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ABSTRACT
Hyperbolic space and hyperbolic embeddings are becoming a pop-
ular research field for recommender systems. However, it is not
clear under what circumstances the hyperbolic space should be
considered. To fill this gap, This paper provides theoretical analysis
and empirical results on when and where to use hyperbolic space
and hyperbolic embeddings in recommender systems. Specifically,
we answer the questions that which type of models and datasets
are more suited for hyperbolic space, as well as which latent size to
choose. We evaluate our answers by comparing the performance
of Euclidean space and hyperbolic space on different latent space
models in both general item recommendation domain and social
recommendation domain, with 6 widely used datasets and different
latent sizes. Additionally, we propose a new metric learning based
recommendation method called SCML and its hyperbolic version
HSCML. We evaluate our conclusions regarding hyperbolic space
on SCML and show the state-of-the-art performance of hyperbolic
space by comparing HSCML with other baseline methods.

CCS CONCEPTS
• Information systems→ Recommender systems.
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1 INTRODUCTION
With the rapid development of Internet and world wide web, recom-
mender systems play an important role in modeling user preference
and providing personalized recommendation. Because of the un-
derlying graph structure of most real-world user-item interactions,
graph-based recommendation has become a popular research field.
Latent space models [14] such as matrix factorization based models
and metric learning based models are widely used in graph-based
recommender systems. They are capable of learning user and item
embeddings and utilizing the expressiveness of the latent space to
capture the underlying distribution and the latent structure of the
data. Most latent space models are built in Euclidean space, the
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Figure 1: (a) Hyperbolic space expands exponentially1. (b)
2D Poincaré disk and geodesics.

most straightforward latent space consistent with human cogni-
tion. However, the ability of embedding methods to model complex
patterns is inherently bounded by the dimensionality of Euclidean
space [21]. Euclidean embeddings suffer from a high distortion
when embedding scale-free and hierarchical data [4]. The distances
of users and items are not likely to be preserved when embedded
into Euclidean space. It is necessary to increase the latent size in
order to reduce the distortion. However, as the latent size increases,
the resources needed to train and store the model also increase.

To solve this problem, a new latent space with a smaller em-
bedding distortion is needed. Recently, hyperbolic space has been
explored as a new latent space and has shown impressive perfor-
mance. It outperforms Euclidean space in many domains including
natural language processing [7], link prediction and node classi-
fication [4], top-n recommendation [27], etc. A key property of
hyperbolic space is that it expands faster than Euclidean space.
Euclidean space expands polynomially, while hyperbolic space ex-
pands exponentially. As shown in Fig. 1a, if we treat it as an circle
in Euclidean space, the polygons away from the center of the circle
are smaller than those close to the center. But if we treat it as a
circle in hyperbolic space, then every polygon has the same size.
This suggests that, to embed the same group of data, the space
needed in Euclidean space is larger than hyperbolic space. In other
words, the data capacity of hyperbolic space is larger than Euclidean
space. Another important property of hyperbolic space is that it
can preserve the hierarchies of data. Many real-world data such
as texts, e-commercial networks and social networks exhibit an
underlying hierarchical tree-like structure with power-law distri-
bution [1, 21]. Meanwhile, hyperbolic space can be thought as a
continuous version of trees. Therefore, such networks are consis-
tent with hyperbolic space due to their analogous structure, and

1https://commons.wikimedia.org/w/index.php?curid=86312698
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can be naturally modeled by hyperbolic space with a much lower
distortion compared to Euclidean space.

Although hyperbolic embeddings are gaining great attention for
recommender systems nowadays [3, 4, 19, 29], it is not clear under
what circumstances the hyperbolic space should be considered. A
critical analysis and guidance are missing in existing literature.
As a current trendy topic of hyperbolic embeddings, practitioners
are indiscriminately attempting to transfer variants of existing
algorithms into hyperbolic geometry in regardless of having strong
motivations. Therefore, it is timely needed for a fair comparison
and analysis on existing recommendation algorithm in hyperbolic
space. It is unknown whether existing methods perform better in
hyperbolic space compared against their original feature spaces.
From dataset perspective, if hyperbolic geometry is regarded as a
more suitable space for particular recommendation scenarios, we
are wondering whether hyperbolic space is versatile across different
datasets or is only suitable for particular datasets? Fair latitudinal
comparisons are also missing in current existing works.

Our work aims to fix the gaps and provide a comprehensive
analysis on hyperbolic space and hyperbolic embeddings for rec-
ommender systems. We first introduce hyperbolic space and the
Poincaré ball model. Then we propose three hypotheses regarding
the performance of hyperbolic space on different models, datasets,
and latent sizes. Meanwhile, we propose a metric learning based
social recommendation approach named Social Collaborative Met-
ric Learning (SCML) and its hyperbolic version Hyperbolic Social
Collaborative Metric Learning (HSCML). Our implementation is
available at Github2. We empirically validate our hypotheses on 6
benchmark datasets and 6 models from both general item recom-
mendation domain and social recommendation domain. Finally we
draw conclusions and give comments on how to use hyperbolic
space. Our main contributions are:
• We provide theoretical analysis and empirical results to validate
our three hypotheses: hyperbolic space is more suited for dis-
tance models than projection models; hyperbolic space is more
powerful on datasets with a low density; hyperbolic space greatly
outperforms Euclidean space when the latent size is small, but as
the latent size increases, Euclidean space becomes comparable
with hyperbolic space.

