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ABSTRACT

Generalized additive models (GAMs) have become a leading model
class for interpretable machine learning. However, there are many
algorithms for training GAMs, and these can learn different or even
contradictory models, while being equally accurate. Which GAM
should we trust? In this paper, we quantitatively and qualitatively
investigate a variety of GAM algorithms on real and simulated
datasets. We find that GAMs with high feature sparsity (only using a
few variables to make predictions) can miss patterns in the data and
be unfair to rare subpopulations. Our results suggest that inductive
bias plays a crucial role in what interpretable models learn and that
tree-based GAM:s represent the best balance of sparsity, fidelity and
accuracy and thus appear to be the most trustworthy GAM models.

CCS CONCEPTS

« Computing methodologies — Model verification and vali-
dation.
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1 INTRODUCTION

As the impact of machine learning on our daily lives continues to
grow, we have begun to require that ML systems used for high-
stakes decisions (e.g., in healthcare, finance and criminal justice) not
only be accurate but also satisfy other properties such as fairness or
interpretability [7, 18]. Generalized additive models (GAMs) have
emerged as a leading model class that is designed to be accurate, and
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Figure 1: Three GAMs with similar accuracy trained on the
COMPAS recidivism dataset (two of six features shown) that
tell very different stories about the dataset. On the left, EBM-
BF disagrees with FLAM and Spline about the presence of
racial bias in the data. On the right FLAM suggests that
length of stay has no impact on risk, but Spline shows that
risk grows strongly with length of stay.

yet simple enough for humans to understand and mentally simulate
how a GAM model works [13], and is widely used in scientific data
exploration [11, 16, 24] and model bias discovery [36, 37].

GAMs were originally trained using smoothing splines [10, 41]
that enforced smoothness in the learned functions. Later, several
trend-filtering based methods including fused lasso additive models
were proposed to make learned functions more sparse and jumpy
[29, 39]. Lou et al. [19] also proposed using boosted-tree-based
methods to fit GAMs. Subsequent work showed the value of tree-
based GAMs on two healthcare datasets [4], and also to help audit
black-box models to ensure fairness [37].

Do GAMs trained with different algorithms agree with each
other? In Fig. 1, we show that three GAMs with similar accuracy
provide very different interpretations of the COMPAS recidivism
dataset, a dataset in which bias is an important concern. For in-
stance, in Fig. 2(a) EBM-BF suggests that there is no racial bias in
the data, while Spline indicates that there is strong racial bias, yet
is slightly less accurate. Should we believe EBM-BF because of its
slightly higher accuracy and believe there is no racial bias? Probably
not. Then how should we determine which GAM to believe?

In this paper, we try to answer this question by studying two
aspects of GAMs trained with different algorithms. First, we quan-
tify which GAMs use fewer features to make predictions (similar to
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£1-regularization), which we call feature sparsity. Although feature
sparsity is sometimes preferred because it appears to yield simpler
explanations [7, 38], it can be dangerous for data exploration as it
can hide bias in the data. Consider a GAM that appears to be unbi-
ased by showing no effect on sensitive variables such as race, but
instead, because the learning algorithm is biased to use fewer fea-
tures, it has compiled the racial bias into other correlated variables
like zip code that are not obviously related to race, thus allowing the
racial bias to go unrecognized. Furthermore, for features that only
matter for rare subpopulations (e.g. a rare disease), a sparse-feature
GAM could easily ignore such features but still remain accurate,
leading to failure or discrimination for that subpopulation. In this
paper, we empirically verify this phenomenon by showing that
sparse GAMs often have higher loss for minority classes than less
sparse GAMs.

Second, we examine how much we can trust each GAM to reflect
true patterns in the data, a property we call data fidelity. Shmueli
[33] contrasted predictive models that seek to minimize the com-
bination of variance and bias (defined in a statistical sense, not in
the sense of unfairness) to explanatory models that aim to capture
true patterns in data by minimizing bias alone. For the former, bias
can be sacrified for improved variance, and Shmueli [33] provided
examples of how the “wrong” model can sometimes predict bet-
ter than the right one. In this paper, we study this phenomenon
across different GAM algorithms. For real data where we do not
know the underlying data patterns, we use the bias term from bias-
variance analysis as a proxy for data fidelity. We also experiment
with simulated datasets that have different data generators, each
of which may favor GAM algorithms with certain inductive biases,
and measure the worst-case data fidelity of each GAM algorithm
across multiple datasets. This allows us to quantify if some GAM
algorithms have high accuracy but low data fidelity, which may
mislead users to trust the wrong explanations.

