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ABSTRACT
Recently, linear regression models have shown to often produce

rather competitive results against more sophisticated deep learning

models. Meanwhile, the (weighted) matrix factorization approaches

have been popular choices for recommendation in the past and

widely adopted in the industry. In this work, we aim to theoretically

understand the relationship between these two approaches, which

are the cornerstones of model-based recommendations. Through

the derivation and analysis of the closed-form solutions for two ba-

sic regression and matrix factorization approaches, we found these

two approaches are indeed inherently related but also diverge in

how they “scale-down” the singular values of the original user-item

interaction matrix. We further introduce a new learning algorithm

in searching (hyper)parameters for the closed-form solution and

utilize it to discover the nearby models of the existing solutions.

The experimental results demonstrate that the basic models and

their closed-form solutions are indeed quite competitive against the

state-of-the-art models, thus, confirming the validity of studying

the basic models. The effectiveness of exploring the nearby models

are also experimentally validated.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies→ Learning linear models; Factorization
methods.

KEYWORDS
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1 INTRODUCTION
Over the last 25 years, we have witnessed a blossom of recommen-

dation algorithms being proposed and developed[1, 33]. Though the

number of (top-n) recommendation algorithms is fairly large, the

approaches can be largely classified as neighborhood approaches

(including the regression-based approaches), matrix factorization

(or latent factors) approaches, more recent deep learning based

approaches, their probabilistic variants, and others[1, 33]. However,

there have been some interesting debates on the results being re-

ported by recent deep learning-based approaches: the experimental

results show most of these methods seem to achieve sub-par re-

sults when compared with their simple/nonlinear counterparts [9].

This issue also relates to selecting and tuning baselines [26] as well

as the choice of evaluation metrics [22], among others. But recent

studies also seem to confirm the state-of-the-art linear models, such

as SLIM [24] and EASE [29] do obtain rather remarkable results

when compared to the more sophisticated counterparts [8].

Intuitively, SLIM and EASE search an item-to-item similarity

matrix𝑊 so that the user-item interaction (denoted as matrix 𝑋

with rows and columns corresponding to users and items, respec-

tively) can be recovered by the matrix product: 𝑋𝑊 . In fact, they

can be considered as simplified linear auto-encoders [30], where

𝑊 serves as both encoder and decoder, denoted as 𝐿𝑊 , such that

𝐿𝑊 (𝑥𝑢 ) = 𝑥𝑢𝑊 can be used to recover 𝑥𝑢 (𝑥𝑢 is the 𝑢-th row

vector of user-item interaction matrix 𝑋 ). In the meantime, the

matrix factorization methods, such as ALS [17] and SVD-based

approaches [20] have been heavily favored and widely adopted in

industry for recommendation. They aim to discover user and item

embedding matrices 𝑃 and 𝑄 , where 𝑝𝑢 , 𝑞𝑖 represents the latent

factors of user 𝑢 and item 𝑖 , respectively, such that the user item

interaction 𝑥𝑢𝑖 can be approximated by 𝑞𝑇
𝑖
𝑝𝑢 . Furthermore, there

have been a list of low-rank regression approaches [5, 27, 30] which

aim to factorize the similarity matrix𝑊 as 𝐴𝐵𝑇 , such that 𝑋𝐴𝐵𝑇

can be used to recover 𝑋 . Here, 𝑋𝐴 and 𝐵 also introduces the user

and item matrices, respectively (similar to matrix factorization).

Thus, on the surface, we can see the (reduced-rank) regression

is like a special case of matrix factorization [18, 28], and it also

has seemingly smaller number of parameters (the size of similarity

matrix𝑊 is typically much smaller than the user and item latent
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factor matrix as the number of users tend to be much larger than

items). Therefore, the expectation is the regression models are

more restricted, and thus less flexible (and expressive) than the

matrix factorization approaches. However, the recent results seem

to indicate the regression approaches tend to perform better than

the matrix factorization approaches in terms of commonly used

evaluation criteria, such as Recall and nDCG [8, 29, 30].

Is there any underlying factor/reason for the regression ap-

proaches to perform better than thematrix factorization approaches?

If and how these two different factorization (low-rank regression vs

matrix factorization) relate to one another? To seek the connection

and be able to compare/analyze their inherent advantage/weakness,

can we unify them under the same framework? As most of the deep

learning, probabilistic and non-linear approaches all have the core

representation from either factorization [15] or auto-encoders [23],

the answer to these questions will not only help understand two

of the (arguably) most important recommendation methodologies:

neighborhood vs matrix factorization, but also help design more

sophisticated deep learning based approaches. To our surprise, the

theoretical analyses of these approaches are still lacking and the

aforementioned questions remain unanswered.

In this paper, by analyzing two basic (low-rank) regression and

matrix factorization models, we are able to derive and compare

their closed-form solutions in a unified framework. We reveal that

both methods essentially “scale-down” their singular values of user-

item interaction matrix using slightly different mechanisms. The

(low-rank) regression mechanism allows the use of more principal
components (latent dimensions) of the user-item matrix 𝑋 than the

matrix factorization approaches. Thus, this potentially provides an

inherent advantage to the former methods over the latter. Another

surprising discovery is that although the matrix factorization seems

to havemoremodel parameters with both user and item latent factor

matrices, its optimal solution for the simplified problem suggests

that it is actually only dependent on the item matrix. Thus, it is

actually more restricted and less flexible than the regression based

approaches. This again indicates the potential disadvantage of the

matrix factorization approaches.

To help further understand how the singular values of user-item

interactionmatrix can be adjusted (at individual level), we introduce

a novel learning algorithm which can search through high dimen-

sional continuous (hyper)parameter space. This learning algorithm

also enables us to perform the post-model fitting exploration [12]

for existing linear recommendation models. Our approach is to aug-

ment (existing) linear models with additional parameters to help

further improve the model accuracy. The resulting models remain-

ing as linear models, which can be considered as nearby models

with respect to the existing models. This approach indeed shares

the similar spirit of the our recently proposed “next-door analysis”

from statistical learning [14] though our approaches and targets are

quite different. To the best of our knowledge, this is the first work

to study post-model fitting exploration for recommendation models.

Such study can not only help better evaluate the optimality of the

learned models, but also (potentially) produce additional boost for

the learned models.

As pointed out by [8], a major problem in existing recommenda-

tion research is that the authors tend to focus on developing new

methods or variants of recommendation algorithms, and then vali-

date based on “hyper-focus on abstract metrics" with often weak

or not-fully-tuned baselines to “prove” the progress. Though using

better baselines, datasets, and evaluation metrics can help address

of part of the problem, a better understanding of how, why, and

where the improvement over existing are being made is equally

important. We hope the theoretical analysis, the new learning tool

for (hyper)parameter search, and the post-model analysis on lin-

ear recommendation models can be part of the remedy for the

aforementioned problem.

To sum, in this paper, we made the following contribution:

• (Section 3) We theoretically investigate the relationship between

the reduced-rank regression (neighborhood) approaches and the

popular matrix factorization approaches using the closed-form so-

lutions, and reveal how they connect with one another naturally

(through the lens of well-known principal component analysis

and SVD). We also discover some potential factors which may

provide a benefit for the regression based methods.

• (Section 4) We introduce a new learning algorithm to help search

the high-dimension (hyper)parameter space for the closed-form

solution from Section 3. We further apply the learning algorithm

to perform post-model exploration analysis on the existing lin-

ear models by augmenting them with additional parameters (as

nearby models).

