
SEMI-SUPERVISED DEEP LEARNING FOR MULTIPLEX
NETWORKS

A PREPRINT

Anasua Mitra
anasua.mitra@iitg.ac.in

Indian Institute of Technology Guwahati, India

Priyesh Vijayan
priyesh.vijayan@mail.mcgill.ca

McGill University & Mila

Ranbir Sanasam
ranbir@iitg.ac.in

Indian Institute of Technology Guwahati, India

Diganta Goswami
dgoswami@iitg.ac.in

Indian Institute of Technology Guwahati, India

Srinivasan Parthasarathy
srini@cse.ohio-state.edu

Ohio State University

Balaraman Ravindran
ravi@cse.iitm.ac.in

Robert Bosch Centre for Data Science and AI,
Indian Institute of Technology Madras, India

ABSTRACT

Multiplex networks are complex graph structures in which a set of entities are connected to each
other via multiple types of relations, each relation representing a distinct layer. Such graphs are used
to investigate many complex biological, social, and technological systems. In this work, we present a
novel semi-supervised approach for structure-aware representation learning on multiplex networks.
Our approach relies on maximizing the mutual information between local node-wise patch repre-
sentations and label correlated structure-aware global graph representations to model the nodes and
cluster structures jointly. Specifically, it leverages a novel cluster-aware, node-contextualized global
graph summary generation strategy for effective joint-modeling of node and cluster representations
across the layers of a multiplex network. Empirically, we demonstrate that the proposed architecture
outperforms state-of-the-art methods in a range of tasks: classification, clustering, visualization, and
similarity search on seven real-world multiplex networks for various experiment settings.

Keywords Multiplex networks; infomax principle; network embedding

1 Introduction

Entities in many real-world problems are related to each other in multiple ways. Such relations are often modeled as
graph-structured data where the nodes represent entities, and edges between a pair of nodes represent the interactions
between the entities. Learning representations for such networked data to mine, analyze and build predictive models
has been gaining a lot of traction recently with the advent of deep learning-based network embedding models [1, 2].

Increasingly such relations are complex, with multiple relationship types linking entities. Such networked data are
often naturally represented as multi-layered graphs [3], where each component layer focuses on a specific relation
type and can involve different sets of nodes. In this work, we focus on Multiplex networks, a special case of multi-
layer networks where the graphs in all the layers share the same set of nodes with distinct relations in different layers.
Such multiplex network structures are observed in numerous environments such as bibliographic networks, temporal
networks, traffic networks, brain networks, protein-drug-disease interaction, etc. The involvement of the same set
of nodes across multiple types of relations, distinctive structures in different layers, and the interplay among various
layers of networks — makes representation learning of multiplex networks a challenging task.

ar
X

iv
:2

11
0.

02
03

8v
1

 [
cs

.L
G

]
 5

 O
ct

 2
02

1

Existing multiplex Network Representation Learning (NRL) methods learn node embeddings that encode the local
relational structure of nodes by using graph convolutions [4, 5, 6] or random walks [7, 8] within a subgraph centered
at the node of interest. Though there are many powerful models to learn local structures, only a few works encode
global structures [5, 6] even in the case of the more widely researched simple homogeneous graphs. Global structural
information is encoded in representation learning models through one of three approaches: (i) clustering constraints
[9, 10]; (ii) auto-encoding objectives on the adjacency matrix [11, 9, 10] or node embeddings [12]; and (iii) Mutual
Information Maximization (InfoMax) [13, 14] objectives that maximize the Mutual Information (MI) between the
representations of local nodes and the global summary of the graph derived from the local contexts of all the nodes
[13, 14, 6, 15].

Clustering constraints are also often realized with auto-encoding objectives, that in general, are challenging to scale
[9, 10]. In contrast to the first two methods, the InfoMax based approaches use Graph Neural Networks (GNNs) to
obtain both local and global context and are potentially more scalable [13, 6, 15]. However, InfoMax objectives that
encode global information assume a shared global graph context for all the nodes despite the fact that, in most cases,
every node has a different global structure rooted at each node. This calls for a different contextualized global graph
representation for each node (analogous to the notion of personalization).
Contributions. In this work, we propose the first node-contextualized InfoMax based semi-supervised learning archi-
tecture for multiplex networks. The primary contributions of our work are:

• Motivated by the need for contextualized global graph representations, we propose a novel joint node and cluster
representation learning model that defines a structure-aware intra-layer graph context for a node.

• In the semi-supervised setting, the cluster constraints are provided by the partial label information and are shared
across layers to learn similar clusters across relational layers in terms of label correlations. To facilitate this, we
further constrain the nodes connected by cross-edges to have similar embeddings, thereby indirectly influencing the
layerwise InfoMax objective to capture global cluster information across multiple layers.

• We evaluate the model on seven multiplex networks for node classification, clustering, and similarity search. Our
proposed model achieves the best overall performance outperforming state-of-the-art methods like DMGI [6],
MGCN [4], HAN [16].

• Also, the learned node embeddings lead to well-separated homogeneous clusters in t-SNE visualizations.

2 Background and Key Intuition

2.1 Notation and Problem Statement

Notation: Let the multi-layer representation of a multiplex network with vertex set, V and relation set, R such that
|R| > 1 be defined by an |R|-layered graph, G = {G1,G2, ...,G|R|}, where Gr= (V, Ar) with Ar being the adjacency
matrix for the rth layer corresponding to the rth relation. We generalize the adjacency matrix notation to include both
intra-layer and inter-layer edges between nodes in different layers by letting A(r,r) to denote rth layer’s adjacency
matrix corresponding to its intra-layer edges and A(r,s) to denote the inter-layer edges between layer r and s when
r 6= s. Note that A(r,r), A(r,s) ∈ R+

|V|×|V| as all the layers share the same set of nodes, V . Often, the nodes are
associated with a feature set, F and the node feature matrix is denoted as X ∈ R|V|×|F|.
Semi-Supervised Learning Task: Given a multiplex graph, G = (V, A,X), a label set,Q and set of labeled nodes, L
with ground truth label assignment matrix, Y ∈ {0, 1}|V|×|Q|, the task is to predict labels for all unlabeled nodes, U =
V\L. For efficient Semi-Supervised Learning (SSL) on multiplex networks, it is essential to learn a low d-dimensional
(d� |F|) node embedding, Z ∈ R|V|×d that encodes relevant structural and label correlation information within and
across layers, useful for downstream machine learning tasks such as node classification and clustering.

2.2 Multiplex NRL and InfoMax Objective

Node Representation Learning: Multiplex Network Representation Learning methods encode useful information for
all the nodes into a low d-dimensional node embedding, Zr ∈ R|V|×d for each layer r and then aggregate information
across layer by leveraging the cross edges, into a joint embedding, Z ∈ R|V|×d.

Graph Convolutional Networks (GCNs) [17, 18] are widely used node embedding architectures that encode attribute-
based local structural information from a node’s multi-hop neighborhood. In the context of multiplex networks,
GCNs [19, 13, 6] are used layer-wise to obtain node embeddings based on the intra-layer edges. Then, to get a
joint node embedding, embeddings from different node counterparts across layers are aggregated via the cross-edges.