• We address the drawbacks of hyperbolic space, and give com-
ments on when and where to use hyperbolic space.

• We propose a metric learning based social recommendation
method SCML and its hyperbolic version HSCML and validate
our hypotheses on them. We also show that hyperbolic space has
state-of-the-art performance by comparing HSCML with other
baselines on two benchmark datasets.

2 PRELIMINARIES
2.1 The Poincaré Ball Model
There are five well-known hyperbolic models: the Klein model K,
the Poincaré ball model D, the half-plane model P, the hyperboloid
model H, and the hemisphere model J. Each of them is defined on
a different domain in R, and has a different Riemannian metric.
Readers can refer to [2] for more detailed descriptions for them.

2https://github.com/RinneSz/Social-Collaborative-Metric-Learning

Among the five models, the Poincaré ball model is a very good
choice for learning hyperbolic embeddings because it is well-suited
for gradient-based optimization [21]. The definition domain of the
Poincaré ball model with constant curvature −𝑐 = −1 is

D = {(𝑥1, ..., 𝑥𝑛) : 𝑥2
1 + · · · + 𝑥2

𝑛 <
1

𝑐
} (1)

In R𝑛 , it is an n-dimensional open unit ball when 𝑐 = 1.
The geodesics in the Poincaré ball, which corresponds to the

straight lines in Euclidean space, are circles which are orthogonal
to the sphere. Fig. 1b gives an illustration of a 2D Poincaré disk and
its geodesics. The distance between two points u, v in the Poincaré
ball is the length along the geodesic. With constant curvature -1,
the distance is calculated by

𝑑D (u, v) = arcosh
(
1 + 2∥u − v∥2

(1 − ∥u∥2) (1 − ∥v∥2)

)
(2)

Here ∥ · ∥ is the Euclidean norm, arcosh is the inverse hyperbolic
cosine function. The distance is determined only by the position of
u and v, and therefore changes smoothly with respect to u and v.
Besides, there is only one center point in the Poincaré ball, which
is exactly the origin, so it is convenient to put the root node at the
origin, and the leaves will spread around the root layer by layer,
capturing the hierarchical structure of the graph. Furthermore, be-
cause all the embeddings are within the unit ball, we don’t need
to regularize or clip the embeddings as we do in Euclidean space,
meanwhile maximizing the use of the whole space. Another advan-
tage of the Poincaré ball model is its conformality, which means
that the angles are preserved when transforming Euclidean vectors
to the Poincaré ball. This is useful for us to define inner product in
the Poincaré ball to evaluate the performance of MF-based methods.

As for the other four hyperbolic models, the hemisphere model
is used as a tool for visualising transformations between the other
models, and is not often used as a model itself; the distance between
two points in the Klein model is related to the two ideal points at the
intersections of the unit sphere and the straight line that connects
the two target points, so the distance function is not as smooth and
easy to calculate as the Poincaré ball; the half-plane model uses
the upper half-plane as its definition domain, and all the points
that lie on the boundary of the half-plane can be treated as the
center, therefore it is necessary to regularize the embeddings as they
may spread all over the half-plane; the hyperboloid model also has
the issue of regularization since its definition domain includes the
infinity, too. Therefore, the Poincaré ball model naturally becomes
a good choice for learning hyperbolic embeddings compared to the
other hyperbolic models.

2.2 Latent Space Model
A key reason why hyperbolic space is suitable for recommendation
tasks is that, hyperbolic space and real-world datasets both expand
exponentially. This is true because we are looking at the datasets at
node level. Therefore, theoretically only models that are capable of
learning node embeddings are suitable for hyperbolic space. Such
models are called latent space models [14]. Each node is represented
by an n-dimensional embedding vector. Recommendations aremade
by comparing the relations between nodes. Based on the different
methods that are used to calculate the relation, latent space models
can be split into two categories, namely projection models and

https://github.com/RinneSz/Social-Collaborative-Metric-Learning


distance models. Projection models use the inner product to model
the relation. One typical example is matrix factorization. For two
node embeddings u and v, their relation 𝑟uv is

𝑟𝑢𝑣 = uTv + 𝑏 (3)

𝑏 is the bias. Usually larger 𝑟𝑢𝑣 means a closer relationship. The
relation calculated by Eq. 3 is used for downstream pairwise ranking
tasks or rating prediction tasks. Distance models use the distance
between a pair of node embeddings to model their relation. Metric
learning approaches are the most well-known distance models.
Typically, the relation between two nodes u and v is

𝑟𝑢𝑣 = 𝑑𝑢𝑣 (4)

𝑑𝑢𝑣 is the distance between u and v. Two nodes are more likely to
have a link or belong to the same category if they are close.

2.3 Poincare Ball Optimization and Geometry
Euclidean gradient descent method can’t be directly applied to
the hyperbolic space, because the value and direction of the hy-
perbolic gradient might be different from the Euclidean gradient.
One solution is to map the hyperbolic embeddings into Euclidean
embeddings, and use Euclidean gradient descent method to opti-
mize the Euclidean embeddings, then map the updated Euclidean
embeddings back into the hyperbolic embeddings. The tangent
space 𝑇𝑥D of a certain point 𝑥 in the hyperbolic space D is often
used as the target Euclidean space. The common vector operations
such as matrix multiplication and addition are done on the tangent
space. Thus, the hyperbolic optimization problem is simplified into
a Euclidean optimization problem.