Our key contributions in this paper are:

e We compare different GAM algorithms on ten classification
datasets and find that the most accurate GAMs yield similar
accuracy, yet learn qualitatively different explanations.

e We measure which GAM algorithms lead to models that are more
or less sparse, a property we call feature sparsity. We show that
sparse-feature GAMs can discriminate on rare subpopulations
leading to unfairness.

o We examine several case studies of data anomaly discovery to
see which GAMs can or cannot be trusted to discover these true
patterns in the data, a property we call data fidelity.

o We show that some GAMs have high accuracy but low data
fidelity which can mislead users who select models by accuracy
alone.

o We find that inductive bias plays a crucial role in model expla-
nations, and recommend tree-based GAMs over other GAMs for
their low feature sparsity and superior data fidelity.

2 RELATED WORK

While we study GAMs in this paper, GAMs are not the only inter-
pretable model class to come under scrutiny recently. The instability
of decision trees (another model class commonly considered inter-
pretable) has been pointed out [9], and the vulnerability of post-hoc

explanation methods such as LIME [27] and Shapley values [20]
to input perturbation has been exploited to generate adversarial
attacks on model explanations [34]. Hooker and Mentch [14] also
found partial dependence and feature importance metrics based on
permuting inputs to be particularly misleading when inputs are
highly dependent, and earlier work found feature importance met-
rics to be biased for certain types of models with different inductive
biases, e.g., random forest feature importance is biased towards
variables with many potential splits such as categorical variables
with many levels [35, 45].

Our paper is not the first to compare different GAM algorithms,
but to the best of our knowledge it is the first to focus on in-
terpretability and its relationships to fairness on different GAM
algorithms. Binder and Tutz [3] compared three different spline
training algorithms, including backfitting, joint optimization, and
boosting, finding that boosting performed particularly well in high-
dimensional settings. Lou et al. [19] also found that boosted shallow
bagged trees yielded higher accuracy than other GAM algorithms.
However both papers focused on accuracy, not interpretability.

3 METHODS

In this section we describe the different GAM algorithms used in
this paper. To make it easier for readers, we defer the description
of the new metrics we define in this paper - feature sparsity and
data fidelity — to just before their use in Sec. 5.

3.1 GAM Algorithms

Given an input x € RN*P a label y, a link function g (e.g. in binary

classification, g is logit), and shape functions f; for each feature, a
generalized additive models (GAM) can be written as:

D
9@ = fi+ ) filxp). ()

j=

GAMs are interpretable because the impact of each feature, f;,
on the prediction can be visualized as a graph (see Fig. 2 for an
example), and humans can easily simulate how a GAM works by
reading fjs off different features from the graph and adding them
together. We select the following six GAM algorithms to compare in
this paper based on their popularity, state-of-the-art performance
and availability of open source implementations.

Explainable Boosting Machine (EBM) A tree-based GAM
designed for intelligibility and high accuracy [4, 19, 23] where
shape functions f; are gradient-boosted ensembles of bagged trees.
Each tree operates on a single variable, preventing interactions
effects from being learned. Trees are grown by repeatedly cycling
through features, which forces the model to sequentially consider
each feature as an explanation of the current residual rather than
greedily selecting the best feature. This deliberate construction
makes this model have less feature sparsity. For comparison, we
create a sparse version of EBM similar to regular gradient boosted
trees, "EBM-BF" (EBM-BestFirst), that greedily grows the next tree
on the best, most informative feature to reduce error as much as
possible at each step. Like most gradient boosted trees, EBM-BF is
likely to put most weight on a few very important features, modest
weight on a larger number of moderately useful features, and little
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Figure 2: Shape plots from nine GAM algorithms trained on the MIMIC-II dataset (three of seventeen features shown). To
make comparisons easier EBM (blue line) is repeated in each plot.

or no weight on features whose signal could be learned by other
stronger, correlated features.