2

Encoding Global Information with InfoMax based objective: While GCNs are powerful models to encode local

Generating a node’s perspective of graph summary

i

Localized graph convolution

C3

C2

C4

C1

Label-aware structure pooling

Generating local node representation

Figure 1: Label correlated structure-aware InfoMax
structures, they do not encode global contextual information. On that front, recent efforts in the NRL community have
adopted the Mutual Information Maximization (InfoMax) objective, initially proposed in image feature extraction
pipelines for learning structurally dependent rich local and global representations of images — to the graph domain
to learn rich node [13, 6] and graph-level representations [14]. In problems where the data is sampled from a set of
graphs, each data instance is a graph, and the task is to learn a global graph representation wherein the InfoMax based
models learn graph representations by maximizing their mutual information (MI) with the local node representations
[14]. In this work, we are interested in the semi-supervised transductive setting. Given a partially labeled graph, we
look to learn node representations that allow us to predict labels for the rest of the nodes in the same graph. In this
setting, existing Infomax models learn the local node representations by maximizing its MI with a single global graph
representation [13, 6]. As we argue in the next section, where we describe this work’s intuition, this single global
representation is often inadequate.

From the computational aspect, the mutual information between two variables can be maximized by leveraging the
KL-divergence between their Joint distribution and the product of marginals. However, since estimating MI in high
dimension and continuous data is complex, in practice, scalable Neural MI estimators [20] that maximize a tractable
lower-bound are used. Noise Contrastive Estimation-based (NCE) loss that discriminates samples from a true joint
distribution against a noisy product of marginals (negative samples) are simple yet effective ways to realize this lower
bound. It can be viewed from the predictive coding perspective, where given a global-whole representation, the task is
to predict a corresponding local-part representation. This forces the discriminator to provide a high score to a related
pair of local-global representations compared to unrelated pairs. Henceforth, unless specified otherwise, we adopt
minimizing the NCE loss for this purpose.

2.3 Key Intuition

In a typical InfoMax based NRL setup, the global context is defined by all nodes in the graph. Thus, each node in the
graph does not have its own contextual view of the graph. Instead has a shared global context that is the same for all
the nodes, even though they may be structurally connected differently within the graph. For example, from the graph
in Fig: 1, the red node and blue node belonging to the same cluster C2 will have different non-local network measures
such as betweenness measure, participation coefficient [21], etc., as the structure of the (sub)graph centered around
these nodes are differently connected to the rest of the graph since one is in the center of a cluster, and other is at the
end of a whisker.

When a naive global graph summary function such as the average of all node embeddings is used, the global context
for all nodes becomes the same as their global context is isomorphic. Naively maximizing the MI of a nodes’ local
representations with a shared global context might bias the model to encode trivial and noisy information found across
all the nodes’ local information. Albeit, naively defining a different global context for each node, such as a sub-
graph-based approach, will shoot down the original objective of learning useful shared information from across the
graph.

Thus, this calls for a careful design of a contextualized representation of shared global information that facilitates
encoding relevant non-trivial shared information present across the graph when maximizing the MI with the local
node information. In Figure 1, even though the example graph has many clusters, only C1, C2, C3 are relevant to the

3

blue node i. Therefore, the global context for node i should be more inclined towards C1, C2, C3 instead of a naive
summary of all candidate clusters. In light of this simple intuition and motivated by participation scores, we propose a
cluster-based InfoMax objective to learn node representations. The clusters encode shared global graph information,
and the node-specific global context is obtained by aggregating information from the clusters with which the node is
associated. In particular, for the semi-supervised classification task, we define label-correlated structure-aware clusters
that jointly learn node and cluster representations by optimizing the InfoMax principle.

3 Proposed Methodology

In this section, we explain step-by-step our proposed approach to learning node representations for multiplex networks.
The proposed method Semi-Supervised Deep Clustered Multiplex (SSDCM) in Figure 2 — (i) learns relation-specific
node representation that encodes both local and global information, (ii) enforces cross-edge based regularization to
align all nodes connected across layers to lie on the same space, then (iii) learns a joint embedding across layers for
all nodes through a consensus regularization and (iv) finally enables label predictions with this joint embedding.

3.1 Learning Node Representations

The first component of our model learns relation-specific (R) local node representations, Ur. Then these learned node
representations are made aware of their individual global context, Sr which summarizes graph level information. We
do this by maximizing the mutual information between them and this can be realized by minimizing a noise-contrastive
estimation such as a binary cross-entropy loss as provided in the equation below,

OMI =
∑
r∈R

∑
i∈V

(
log(D(U i

r, S
i
r)) +

N∑
j=1

log(1−D(Ũ j
r , S

i
r))
)

(1)

where D : R2d 7→ R is a discriminator function that assigns a probability score to a pair of local-global node represen-
tations using a bi-linear scoring matrix B ∈ Rd×d, i.e., D(U i

r, S
i
r) = σ(U i

r
T
BSi

r), σ being the sigmoid non-linearity.
Similar to [6], we learn this discriminator universally, i.e., the weight is shared across all layers with an intention to
capture local-global representation correlations across the relations. The discriminator gives a local-global summary a
higher value if the local summary is highly relevant to the global summary and, in contrast, assigns a lower score if the
local summary is less relevant or irrelevant to the global summary. For every node i in each relation r ∈ R,N negative
local summaries are paired with that node’s contextual global summary to train the discriminator D. Following [13],
we create corrupted local patches Ũ j

r for each relation r by row-shuffling the node features X and passing it through
the same local structure encoder.

Having explained the overall structure of our InfoMax objective, we get into the details of how to learn (a) local node
representations, (b) global node representations, and (c) the clustering strategy that provides the global context for
nodes.

3.1.1 Local Node Representations

For each relation r ∈ R, we obtain an M -hop local node representations Ur ∈ R|V|×d with a Graph Convolutional
Neural Network (GCN) encoder Er. GCNs obtain an M -hop local representation by recursively propagating aggre-
gated neighborhood information. Let Ã(r,r) = A(r,r) + εI|V| be the intra-layer adjacency matrix for relation r with
added ε-weighted self-loops (similar to a Random Walk with Restart (RWR) probability kernel). Here, we use the
normalized adjacency matrix, Â(r,r) = (D̃

− 1
2

(r,r)Ã(r,r)D̃
− 1

2

(r,r)), as the GCN’s neighborhood aggregation kernel, where

D̃(r,r) is the diagonal degree matrix of Ã(r,r). An M -hop node embedding is obtained by stacking M -layers of GCNs
as in Eqn: 2. The input to the mth GCN layer is the output of the (m− 1)th GCN layer, Xm−1

r , with the original node
features X fed in as input to the first layer.

X0
r = X

Xm
r = PReLU(Â(r,r)X

m−1
r Wm

r) (2)

Ur = XM
r

where Wm
r is learnable weight matrix for the mth GCN layer corresponding to the rth multiplex layer. Assuming all

GCN layers’ outputs to be of the same dimension d, we have Xm
r ∈ R|V|×d and Wm

r ∈ Rd×d, except for the first
GCN layer, whose weights are W 0

r ∈ R|F|×d. The final M -hop GCN representation for each relation, r is treated as
that relation’s local node embedding, Ur = XM

r .

4

3.1.2 Contextual Global Node Representations

We learn a contextualized global summary representation, Si
r for each node i, and for every relation r ∈ R. In

this work, we first capture a global graph level summary by learning K clusters in each relation. Then we leverage
these learned clusters to provide a contextual global node summary for all the nodes based on the learned node-cluster
associations. We explain the steps in a top-down manner. We first explain how we obtain a contextualized global graph
representation given clustering information, and in the following subsection, we explain how to obtain the clusters.

Across all multiplex layers, we learn K clusters in each relation r ∈ R. We encode the clustering information with
relation-specificK cluster embeddings,Cr = {C1

r , C
2
r , ..., C

K
r }withCk

r ∈ R1×d and node-cluster assignment matrix,
Hr ∈ R|V|×K . Given the learned relation-wise clustering information (Cr, Hr) and local node representations, Ur, we
compute the contextual global node representation for a node i as a linear combination of different cluster embeddings,
Ck

r weighted by that node’s cluster association scores Hi
r[k],∀k ∈ [1,K] as mentioned in below.