In the following part, we will introduce the necessary mathemat-
ical basis for the Poincaré ball model. Note that the definition
domain and and the distance function are already defined in
Eq. 1 and Eq. 2.

Riemannian Metric. The Riemannian metric of an n-
dimensional Poincaré ball at point 𝑥 is

𝑔D𝑥 = 𝜆2𝑥𝑔
𝐸 , where 𝜆𝑥 =

2

1 − 𝑐 ∥𝑥 ∥2
(5)

𝑔𝐸 = I𝑛 is the Euclidean metric, which is an n-dimensional identity
matrix. We recover the Euclidean space when 𝑐 = 0.

Hyperbolic Norm. The norm of a Poincaré embedding u is its
distance to the origin. When 𝑐 = 1, the norm is

∥u∥D = arcosh
(
1 + 2∥u∥2

1 − ∥u∥2

)
(6)

The norm is 0 when ∥u∥ = 0, and goes to infinity when ∥u∥ is close
to 1.

Hyperbolic Inner Product. Because the Poincaré ball model
is a conformal model, for any two embeddings, their angle in the
Poincaré ball is the same as their angle in Euclidean space. Therefore
we define the Poincaré inner product as

⟨u, v⟩D = ∥u∥D · ∥v∥D · cos⟨u, v⟩, where cos⟨u, v⟩ = ⟨u, v⟩
∥u∥ · ∥v∥ (7)

Here ⟨·, ·⟩ is the Euclidean inner product.
Exponential Map & Logarithmic Map. The mapping from

the tangent space 𝑇𝑥D to the hyperbolic space D is called the ex-
ponential map, and the mapping from the hyperbolic space D to

the tangent space 𝑇𝑥D is call the logarithmic map. Usually the ori-
gin 𝑜 is chosen to be the target point 𝑥 because of the simplicity
and symmetry of the mapping function at 𝑜 . With constant nega-
tive curvature −𝑐 , for t ∈ 𝑇𝑜D𝑐 and u ∈ D𝑐 , the exponential map
exp𝑐𝑜 : 𝑇𝑜D𝑐 → D𝑐 and the logarithmic map log𝑐𝑜 : D𝑐 → 𝑇𝑜D𝑐 at
the origin 𝑜 are defined as

exp𝑐𝑜 (t) = tanh(
√
𝑐 ∥t∥) t

√
𝑐 ∥t∥

, log𝑐𝑜 (u) = artanh(
√
𝑐 ∥u∥) u

√
𝑐 ∥u∥

(8)

Hyperbolic Linear Layer. In some neural network based meth-
ods, we need to change the traditional Euclidean linear layer into
hyperbolic linear layer. A typical Euclidean linear layer is com-
posed of three parts: weight multiplication, bias addition, and an
activation function at its output. Suppose the weight matrix isW,
the bias vector is b, and the activation function is 𝜎 , the Euclidean
linear layer with a Euclidean input vector u can be written as

y = 𝜎 (W · u + b) (9)

The corresponding hyperbolic linear layer is also composed of the
above three parts. Note that, for a hyperbolic linear layer, the input
u should also be hyperbolic, but the weight matrix W and bias b
should be defined on the tangent space, which means that they are
Euclidean. The hyperbolic weight multiplication is defined as

W ⊙ u = exp𝑐𝑜 (W · log𝑐𝑜 (u)) (10)

The hyperbolic bias addition is
u ⊕ b = exp𝑐𝑜 (log𝑐𝑜 (u) + b) (11)

Using Eq. 10 and Eq. 11, the hyperbolic linear layer is defined as
y = exp𝑐𝑜 (𝜎 (log𝑐𝑜 ( (W ⊙ u) ⊕ b))) (12)

where 𝜎 is the activation function defined in Euclidean space such
as ReLU or Sigmoid.

3 HYPOTHESES
In this section, we present and explain three hypotheses we make
about hyperbolic space. Our experiments are designed to verify the
correctness of them.

Distance models are more suited for learning hyperbolic
embeddings than projection models. Since the projection mod-
els optimize the inner product and the distance models optimize
the distance, the distribution of the embeddings is different after
convergence. For the projection models, the relation between nodes
is mainly determined by the angle. Angles of positive pairs are
small and angles of negative pairs are obtuse. However, for the
distance models, the relation is only determined by the distance.
The positive pairs are pushed close to each other, and the negative
pairs are pushed away from each other.

If we apply hyperbolic space to projection models, one issue
is that, projection models usually regularize the norm of the em-
beddings in a limited scale, which makes it impossible to push the
embeddings far from the center. So in hyperbolic space, the norm of
the embedding will also be in a limited scale, making it hard to make
use of the outer part of the hyperbolic space where the capacity is
the largest efficiently, thus reducing the expressiveness. However,
distance models do not have such limitation and can make use of
the entire space. Embeddings can be pushed arbitrarily far from the
origin as long as the precision allows. Another advantage of dis-
tance models is the ability to learn hierarchical information. Nodes



on a circle have the same relation with the center node, so a group
of leaf nodes will be likely to spread around a root node layer by
layer in the form of concentric circles. As we have mentioned that
the number of leaf nodes and the capacity of the hyperbolic space
are all increasing exponentially, it’s easier for distance models to
learn low-distortion hyperbolic embeddings compared to projec-
tion models. Therefore, distance models should be a better choice
for learning hyperbolic embeddings rather than projection models.