• (Section 5) We experimentally validate the closed-form solution

for the basic regression and matrix factorization models, and

show their (surprising) effectiveness and accuracy comparing

against the state-of-the-art linear models; we also experimentaly

validate the effectiveness of the learning algorithms for the closed-

form solutions and identifying nearby models. We show nearby

models can indeed boost the existing models in certain datasets.

2 BACKGROUND
Let the training dataset consists of𝑚 users and 𝑛 = |𝐼 | items, where

𝐼 is the entire set of items. In this paper, we will focus on the implicit

setting for recommendation. Compared with the explicit settings,

the implicit setting has more applications in ecommerce, content

recommendation, advertisement, among others. It has also been the

main subjects for recent top-𝑛 recommendation [9, 17, 24, 29, 33].

Here, the user-item interaction matrix 𝑋 can be considered as a

binary matrix, where 𝑥𝑢𝑖 = 1 represents there is an interaction

between user 𝑢 and item 𝑖 . If there is no interaction between 𝑢 and

𝑖 , then 𝑥𝑢𝑖 = 0. Let 𝑋+𝑢 = { 𝑗 : 𝑥𝑢 𝑗 > 0} denote the item set that user

𝑢 has interacted with, and 𝑋−𝑢 = 𝐼 − 𝑋+𝑢 to be the item set that 𝑢

has not interacted with.

2.1 Regression Models for Neighborhood-based
Recommendation

It is well-known that there are user-based and item-based neighbor-

hood based collaborative filtering, and the item-based approach has

shown to be more effective and accurate compared with user-based

approaches [10]. Thus, most of the linear models are item-based

collaborative filtering (ICF).

Intuitively, the model-based ICF aims to predict 𝑥𝑢𝑖 (user 𝑢’s

likelihood of interaction with and/or preference of item 𝑖) based on



user 𝑢’s past interaction with other items 𝑋+𝑢 :

𝑥𝑢𝑖 =
∑︁
𝑗 ∈𝑋 +𝑢

𝑠 𝑗𝑖𝑥𝑢 𝑗 , (1)

where 𝑠 𝑗𝑖 denotes the similarity between item 𝑗 and 𝑖 .

The initial neighborhood approach uses the statistical measures,

such as Pearson correlation and cosine similarity [1] between the

two columns 𝑋∗𝑖 and 𝑋∗𝑗 from items 𝑖 and 𝑗 . The more recent ap-

proaches have been aiming to use a regression approach to directly

learn the weight matrix𝑊 (which can be considered as the inferred

similarity matrix) so that | |𝑋 −𝑋𝑊 | |2
𝐹
(| | · | |𝐹 denotes the Frobenius

norm) is minimized. Clearly, in this formulation, the default solu-

tion𝑊 = 𝐼 should be avoided for generalization purpose, and the

difference of different approaches lie in the constraints and regular-

ization putting on𝑊 . Recent studies have shown these approaches

achieve comparable or even better performance compared with the

state-of-the-art deep learning based approaches [8, 30].

SLIM: SLIM [24] is one of the first regression-based approach to

infer the weight matrix𝑊 . It considers𝑊 to be nonnegative, and

regularizing it with 𝐿1 and 𝐿2 norm (thus ElasticNet) [35]. In addi-

tion, 𝑆 require to be zero diagonal:

𝑊 = argmin

𝑊

1

2

| |𝑋 − 𝑋𝑊 | |2𝐹 + 𝜆1 | |𝑊 | |1 + 𝜆2 | |𝑊 | |
2

𝐹

𝑠 .𝑡 . 𝑊 ≥ 0, 𝑑𝑖𝑎𝑔(𝑊 ) = 0,

(2)

where | | · | |1 denotes the 𝐿1 matrix norm, and 𝑑𝑖𝑎𝑔(·) denotes the
diagonal (vector) of the corresponding matrix. Since no closed-form

solution for𝑊 , the solver of ElasticNet is used to optimize𝑊 , and

𝜆1 and 𝜆2 are the correspondingly regularization hyperparameters.

There are a quite few variants of SLIM being proposed, including

HOLISM [6] which extends SLIM to capture higher-order rela-

tionship, and LRec [28] which considers a non-linear logistic loss

(instead of squared loss) with no zero diagonal, no negative and 𝐿1

constraints, among others.

EASE: EASE [29] is a recent regression-based model which has

shown to improve over SLIM with both speed and accuracy, and

quite competitive again the state-of-the-art deep learning models.

It simplifies the constraint and regularization enforced by SLIM by

removing non-negative and 𝐿1 constraints:

𝑊 = argmin

𝑊

1

2

| |𝑋 − 𝑋𝑊 | |2𝐹 + 𝜆 | |𝑊 | |
2

𝐹

𝑠 .𝑡 . 𝑑𝑖𝑎𝑔(𝑊 ) = 0

(3)

Empirical study [29] basically confirms that the non-negative con-

straint and 𝐿1 norm on matrix𝑊 may not be essential (or have

negative impact) on the performance. Particularly, EASE has a

closed-form solution [29].

DLAE and EDLAE: The latest extension of EASE, the DLAE (De-

noising linear autoencoder) [30] utilizes a drop-out induced the

𝐿2 norm to replace the standard 𝐿2 norm without zero diagonal

constraints:

𝑊 = argmin

𝑊

1

2

| |𝑋 − 𝑋𝑊 | |2𝐹 + ||Λ
1/2𝑊 | |2𝐹 (4)

where Λ =
𝑝

1−𝑝𝑑𝑖𝑎𝑔𝑀 (𝑑𝑖𝑎𝑔(𝑋
𝑇𝑋 )) (𝑑𝑖𝑎𝑔𝑀 (·) denotes the diagonal

matrix) and 𝑝 is the dropout probability.

Another variant EDLAE would explicitly enforce the zero diago-

nal constraints:

𝑊 = argmin

𝑊

1

2

| |𝑋 − 𝑋𝑊 | |2𝐹 + ||Λ
1/2𝑊 | |2𝐹

𝑠 .𝑡 . 𝑑𝑖𝑎𝑔(𝑊 ) = 0,

(5)

Both DLAE and EDLAE have closed-form solutions [30].

2.1.1 Low-Rank Regression. There have been a number of interest-

ing studies [18, 28, 30] on using low-rank regression to factorize the

weight/similarity matrix𝑊 . The latest work [30] shows a variety of

low-rank regression constraints which have been (or can be) used

for this purpose:

| |𝑋 − 𝑋𝐴𝐵𝑇 | |2𝐹 + 𝜆( | |𝐴| |
2

𝐹 + ||𝐵
𝑇 | |2𝐹 )

| |𝑋 − 𝑋𝐴𝐵𝑇 | |2𝐹 + 𝜆 | |𝐴𝐵
𝑇 | |2𝐹

| |𝑋 − 𝑋𝐴𝐵𝑇 | |2𝐹 + ||(Λ + 𝜆𝐼 )𝐴𝐵
𝑇 | |2𝐹

(6)

where 𝐴𝑛×𝑘 , 𝐵𝑛×𝑘 , and thus 𝑟𝑎𝑛𝑘 (𝐴𝐵) ≤ 𝑘 . The reduced-rank

EDLAE [30] further enforces zero diagonal constraints for general-

ization purpose.

We note that interestingly, the reduced-rank regression solution

naturally introduces a 𝑘-dimensional vector embedding for each

user from 𝑋𝐴 (𝑚 × 𝑘) , and a 𝑘-dimensional vector embedding for

each item via 𝐵. This immediately leads to an important question:

how such embedding differs from the traditional matrix factoriza-

tion (MF) approaches which aim to explicitly decompose 𝑋 into

two latent factor matrices (for users and items). Note that in the

past, the MF methods are more popular and widely used in industry,

but the recent researches [8] seem to suggest an edge based on the

regression-based (or linear autoencoder) approaches over the MF

approaches. Before we formalize our question, let us take a quick

review of MF approaches.