Si
r =

K∑
k=1

Hi
r[k]Ck

r (3)

3.1.3 Clustering

We now describe how to learn clusters that capture useful global information for a node across all relations. Specif-
ically, we aim to capture globally relevant label information that can enrich local node representations for the semi-
supervised node classification task when jointly optimized for the MI between them across relations. To achieve this,
we adapt [22]’s Non-Negative Matrix Factorization formulation to learn label-correlated clusters to a Neural Network
setup as follows.

Cluster Embedding: We randomly initialize the set of cluster embeddings Cr for each relation r and allow them to
be updated based on the gradients from the model’s loss.

Cluster Assignment: We obtain the node-cluster assignment matrix, Hr, by computing the inner-product between
node embeddings and cluster embeddings. We then pass it through a softmax layer to obtain normalized probability
scores of cluster-memberships for each node, see Eqn: 4.

Hi
r[k] = SoftMax(U i

r.C
k
r

T
) (4)

Non-overlapping Clustering Constraint: To enforce hard cluster membership assignments, we regularize the cluster
assignment Hr with block-diagonal constraints. Specifically, we ensure the block size to be one, and the resulting
orthogonality constraint enforces less overlap in node assignments between every pair of clusters. This constraint is
expressed as a loss function below.

OOrthogonal = ‖HT
r Hr − IK‖

2

F (5)

Global Label-homogeneous Clustering Constraint: To capture globally relevant information for each relational
graph, we group nodes based on an aspect — enforcing homogeneity within clusters. Precisely, we capture global
label-correlation information with a similarity kernel, S ∈ R|V|×|V| and cluster nodes according to it. The label
similarity kernel is defined between the labeled nodes L as S = Y[L].Y[L]

T . We use a masking strategy to consider
only the label information of training nodes for enforcing this.

We now use a Laplacian regularizer to enforce smoothness on the cluster-assignments according to the label-similarity
kernel S as given in the equation below,

OLearn = Tr(HT
r ∆(S)Hr) (6)

where ∆(S) is the un-normalized Laplacian of the similarity kernel. The above Laplacian smoothing constraint
enforces nodes with similar labels to lie in the same/similar clusters.

Note that since this is shared across relations, it enforces similar clustering to be learned across relations. The learned
clusters can still vary based on the relation-specific node embeddings, thus capturing global shared context across
diverse graph structures. More importantly, notice that the label-similarity kernel can connect nodes that may be far
away by a distance longer than the local (M) multi-hop context considered and even can connect two nodes that are
not reachable from each other.

In the entire pipeline, cluster learning is facilitated by the following loss function: OClus = (OLearn + OOrthogonal)

5

D
iscrim

inate

U
niversal discrim

inator

R
elational layers in a M

ultiplex N
etw

ork

Node
embeddings

Cluster
embeddings

Cluster
membership

Weighted linear combination

G
raph convolution

G
raph sum

m
ary

for a node

Cluster learning

Positive & corrupted
features for a node

Bi-linear
scoring

Encoding cluster assumption of SSL.
Relation-specific cluster learning.

Relation-specific node
representation learning via GCN.

Cluster aware graph summary
generation. Learning via InfoMax.

Node
embeddings

Cluster
embeddings

Cluster
membership

Positive & corrupted
features for a node D

iscrim
inate

G
raph convolution

Weighted linear combination

G
raph sum

m
ary

for a node

Bi-linear
scoring

Cluster learning

Cross-graph regularization.
Attention based aggregation.

Consensus
regularization.
Supervision loss.

C
onsensus

em
beddings

Labels

Layer 1

Layer 2

Figure 2: Semi-Supervised Deep Clustered Multiplex (SSDCM) with structure-aware graph summary generation
Explanation of used color-codes. Green: True node embeddings, Red: Corrupted node embeddings, Blue: Final consensus node embeddings. Orange: Learned cluster
membership for nodes, Purple: Label information. The color-coded grouping of nodes in relational layers of the example multiplex network denotes different clusters.

3.2 Cross-relation Regularization

Since each multiplex layer encodes a different relational aspect of nodes, it is not straightforward to treat the inter-layer
edges the same way as intra-layer edges to aggregate information from cross-linked neighbors. Also, the representation
for nodes in different layers lies in different spaces and is not compatible with a naive aggregation of information via
cross-edges.

Previous works, incorporated inter-layer (cross-graph) edge information into the learning procedure by adopting either
cross-graph node embedding regularization [23, 24] or clustering techniques [5]. Since, in our case, we have the same
clustering constraints enforced across layers, we opt to regularize embeddings of nodes connected by cross edges to
lie in the same space.

OCross =
∑

r,s∈R
||O(r,s)Ur −A(r,s)Us||2F (7)

where O(r,s) ∈ R|V|×|V| is a binary diagonal matrix, with Oi,i
(r,s) = 0 if the corresponding Ai

(r,s) row-wise en-

tries for node i are all-zero and Oi,i
(r,s) = 1 otherwise if the bipartite association exists.This regularization aligns the

representations of nodes that are connected by cross-edges to lie on the same space and be closer to each other.

3.3 Joint embedding with Consensus Regularization

Having obtained rich node representations that incorporated local, global and cross-layer structural information at
every relational layer, we need a mechanism for aggregation of nodes’ different relation-specific representations into
a joint embedding. Since different layers may contribute differently to the end task, we use an attention mechanism to
aggregate information across relations as,

J i
r =

exp(Lr · U i
r)∑

r′∈R exp(Lr′ · U i
r)
, U i =

∑
r∈R
J i
rU

i
r (8)

where Lr is the layer-specific embedding and J i
r is the importance of layer r for node i. The importance score

is computed by measuring the dot product similarity between the relational node embedding U i
r and learned layer

embedding Lr.

Additionally, to obtain a consensus embedding [6], we leverage the corrupted node representations Ũr : r ∈ R
that we computed for InfoMax optimization in Eqn: 1. A consensus node embedding Z ∈ R|V|×d is learned with
a regularization strategy that minimizes the dis-agreement between Z and attention-weighted aggregated true node
representations U , while maximizing the dis-agreement between combined corrupted node representations Ũ (re-using

6

the same attention weights). The final consensus node embedding Z is generated as,

OCons = ‖Z − U‖2F − ‖Z − Ũ‖
2

F (9)

3.4 Semi-Supervised Deep Multiplex Clustered InfoMax

We predict labels Ŷ for nodes using their consensus embeddings Z. We project Z into the label space using weights
WY ∈ Rd×|Q| and normalize it with σ, a softmax or sigmoid activation function for multi-class and multi-label tasks
respectively. The prediction function is learned by minimizing the following cross-entropy loss,

OSup = − 1

|L|
∑
i∈L

∑
q∈Q

Yiq ln Ŷiq (10)

Ŷ = σ(ZWY)

Finally, the overall semi-supervised learning process to obtain rich node representations that capture local-global struc-
tures in a multiplex network is obtained by jointly optimizing the equation below that optimizes different necessary
components. We leverage hyper-parameters α, β, γ, ζ, θ to fine-tune the contributions of different terms.

O = α ∗OMI + β ∗OCross + γ ∗OCons + ζ ∗OClus + θ ∗OSup (11)

Empirically, we find that our objective function is not very sensitive to variation in α, β values. Therefore, we fix their
values as α = 1.0, β = 0.001. Finally, we only tuned variables γ, ζ, θ in the above objective function to analyze the
contributions of network, cluster, and label information. We discuss this further in Table 11 of Appendix A.3.1.