XGBoost (XGB) We introduce a new tree-based GAM based
on the popular boosting package XGBoost [5]. To convert XGB to a
GAM, we limit tree depth to 1 (stumps) so that the trees are not able
to learn feature interactions, and we bag XGB to improve accuracy
(similar to EBM). We also create a new version of XGB, "XGB-L2",
similar to EBMs, that picks features sequentially when growing
trees instead of greedily choosing the best feature. To achieve this,
we set the XGB random subsampling of features parameter to a
small ratio such that each tree is given just 1 feature. This deliber-
ate modification makes this model have less feature sparsity. This
modification makes XGB more of a "dense" model similar to £,
regularization that often uses all features. Fig. 2(b) shows these 2
methods. To our surprise, although XGB and EBM are both boosted
trees, their shape plots can be quite different (Fig. 2(b)).

Spline A classic way to train GAMs is with spline basis func-
tions [10]. We tried a variety of spline methods in 2 popular pack-
ages, the Python pygam [32] and R mgcv package [42], and chose
cubic splines in pygam because it has a good combination of accu-
racy, robustness and speed (Fig. 2(c)).

Fused LASSO Additive Models (FLAM) For each unique
value of feature x j, Fused LASSO Additive Model (FLAM) [25] learns
a weight on each value, and adds an #; penalty to the differences
between adjacent weights. This ¢ penalty causes FLAM to produce
relatively flat graphs and penalize unnecessary jumps. We use the
R package FLAM [25] in our experiments (Fig. 2(d)).

Logistic regression (LR) and other strawmen approaches
We compare these other approaches to Logistic Regression (LR), a
widely used linear model that cannot learn non-linear shape plots.

We also compare to two other strawmen approaches: marginalized
LR (mLR) and indicator LR (iLR). We first bin each feature x; into at
most 255 bins. In contrast to LR that assumes fj(x;) = wjx;j, mLR
sets fj(xj) = wjg(x;) where g(x;) is the average (marginalized)
value of target y within the same bin as x; in the dataset. This
is a GAM model built by applying logistic regression on top of
marginalization, thus preventing shape plots from being learned
in concert with each other. iLR treats each bin as a new feature
(similar to one-hot encoding) and learns an LR on the transformed
features. It thus ignores proximity relationships between different
feature values (Fig. 2(e)).

3.2 Training and Hyperparameters

To fairly compare different GAM algorithms, we choose hyperpa-
rameters that perform best for each algorithm individually. Below,
we briefly mention how we tune each GAM algorithm, and point
the reader to the Appendix for more details.

For tree-based methods EBM and XGB, we perform early stop-
ping to determine the optimal number of trees, stopping when
the validation set performance stops improving for more than 50
trees. For Spline, we choose a maximum of 50 knots and use the
gev criterion [40] to select the smoothness penalty. We found that
using more than 50 knots is intractable for larger datasets and does
not improve performance in smaller datasets. For FLAM, we cross-
validate the A parameter and then refit the model on the entire
training set using the optimal parameter. For LR, we cross-validate
the £, penalization parameter.

We split each dataset into 70-15-15% train-val-test splits and
repeat our training procedure run 5 times. This allowed us to derive
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Figure 3: Shape plots for COMPAS and Adult datasets for two sensitive attributes: race and gender. We compare two extreme
GAMs: a dense-feature GAM (EBM) and a sparse-feature GAM (EBM-BF). Sparse EBM-BF learns little effect on these features.

uncertainty estimates in the form of standard deviation across
multiple runs.

4 CASE STUDIES: COMPAS, ADULT, MIMIC-II

We start with some case studies to highlight the implications of
different GAM algorithms on common interpretability tasks such
as surfacing unfairness or discovering anomalies in data. In this
section, we highlight our key findings with plots specifically picked
to be representative of our main results. A complete set of plots can
be found in Appendix B.

4.1 How feature sparsity affects fairness?

One key property we study in this paper is which GAM algorithm
uses fewer features to make predictions i.e. feature sparsity. Al-
though sparsity is sometimes preferred because it appears to gen-
erate simpler explanations, it can hide data bias and discriminate
against minority groups. Here we examine the sparsity properties
of different GAM algorithms on two datasets that have been stud-
ied in the fairness community for racial and gender bias [6, 21, 44].
The COMPAS dataset contains demographic, crime, and recidivism
information for defendants in Broward County, Florida, in 2013
and 2014. Research has suggested that the COMPAS recidivism
risk score may be racially biased [1]. The Adult dataset extracted
demographic information, including age, race, occupation, sex, etc.
from the 1994 census data to predict if an individual’s income ex-
ceeds 50k/yr. In the dataset, males have on average higher annual
incomes than females [21].