2.2 Matrix Factorization Approaches
Matrix factorization has been been widely studied for recommen-

dation and is likely the most popular recommendation methods

(particularly showing great success in the Netflix competition [20]).

The basic formula to estimate the rating is

𝑥𝑢𝑖 = 𝑝𝑢 · 𝑞𝑖 = 𝑞𝑇𝑖 𝑝𝑢 , (7)

where 𝑝𝑢 and 𝑞𝑖 are the corresponding 𝑘-dimensional latent vec-

tors of user 𝑢 and item 𝑖 , respectively. Below, we review several

well-known matrix factorization approaches for implicit settings;

they differ on how to treat known vs missing interactions and

regularization terms, among others.

ALS: The implicit Alternating Least Square (ALS) method [17] is

basically a weighted matrix factorization (WRMF):

argmin

𝑃,𝑄
| |𝐶 ⊙ (𝑋 − 𝑃𝑄𝑇 ) | |2𝐹 + 𝜆( | |𝑃 | |

2

𝐹 + ||𝑄 | |
2

𝐹 ), (8)

where 𝑃𝑚×𝑘 records all the 𝑘-dimensional latent vectors for users

and 𝑄𝑛×𝑘 records all the item latent vectors, and 𝜆 regularize the

squared Frobenius norm.𝐶 is the weight matrix (for binary data, the

known score in 𝑋 typically has 𝛼 weight and the missing value has

1), and ⊙ is the element-wise product. For the general weight matrix,

there is no closed-form solution; the authors thus propose using

alternating least square solver to optimize the objective function.



PureSVD: The Matrix factorization approach is not only closely

related to SVD (singular value decomposition), it is actually inspired

by it [1]. In the PureSVD approach, the interaction matrix 𝑋 is

factorized using SVD (due to Eckart-Young theorem) [7]:

arg min

𝑈𝑘 ,Σ𝑘 ,𝑉𝑘
| |𝑋 −𝑈𝑘Σ𝑘𝑉

𝑇
𝑘
| |2𝐹 , (9)

where𝑈𝑘 is a𝑚 × 𝑘 orthonormal matrix,𝑉𝑘 is a 𝑛 × 𝑘 orthonormal

matrix, and Σ𝑘 is a 𝑘 × 𝑘 diagonal matrix containing the first 𝑘

singular values. Thus the user factor matrix can be defined as 𝑃 =

𝑈𝑘Σ𝑘 and the item factor matrix is 𝑄 = 𝑉𝑘 .

SVD++: SVD++ [19] is another influential matrix factorization ap-

proach which also integrate the neighborhood factor. It nicely com-

bines the formulas of factorization and neighborhood approaches

with generalization. It targets only positive user-item ratings and

typically works on explicit rating prediction.

2.3 The Problem
As we mentioned earlier, a few recent studies [8, 30] seem to indi-

cate the regression based approach (or linear autoencoder approach)

seem to have better performance than the popular matrix factor-

ization approach, such as ALS [16]. However, if we look at the

reduced rank regression approach, we observe its solution can be

considered a special case of matrix factorization. Another inter-

esting question is on the regularization hyperparameter, 𝜆: ALS

typically use a much smaller regularization penalty compared with

the one used in the regression based approach, such as EASE and

low-rank version. The latter’s 𝜆 value is typically very large, in the

range of thousands and even tens of thousands or [29, 30]. Note

that both aim to regularize the squared Frobenius matrix norm.

What results in such discrepancy?

Another interesting problem is about model complexity of these

two approaches. The regression-based (linear auto-encoder) ap-

proach uses the similarity matrix𝑊 (which has 𝑛 × 𝑛 parameters),

and when using low-rank regression, its parameters will be further

reduced to 𝑂 (𝑛 × 𝑘) where 𝑘 is the reduced rank. The MF has both

user and item matrices, and thus has𝑂 ((𝑚 +𝑛)𝑘) parameters. This

seems to indicate the MF approach should be more flexible than the

regression approaches as it tends to have much more parameters

(due to number of users is typically much larger than the number

of items). But is this the case?

In this study, our focus is not to experimentally compare these

two types of recommendation approaches, but instead to have

a better theoretical understanding their differences as well their

connections. Thus, we hope to understand why and how if any

approach maybe more advantageous than the other and along this,

we will also investigate why the effective range of their regular-

ization hyper-parameters are so different. We will also investigate

how to learn high dimensional (hyper)parameters and apply it to

help perform post-model exploration to learn "nearby" models.

3 THEORETICAL ANALYSIS
In this section, we will theoretically investigate the regression and

matrix factorization models, and explore their underlying relation-

ships, model complexity, and explain their discrepancy on regular-

ization parameters.

3.1 Low-Rank Regression (LRR) Models
To facilitate our discussion, we consider the following basic low-

rank regression models:

𝑊 = arg min

𝑟𝑎𝑛𝑘 (𝑊 ) ≤𝑘
| |𝑋 − 𝑋𝑊 | |2𝐹 + ||Γ𝑊 | |

2

𝐹 , (10)

where ΓMatrix regularizes the squared Frobenius norm of𝑊 . (This

can be considered as the generalized ridge regression, or multivari-

ant Tikhonov regularization) [31]. For the basic case, Γ𝑇 Γ = 𝜆𝐼 , and

Γ𝑇 Γ = Λ =
𝑝

1−𝑝𝑑𝑖𝑎𝑔𝑀 (𝑑𝑖𝑎𝑔(𝑋
𝑇𝑋 )) for DLAE (eq 4) [30]. Note that

this regularization does not include the zero diagonal requirement

for𝑊 . As we will show in Section 5, enforcing it only provides

minor improvement and thus the basic model can well capture the

essence of (low-rank) regression based recommendation.

To help derive the closed-form solution for above problem, let

us represent it as a standard regression problem.

𝑌 =

[
𝑋

0

]
𝑋 =

[
𝑋

𝚪

]
Given this, the original problem can be rewritten as:

min

𝑟𝑎𝑛𝑘 (𝑊 ) ≤𝑘
| |𝑌 − 𝑋𝑊 | |2𝐹 =

min

𝑟𝑎𝑛𝑘 (𝑊 ) ≤𝑘
| |𝑌 − 𝑋𝑊 ∗ | |2𝐹 + ||𝑋𝑊

∗ − 𝑋𝑊 | |2𝐹 ,

where𝑊 ∗ = argmin | |𝑌 − 𝑋𝑊 ∗ | |2
𝐹
. Basically, the initial loss | |𝑌 −

𝑋𝑊 | |2
𝐹
is decomposed into two parts: | |𝑌 − 𝑋𝑊 ∗ | |2

𝐹
(no rank con-

straint), and | |𝑋𝑊 ∗ − 𝑋𝑊 | |2
𝐹
. Note this holds since the vector (

𝑌 − 𝑋𝑊 ∗) is orthogonal to 𝑋𝑊 ∗ − 𝑋𝑊 = 𝑋 (𝑊 ∗ −𝑊 ) (The opti-
mality of Ordinary Least-Square estimation [31]).