4 Related works

Here, we discuss related representation learning literature focused on multiplex networks.

Network Representation Learning (NRL). Network Representation Learning (NRL) methods for multiplex net-
works use different learning paradigms such as matrix factorization [23]; random-walk based objectives [7, 8] and
graph neural network architectures [4, 5, 6].

NRL models for multiplex networks have aimed at capturing different aspects of this multi-layered data. Modeling
multi-layer data might require one to capture local [23, 25] and global network structures [5, 6] within each layer;
leverage cross-layer edges [23, 4, 24, 25] between layers; encode node features [4, 6]; integrate information from
multiple layers into a unified feature space [7, 8]; Optimize for single objective [18, 16] or jointly optimize for different
objectives at different layers [4, 5].

Global context-based NRL. In general, random-walk-based methods and GCNs are limited to capturing k-hop local
contexts of nodes only. While matrix factorization methods embed the entire graph, they are neither scalable nor
powerful than the other two. Only a few studies capture the global structures into node embedding learning in both
homogeneous and multiplex networks.

GUNets [12] introduced pooling and unpooling operations on multi-graphs for homogeneous networks. Its
prominence-based node pooling captures the global graph structures and local graph structures using learnable projec-
tion vectors and GCNs. Deep Multi-Graph Clustering (DMGC) [5] is the first NRL study to learn global structures for
multilayer networks explicitly. It proposes an attentive unsupervised mechanism to encode the cluster structures into
multi-graphs based on a similarity-based cluster kernel.

InfoMax based NRL. Deep Multiplex Graph Infomax (DMGI)[6] employs the InfoMax principle for multiplex net-
works. It jointly maximizes the MI between the local and global graph patches across the layers of a multiplex graph. It
does so by learning a universal discriminator that discriminates positive and negative patch pairs across the relational
layers. Simultaneously, it employs a regularization strategy that attentively aggregates the learned relation-specific
node representations by reusing negative node representations used for learning the discriminator weights. HDGI [15]
is a work similar to DMGI, aimed at heterogeneous networks. It adopts a semantic attention mechanism to aggregate
metapath influenced node embeddings and discriminator-based learning strategy.

Semi-Supervised Learning (SSL). State-of-the-art methods MGCN [4], DMGI [6] are examples of SSL frameworks
for multilayer/ multiplex networks. MGCN proposes a layered graph convolution neural (GCN) architecture to pre-
serve the within layer and cross-layer network structures by leveraging a cross-entropy loss function in each network
layer. DMGI – though originally proposed as an unsupervised method, inculcates a semi-supervised variant that
explicitly guides the learning of layer attention weights. We have HAN [16] and RGCN [18] from the domains of het-
erogeneous and knowledge graphs, respectively. HAN proposes a GNN architecture based on hierarchical node-level

7

and metapath-level attention mechanisms. In contrast, RGCN proposes a graph convolution-based message passing
framework facilitating effective weight sharing to avoid overfitting on rare relations.

In Table 1, we summarize competing methods in terms of important aspects of a multi-graph that they are designed
to capture. These methods either lack strategies for 1) capturing global structural information: or 2) aggregating
node information across different counterparts of the same node from different layers, 3) capturing useful structures.
Even if there are global NRL methods like DMGI, DMGC, GUNets — they either use a naive mean-pooling approach
for acquiring global graph representations or unsupervised clustering criteria/ importance pooling strategy to capture
global graph structures that might not be useful given the end task is concerned. Our framework, SSDCM, differs in
that we build upon a semi-supervised structure-aware version of InfoMax — which is first-of-its-kind to the best of
our knowledge. Our objective is to learn global-structure enhanced node representations suitable for node-wise tasks
capturing all aspects of multiplex graphs.

Methods Comparison

D
M

G
C

[5
]

D
M

G
I

[6
]

H
A

N
[1

6]

M
G

C
N

[4
]

R
G

C
N

[1
8]

G
U

N
E

T
S

[1
2]

SS
D

C
M

Pr
op

er
tie

s

attributes X X X X X
within-network X X X X X X X
cross-network X – X – – X
labels X X X X X X
global structure X X X X
aggregation X X X X X

* Dash marks denote Not Applicable (NA).

Table 1: Coverage of multiplex network features.

Dataset Layers Nodes Edges(Total) Features Labels
ACM [16] 5 7427 24536689 767 5
DBLP [16] 4 4057 17976710 8920 4
SLAP [26] 6 20419 8207130 2695 15
IMDB-MC [6] 2 3550 80216 2000 3
IMDB-ML [27] 3 18352 2505797 1000 9
FLICKR [5] 2 10364 506051 – 7
AMAZON [6] 3 17857 2194389 2395 5

Table 2: Statistics of datasets (Refer to Table 10, Appendix A.3.2 for details)

5 Experimental Setup

Datasets. We evaluate our proposed algorithm SSDCM on a variety of datasets as mentioned in Table 2, from diverse
domains, containing — both multi-class and multi-label datasets, as well as, attributed and non-attributed datasets.
Refer to Table 10, Appendix A.3.2 for additional dataset details.
Baselines. We chose State-Of-The-Art (SOTA) competing methods applicable to a diverse range of multi-graph set-
tings. The compared methods can be roughly categorized into the following classes: multi-layered network-based
embedding approaches — DMGC, MGCN; multiplex network embedding — DMGI; heterogeneous network embed-
ding — HAN; multi-relational network embedding — RGCN; pooling method in multi-graph setting — GUNets.
Evaluation Strategy. We use a random sampling strategy to split the nodes into train, validation, and test set. We
choose one-third of the labeled examples as train nodes. We keep the validation set size as half of the train set size.
Thus, half of the total nodes are kept for evaluation purposes as test-set. Our experimental setup is summarized in
Table 11, Appendix A.3.1. For the methods applicable to non-attributed graphs, namely, RGCN and DMGC – we
implement attributed versions. For RGCN, we customized the relational GCN to take node features as input. For
DMGC that uses relation-specific autoencoders to reconstruct the layer adjacencies, we input another array of feature-
specific autoencoders. The feature-based autoencoders jointly learn a common hidden node representation along with

8

the relational autoencoders and reconstruct layers’ node features. To set up attributed NRL methods for FLICKR,
we leverage the layer adjacencies as node features. We simply obtain the average of layer node embeddings as final
representations for the methods with no specific node embedding aggregation strategy.
We provide additional details of our analysis to facilitate replicability of results in Appendix A.3. We also provide our
code 1.

6 Results

We demonstrate the effectiveness of the proposed framework on four tasks, namely, node classification, node clus-
tering, visualization, and similarity search. The details of the task-specific experiment setup, along with insights on
results, are discussed below.