Hyperbolic space is more powerful compared to Eu-
clidean space when the density of the dataset is small. Hy-
perbolic space is naturally capable of extracting the hierarchical
information from datasets. It can use such hierarchy to help learn
the node embeddings more effectively. Therefore, it can have a
relatively good performance even the density is low. However, it is
difficult for Euclidean space to extract the hierarchical information.
Instead, Euclidean space needs more user-item pairs to help reach
a comparable performance with hyperbolic space. That is to say, if
the density of the dataset is small, then hyperbolic space is likely to
outperform Euclidean space, but if the density is large, Euclidean
space can have a comparable performance with hyperbolic space.

The performance of hyperbolic space is better than Eu-
clidean space when the latent size is small, but as the latent
size increases, the performance of Euclidean space becomes
comparable with hyperbolic space. The expressiveness of hy-
perbolic space is much larger than Euclidean space. For example,
when embedding one type of hierarchy, a 2D Poincaré disk can have
arbitrary small distortion, but a 2D Euclidean space will always
have some distortion [6]. So to fully capture all the hierarchical
information in the dataset, the number of dimensions needed in
hyperbolic space is much smaller than Euclidean space. This is our
reason why hyperbolic space should outperform Euclidean space
when the latent size is small. On the other side, as the latent size
increases, the performance of Euclidean space and hyperbolic space
both have an upper bound. Besides, they should share the same
upper bound, because both of them are capable of embedding the
nodes with an arbitrary low distortion with a large enough latent
size. So as the latent size increases, the gap between their perfor-
mances should decrease. Eventually Euclidean space will have a
similar performance with hyperbolic space.

4 EVALUATING HYPERBOLIC SPACE
We evaluate the performance of hyperbolic space in two different
recommendation domains, namely general item recommendation
and social recommendation. The reasons why these two domains
are chosen are that 1) data sparsity issues and long-tailed distribu-
tions are common in these two recommendation tasks, which are
regraded as more suitable for hyperbolic embedding space. To be
specific, the user-item rating distribution is usually power-law in
both domains. Moreover, in social recommendation, the user-user
social network distribution is also usually power-law. So hyperbolic
space could be a more consistent latent space for both general item
recommendation and social recommendation. A thorough evalu-
ation on these two tasks will help following-up research avoid
potential trial and errors in developing new research directions.
2) general recommendation and social recommendation are most
popular tasks in recommender system research area, studying these

two classical tasks will have broader impact and value to the com-
munity. Most existing baseline approaches have only reported their
performance in Euclidean space, therefore we implement them in
hyperbolic space and report their performance in both Euclidean
space and hyperbolic space on several benchmark datasets. We aim
to verify our hypotheses proposed in section 3 empirically.

4.1 Baselines

Baseline Domain Task Model
MF-BPR general top-n projection
CML general top-n distance
DMF general top-n projection

TrustSVD social rating projection
SoRec social rating projection
Table 1: Baseline categories.

We conduct experiments on some of the most representative
distance models and projection models in general item recommen-
dation domain and social recommendation domain.
• Matrix Factorizationwith Bayesian PersonalizedRanking
(MF-BPR) [24]: a matrix factorization based method optimized
by Bayesian personalized ranking loss.

• Collaborative Metric Learning (CML) [15]: a metric learning
approach that learns a joint metric space to encode not only users’
preferences but also the user-user and item-item similarity.

• Deep Matrix Factorization (DMF) [30]: a novel matrix factor-
ization model using neural network architecture to learn the
node embeddings.

• TrustSVD [11]: a social recommendation method that extends
SVD++ by incorporating social trust information to help predict
user preference.

• SoRec [20]: a factor analysis approach based on probabilistic
matrix factorization which exploits both the user-item rating
matrix and the adjacency matrix of the social networks.
The domains and tasks of these baselines and whether they are

distance models or projection models are described in Table 1. We
use these five models because of two reasons. First, they are some of
the most standard and basic models of their categories. We can com-
pare the performance of Euclidean space and hyperbolic space with
little noise or bias which might be introduced by auxiliary model
components. MF-BPR is a standard matrix factorization based pro-
jection model. CML is a baseline metric learning based distance
model. DMF is one of the simplest projection models that incorpo-
rate neural network structure. Another reason why we use these
five models is that, the number of existing latent space models is
limited. Many other popular recommendation methods such as Neu-
ral Collaborative Filtering (NeuMF) [13], Factorization Machines
(FM) [23], and GraphRec [8] do not belong to latent space models.
We have explained in subsection 2.2 that, theoretically, only latent
space models are suitable for hyperbolic space. For those which are
not latent space models, hyperbolic space is not likely to outper-
form Euclidean space. Even if they happen to outperform Euclidean
space, it is difficult to explain the underlying reason because they
do not present any hierarchical property.