Now, the original problem can be broken into two subproblems:

(Subproblem 1:) item-weighted Tikhonov regularization:

𝑊 ∗ = argmin

𝑊
| |𝑌 − 𝑋𝑊 ∗ | |2𝐹 = argmin

𝑊
| |𝑋 − 𝑋𝑊 | |2𝐹 + ||Γ𝑊 | |

2

𝐹

= (𝑋𝑇
𝑋 )−1𝑋𝑇

𝑌

= (𝑋𝑇𝑋 + Γ𝑇 Γ)−1𝑋𝑇𝑋

(Subproblem 2:) low-rank matrix approximation:

𝑊̂ = arg min

𝑟𝑎𝑛𝑘 (𝑊 ) ≤𝑘
| |𝑋𝑊 ∗ − 𝑋𝑊 | |2𝐹

= arg min

𝑟𝑎𝑛𝑘 (𝑊 ) ≤𝑘
| |𝑋𝑊 ∗ − 𝑋𝑊 | |2𝐹 + ||Γ(𝑊

∗ −𝑊 ) | |2𝐹

Let 𝑌
∗
= 𝑋𝑊 ∗, and based on the well-known Eckart-Young theo-

rem [11], we have the best rank 𝑘 approximation of 𝑌
∗
in Frobenius

norm is best represented by SVD. Let 𝑌
∗
= 𝑃Σ𝑄𝑇

(𝑃,𝑄 are orthog-

onal matrices and Σ is the singular value diagonal matrix, and then

the best rank 𝑘 approximation of 𝑌
∗
, denoted as 𝑌

∗ (𝑘) is

𝑌
∗ (𝑘) = 𝑃𝑘Σ𝑘𝑄

𝑇
𝑘
, (11)

where 𝑀𝑘 takes the first 𝑘 rows of matrix 𝑀 . We also have the

following equation:

𝑃Σ𝑄𝑇 (𝑄𝑘𝑄
𝑇
𝑘
) = 𝑃𝑘Σ𝑘𝑄

𝑇
𝑘



Given this, we notice that

𝑌
∗ (𝑘) = 𝑃𝑘Σ𝑘𝑄

𝑇
𝑘
= 𝑃Σ𝑄𝑇 (𝑄𝑘𝑄

𝑇
𝑘
)

= 𝑋𝑊 ∗ (𝑄𝑘𝑄
𝑇
𝑘
) = 𝑋𝑊

Thus, we have

𝑊 =𝑊 ∗ (𝑄𝑘𝑄
𝑇
𝑘
) = (𝑋𝑇𝑋 + Γ𝑇 Γ)−1𝑋𝑇𝑋 (𝑄𝑘𝑄

𝑇
𝑘
),

and the complete estimator for 𝑋𝐷 (interaction/rating inference) is

written as:

𝑊 = (𝑋𝑇𝑋 + Γ𝑇 Γ)−1𝑋𝑇𝑋 (𝑄𝑘𝑄
𝑇
𝑘
) (12)

Next, let us further simplify it using SVD which can better reveal

its “geometric” insight.

3.1.1 Eigen Simplification. First, let the SVD of 𝑋 as

𝑋 = 𝑈 Σ𝑉

When Γ = Λ1/2𝑉𝑇
where Λ is a diagonal matrix, we can observe:

Proposition 3.1.

𝑄𝑘 = 𝑉𝑘

𝑌
∗
= 𝑋𝑊 ∗ = 𝑋𝑉 (Σ2 + Λ)−1Σ2𝑉𝑇

Then, from

(𝑌 ∗)𝑇𝑌 ∗ = 𝑉 Σ−2 (Σ2 + Λ)𝑉𝑇𝑋
𝑇
𝑋𝑉 (Σ2 + Λ)−1Σ2𝑉𝑇

= 𝑉 (Σ2 + Λ)𝑉𝑇

Then we have the following:

𝑊 = (𝑋𝑇𝑋 + Γ𝑇 Γ)−1𝑋𝑇𝑋 (𝑄𝑘𝑄
𝑇
𝑘
)

= 𝑉 (Σ2 + Λ)−1Σ2𝑉𝑇 (𝑉𝑘𝑉𝑇
𝑘
)

= 𝑉𝑑𝑖𝑎𝑔(
𝜎2
1

𝜎2
1
+ 𝜆1

, . . . ,
𝜎2
𝑘

𝜎2𝑛 + 𝜆𝑘
)𝑉𝑇 (𝑉𝑘𝑉𝑇

𝑘
)

Thus, we have the following closed-form solution:

𝑊 = 𝑉𝑘𝑑𝑖𝑎𝑔(
𝜎2
1

𝜎2
1
+ 𝜆1

, . . . ,
𝜎2
𝑘

𝜎2
𝑘
+ 𝜆𝑘
)𝑉𝑇

𝑘
(13)

Now, if 𝜆𝑖 = 𝜆, we have:

𝑊 = 𝑉𝑘𝑑𝑖𝑎𝑔(
𝜎2
1

𝜎2
1
+ 𝜆

, · · · ,
𝜎2
𝑘

𝜎2
𝑘
+ 𝜆
)𝑉𝑇

𝑘
(14)

Note that this special case Γ𝑇 Γ = 𝜆𝐼 has indeed been used in [27]

for implicit recommendation. However, the authors do not realize

that it actually has a closed-form solution.

We also note that using the matrix factorization perspective, we

obtain the user (𝑃 ) and item (𝑄) matrices as:

𝑃 =𝑋𝑉𝑘𝑑𝑖𝑎𝑔 (
𝜎2

1

𝜎2

1
+ 𝜆

, . . . ,
𝜎2

𝑘

𝜎2

𝑘
+ 𝜆
) = 𝑈𝑘𝑑𝑖𝑎𝑔 (

𝜎1

1 + 𝜆/𝜎2

1

, . . . ,
𝜎𝑘

1 + 𝜆/𝜎2

𝑘

)

𝑄 =𝑉𝑘

(15)

3.2 Matrix Factorization
To study the relationship between the regression approach and

matrix factorization, we consider the basic regularized SVD [34]:

argmin

𝑃,𝑄
| |𝑋 − 𝑃𝑄𝑇 | |2𝐹 + 𝜆

′( | |𝑃 | |2𝐹 + ||𝑄 | |
2

𝐹 ), (16)

The solution for this type problem is typically based on Alternating

Least Square, but authors in [34] have found a closed-form solution.

Let 𝑋 = 𝑈 Σ𝑉𝑇
, and then let

𝑃 = 𝑈𝑘𝑑𝑖𝑎𝑔 (𝜎1 − 𝜆′, · · · , 𝜎𝑘 − 𝜆′)
= 𝑈𝑘𝑑𝑖𝑎𝑔 (𝜎1 (1 − 𝜆′/𝜎1), · · · , 𝜎𝑘 (1 − 𝜆′/𝜎𝑘 ))

𝑄 = 𝑉𝑘

(17)

Before we further analyze the relationship between them, we

ask the following interesting question: Can matrix factorization be

represented as a linear encoder? In other words, we seek if there is

an𝑊 such that 𝑋𝑊 = 𝑃𝑄 (defined by matrix factorization). Let the

Moore-Penrose inverse 𝑋+ = 𝑉 Σ−1𝑈𝑇
, then we have𝑊 = 𝑋+𝑃𝑄 ,

𝑊 = 𝑉𝑘𝑑𝑖𝑎𝑔(1 − 𝜆′/𝜎1, · · · , 1 − 𝜆′/𝜎𝑘 )𝑉𝑇
𝑘

(18)

3.3 Model Comparison and Analysis
When 𝜆 = 𝜆′ = 0 (no regularization), then both approaches (using

the matrix factorization) correspond to the standard SVD decompo-

sition, where 𝑃 = 𝑈𝑘Σ𝑘 and 𝑄 = 𝑉𝑇
𝑘
. Further, both approaches will

also have𝑊 = 𝑉𝑘𝑉
𝑇
𝑘
. Then, let us consider 𝑋𝑊 = 𝑋𝑉𝑘𝑉

𝑇
𝑘
, which is

indeed our standard principal component analysis (PCA), where𝑉𝑘
serves as a linear map which transforms each row vector 𝑥𝑇

𝑖
to the

new coordinate under the principal component basis. Clearly, when

𝜆 = 𝜆′ ≠ 0, both models start to diverge and behave differently,

and results in their difference in terms of regularization penalties,

model complexities and eventually model accuracy.