6.1 Node Classification

For semi-supervised methods, we use the predicted labels directly to compute the node classification scores based
on ground-truth. We train a logistic regression classifier on the learned node embeddings of the training data for
unsupervised methods and report the performance of the predictor on the test node embeddings averaged over twenty
runs. We report the test-set performance that corresponds to the best validation-set performance for a fair comparison.
Micro-F1 and Macro-F1 scores are reported as node classification results in Tables [3, 4] respectively. From Tables [3,

Micro-F1 ACM DBLP SLAP FLICKR AMAZON IMDB-MC IMDB-ML
DMGC 42.822 84.684 29.819 50.308 69.716 56.278 44.765
RGCN 39.118 83.514 26.914 82.69 72.957 62.542 49.802
GUNets 46.428 87.124 32.985 87.607 77.177 52.508 43.988
MGCN 52.458 87.003 29.563 91.307 84.083 63.384 48.059
HAN 77.441 85.989 30.976 89.478 83.77 62.353 47.117

DMGI 81.205 89.43 30.03 91.225 89.422 65.21 53.413
SSDCM 88.324 94.988 33.597 96.261 92.195 67.796 54.055

Table 3: Node classification results: Micro-F1 scores (%)

Macro-F1 ACM DBLP SLAP FLICKR AMAZON IMDB-MC IMDB-ML
DMGC 39.679 83.279 21.581 46.122 64.013 54.699 29.122
RGCN 38.665 82.86 24.119 81.47 68.323 62.17 45.285
GUNets 41.433 86.426 18.807 85.708 74.332 51.039 27.591
MGCN 46.853 85.462 25.717 91.07 82.349 62.876 38.821
HAN 78.009 85.154 25.413 89.174 82.344 61.891 35.181

DMGI 80.802 88.828 24.854 91.928 88.114 65.066 48.122
SSDCM 88.571 94.681 28.072 96.147 91.973 67.803 51.756

Table 4: Node classification results: Macro-F1 scores (%)

4], it is clear SSDCM is the best performing model on all the datasets, by a significant margin. In comparison, DMGI
gives the second-best performance on most datasets except on SLAP and FLICKR (for Micro-F1 scores).

6.2 Node Clustering

We only cluster the test nodes to evaluate performance on the node clustering task. We give the test node embeddings to
the clustering algorithm as input to predict the clusters. We run each experiment ten times and report the average scores
in Table 5. K-Means and Fuzzy C-Means algorithms are used to predict clusters in multi-class and multi-label data,
respectively. For multi-label data, we take the top q number of predicted clusters, where q is the number of classes that
a node is associated with, to compare against the set of ground-truth clusters. We evaluate the obtained clusters against
ground truth classes and report the Normalized Mutual Information (NMI) [28] scores. We use Overlapping NMI
(ONMI) [29] for overlapping clusters to evaluate the multi-label datasets. Here we consider two kinds of clustering
to demonstrate the effectiveness of our method. One is node clustering through clustering algorithms that takes final

1https://github.com/anasuamitra/ssdcm

9

https://github.com/anasuamitra/ssdcm

node embeddings as input. We refer to this clustering score as NMI-N. Another is directly predicting clusters from the
cluster membership matrices learned during the optimization process and comparing it to the ground-truth to evaluate
the clustering performance. The latter score, referred to as NMI-C, is only applicable to SSDCM and DMGC. From
Table 5, we can see that except on IMDB-ML, SSDCM outperforms all the competing methods on the clustering task.
It beats the second-best performing model by 0.037, across all datasets on average — a significant improvement.

6.3 t-SNE Visualizations

(a) RGCN (b) GUNets (c) MGCN (d) HAN (e) DMGI (f) SSDCM

Figure 3: t-SNE Visualization of node embeddings on FLICKR (top), AMAZON (bottom) for all the SSL methods
Please refer to Section: 5 for the candidate methods for which the t-SNE visualizations are plotted here. The color codes indicate functional classes (FLICKR: 7,

AMAZON: 5).

We also visualize the superior clusterability of SSDCM’s learned node representations for the FLICKR and AMAZON
dataset in Figure 3 using t-Distributed Stochastic Neighbor Embedding (t-SNE) [30] visualization. The color code in-
dicates functional classes for respective datasets. We choose the node embeddings that gave the best performance in
node classification scores for all the competing methods. We can see that all the semi-supervised methods yield inter-
pretable visualizations indicating clear inter-class separation. Among them, SSDCM obtains compact well-separated
small clusters of the same class labels, which appear to be visually better-separated than the rest of the methods. We
see similar trends in visualization for other datasets also (not shown here).

6.4 Node Similarity Search

Similarity-search results: SLAP

Pr
ec

is
io

n

10

15

20

25

30

S@5 S@10 S@20 S@50 S@100

DMGC RGCN GUNets MGCN HAN DMGI
SSDCM

Similarity-search results: AMAZON

Pr
ec

is
io

n

50

60

70

80

90

100

S@5 S@10 S@20 S@50 S@100

DMGC RGCN GUNets MGCN HAN DMGI
SSDCM

Similarity-search results: IMDB_MC

Pr
ec

is
io

n

30

40

50

60

70

S@5 S@10 S@20 S@50 S@100

Similarity-search results: IMDB_ML

Pr
ec

is
io

n

20

25

30

35

40

S@5 S@10 S@20 S@50 S@100

Figure 4: Comparing similarity search results

NMI-N ACM DBLP SLAP FLICKR AMAZON IMDB-MC IMDB-ML
DMGC 0.421 0.532 0.245 0.488 0.468 0.185 0.076
RGCN 0.324 0.559 0.24 0.715 0.405 0.193 0.102
GUNets 0.65 0.742 0.251 0.758 0.519 0.108 0.036
MGCN 0.41 0.738 0.278 0.76 0.528 0.195 0.033
HAN 0.939 0.66 0.278 0.639 0.519 0.178 0.055

DMGI 0.837 0.682 0.275 0.644 0.568 0.194 0.056
SSDCM 0.947 0.819 0.284 0.822 0.635 0.223 0.085

Table 5: Node clustering results: NMI scores

10

In a similar setup to [6], we calculate the cosine similarity scores of embeddings among all pairs of nodes. For a query
node, the rest of the nodes are ranked based on the similarity scores. We then retrieve top K = {5, 10, 20, 50, 100}
nodes to determine the fraction of retrieved nodes with the same labels as the query node, averaged by K. For multi-
label graphs, instead of exact label matching, we use the Jaccard similarity to determine the relevance of the query and
target nodes’ label set. We compute this similarity search score for all nodes as a query and report the average. The
similarity search results get a significant boost under our framework since our encoding of the SSL clusters puts nodes
with similar labels together in the same cluster. Whereas DMGC’s clustering criterion, DMGI’s global pooling, and
GUNet’s node importance based pooling criterion – do not demonstrate a similar benefit. From Tables [3, 4], we see
for SLAP and two versions of IMDB movie networks the classification score of the competing methods are close. But
in similarity search, we can differentiate SSDCM as the best performing model among all. DMGI is the second-best
performing model in node similarity search, similar to the node classification results. GUNets and DMGC are seen to
perform worse than the rest.

7 Analysis

Herein we conduct an array of drill down experiments to shed light on the key components of our proposed SSDCM
framework.

7.1 Novelty of cluster-based graph summary

Micro-F1 Scores IMDB_MC ACM DBLP AMAZON FLICKR

SSDCM [global pool] 65.942 84.176 91.592 90.62 92.698
SSDCM [top-K pool] 63.908 84.218 90.683 90.34 93.714
SSDCM [SAG pool] 66.574 83.176 92.859 90.878 93.015
SSDCM [ASAP pool] 66.365 85.064 91.782 90.844 94.689
SSDCM [cluster aware
graph summary] 67.796 88.324 94.988 92.195 96.261

Table 6: Novelty of cluster-based graph summary

In Table 6, we delve deeper into how good the cluster-aware graph summary representation (Equation 3) is for the
universal discriminator (Equation 1). We consider alternative SOTA pooling methods — Top-K [12], SAG [31] and
ASAP [32] for generating graph summaries in the SSDCM framework. Top-K pool realizes node importance based
pooling strategy via learning a projection vector. In comparison, the SAG pool improves upon the former by encoding
structural information from graphs using GNNs. Adaptive Structure Aware Pooling (ASAP) is a new SOTA method
that considers the cluster structures from graphs. It proposes a self-attentive GCN architecture Master2Token to learn
clusters and uses a cluster fitness-based scoring strategy to pool underlying graph structures in phases 2 These pooling
strategies generate a common graph summary for the whole graph, which is fed to the discriminator along with the
node embeddings. On the contrary, our cluster-aware graph summary has a node’s perspective, i.e., the global graph
summaries vary from node to node based on its associated cluster structures. For the nodes that share membership
under a common set of clusters, the structure-aware graph summaries are similar. That makes the universal discrimi-
nator more powerful for discriminating the local and global patch pair representations from the false pairs across the
relations.