Whenwe are investigating existing social recommendationmeth-
ods, we notice that most methods are projection models and are



Dataset # Users # Items # Ratings Rating Density # Social Connections Social Density
Movielens 1M 6040 3706 1000209 4.4684%
Movielens 100K 943 1682 100000 6.3047%
Automotive 2928 1835 20473 0.3810%
Cellphones 27879 10429 194439 0.0669%
Epinions 40163 139738 664824 0.0118% 487183 0.0302%
Ciao 10420 111520 296558 0.0255% 128797 0.1186%

Table 2: Dataset statistics.
designed for rating prediction tasks. There is a lack in top-n so-
cial recommendation with distance models. Therefore, in the next
section, we will propose and evaluate a new method to fill this gap.

4.2 Datasets
We use four datasets for general item recommendation and two for
social recommendation.
• MovieLens3: a widely adopted benchmark dataset in the appli-
cation domain of recommending movies to users provided by
GroupLens research. We use two configurations, namelyMovie-
Lens 1M andMovieLens 100K.

• Amazon review data [12]: a popular benchmark dataset that
contains product reviews and metadata from Amazon. We use
two subsets of it, namely Cellphones and Automotive. Both
are 5-core subsets4.

• Epinions5: a popular dataset from a consumer review website
called Epinions6, where users can rate items and add other users
to their trust lists.

• Ciao7: another popular social recommendation dataset from
social networking website Ciao8. It also allows users to rate
items and trust other users.

Table 2 show the statistics of the datasets. Movielens 1M and Movie-
lens 100K have a very large density, about 4% and 6%, while other
four datasets are all below 0.4%. Conclusions about the influence of
density can be made by comparing the performance of them.

4.3 Evaluation Metrics
Some baseline approaches are originally proposed for the top-n
recommendation task, others are for the rating prediction task. We
keep their tasks unchanged for the best performance. We report the
hit ratio (HR) at 𝑘 = {1, 5, 10, 15, 20} and normalized discounted
cumulative gain (NDCG) at 𝑘 = {1, 5, 10, 15, 20} for top-n recom-
mendation tasks, and report the mean absolute error (MAE) and
rooted mean square error (RMSE) for rating prediction tasks.

For rating prediction tasks, we leave 20% of the ratings as the
validation set, and 20% as the test set, the remaining 60% as the
training set. For top-n ranking tasks, we adopt the popular leave-
one-out method. We leave the last item each user has interacted as
the test set, and leave the penultimate as the validation set. Note
that we do not do negative sampling for both HR and NDCG,
instead we rank all the negative items, in this way we can have a
more accurate and convincing result and avoid the bias introduced
by the sampling [17].
3https://grouplens.org/datasets/movielens/
4http://jmcauley.ucsd.edu/data/amazon/
5http://www.trustlet.org/downloaded_epinions.html
6http://www.epinions.com
7https://www.cse.msu.edu/~tangjili/datasetcode/
8http://www.ciao.co.uk

Hit Ratio. For a single user, leave one item out from the user’s
list of interacted items (usually the last one that the user has inter-
acted with). Then rank the left out positive item together with all
the negative items that the user has not interacted with. If the left
out item is at the top 𝑛 of the ranking list, then we consider this
item as a hit. The hit ratio of the recommender system is then the
total number of hits divided by the number of users.

Normalized Discounted Cumulative Gain.We first explain
what cumulative gain (CG) and discounted cumulative gain (DCG)
are. Given a list of top 𝑛 recommendations, 𝑟𝑖 = 1 if the 𝑖-th item
has been interacted or is liked by the user; 𝑟𝑖 = 0 if the 𝑖-th item
has not been interacted or is disliked by the user. Thus, CG and
DCG are calculated by

𝐶𝐺@𝑛 =

𝑛∑︁
𝑖=1

𝑟𝑖 , 𝐷𝐶𝐺@𝑛 =

𝑛∑︁
𝑖=1

𝑟𝑖 ·
1

log2 (𝑖 + 1) (13)

CG measures the relevance of the recommendation list. DCG im-
proves it by taking into consideration the ordering of the items. But
DCG is not normalized so it may vary for different users. Therefore,
we use the ideal discounted cumulative gain (IDCG) as the normal-
ization constant, which is calculated by moving all the interacted
items to the top of the list. This is an 𝑖𝑑𝑒𝑎𝑙 list and it has the largest
DCG value. Therefore, NDCG is always between 0 and 1:

𝑁𝐷𝐶𝐺@𝑛 =
𝐷𝐶𝐺@𝑛

𝐼𝐷𝐶𝐺@𝑛
(14)

MeanAbsolute Error andRootedMean Square Error.MAE
and RMSE are measures of errors between predicted ratings and
observed ratings. They is calculated using the following equations:

𝑀𝐴𝐸 =

∑𝑛
𝑖=1 |𝑦𝑖 − 𝑥𝑖 |

𝑛
, 𝑅𝑀𝑆𝐸 =

√︄∑𝑛
𝑖=1 (𝑦𝑖 − 𝑥𝑖 )2

𝑛
(15)

where 𝑦 is the observed rating and 𝑥 is the predicted rating.