The Geometric Transformation From the matrix factorization

perspective, the Formulas 15 and 17 essentially tells us that these

two different approaches both scale-down the singular values of

the user-item interaction matrix (binary) with slightly different

manner:
1

1+𝜆/𝜎2

𝑖

for low-rank regression and 1 − 𝜆/𝜎𝑖 for matrix

factorization. Figure 1a illustrates the compressed singular value for

ML-20M dataset with LRR corresponds to the low-rank regression

andMF corresponds to the matrix factorization. Figure 1b illustrates

the compression ratios, which also has a direct geometric expla-

nation: if we consider both approaches as the linear auto-encoder

(or regression), as being described in Formulas 14 and 18, then the

comprehension ratios directly scale down the coordinates (𝑋𝑉𝑘 )

for the principal component basis in 𝑉𝑇
𝑘
.

The Effective Range of 𝜆 and 𝜆′ and Latent Dimension 𝑘 For

the regression based approach, we note that when 𝜆 < 𝜎2
𝑖
, then

there is relatively small effect to scale down 𝜎𝑖 (or any other singular

values larger than 𝜎𝑖 ). Given this, 𝜆 tends to be quite big, and it

has close to binary effect: let 𝜎2
𝑖
≥ 𝜆𝑖 > 𝜎2

𝑖+1, then any 𝜎 𝑗 < 𝜎𝑖 has

small effect, and for any 𝜎 𝑗 > 𝜎𝑖 , then, the reduction will become

more significant (proportionally). Typically, 𝜆 is within the range

of the first few singular values (in other words, 𝑖 is very small, and

𝜆 is quite large).
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Figure 1: Geometric Transformation for ML-20M.

For the matrix factorization, assuming we consider the 𝑘 dimen-

sional latent factors, then we note that 𝜎𝑘 > 𝜆′, which effectively

limit the range of 𝜆′. Furthermore, we notice that since each singu-

lar value is reduced by the same amount 𝜆, which makes the latent

dimensions with smaller singular values are even less relevant than

their original value. Thus, this leads to the matrix factorization typ-

ically has a relatively small number of dimensions to use (typically

less than 1000).

For the low-rank regression, as the singular value reduced, its

proportion ( 1

1+𝜆/𝜎2

𝑖

) will also be reduced down, the same as the

matrix factorization. However, unlike the regularized matrix fac-

torization approach whose absolute reduction may vary:

Δ𝑖 = 𝜎𝑖 −
𝜎𝑖

1 + 𝜆/𝜎2
𝑖

=
𝜆

𝜎𝑖 + 𝜆/𝜎𝑖
(19)

Interesting, when 𝜎𝑖 is both very large or very small, its absolute

reduction are fairly small, but it may reduce those in between more.

Thus, this effectively enables the low-rank approaches to use more

latent dimensions, thus larger 𝑘 (typically larger than 1000).

Now, an interesting conjecture of an optimal set of 𝜆𝑖 in Equa-

tion 13, is that they should help (relatively) scale-down those large

principal components and help (relatively) scale-up those smaller

principal components for better performance. However, how can

we search the optimal set of 𝜆𝑖 for a large number of 𝑘? We will

introduce a learning algorithm for this purpose in Subsection 4, and

then utilize that to study the conjecture (through an experimental

study in Section 5). This help provide a better understanding of the

adjustment of singular values.

Model Complexity For both types of models, we observe that the

gram matrix 𝑋𝑇𝑋 serves as the sufficient statistics. This indeed

suggest that the complexities of both models (number of effective

parameters [14]) will have no higher than 𝑋𝑇𝑋 . In the past, we

typically consider 𝑃 and 𝑄 (together) are defined as the model

parameters for matrix factorization. Thus, the common assumption

is that MF has model complexities (𝑂 (𝑚𝑘+𝑛𝑘)). However, the above
analysis based on linear autoencoder/regression perspective, shows

that both models essentially only have𝑉𝑘 (together with the scaled

principal components). (See Equations 14 and 18) for𝑊 estimation.

Thus, their model complexity are both 𝑂 (𝑛𝑘) (but with different 𝑘

for different models).

Now relating to the aforementioned discussion on the latent di-

mension factor, we can immediately observe the model complexity

of the basic low-rank regression actually have higher complexity

Algorithm 1 Hyperparameter Search for Formula 14

INPUT: Hyperparameter candidate lists: 𝜆𝑙 , 𝑘𝑙 , user-item binary

matrix 𝑋 .

OUTPUT: Model performance for all hyperparameter 𝜆𝑙 , 𝑘𝑙
combinations.

1: 𝑋𝑇𝑋 = 𝑉 Σ𝑇 Σ𝑉𝑇
(Eigen Decomposition)

2: for all 𝜆 ∈ 𝜆 list do
3: Δ B (Σ𝑇 Σ + 𝜆𝐼 )−1Σ𝑇 Σ = 𝑑𝑖𝑎𝑔( 𝑑2

1

𝑑2

1
+𝜆 , . . . ,

𝑑2

𝑛

𝑑2

𝑛+𝜆
)

4: for all 𝑘 ∈ 𝑘 list do
5: Δ𝑘 ← first 𝑘 columns and rows of Δ
6: 𝑉𝑘 ← first 𝑘 columns of 𝑉

7: 𝑊𝑘 ← 𝑉𝑘Δ𝑘𝑉
𝑇
𝑘

8: evaluate(𝑊𝑘 ) based on nDCG and/or Recall@K

9: end for
10: end for

than its corresponding matrix factorization model (as the former

can allow larger 𝑘 than the latter).

Note that for the real-world recommendation models, the matrix

factorization will utilize the weight matrix𝐶 (equation 8) to increase

model complexity (which does not have closed-form solution [17]).

However, due to the alternating least square solution, its number of

effective parameters will remain at𝑂 (𝑛𝑘). Thus, it is more restricted

and less flexible than the regression based approaches.

4 PARAMETER SEARCH AND NEARBY
MODELS

In this section, we first aim to identify a set of optimal (hyper)parameters

{𝜆𝑖 : 1 ≤ 𝑖 ≤ 𝑘} for the closed-form solution 13. Clearly, when the

parameter number is small, we can deploy a grid search algorithm

as illustrated in Algorithm 1 for search 𝑘 and 𝜆 for the closed-form

in Equation 14. However, for a large number of (hyper)parameters,

we have to resort to new approaches (Subsection 4.1). Furthermore,

once the parameter searching algorithm is available, we consider

to utilize it for searching nearby models for an existing model (Sub-

section 4.2). As we mentioned before, this can be considered as a

post-model fitting exploration in statistical learning [12].

4.1 Parameter Search
In this subsection, we assume the closed-form solution in Equa-

tion 14 (𝑊 = 𝑉𝑘𝑑𝑖𝑎𝑔(
𝜎2

1

𝜎2

1
+𝜆 , . . . ,

𝜎2

𝑛

𝜎2

𝑘
+𝜆 )𝑉

𝑇
𝑘
) has optimized hyperpa-

rameters 𝜆 and 𝑘 through the grid search algorithm Algorithm 1.