Here, we keep SSDCM’s cluster learning component intact and use various pooling strategies to train the discriminator.
The discriminator, thus, does not have any relation to the learned clusters and uses a common global summary paired
with each node. In Table 6, we see, structure-aware pooling methods are beneficial. We see that the pooling variants
with SSDCM have better performance than DMGI’s best-reported performance (Table 3), mainly due to learning of
the clusters and using advanced pooling strategies in place of DMGI’s mean-pooling. Empirically, we observe that
SSDCM with the alternative pooling variants struggle to converge consistently. However, SSDCM with a cluster-
based graph summary does not suffer from similar convergence issues. Our proposed architecture in the last row
outperforms all the candidate pooling techniques significantly on every dataset, depicting the effectiveness of our
cluster-aware graph summary representations.

11

Comparison IMDB-MC FLICKR ACM

Micro-F1 NMI-N Micro-F1 NMI-N Micro-F1 NMI-N

SSDCM 67.796 0.22325 96.261 0.82171 88.324 0.94650
SSDCM−cross 66.613 0.20451 94.182 0.79671 86.371 0.91611
SSDCM−cons 66.069 0.20138 91.836 0.73658 84.889 0.88139
SSDCM−(cons+cross) 64.971 0.18735 88.374 0.71629 83.961 0.85420

Table 7: Effect of cross and consensus regularizations
’+’ and ’-’ sign denote augmentation or elimination of the components followed.

7.2 Effect of various regularizations

Here we compare the results of SSDCM without cross regularization with SSDCM to understand the influence of
this factor. We see that removing cross-edge based regularization from the layer-wise node embeddings degrades the
performance of the SSDCM considerably, especially on FLICKR and ACM. Next, we verify the usefulness of learning
a final consensus node embedding from the attention-aggregated positive and corrupted node embeddings. Recall
that our universal discriminator learns to discriminate between true local–global patches from the corrupted ones with
the intuition that the corrupted embeddings seek to improve the discriminative power of the resulting embeddings.
We see that the consensus regularization indeed plays an essential role in enriching the final node embeddings –
an observation similar to DMGI’s. From Table 7, we see that the consensus embeddings improve the performance
of Micro-F1 scores by a maximum of 4.425% on FLICKR, followed by 3.435%, 1.558% improvements on ACM,
IMDB-MC respectively. SSDCM−(cons+cross) gives the worst performance among all the compared variations. The
reasons behind this are self-explanatory – a) no cross-edges to align the relational node representations to each-other,
b) it lacks in a discriminative capacity.

8 Conclusion

In this study, we propose a semi-supervised framework for representation learning in multiplex networks. This frame-
work incorporates a unique InfoMax based learning strategy to maximize the MI between local and contextualized
global graph summaries for effective joint modeling of nodes and clusters. Further, we use the cross-layer links
to impose further regularization of the embeddings across the various layers of the multiplex graph. Our novel ap-
proach, dubbed SSDCM, improves over the state-of-the-art over a wide range of experimental settings and four distinct
downstream tasks, namely, classification, clustering, visualization, and similarity search, demonstrating the proposed
framework’s overall effectiveness. In the future, we hope to extend this work in a couple of ways. First, we hope to
improve the scalability of the approach – perhaps by leveraging a graph coarsening and refinement strategy[34] within
SSDCM. Second, we propose to see if the ideas we have presented can be generalized for other types of multi-layer
graphs (i.e., not just multiplex networks).

References

[1] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A comprehensive
survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2020.

[2] W. L. Hamilton. Graph Representation Learning. Morgan and Claypool, 2020.

[3] Mikko Kivelä, Alex Arenas, Marc Barthelemy, James P Gleeson, Yamir Moreno, and Mason A Porter. Multilayer
networks. Journal of complex networks, 2(3):203–271, 2014.

[4] Mahsa Ghorbani, Mahdieh Soleymani Baghshah, and Hamid R Rabiee. Mgcn: semi-supervised classification in
multi-layer graphs with graph convolutional networks. In Proceedings of the 2019 ASONAM, pages 208–211,
2019.

[5] Dongsheng Luo, Jingchao Ni, Suhang Wang, Yuchen Bian, Xiong Yu, and Xiang Zhang. Deep multi-graph
clustering via attentive cross-graph association. In WSDM, pages 393–401, 2020.

[6] Chanyoung Park, Donghyun Kim, Jiawei Han, and Hwanjo Yu. Unsupervised attributed multiplex network
embedding. In AAAI, pages 5371–5378, 2020.

2We use the Pytorch Geometric [33] library for candidate pooling methods.

12

[7] Weiyi Liu, Pin-Yu Chen, Sailung Yeung, Toyotaro Suzumura, and Lingli Chen. Principled multilayer network
embedding. In 2017 IEEE International Conference on Data Mining Workshops (ICDMW), pages 134–141.
IEEE, 2017.

[8] Hongming Zhang, Liwei Qiu, Lingling Yi, and Yangqiu Song. Scalable multiplex network embedding. In IJCAI,
volume 18, pages 3082–3088, 2018.

[9] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. Community preserving network
embedding. In AAAI, volume 17, pages 203–209, 2017.

[10] Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. Learning deep representations for graph clustering.
In AAAI, volume 28, 2014.

[11] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In ACM SIGKDD, pages 1225–
1234, 2016.

[12] Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning, pages 2083–
2092. PMLR, 2019.

[13] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon Hjelm. Deep
graph infomax. In International Conference on Learning Representations, 2019.

[14] Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-supervised
graph-level representation learning via mutual information maximization. In International Conference on Learn-
ing Representations, 2019.

[15] Yuxiang Ren, Bo Liu, Chao Huang, Peng Dai, Liefeng Bo, and Jiawei Zhang. Hdgi: An unsupervised graph
neural network for representation learning in heterogeneous graph. 2020.

[16] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous graph
attention network. In WWW, pages 2022–2032, 2019.

[17] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

[18] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max Welling.
Modeling relational data with graph convolutional networks. In ESWC, pages 593–607. Springer, 2018.

[19] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with graph convolu-
tional networks. Bioinformatics, 34(13):i457–i466, 2018.

[20] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio, Aaron Courville,
and R Devon Hjelm. Mine: mutual information neural estimation. In International Conference on Learning
Representations, 2018.

[21] Roger Guimera and Luis A Nunes Amaral. Functional cartography of complex metabolic networks. nature,
433(7028):895–900, 2005.

[22] Anasua Mitra, Priyesh Vijayan, Srinivasan Parthasarathy, and Balaraman Ravindran. A unified non-negative
matrix factorization framework for semi supervised learning on graphs. In Proceedings of the 2020 SIAM Inter-
national Conference on Data Mining, pages 487–495. SIAM, 2020.

[23] Jundong Li, Chen Chen, Hanghang Tong, and Huan Liu. Multi-layered network embedding. In SDM, pages
684–692. SIAM, 2018.

