis
assuming indpendence between patterns, we use Fisher’s exact test
F , setting the significance threshold to α = 0.01. Searching for the
smallest joint frequency npq such that F < α , we obtain npq ≥ 8,
meaning that if the patterns co-occur in at least 8 samples their
relation is likely to be statistically significant. The next question

is how likely an event of p co-occuring with any of the other 99
pattern is, which are planted in the data set. Hence we compute this
probability P using the hypergeometric distribution now taking
into account the overall number of patterns, yielding

P = 99 ∗
50∑
i=8

(50
i
) ( 950
50−i

)(1000
50

) ≈ 0.233.

Hence, the chance of observing even just one pattern co-occuring
significantly with another pattern is larger than 23%.

A.3 Instacart data

We obtained the instacart dataset from the official Kaggle challenge4
and merged food items of the same type (e.g. all sugar of different
brands) each into a single item. This allows us to circumvent prob-
lems induced by the extreme sparsity of the database, where many
items only occur extremely infrequent, even just once, and thus do
4https://www.kaggle.com/c/instacart-market-basket-analysis/data
not expose any statistical significant relationships, and to be able to
find actual patterns such as e.g. Milk and Cookie, which would not
be possible if we would consider all combinations of e.g. brands and
types of chocolate cookies. Treating each transaction separately,
independent of time and customer id, we obtain a dataset of 1236
food items appearing in 2704831 transactions.

A.4 1000 Genomes data

We processed the variant calls of all individuals available in phase
3 of the 1000 Genomes project5, filtering for autosomal single nu-
cleotide variants (SNVs) with an allel frequency of at least .01. For
all protein coding genes specified for the reference genome, we
define windows from the transcription start site (TSS) to 1000 base
pairs downstream of the TSS. We then filter for SNPs that appear in
such a window, and define features in our binary matrixM for all
cases where at least one of the alleles show the rare variant (“1|0”,
“0|1”, “1|1”). Thus, the data matrix is of size 3·#filtered variants ×
#individuals. For each individual i , we set the data entryMi j = 1 if
the individual shows genotype j.

5ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
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