Our question is how to identify optimized parameter 𝜆1, · · · 𝜆𝑘 in

Equation 13:𝑊 = 𝑉𝑘𝑑𝑖𝑎𝑔( 1

1+𝜆1/𝜎2

1

, . . . , 1

1+𝜆𝑛/𝜎2

𝑛
)𝑉𝑇

𝑘
.

The challenge is that the dimension (rank) 𝑘 is fairly large and

the typical (hyper)parameter search cannot work in such high di-

mensional space [3]. Also, as we have the closed-form, it does not

make sense to utilize the (original) criterion such as Equation 10

for optimization. Ideally, we would like to evaluate the accuracy of

any parameter setting (such as in Algorithm 1) based on nDCG or

AUC [1]. Clearly, for this high dimensional continuous space, this is

too expensive. To deal with this problem, we consider to utilize the

BPR loss function which can be considered as a continuous analogy



of AUC [25], and parameterize 𝜆𝑖 with a search space centered

around the optimal 𝜆 discovered by Algorithm 1:

𝜆𝑖 (𝛼𝑖 ) = 𝜆 + 𝑐 × 𝑡𝑎𝑛ℎ(𝛼𝑖 ),
where 𝑐 is the search range, which is typically a fraction of 𝜆 and 𝛼𝑖
is the parameter to be tuned in order to find the right 𝜆𝑖 . Note that

this method effectively provides a bounded search space (𝜆−𝑐, 𝜆+𝑐)
for each 𝜆𝑖 .

Given this, the new objective function based on BPR is:

L =
∑︁

𝑢,𝑖∈𝑋 +𝑢 , 𝑗 ∈𝑋−𝑢
− log(𝛿 (𝑡𝑥𝑢 (𝑊 (𝛼1, · · · , 𝛼𝑘 )∗𝑖−𝑊 (𝛼1, · · · , 𝛼𝑘 )∗𝑗 ))

where𝑊 (𝛼1, · · · , 𝛼𝑘 ) = 𝑉𝑘𝑑𝑖𝑎𝑔(
𝜎2

1

𝜎2

1
+𝜆1 (𝛼𝑖 )

, . . . ,
𝜎2

𝑛

𝜎2

𝑛+𝜆𝑛 (𝛼𝑛)
)𝑉𝑇

𝑘
, and

𝑊 (𝛼1, · · · , 𝛼𝑘 )∗𝑖 is the 𝑖-th column of𝑊 matrix, 𝑥𝑢 is the 𝑢 − 𝑡ℎ
row of matrix 𝑋 and 𝑡 is a scaling constant. Here 𝑡 and 𝑐 are hyper-

parameters for this learning procedure.

Note that this is a non-linear loss function for a linear model and

the entire loss function can be directly implemented as a simple

neural network, andADAM (or other gradient descent) optimization

procedure can be utilized for optimization. We can also add other

optimization such as dropout and explicitly enforcing the zero

diagonal of𝑊 [29].

4.2 Nearby Linear Models
In this subsection, we consider how to further leverage the new

learning procedure for other linear models to help identify the (hy-

per)parameters. Inspired by the recent efforts of post-model fitting

exploration [12], we consider to augment the existing learned𝑊

from any existing models (or adding on top of the aforementioned

closed-form solution) with two types of parameters:

𝑊𝐻𝑇 = 𝑑𝑖𝑎𝑔𝑀 (𝐻 ) ·𝑊 · 𝑑𝑖𝑎𝑔𝑀 (𝑇 )

𝑊𝑆 = 𝑆 ⊙𝑊 ⊙ (𝑊 ≥ 𝑡)
(20)

where 𝐻 = (𝛿 (ℎ1), · · · 𝛿 (ℎ𝑛)) and 𝑇 = (𝛿 (𝑡1), · · · , 𝛿 (𝑡𝑛)) are the

head and tail vectors with values between 0 and 1 (implemented

through sigmoid function). We also refer to the diagonal matrices

𝑑𝑖𝑎𝑔𝑀 (𝐻 ) and 𝑑𝑖𝑎𝑔𝑀 (𝑇 ) as the head and tail matrices. Basically,

these diagonal matrices 𝑑𝑖𝑎𝑔𝑀 (𝐻 ) and 𝑑𝑖𝑎𝑔𝑀 (𝑇 ) help re-scale the

row and column vectors in𝑊 . Furthermore, 𝑆 = (𝛿 (𝑠𝑖 𝑗 )) is a matrix

with values between 0 and 1 (implemented through sigmoid func-

tion). Finally,𝑊 ≥ 𝑡 is a boolean matrix for sparsification: when

𝑊𝑖 𝑗 > 𝑡 , its element is 1, otherwise, it it zero. Thus, this augmented

model basically consider to sparsify the learned similar matrix𝑊

and re-scale its remaining weights. Note that both𝑊𝐻𝑇 and𝑊𝑆

can be considered as the nearby models for the existing models

with learned𝑊 . Note that studying these models can also help

us understand how close these available learner models are with

respect to their limit for recommendation tasks. Since the optimiza-

tion is more close to the “true” objective function, it helps us to

squeeze out any potential better models near these existing models.

In Section 5, we will experimentally validate if there is any space for

improvement based on those simple augmented learning models.

5 EXPERIMENTAL RESULTS
In this section, we experimentally study the basic linear models as

well as the (hyper)parameter search algorithms and its applications

ML-20M

EASE

𝜆=400

LRR

k =2K, 𝜆 = 10K

MF

k = 1K, 𝜆 = 50

WMF(ALS)

k = 100, C = 10, 𝜆 = 1e2

Recall@20 0.39111 0.37635 0.36358 0.36327

Recall@50 0.52083 0.51144 0.50069 0.50232

nDCG@100 0.42006 0.40760 0.39187 0.39314

Table 1: ML-20M: Basic Model Evaluation

Netflix

EASE

𝜆= 1000

LRR

k =3K, 𝜆 = 40K

MF

k=1K, 𝜆=100

WMF(ALS)

k=100, C = 5, 𝜆=1e2

Recall@20 0.36064 0.3478 0.33117 0.3213

Recall@50 0.44419 0.4314 0.41719 0.40629

nDCG@100 0.39225 0.38018 0.36462 0.35548

Table 2: Netflix: Basic Model Evaluation

to the nearby models. Note that our goal here is not to demonstrate

the superiority of these basic/closed-form solutions, but to show

they can fare well against the state-of-the-art linear models. This

can thus help validate using these basic models to study these

advanced linear models [17, 29, 30]. Specifically, we aim to answer:

• (Question 1) How do the basic regression andmatrix factorization

based models (and their closed-form solutions) compare against

the state-of-the-art linear models? Also we hope to compare

the two basic models (using their closed-form solutions) to help

provide evidence if the matrix factorization approaches have

inherently disadvantage for the implicit recommendation task.

• (Question 2) How can the learning algorithm to help search the

optimal parameter for the closed-form solution of Equation 13 as

well as its augmented models (adding both head and tail matri-

ces)? How does the (augmented) closed-form solution perform

against the state-of-the-art methods? We are also interested in

understanding how the learned {𝜆𝑖 } parameters look like with

respect to the constant 𝜆.

• (Question 3) How does the nearby models based on the head and

tail matrices𝑊𝐻𝑇 and sparsification𝑊𝑆 introduced in Subsec-

tion 4.2 perform? Can any existing state-of-the-art linear models

be boosted by searching through the augmented nearby models?