[24] Jingchao Ni, Shiyu Chang, Xiao Liu, Wei Cheng, Haifeng Chen, Dongkuan Xu, and Xiang Zhang. Co-
regularized deep multi-network embedding. In WWW, pages 469–478, 2018.

[25] Ryuta Matsuno and Tsuyoshi Murata. Mell: effective embedding method for multiplex networks. In Companion
Proceedings of the The Web Conference 2018, pages 1261–1268, 2018.

[26] Yizhou Zhang, Yun Xiong, Xiangnan Kong, Shanshan Li, Jinhong Mi, and Yangyong Zhu. Deep collective
classification in heterogeneous information networks. In WWW, pages 399–408, 2018.

[27] Trang Pham, Truyen Tran, Dinh Phung, and Svetha Venkatesh. Column networks for collective classification. In
AAAI, 2017.

[28] Christopher D Manning, Hinrich Schütze, and Prabhakar Raghavan. Introduction to information retrieval. Cam-
bridge university press, 2008.

[29] Andrea Lancichinetti, Santo Fortunato, and János Kertész. Detecting the overlapping and hierarchical community
structure in complex networks. New journal of physics, 11(3):033015, 2009.

[30] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. JMLR, 9(11), 2008.

13

[31] Liang Zhang, Xudong Wang, Hongsheng Li, Guangming Zhu, Peiyi Shen, Ping Li, Xiaoyuan Lu, Syed Afaq Ali
Shah, and Mohammed Bennamoun. Structure-feature based graph self-adaptive pooling. In WWW, pages 3098–
3104, 2020.

[32] Ekagra Ranjan, Soumya Sanyal, and Partha P Talukdar. Asap: Adaptive structure aware pooling for learning
hierarchical graph representations. In AAAI, pages 5470–5477, 2020.

[33] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR Workshop
on Representation Learning on Graphs, 2019.

[34] Jiongqian Liang, Saket Gurukar, and Srinivasan Parthasarathy. MILE: A multi-level framework for scalable
graph embedding. in ICWSM, 2021.

[35] Xiangnan Kong, Philip S Yu, Ying Ding, and David J Wild. Meta path-based collective classification in hetero-
geneous information networks. In CIKM, pages 1567–1571, 2012.

[36] Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fashion trends with one-class
collaborative filtering. In WWW, pages 507–517, 2016.

14

A Appendix

A.1 Ablation study

Cluster-orthogonality coefficient

Pe
rf

or
m

an
ce

 (%
)

80.0

82.5

85.0

87.5

90.0

0.0
05

0.0
01 0.0

5
0.0
1 0.1 0.3 0.5 0.7 1 3 5

Micro-F1 Macro-F1

ACM (Orthogonality - Learning: T F)

Cluster-learning coefficient

Pe
rf

or
m

an
ce

 (%
)

80.0

82.5

85.0

87.5

90.0

0.0
05

0.0
01 0.0

5
0.0

1 0.1 0.3 0.5 0.7 1 3 5

Micro F1 Macro F1

ACM (Orthogonality - Learning: F T)

Figure 5: Ablation study of cluster learning components

Variants Micro F1 Macro F1 NMI-N NMI-C

SSDCM (OL : FT) 85.584 84.83 0.889 0.518
SSDCM (OL : TF) 84.795 83.907 0.868 0.391
SSDCM (OL : TT) 88.324 88.571 0.947 0.651

Symbol meanings – A: cluster assignment, L: cluster learning, O: cluster orthogonality. T: True, F: False – denotes absence or presence of respective terms.

Table 8: Impact of various cluster learning components

In Table 8, we study the impact of cluster related terms on the end-task performances by removing the relevant terms
in two binary combinations. In OL: FT and OL: TF configurations, we remove the cluster orthogonality term and the
semi-supervised cluster learning term, respectively. Removing the cluster learning term significantly impacts the NMI
N and C scores by reducing the performance by 0.079 and 0.26 points. This configuration moderately affects the F1
scores. Removing the orthogonality term affects the classification performances with 2.74%, 3.771% reductions in
Micro and Macro F1 scores. These reductions are less than the performance drops gotten from removing the cluster
learning term in the case of F1 scores but still play a significant role. The cluster learning term is seen to be more
useful than the cluster orthogonality term for learning the cluster membership matrix.

In Figure 5, we consider two possible combinations, namely, cluster assignment (Eqn 4)–learning (Eqn 6)–
orthogonality (Eqn 5) as LO: FT and TF (T: True, F: False), for dissecting the cluster learning objective. We perform
a range search to see under which settings the best classification performances is achieved by varying a particular
cluster related term in a range while removing or keeping the rest of the terms intact. The terms are varied in range
of ∈ {0.005, 0.001, 0.05, 0.01, 0.1, 0.3, 0.5, 0.7, 1, 3, 5}. In FT configuration, cluster orthogonality is varied in the
absence of the cluster learning term. It gives best performance for values ∈ {0.05, 0.3}. Over a higher range of values,
the performances become less fluctuating. In TF configuration, cluster learning is varied in the absence of cluster
orthogonality. At 0.01 it gives the best performance in terms of Micro and Macro F1 for ACM. Again, an upward
trend in performances can be seen for values ∈ [1− 5].

A.2 Varying number of clusters

Here we study SSDCM’s sensitivity towards varying the number of clusters K. We also verify whether there is a
need to learn the cluster structures at all. We take the optimal hyper-parameter combination and vary the number of
clusters in the range [2 − 20] and [2 − 30] for FLICKR, IMDB-MC, ACM, respectively. Compared to DMGI’s best
performance scores, clear differences can be seen in Figure 6 for SSDCM that speaks to the effectiveness of learning
clusters to enrich node embeddings.

We plot the NMI-N and NMI-C scores (mean and layer-wise cluster memberships) while varying K for FLICKR. We
see less perturbation in NMI-N scores than NMI-C scores here. As K goes higher, the layer-wise and mean cluster
membership based NMI scores increase before flattening at K = 20. For IMDB-MC, We can see Micro F1 scores are
best at K = Q = 3, i.e., when the number of classes and clusters are the same. For ACM, varying K improves Micro

15

Number of clusters (K)

N
M

I

0.2

0.4

0.6

0.8

1.0

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

NMI-N NMI-C (Mean) NMI-C (Social)
NMI-C (Tag sim.)

FLICKR

Number of clusters (K)

Pe
rf

or
m

an
ce

 (%
)

66.50

66.75

67.00

67.25

67.50

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Micro F1 Macro F1

IMDB-MC

Number of clusters (K)

N
M

I

0.00

0.25

0.50

0.75

1.00

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 25 27 30

NMI-N NMI-C

ACM

Number of clusters (K)

Pe
rf

or
m

an
ce

 (%
)

75

80

85

90

95

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 25 27 30

Micro F1 Macro F1

ACM

Figure 6: Varying number of clusters

Number of clusters K is varied for FLICKR, IMDB-MC and ACM. i) Micro, Macro F1 scores (on right), ii) NMI using node embeddings and cluster memberships (on
left) are plotted. Best performances of DMGI (no cluster learning) are – a) for FLICKR, NMI-N: 0.644, b) for IMDB-MC, Micro-F1: 65.210, Macro-F1: 65.066,

and c) for ACM, Micro-F1: 81.205, Macro-F1: 80.802, NMI-N: 0.837

and Macro F1 scores at K ∈ {2, 3} < (Q = 5), i.e., when SSDCM learns high-level clusters. Even when K ≥ Q,
i.e., when SSDCM learns small clusters of same class data. We see a gradual improvement in both the NMI scores
for ACM when k ∈ [9 − 30]. NMI-N and NMI-C tend to give different NMI scores. The possible interpretation of
this performance difference lies in the fact that – in NMI-N, the K-Means algorithm applied to the node embeddings
of considerable hidden dimensions (d = 64) and the NMI scores are calculated for ground truth clusters. Whereas,
cluster memberships H are of comparatively low dimensions (K), and in NMI-C, we directly use the learned cluster
membership probabilities to derive the NMI scores.