To motivate our analysis, we compare two GAM algorithms that
are very different from each other in terms of feature sparsity: sparse
EBM-BF and regular, “dense” EBM, yet achieve similar accuracy (see
Table 4). Figure 3 displays the shape plots on two sensitive attributes,
race and gender, on the COMPAS dataset. Since these features have
modest influence compared to other features, the sparse-feature
EBM-BF shows no or only a tiny effect on these sensitive attributes,
while EBM shows much larger effects. Although there is no easy
way to judge which GAM is more “causally” correct, the sparse
EBM-BF makes users unaware of bias that may exist in the data and
has been learned by other stronger, correlated features. In contrast,
the dense EBM shows effects on all features. Because of this, we
suggest that the dense model is better suited for surfacing potential
bias in data then can then be investigated further by humans.

Next, we investigate how feature sparsity affects minority groups.
Table 1 presents the predictive performance (cross entropy loss) of
EBM and EBM-BF on each minority group. Although EBM and EBM-
BF have negligible difference (less than 0.5%) in terms of overall loss,
compared to EBM, EBM-BF exhibits greater loss on minority groups
Other (1.45%) and Asian (6%) compared to majority group White
(—0.02%); EBM exhibits lower loss on the Native American group
(—2.26%). To further investigate this phenomenon, we perform an
ablation study by removing the race feature from EBM thus forcing
EBM to be more sparse. While this increased overall loss by 0.1%
compared to EBM with the race feature, the loss for minority groups
was again substantially increased, with the loss increasing by 6%
for Asian and 1% for Native American. Similarly, when we remove
the sex feature from EBM, the loss for the minority group Female
increased by 0.99%, almost four times larger than the overall loss
increase (0.23%). Unexpectedly, removing the sex feature improves
the loss for minority group Native Americans (—5.32%); this is
a possible explanation for why the loss for Native Americans is
smaller for EBM-BF than EBM, as EBM-BF placed little importance
on sex.

We repeat the same analysis on the Adult dataset. Table 2 presents
the loss of EBM and EBM-BF on each minority group in the Adult
dataset. Compared to EBM, EBM-BF exhibit greater loss on minor-
ity groups Indian (7.13%) and Other (19.05%), much more than the
overall loss (5.27%) or loss on majority group White (5.17%). We
also find that removing race from the EBM model increased the loss
more for minority groups Indian (5.61%) and Other (1.04%), and
removing sex from the EBM model increases the loss for Female
(5.78%) much more than for Male (1.54%).

Implications GAM algorithms with a tendency to use fewer
features to make predictions (e.g. EBM-BF) showed only small ef-
fects on sensitive attributes and exhibited greater prediction loss on
minority groups causing unfairness, compared to GAM algorithms
that tend to use more features to make predictions (e.g. EBM).

4.2 Data Anomaly Discovery

Another key property we study in this paper is which GAM algo-
rithm is better able to capture anomalies in data. To illustrate, we
train different GAM algorithms on a medical dataset: ICU mortality
prediction dataset MIMIC-II [17]. On this dataset, XGB and EBM
have similar shape plots thus we only present the EBM plots here
for simplicity.



Table 1: Cross entropy loss of GAMs on different subpopulations in the COMPAS dataset. n is the number of samples in the
subpopulation. The percentage shown is relative to the performance of EBM. Columns are sorted by descending n.

All Black White Other Asian Native American| Male Female
(n=6172)|(n=3175) (n=2103) (n=343) (n=31) (n=11) (n=4997) (n=1175)
EBM | 0586 | 0.591 0.590  0.542 0.470 0.571 | 0.591 0.564
EBM-BF 0.589 0.595 0.590  0.550  0.500 0.558 0.594 0.569
(0.49%) | (0.72%) (=0.02%) (1.45%) (6.48%) (~2.26%) (0.41%) (0.82%)
EBM 0.587 0.591 0.590  0.544  0.498 0.579 0.593 0.563
without race| (0.10%) | (0.06%) (—0.01%) (0.31%) (6.08%) (1.39%) (0.18%) (—0.30%)
EBM 0.588 0.594 0.588  0.547  0.464 0.540 0.592 0.570
without sex | (0.23%) | (0.57%) (=0.23%) (0.95%) (—1.14%) (~5.32%) (0.06%) (0.99%)

Table 2: Cross entropy loss of GAMs on different subpopulations in the Adult dataset.