4.3.1 Experiment Settings. Note that the target of our experi-
ment is to compare the performance of the Euclidean space and the
hyperbolic space on various latent space models, not to compare
the performance of different models. For each model, the Euclidean
setting and the hyperbolic setting share some basic parameters like
the learning rate and batch size, we keep such parameters to be the
same in both Euclidean setting and hyperbolic setting. Other latent
space specified parameters such as the margin in CML is tuned
individually in Euclidean setting and hyperbolic setting to reach
their best performance.

We report the test scores based on the best validation scores.
For each experiment, we do five independent trials and report the
average result. For all methods, the learning rate is tuned among
{0.1, 0.01, 0.001, 0.0001} using Adam optimizer. The batch size of
each dataset is tuned among {50, 500, 5000, 50000} for a relatively
good performance and short running time. We set hyperbolic curva-
ture to be constant -1. For top-n recommendation tasks, we report

https://grouplens.org/datasets/movielens/
http://jmcauley.ucsd.edu/data/amazon/
http://www.trustlet.org/downloaded_epinions.html
http://www.epinions.com
https://www.cse.msu.edu/~tangjili/datasetcode/
http://www.ciao.co.uk


(a) Movielens 1M HR (b) Movielens 1M NDCG (c) Movielens 100K HR (d) Movielens 100K NDCG

(e) Automotive HR (f) Automotive NDCG (g) Cellphones HR (h) Cellphones NDCG
Figure 2: CML HRs and NDCGs on four datasets.

(a) Movielens 1M HR (b) Movielens 1M NDCG (c) Movielens 100K HR (d) Movielens 100K NDCG

(e) Automotive HR (f) Automotive NDCG (g) Cellphones HR (h) Cellphones NDCG
Figure 3: MF-BPR HRs and NDCGs on four datasets.

HRs and NDCGs when the latent size 𝑑 = {10, 50, 100}. For rating
prediction tasks, we report MAE and RMSE when the latent size
𝑑 = {8, 16, 32, 64}. For CML, the margin is tuned from 0.1 to 2.0 for
Euclidean space, and from 2 to 40 for hyperbolic space (the norm
of the hyperbolic embedding is clipped by approximately 6 due to
the precision). We keep other hyper-parameters as suggested by
the original papers.

4.3.2 Results. The results of our experiments are shown from
Fig. 2 to Fig. 5. Following the hypotheses we made in section 3, we
first compare the performance of distance models and projection
models, then compare different datasets, last we compare different
latent sizes.

Distance Models vs. Projection Models. According to the re-
sults, hyperbolic space outperforms Euclidean space in distance

models such as CML. For example, from the results of CML on Auto-
motive and Cellphones shown in Fig. 2e, Fig. 2f, Fig. 2g, and Fig. 2h,
the numbers of hyperbolic space have a great improvement over
the numbers of Euclidean space. One interesting thing is that for
Movielens shown in Fig. 2a, Fig. 2b, Fig. 2c, and Fig. 2d, hyperbolic
space and Euclidean space seem to have a similar performance.
This will be explained when we compare different datasets in the
next part. For other projection models including MF-BPR in Fig. 3,
DMF in Fig. 4, TrustSVD and SoRec in Fig. 5, hyperbolic space can’t
outperform Euclidean space in any of them. Therefore, we can draw
a conclusion that distance models are more suited for hyperbolic
space than projection models.

High Density Datasets vs. Low Density Datasets. The per-
formance of Euclidean space and hyperbolic space on Movielens



(a) Movielens 1M HR (b) Movielens 1M NDCG (c) Movielens 100K HR (d) Movielens 100K NDCG

(e) Automotive HR (f) Automotive NDCG (g) Cellphones HR (h) Cellphones NDCG
Figure 4: DMF HRs and NDCGs on four datasets.

(a) SoRec on Epinions (b) SoRec on Ciao (c) TrustSVD on Epinions (d) TrustSVD on Ciao
Figure 5: SoRec and TrustSVD MAEs and RMSEs on Epinions and Ciao.

1M and Movielens 100K are much closer than Automotive and Cell-
phones for general item recommendation methods as shown in
Fig. 2, Fig. 3, and Fig. 4. In Fig. 2, the performance of Euclidean
space even becomes comparable with hyperbolic space on Movie-
lens. From Table 2, we can see that Movielens 1M and Movielens
100K have a very high density compared with other datasets. Based
on the above observations and our analysis in section 3, we can
draw a conclusion that datasets with a lower density can benefit
more from hyperbolic space.

Influence of the Latent Size. From the results of CML on Au-
tomotive and Cellphones as shown in Fig. 2e, Fig. 2f, Fig. 2g, and
Fig. 2h, we can see that the improvement of hyperbolic space over
Euclidean space decreases as the latent size increases. This serves as
an evidence of our hypothesis about the latent size made in section 3.
We can draw a conclusion that hyperbolic space is better than Eu-
clidean space in metric learning based approaches especially when
the latent size is small, but when the latent size is large enough,
Euclidean space becomes comparable with hyperbolic space.
4.3.3 Drawbacks of Hyperbolic Space. Although hyperbolic
space can outperform Euclidean space, there are still some draw-
backs when using hyperbolic space.

High Computational Complexity. When using hyperbolic
space, the exponential map and logarithmic map are necessary
whenever we apply a simple operation to the embedding such as
matrix multiplication and bias addition. This makes the algorithm

computational inefficient. It does not cause much trouble in some
straightforward methods which do not have much computational
work such as CML and SoRec, but greatly increases the computa-
tional resources needed in some complicated approaches such as
DMF which involves neural network structures.