Experimental Setup: We use three commonly used datasets for

recommendation studies: MovieLens 20 Million (ML-20M) [13],

Netflix Prize (Netflix) [2], and the Million Song Data (MSD)[4]. The

characteristics of first two datasets are in the bottom of Table 3. The

characteristics of the third dataset and its results is in Appendix.

For the state-of-the-art recommendation algorithms, we con-

sider the following: ALS [17] for matrix factorization approaches,

SLIM [24], EASE [29], and EDLAE [30] for regression models,

CDAE [32] and MultiVAE [23] for deep learning models. For most

of the experiment settings, we follow [23, 29, 30] for the strong
generalization by splitting the users into training, validation and

tests group. Also following [23, 29, 30], we report the results using

metrics 𝑅𝑒𝑐𝑎𝑙𝑙@20, 𝑅𝑒𝑐𝑎𝑙𝑙@50 and 𝑛𝐷𝐶𝐺@100.

Finally, note that our code are openly available (see Appendix).

Basic Model Evaluation: In this experiment, we aim to evaluate

the the closed-form (Formulas 14, referred to as 𝐿𝑅𝑅 and 18, re-

ferred to as 𝑀𝐹 ) of the two basic models (Equations 10 and 16).

We compare them against the state-of-the-art regression model

EASE [29] and ALS [17]. Since this is mainly for evaluating their

prediction capacity (not on how they perform on the real world

environment), here we utilize the leave-one-out method to eval-

uate these models. Note that this actually provides an advantage
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Figure 2: Optimization Results for Formula 13
to the matrix factorization approaches as they prefer to learn the

embeddings (latent factors) before its prediction.

Tables 1 and 2 show the results for these four linear models on

the ml-20m and netflix datasets, respectively. We perform a grid

search for each of these models (the grid search results are reported

in Appendix), and report their better settings (and results) in these

tables. From these results, we observe: (1) Both basic models 𝐿𝑅𝑅

and𝑀𝐹 have very comparable performances against their advanced

version. Note that 𝐿𝑅𝑅 does not have the zero diagonal constraint

and use reduced rank regression compared with EASE; and𝑀𝐹 does

not have the weighted matrix in ALS [17]. This helps confirm the

base models can indeed capture the essence of the advanced models

and thus our theoretical analysis on thesemodels can help (partially)

reflect the behaviors from advanced models. (2) Both regression

models are consistently and significantly better than the matrix

factorization based approaches. This helps further consolidate the

observations from other studies [8] that the regression methods

have the advantage over the matrix factorization methods.

Optimizing Closed-Form Solutions: In this and next experi-

ment, we will follow the strong generalization setting by split-

ting the users into training, validation and testing groups. The

top section of Table 3 shows the experimental results of using the

closed-form solution (Formula 13). Here, (1) 𝐿𝑅𝑅(𝑐𝑙𝑜𝑠𝑒𝑑 − 𝑓 𝑜𝑟𝑚) is
the starting point for 𝜆 being constant; (2) 𝐿𝑅𝑅 +𝜆𝑖 utilizes the BPR
learning algorithm in Subsection 4 to search the hyperparameter

space; (3) 𝐿𝑅𝑅 + 𝜆𝑖 + 𝐻𝑇 uses 𝑑𝑖𝑎𝑔𝑀 (𝐻 ) ·𝑊 · 𝑑𝑖𝑎𝑔𝑀 (𝑇 ) (as the
targeted similarity matrix), where𝑊 is defined in Formula 13 (here

the optimization will simultaneously search hyperparameters {𝜆𝑖 }
and head (𝐻 ), tail (𝑇 ) vectors; (4) finally, 𝐿𝑅𝑅 + 𝜆𝑖 + 𝐻𝑇 + 𝑅𝑀𝐷

further enforces the zero diagonal constraints. We also add dropout

(with dropout rate 0.5) for the model training for models (2 − 4).
We observe the variants of the closed-form solutions are compa-

rable against the state-of-the-art linear models and deep learning

models. For instance, on ML-20M, 𝐿𝑅𝑅 + 𝜆𝑖 + 𝐻𝑇 + 𝑅𝑀𝐷 reports

0.522 𝑅𝑒𝑐𝑎𝑙𝑙@50, is among the best for the existing linear models

(without additional boosting from the augmented nearby models).

Finally, Figure 2 illustrates the parameter search results for For-

mula 13 from the learning algorithm. Specifically, Figure 2 (a) shows

how the singular value are adjusted vs the compressed singular

value for a constant 𝜆 = 8000 (Formula 14). We provide 𝑐 = 1000 to

allow each individual 𝜆𝑖 search between 7000 to 9000. Figure 2 (b)

shows the search results for the parameters 𝜆𝑖 . As we conjectured,

we can see that the initial 𝜆𝑖 is quite large which leads to smaller

singular values compared with adjusted singular value from For-

mula 14. Then the parameters 𝜆𝑖 reduces which make the smaller

singular values reduced less. This can help more (smaller) singular

values to have better presence in the final prediction.

Nearby Models In this experiment, we augment the latest regres-

sion models EDLAE (full rank and reduced rank) [30] with ad-

ditional parameters and apply the parameter learning algorithm

to optimize the parameters: (1) 𝐸𝐷𝐿𝐴𝐸 is the original reduced

rank regression with rank 𝑘 = 1000; (2) 𝐸𝐷𝐿𝐴𝐸 + 𝐻𝑇 corresponds

to the augmented model with head and tail matrices,𝑊𝐻𝑇 from

Formula 20; (3) 𝐸𝐷𝐿𝐴𝐸 𝐹𝑢𝑙𝑙 𝑅𝑎𝑛𝑘 is the original full rank regres-

sion; (4) 𝐸𝐷𝐿𝐴𝐸 𝐹𝑢𝑙𝑙 𝑅𝑎𝑛𝑘 + 𝐻𝑇 applies the head and tail matri-

ces on the learned similarity matrix from 𝐸𝐷𝐿𝐴𝐸 𝐹𝑢𝑙𝑙 𝑅𝑎𝑛𝑘 ; (5)

𝐸𝐷𝐿𝐴𝐸 𝐹𝑢𝑙𝑙 𝑅𝑎𝑛𝑘+𝑆𝑝𝑎𝑟𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 applies the𝑊𝑆 from Formula 20,

which sparsifies the similarity matrix of 𝐸𝐷𝐿𝐴𝐸 𝐹𝑢𝑙𝑙 𝑅𝑎𝑛𝑘 with

additional parameters in matrix 𝑆 to further adjust those remaining

entries in the similarity matrix.

The experimental results on ML-20M and Netflix of these aug-

mented (nearby) models are listed in the middle section in Table 3.

We can see that on the ML-20M dataset, the 𝑅𝑒𝑐𝑎𝑙𝑙@50 has close

to 1% boost while other metrics has small improvement. This in-

deed demonstrates the nearby models may provide non-trivial im-

provement over the existing models. On the Netflix dataset, the

nearbymodels only have minor changes and indicates the originally

learned model may already achieve the local optimum.