All White Black Asian/Pac  Indian/Eskimo Other Male Female
(n=32561) | (n=27816) (n=3124) (n=1039) (n=311) (n=271) | (n=21790) (n=10771)
EBM 0.265 0.277 0.163 0.309 0.204 0.137 0.321 0.152
EBM-BF 0.279 0.291 0.171 0.326 0.219 0.164 0.336 0.163
(5.27%) (5.17%) (5.37%) (5.61%) (7.13%) (19.05%) (4.78%) (7.39%)
EBM 0.265 0.277 0.164 0.311 0.216 0.139 0.321 0.152
without race | (0.15%) (0.02%) (0.98%) (0.73%) (5.61%) (1.04%) (0.12%) (0.26%)
EBM 0.271 0.283 0.170 0.313 0.201 0.138 0.326 0.161
without sex (2.34%) (2.27%) (4.77%) (1.29%) (-1.62%) (0.47%) (1.54%) (5.78%)
(a) PFratio (b) Systolic BP and XGB. EBM captures three jumps, exhibiting dips in risk predic-
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Figure 4: Two data anomalies in MIMIC-II that can be de-
tected by tree-based GAMs (EBM): (a) PFratio missing val-
ues imputed using population mean 332; (b) Systolic BP with
likely human intervention artifacts at 175, 200 and 225.

Fig. 4(a) displays one feature, PFratio (a measure of how well
patients convert oxygen in air to oxygen in blood), for the three
most accurate GAM algorithms on this dataset: EBM, Spline and
FLAM. Interestingly, both EBM and FLAM capture a sharp drop in
mortality risk at PFratio=332. It turns out that PFratio is usually not
measured for healthier patients, and the missing values for these
patients have been imputed by its population mean 332 (a common
preprocessing fix for missing data), thus giving a group of low-risk
patients the mean value of this feature. However, Spline is unable to
represent the sharp drop, becoming distorted in the region 300-600,
thereby underestimating the risk for patients in this region.

Fig. 4(b) for Systolic Blood Pressure (BP) shows another data
anomaly that is only captured by tree-based GAM algorithms EBM

reducing their risk. Both Spline and FLAM are too smooth or flat
and fail to capture these anomalies.

Implications  Localized data anomalies such as mean im-
putation and human intervention artifacts (e.g. medical treatment
thresholds), often require models to learn quick, non-linear changes
in risk. Tree-based methods (e.g. EBM and XGB) can detect these
much better compared to GAM algorithms that are too smooth or
sparse (e.g. Spline and FLAM).

5 QUANTITATIVE ANALYSIS OF GAMS

In the previous section, we saw examples of how different GAM
algorithms revealed different insights. In this section, we study the
performance differences between GAM algorithms quantitatively.
We first benchmark the test accuracy of different GAMs on ten
different datasets (Sec. 5.1). Then we measure feature sparsity of
different GAM algorithms (Sec. 5.2). Finally, we measure data fidelity
using both real (Sec. 5.3) and simulated data (Sec. 5.4, 5.5).



Table 3: Description of ten classification datasets used.

‘ Domain N P Positive Rate Description
Adult Finance 32,561 14 24.08% Income prediction
Breast |Healthcare 569 30  62.74% Cancer classification
Churn Retail 7,043 19  26.54% |Subscription churner
Credit Retail 284,807 30 0.17% Fraud detection
COMPAS Law 6,172 6 45.51% |Reoffense risk scores
Heart |Healthcare 457 11  45.95% Heart Disease
MIMIC-II |Healthcare 24,508 17  12.25% ICU mortality
MIMIC-IIT |Healthcare 27,348 57  9.84% ICU mortality
Pneumonia|Healthcare 14,199 46 10.86% Mortality
Support2 |Healthcare 9,105 29  25.92% Hospital mortality