Pay Attention to Invalid Values. Since the computation in-
volves inverse hyperbolic functions, it is extremely easy for the
denominators to be 0 or infinite. Due to the precision of the device,
it is necessary to clip values wherever might become invalid.

4.3.4 Comments on Using Hyperbolic Space. Based on the
above results, we can now make several comments and suggestions
for using hyperbolic space and learning hyperbolic embeddings.

• Distance models are more suited for learning hyperbolic embed-
dings than projection models.

• If the density of the dataset is large, Euclidean space should be
a better choice because it has a comparable performance with
hyperbolic space and the computational complexity is low; when
the density is low, hyperbolic space is more preferable because it
will have a much better performance than Euclidean space.

• Choose an appropriate latent size. In most cases, hyperbolic
embeddings only need a relatively small latent size to achieve
good performance, which can help to save resources.



(a) Epinions HR (b) Epinions NDCG (c) Ciao HR (d) Ciao NDCG
Figure 6: SCML HRs and NDCGs on Epinions and Ciao.

5 SOCIAL COLLABORATIVE METRIC
LEARNING

As we explained in subsection 4.1 that there is a lack in using
distance models to solve top-n social recommendation task, we
here propose a new metric learning based social recommendation
method for top-n recommendation called Social Collaborative Met-
ric Learning (SCML), which is a generalized form of Collaborative
Metric Learning (CML) [15]. We apply SCML in both Euclidean
space and hyperbolic space using their corresponding distance
functions. We call hyperbolic SCML as HSCML.

Suppose the set of user-item positive pairs is R, and the set of
user-user positive pairs is S. For user 𝑖 , sample a positive item 𝑗

and a negative item 𝑘 such that (𝑖, 𝑗) ∈ R, (𝑖, 𝑘) ∉ R, and sample a
positive neighbor𝑚 and a negative neighbor 𝑛 such that (𝑖,𝑚) ∈
S, (𝑖, 𝑛) ∉ S. The item side loss L𝑖𝑡𝑒𝑚 and the social connection
side loss L𝑠𝑜 are defined as

L𝑖𝑡𝑒𝑚 =
∑︁

(𝑖,𝑗 )∈R

∑︁
(𝑖,𝑘 )∉R

[𝑚𝑖𝑡𝑒𝑚 + 𝑑 (𝑖, 𝑗)2 − 𝑑 (𝑖, 𝑘)2 ]+ (16)

L𝑠𝑜 =
∑︁

(𝑖,𝑚)∈S

∑︁
(𝑖,𝑛)∉S

[𝑚𝑠𝑜 + 𝑑 (𝑖,𝑚)2 − 𝑑 (𝑖, 𝑛)2 ]+ (17)

where𝑚𝑖𝑡𝑒𝑚 and𝑚𝑠𝑜 are the safety margins, [·]+ = 𝑚𝑎𝑥 (·, 0) is
the standard hinge loss. 𝑑 (·, ·) is the Euclidean distance function in
SCML, and is the hyperbolic distance function in HSCML. The loss
function of our model is

L = L𝑖𝑡𝑒𝑚 + 𝜆L𝑠𝑜 (18)

where 𝜆 controls the weight of L𝑠𝑜 . We use L𝑖𝑡𝑒𝑚 to push the
positive user-item pairs close to each other and push the negative
user-item pairs away to each other, and use L𝑠𝑜 to push the socially
related users close to each other. Thus, for a particular user, the
items that have been interacted by his or her socially connected
neighbors are also being pushed close to the user. This reflect the
fact that users are more likely to interact with the items that their
friends have interacted with.

6 EVALUATING SCML AND HSCML
Like what we did in section 4 when evaluating the performance
of hyperbolic space, we compare the performance of SCML and
HSCML. Besides, in order to show how hyperbolic space performs
compared with state-of-the-art Euclidean models, we compare the
performance of HSCMLwith Euclidean baseline approaches onCiao
and Epinions using some of the experiment results in the paper of
RML-DGATs [28]. The baselines include MF-BPR [24], FISM [16],
NeuMF [13], CML [15], LRML [25], SBPR [32], CUNE-BPR [31],

SAMN [5] and RML-DGATs [28]. We aim to show that, even with
a simple hyperbolic distance model such as HSCML, hyperbolic
space can still outperform most of the Euclidean baselines and have
comparable performance with state-of-the-art methods.

6.1 Experiment Settings
First, we compare the performance of Euclidean space and hyper-
bolic space by comparing SCML and HSCML to evaluate the correct-
ness of our conclusions in section 4. Negative sampling is not used.
We report the HR@{1,5,10,15,20} and NDCG@{1,5,10,15,20}. We set
𝜆 to be 0.1, and𝑚𝑖𝑡𝑒𝑚 and𝑚𝑠𝑜 are tuned from 0 to 40 respectively.