A.3 Reproducibility

A.3.1 Baselines.

In Table 11, we give the details of hyper-parameter range search for all the competing methods — which is self-
explanatory.

A.3.2 Datasets.

Here in Table 10, we provide the detailed statistics of the datasets used for evaluation. We have used two versions of
the IMDB dataset, one multi-class version IMDB-MC as used in DMGI, and, another multi-label version IMDB-
ML from the Column Networks (CLN) [27]. In both versions, movie features are extracted from movie plot summary
with movie genres as functional classes. We used multiplex versions of bibliographic datasets ACM and DBLP.
For ACM [16], we extracted papers of five conferences 3 and created a multiplex network that includes layers of
paper nodes connected by co-authors, similar subjects, similar venues, co-authors belonging from the same institutes,
and citation relationships. Here, the task is to classify them according to the conferences as they are published.
DBLP [16] is a multiplex network of authors. The authors are classified by their field of research-interests 4. In

3Conferences = [’KDD’, ’WWW’, ’SIGIR’, ’SIGMOD’, ’CIKM’]
4Fields = [Data Mining (DM), Artificial Intelligence (AI), Computer Vision (CV), Natural language Processing (NLP)].

16

Nodes Layers Node Types Intra-Layer
Relations Edges Features Weighted Directed Multi-Class Classes

ACM [16] 7427 5 PAPER (P) PAP 118453 767 True False True 5
Author (A) PAIAP 8353678 Paper Title Conference (C)
Proceeding (V) PSP 14997105 & Abstract
Institute (I) PVP 1048129
Subject (S) PP 19324

DBLP [16] 4057 4 AUTHOR (A) APA 11113 8920 True False True 4
Paper (P) APAPA 40703 Paper Title Research Field (F)
Conference (C) APCPA 5000495 & Abstract
Term (T) APTPA 12924399

SLAP [26] 20419 6 GENE (G) GPG 832924 2695 True False True 15
Gene Ontology (O) GTG 606974 Gene Ontology Gene Family (F)
Pathway (P) GDCDG 36190 Description
Compound (C) GOG 6371558
Tissue (T) GDG 14988
Disease (D) GG 344496

IMDB-MC [6] 3550 2 MOVIE (M) MAM 66428 2000 True False True 3
Actor (A) MDM 13788 Movie Plot Movie Genre (G)
Director (D) & Summary

IMDB-ML [27] 18352 3 MOVIE (M) MAM 1455381 1000 True True False 9
Actor (A) MDM 923173 Movie Plot Movie Genre (G)
Director (D) MEM 127243 & Summary
Actress (E)

FLICKR [5] 10364 2 USER (U) Friendship 390938 NA True True True 7
Tag-similarity 115113 Social Group (G)

AMAZON [6] 17857 3 PRODUCT (P) Co-purchase 1501401 2395 True False True 5
Co-view 590961 Product Product Category (C)
Similar 102027 Description

Table 10: Dataset statistics

Methods Experiment setup & hyper-parameter range
HAN [16] l2 coefficient={0.0001, 0.0005, 0.001, 0.005}, learning rate={0.0001, 0.0005, 0.001, 0.005}, attention heads={1,2,4,8}, metapath attention dimension=128
MGCN [4] network & label coefficient={0.01, 0.1, 1.0, 10.0}, l2 coefficient={0.0005, 0.005}, learning rate={0.0005, 0.001, 0.05, 0.01}, stacked GCNs=2
RGCN [18] l2 coefficient={0.0005, 0.005}, learning rate={0.0005, 0.001, 0.05, 0.01}, no of bases=no of relations, number of hidden layers=2
GUNETS [12] l2 coefficient={0.0001, 0.001}, learning rate={0.01, 0.05, 0.001, 0.0005}, depth={3, 4, 5}, pool ratio={0.2, 0.4, 0.6, 0.8}
DMGC [5] network coefficient={1.0, 0.8, 0.6, 0.4}, cross reg.={0.2, 0.4, 0.6, 0.8}, l2 coef=0.0001, learning rate={0.0005, 0.001, 0.05, 0.01}, stacks in AutoEncoder=2
DMGI [6] network & label coefficient={0.001, 0.01, 0.1, 1.0}, l2 coefficient={0.0001, 0.001}, learning rate={0.0001, 0.0005, 0.001, 0.005}

SSDCM network, label & cluster coefficient={0.001, 0.01, 0.1}, l2 coefficient=0.0001, cross regularization=0.001, learning rate={0.0001, 0.0005, 0.001, 0.005}

Default to All hidden units=64, epochs=10000, patience=20, attention heads=2, non-linearity=prelu, no of clusters=no of classes, ε = 3.0, GCN layers = 2,
validation set based hyperparameter tuning, features=adjacency for non-attributed graphs, no node aggregation strategy=mean-pooling.

Table 11: Experiment setup & hyper-parameter range search for competing methods

both the bibliographic datasets, the terms extracted from the paper title and abstract are used as local features for the
nodes under consideration. In SLAP [35, 26], multiple layers of interactions characterize a gene — including tissue-
specific, biological pathways involved, disease associations, phylogenetic profile, gene expression, chemicals involved
to treat associated diseases, etc. Each gene has ontology related terms associated with it as attributes, and it can belong
to any of the most frequently occurring fifteen gene Families (F). We have AMAZON [36, 6], which is originally
multiplex in nature, i.e., the multiplexity is not inferred from composite relations. This network is extracted from the
product review metadata of the Amazon website. Target instances, i.e., products exhibit also-bought, also-viewed, and
similar-to – three layers of relations among them. Most frequently occurred terms are extracted from product title as
node features. The task is to classify the products into any product categories 5. FLICKR [5] is a non-attributed
multiplex social network of users (U) who belong to various communities of interest. It has a friendship layer and a
tag similarity-based connection layer among the users. A user is categorized based on their membership to any of the
social groups. In all the datasets mentioned in Table 10, cross-layer edges link two nodes in different layers if they
refer to the same node.

5Product Categories in AMAZON Multiplex Network = [’Appliances’, ’Automotive’, ’Patio Lawn & Garden’, ’Pet Supplies’,
’Home & Kitchen’]

17

	1 Introduction
	2 Background and Key Intuition
	2.1 Notation and Problem Statement
	2.2 Multiplex NRL and InfoMax Objective
	2.3 Key Intuition

	3 Proposed Methodology
	3.1 Learning Node Representations
	3.1.1 Local Node Representations
	3.1.2 Contextual Global Node Representations
	3.1.3 Clustering

	3.2 Cross-relation Regularization
	3.3 Joint embedding with Consensus Regularization
	3.4 Semi-Supervised Deep Multiplex Clustered InfoMax

	4 Related works
	5 Experimental Setup
	6 Results
	6.1 Node Classification
	6.2 Node Clustering
	6.3 t-SNE Visualizations
	6.4 Node Similarity Search

	7 Analysis
	7.1 Novelty of cluster-based graph summary
	7.2 Effect of various regularizations

	8 Conclusion
	A Appendix
	A.1 Ablation study
	A.2 Varying number of clusters
	A.3 Reproducibility
	A.3.1 Baselines.
	A.3.2 Datasets.