5.1 GAM accuracy

How do we choose which GAM to use? Accuracy is perhaps the first
obvious consideration. Table 4 provides test set AUC of different
GAM algorithms on ten datasets. These datasets of varying size (500
- 250k samples) and number of features (6 - 57 features) span differ-
ent domains such as healthcare, criminal justice, finance, and retail
(see Table 3). In addition to the nine GAM algorithms described
in Sec. 3, we also include two full-complexity methods: Random
Forest (RF) and XGB with depth 3 (XGB-d3). For each method, we
compute three metrics, each of which is averaged over ten datasets:
(1) Test AUC; (2) Rank of test AUC compared to other methods
(lower rank is better); (3) Test AUC normalized compared to other
methods (lowest test AUC for a dataset has value 0, highest test
AUC for a dataset has value 1, with all other test AUCs scaled lin-
early between them). On average across ten datasets, EBM, EBM-BF,
and XGB-d3 performed the best. In general, GAMs perform better
than or comparably to full complexity models. Four of the GAMs
(EBM, XGB, Spline and FLAM) achieve similar top performance
with average AUC differences less than 0.2%.

Implications There exist GAM algorithms that perform com-
parably to full complexity models. Several GAM algorithms are
similarly accurate, hence accuracy should not be the sole consider-
ation when selecting between different GAM algorithms.

5.2 GAM feature sparsity

In this section we propose a new metric to quantify feature sparsity,
the notion that some GAM algorithms use fewer features than
others to make predictions, which we have seen in Sec. 4.1 to impact
bias discovery.

Feature density metric  The idea is to quantify how fast
the test error of a trained model decays (i.e., how fast the model
becomes more accurate) as we allow the model to have access to
more features; a sparse model only requires a few important features
to quickly reduce its test error, while a dense model needs more
features to recover because it will have spread learned effects across
more of the features. Using the GAM formulation as in Equation 1,
we proceed as follows to compute this metric: first we keep only
fo and measure the GAM’s test set error as the initial error. Then
for each step out of D steps, we greedily search over which feature
fi (x j), when added back to the model, reduces its validation error
the most. We add that feature back and measure how the model’s
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Figure 5: Bias rank (x-axis) vs. variance rank (y-axis) for each
GAM across multiple datasets. Lower rank is better.

test error decreases. We save the test error as each subsequent
feature is added, until D features are added after D steps, and plot
test error against features. Finally we compute the feature density
metric as the normalized area under this curve, treating the initial
test error as 100 and final error (with D features) as 0. We expect
an extremely sparse model to have value close to 0, and a dense
model to have value close to 50.

Table 5 presents normalized feature density for different GAM
algorithms on ten datasets. As expected, EBM consistently has
higher density (less sparsity) than EBM-BF across datasets, as it
uses more features by design. Similarly, XGB-L2 also has higher
density than XGB, and LR is higher than LASSO. This confirms that
the feature density metric reflects what we want. FLAM has low
feature density, which is unsurprising due to the #; penalty present
in the method. Spline does not exhibit a clear pattern of feature
density. For example, Spline has the smallest density on the Adult
dataset but the largest density on the Breast dataset.

Implications The proposed feature density metric captures
expected behavior. We see lower feature density for methods that
greedily select the next best feature (e.g. EBM-BF) or have penalties
that regularize for sparsity (e.g. FLAM). Methods that repeatedly
cycle over all features (e.g. EBM) have higher feature density.

5.3 GAM data fidelity

In this section we propose a new metric to quantify how well a
GAM is able to capture underlying data patterns, which we have
seen in Sec. 4.2 to impact data anomaly discovery.

At first glance, one may think that test accuracy is a suitable met-
ric for this purpose, since it captures how well a model generalizes
to unseen data. However, we saw in Sec. 4 when comparing GAM
algorithms of similar test accuracy how some were less able to rep-
resent certain data patterns. For example, smooth basis functions
in Spline, while reducing variance and hopefully improving test set
generalization, limited the model’s ability to capture sharp jumps in
the data. As noted by Shmueli [33], some highly accurate predictive
models may actually be “wrong” in terms of capturing underlying



Table 4: Test set AUCs (%) across ten datasets average over five runs. Best number in each row is in bold.