Second, we compare HSCML with other baseline models. To
keep consistent with the settings in [28], we set the latent size
to be 128 and report HR@{10,20} & NDCG@{10,20}. Because they
used negative sampling in their experiments, we also use negative
sampling here. We randomly sample 999 negative samples for each
user and rank them together with the test item. For HSCML, we set
the 𝜆 to be 0.1. We tune𝑚𝑖𝑡𝑒𝑚 and𝑚𝑠𝑜 from 0 to 40 respectively.
We repeat the experiment 10 times and report the average. Other
parameters and settings are the same as we did in section 4 when
evaluating the performance of hyperbolic space. The numbers of
all methods except for SAMN and HSCML come from the paper of
RML-DGATs [28]. We do so because the Ciao and Epinions they
used are slightly different from ours, and we are unable to recover
their datasets. Moreover, the implementation of RML-DGATs is not
provided, so it is difficult for us to try our datasets on their model.
What we can do is to run our datasets on the implementation of
SAMN9 and report the numbers we get. Hopefully this can provide
an insight on how hyperbolic space performs compared with state-
of-the-art Euclidean methods.

6.2 Experimental Results
6.2.1 SCML vs. HSCML. Fig. 6 shows the results of SCML and
it hyperbolic version HSCML. The conclusions in section 4 still
hold here. For example, because SCML is a distance model, and
the densities of Epinions and Ciao are low as shown in Table 2, so
it is reasonable that the performance of hyperbolic space clearly
outperforms Euclidean space on both two datasets. Moreover, as the
latent size increases, the performance of Euclidean space gradually
catches up with hyperbolic space, which is consistent with our
conclusion regarding the influence of the latent size.

9https://github.com/chenchongthu/SAMN

https://github.com/chenchongthu/SAMN


Dataset Metric BPR FISM NeuMF CML LRML SBPR CUNE-BPR RML-DGATs SAMN HSCML

Ciao

HR@10 0.2286 0.2076 0.2328 0.2302 0.2471 0.2364 0.2823 0.3108 0.3098 0.3052
NDCG@10 0.1379 0.1207 0.1385 0.1365 0.1473 0.1446 0.1704 0.1803 0.2049 0.2018
HR@20 0.3074 0.2847 0.3147 0.3129 0.3184 0.3282 0.3729 0.4157 0.3863 0.3844

NDCG@20 0.1579 0.1403 0.1601 0.1563 0.1703 0.1625 0.1861 0.2066 0.2242 0.2194

Epinions

HR@10 0.4104 0.3842 0.4017 0.4118 0.4327 0.3749 0.4377 0.4625 0.4422 0.4526
NDCG@10 0.2591 0.2421 0.2489 0.2562 0.2586 0.2436 0.2598 0.2728 0.2892 0.2971
HR@20 0.5087 0.4850 0.5023 0.5051 0.5319 0.4868 0.5583 0.6018 0.5362 0.5481

NDCG@20 0.2839 0.2676 0.2881 0.2972 0.3017 0.2653 0.2806 0.3080 0.3129 0.3189
Table 3: Top-n recommendation performance comparison. The best performance is in boldface and the second is underlined.

6.2.2 HSCML vs. baseline approaches. We compare the per-
formance of HSCML with other baseline methods. The results are
shown in Table 3. HSCML has a comparable performance with
the state-of-the-art embedding methods such as SAMN and RML-
DGATs, while outperforms other baseline approaches. This suggests
that, hyperbolic embeddings can easily reach a comparable or better
performance than existing baseline approaches with a simple dis-
tance model, whereas the state-of-the-art baselines such as SAMN
and RML-DGATs are much more complicated because of the mem-
ory modules and GAT units. This demonstrates the superiority of
hyperbolic space over Euclidean space. Future works to design a
customized model for hyperbolic space may produce a model that
outperforms all existing approaches.

7 RELATEDWORK
Hyperbolic space has always been a popular research domain in
Mathematics [2]. Some works have been done to explore the tree-
like structure of graphs [1, 6] and the relations between hyperbolic
space and hierarchical data such as languages and complex net-
works [18, 21]. Such works have demonstrated the consistency
between real-world scale-free and hierarchical data and the hy-
perbolic space, providing theoretical basis for recent works which
apply hyperbolic space to various tasks including link prediction,
node classification, and recommendation.

Some researchers apply hyperbolic space to traditional metric
learning approaches such as HyperBPR [26] and HyperML [27].
Some try to adopt hyperbolic space to neural networks and define
hyperbolic neural network operations, producing powerful models
such as hyperbolic neural networks [10], hyperbolic graph neu-
ral networks [19] and hyperbolic convolutional neural networks
[4]. Meanwhile, [3] provides a scalable hyperbolic recommender
system for industry use. [29] applies hyperbolic space to hetero-
geneous networks for link prediction task. [9] applies hyperbolic
space to next-POI recommendation. [22] proposes a path-based
recommendation approach with hyperbolic embeddings, etc.

8 CONCLUSION
In this paper, we provide a comprehensive analysis on hyperbolic
space for recommender systems, comparing the performance of
hyperbolic space with Euclidean space in three aspects: method,
dataset, and latent size. To the best of our knowledge, this is the first
work to address the advantages and disadvantages of hyperbolic
space and give comments and suggestions on when and where to
use it. Additionally, we propose SCML and its hyperbolic version
HSCML, a distance model for social recommendation. Experiments
show that hyperbolic space can easily reach a comparable or better

performance than existing Euclidean social recommendation meth-
ods with a simple distance model HSCML. A customized model for
hyperbolic space may outperform all baselines in the future work.
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