6 CONCLUSION AND DISCUSSION
In this work, we provide a thorough investigation into the relation-

ship between arguably two of the most important recommendation

approaches: the neighborhood regression approach and the matrix

factorization approach. We show how they inherently connect with

each other as well as how they differ from one another. However,

our study mainly focuses on the implicit setting: here the goal is

not to recover the original ratings (like in the explicit setting), but

to recover a ”likelihood” (or a preference) of the interaction. Thus,

the absolute value/rating is not of interests. In fact, for most of

the linear regression models, the predicted value can be very small

(more close to zero than one). What matters here is the relative

rank of the predicted scores. Thus it helps to use more latent factors

to express the richness of user-item interactions. This can be rather

different from the rating recovery, which requires the original sin-

gular values to be preserved. Especially, the current approaches of

explicit matrix factorization which often consider only the positive

values and thus the methodology developed in this work cannot be

immediately applied in this setting. Indeed, Koren and Bell in [21]

has analyzed the relationship between neighborhood and factoriza-

tion models under explicit settings. It remains to be seen whether

the insights gained here can be applied to the explicit setting.

Also, we would like to point out that this is the first work to

investigate the nearby linear models. We consider two basic models

which utilize limited additional parameters to help explore the ad-

ditional models. An interesting question is whether we can explore

more nearby models.

Finally, we note that the theoretical models need eigen decompo-

sition which makes them infeasible for the real-world datasets with

millions of items. But our purpose here is to leverage such models to

help understand the tradeoffs and limitations of linear models, not

to replace them. We hope what being revealed in this work can help

design better linear and nonlinear models for recommendation.



Model

ML-20M Netflix

Recall@20 Recall@50 nDCG@100 Recall@20 Recall@50 nDCG@100

LRR (closed-form) 0.376 0.513 0.406 0.347 0.432 0.380

LRR + 𝜆𝑖 0.380 0.515 0.410 0.348 0.433 0.381

LRR + 𝜆𝑖 + HT 0.386 0.520 0.418 0.351 0.435 0.384

LRR + 𝜆𝑖 + HT + RMD 0.386 0.522 0.418 0.351 0.435 0.384

EDLAE 0.389 0.521 0.422 0.362 0.446 0.393

EDLAE +𝐻𝑇 0.394 0.527 0.424 0.361 0.446 0.393

EDLAE Full Rank 0.393 0.523 0.424 0.364 0.449 0.397

EDLAE Full Rank +𝐻𝑇 0.395 0.527 0.426 0.364 0.449 0.396

EDLAE Full Rank + Sparsification 0.394 0.526 0.423 0.365 0.450 0.397

SLIM 0.370 0.495 0.401 0.347 0.428 0.379

ALS/WMF 0.363 0.502 0.393 0.321 0.406 0.355

EASE 0.391 0.521 0.420 0.360 0.444 0.392

CDAE 0.391 0.523 0.418 0.343 0.428 0.376

MULT-DAE 0.387 0.524 0.419 0.344 0.438 0.380

MULT-VAE 0.395 0.537 0.426 0.351 0.444 0.386

dataset statistics

# items 20108 17769

# users 136677 463435

# interactions 10 millions 57 millions

Table 3: The performance comparison between different models. 𝜆𝑖 :learned (hyper)parameters; HT: augmented models with
head and tail parameter matrix; RMD: with removing the diagonal matrix (enforcing zero diagonal). For more details of the
experimental set-up and model, please refer to the appendix.
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A REPRODUCIBILITY
Generally, We follow the (strong generalization) experiment set-up

in [23, 30] and also the pre-processing of the three public available

datasets, MovieLens 20Million (ML-20M) [13], Netflix Prize (Netflix)

[2], and the Million Song Data (MSD)[4].

A.1 Experimental Set-up for Table 1 and 2
For the experiment of table 1 and 2, we utilize the strong gen-

eralization protocol for EASE [29] and LRR methods. For Matrix

Factorization based methods (MF and WMF/ALS), they are trained

for with data (except the items to be evaluated in validation and test

sets) Note that this actually provides an advantage to the matrix

factorization approaches as they prefer to learn the embeddings

(latent factors) before its prediction. The experiment results present

in table 1 and 2 are obtained by parameter grid search over the vali-

dation set according to 𝑛𝐷𝐶𝐺@100, the same as [23]. The searching

results are listed as following : table 4, table 5, table 6 and table 7.

𝜆

0 10 50 100 200 500 1000

k

128 0.29874 0.30951 0.36488 0.37826 0.30121 0.1901 0.1901

256 0.22911 0.25104 0.37504 0.37826 0.30121 0.1901 0.1901

512 0.1546 0.19782 0.39682 0.37826 0.30121 0.1901 0.1901

1000 0.09177 0.18242 0.39893 0.37826 0.30121 0.1901 0.1901

1500 0.06089 0.20776 0.39893 0.37826 0.30121 0.1901 0.1901

Table 4: ML-20M, MF, parameter search

𝜆

0 10 50 100 200 500 1000

k

128 0.31297 0.31542 0.32607 0.34103 0.34132 0.25831 0.17414

256 0.25036 0.25536 0.28659 0.33521 0.34132 0.25831 0.17414

512 0.17485 0.18314 0.26081 0.35157 0.34132 0.25831 0.17414

1000 0.12036 0.13766 0.28868 0.36414 0.34132 0.25831 0.17414

1500 0.09147 0.12449 0.32103 0.36414 0.34132 0.25831 0.17414

Table 5: Netflix, MF, parameter search

𝜆

8000 9000 10000 11000 12000 13000 14000

k

1000 0.41063 0.41273 0.41432 0.41476 0.41515 0.41513 0.41478

2000 0.41332 0.41469 0.41533 0.41509 0.41499 0.41455 0.41394

3000 0.41282 0.41397 0.41473 0.4146 0.41452 0.41413 0.41347

Table 6: ML-20M, LRR, parameter search

𝜆

10000 20000 30000 40000 50000 60000

k

2000 0.33632 0.37139 0.37856 0.37942 0.37828 0.37644

3000 0.34905 0.37441 0.37934 0.37949 0.37807 0.37617

4000 0.35184 0.37468 0.37919 0.37931 0.37786 0.37601

Table 7: Netflix, LRR, parameter search

A.2 Experimental Set-up for Table 3
In table 3, for LRR (closed-form) model ( described in equation 14).

For ML-20M dataset, we set 𝑘 = 2000, 𝜆 = 8000, 𝑐 = 1000 (used

to control range of weighted 𝜆𝑖 ). For Netflix dataset the 𝜆 = 8000 ,

𝜆 = 40000, 𝑐 = 5000 . Noting that these hyper-parameters are not

set as optimal ones (described in table 6, table 7), which won’t affect

our claims. For EDLAE (including full rank) model, we obtain the

similarity matrix by running the code from [30]. For WMF/ALS

model and EASE model, we set the hyper-parameters as table 1 and

table 2. Other models’ results are obtained form [23], [29] and [30].

For fast training augmented model, we sample part of training

data. Generally, it takes 2.5 minutes per 100 batch (batch size is

2048) for training.

A.3 MSD Dataset Results
The table 8 shows our experiment results carried out on the MSD

dataset. Baseline models’ results are obtained form [23], [29] and

[30].

MSD

Recall@20 Recall@50 nDCG@100

LRR 0.24769 0.33509 0.30127

LRR + 𝜆𝑖 0.25083 0.33902 0.30372

EDLAE 0.26391 0.35465 0.31951

EDLAE Full Rank 0.33408 0.42948 0.39151

EDLAE Full Rank+HT 0.33423 0.43134 0.38851

SLIM did not finished in [24]

WMF 0.211 0.312 0.257

EASE 0.333 0.428 0.389

CDAE 0.188 0.283 0.237

MULT-DAE 0.266 0.363 0.313

MULT-VAE 0.266 0.364 0.316

dataset statistics

# items 41140

# users 571355

# interactions 34 millions

Table 8: The performance comparison between models on
MSD dataset.
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