GAM Full Complexity
EBM EBM-BF XGB XGB-L2 FLAM Spline iLR LR mLR RF XGB-d3
Adult 93.0+0.5 92.8+0.5 92.8+0.6 91.7+0.6 925+£0.6 92.0£0.6 92.7+0.5 90.9+ 0.6 92.5+0.4 91.2+0.5 93.0+ 0.6
Breast 99.7+0.5 995+0.5 99.7+0.5 99.7+0.5 99.8 +0.3 98.9+0.8 98.1+0.5 99.7+0.4 98.5+0.5 99.3+1.1 99.3+1.1
Churn 84.4+0.7 84.0+0.9 84.3+0.7 843+0.7 84.2+0.7 84.4+0.8 83.4+1.0 84.3+0.7 82.7+1.0 82.1+0.6 84.3+0.7
COMPAS 743+14 745+1.7 745+15 743 +£15 742+1.7 743+15 73.5+13 72.7+1.0 72.2+13 67.4+1.2 745+15
Credit 98.0+0.5 97.3+1.3 98.0+0.6 98.1+£0.6 96.9+0.4 98.2+0.7 95.6+£0.6 96.4+1.1 94.0+1.4 96.2+1.5 97.3+0.7
Heart 855+6.9 83.8+6.0 85.3+6.3 8.8+7.0 85.6+6.7 86.7+6.3 85.9+6.3 86.9+5.8 744+53 854+6.5 84.3+4.6
MIMIC-II 83.4+0.9 833+0.8 83.5+1.0 83.4+0.9 83.4+1.0 82.8+0.8 81.1+1.0 79.3+0.8 81.6+0.7 86.0+0.6 84.7+0.7
MIMIC-IIT 81.2+0.4 80.7+0.7 81.5+0.5 81.5+0.5 81.2+0.4 81.4+04 77.4+1.0 785+0.5 77.6+0.3 80.7 £0.8 82.0+0.7
Pneumonia 85.3+0.6 84.7+0.7 85.0+0.8 85.0+0.6 85.3+0.9 85.2+0.6 84.3+1.0 83.7+0.6 84.5+0.7 84.5+0.5 84.8+0.8
Support2 81.3+1.0 81.2+1.0 81.4+1.1 81.2+1.0 81.2+1.1 81.2+1.1 80.0+1.2 80.3+0.7 77.2+0.9 82.4+1.0 82.0+1.4
Average AUC 86.6 86.2 86.6 86.5 86.4 86.5 85.2 85.3 83.5 85.5 86.6
Average Rank 3.70 6.70 3.40 4.90 5.05 4.60 8.70 7.75 9.70 7.40 4.10
Normalized AUC 89.3 78.1 87.3 81.8 83.6 81.0 47.4 50.7 28.5 54.3 86.5

Table 5: Normalized feature density (%). Higher numbers
mean the model uses more features. Highest number in each
row is in red; lowest number in each row is in blue. Columns
are sorted by descending density.

XGB-L2 EBM LR Spline XGB LASSO FLAM EBM-BF

Adult 339 27.122.0 20.5 29.0 213 21.1 226
Breast 11.2  08.6 13.0 23.4 07.0 06.6 07.7 059
Churn 15.0 157 199 22.7 129 16.2 131 13.0
COMPAS 183 183 17.7 17.3 17.9 17.7 172 17.0
Credit 26.9 269 124 19.1 194 122 17.0 1538
Heart 28.7 24.0 32.6 154 25.0 30.8 215 21.8
MIMIC-II  20.5 20.4 19.4 21.0 19.6 194 18.8 18.6
MIMIC-III  21.2  20.7 19.0 21.6 187 18.7 18.6 14.8
Pneumonia 29.9 29.7 27.2 19.5 253 258 258  20.6
Support2 114 12.4 103 12.6 13.0 10.2 114 117
Average 21.7 20.4 194 193 188 17.9 172 16.2

data patterns. This notion is exactly statistical bias, which arises
from model misspecification of the underlying data patterns [12].

Data fidelity metric We use an approximation to the bias
term in a bias-variance analysis to measure data fidelity. In bias-
variance analysis [2], the loss of model is composed of noise N(x),
bias B(x) and variance V (x) terms:

Ep:[L(t,y)] = N(x) + B(x) + V(x) where

N(x) = E¢[L (£, 4:)], B(x) = L (4x,ym) , V(x) = Ep [L (ym, y)]
where D is the training distribution, ¢ is the true label, y, is the
optimal predictions, y, is the mean prediction of models across
possible training datasets, and y is the model. Since we do not
know the y, we instead measure the empirical bias combining both
noise and bias N(x) + B(x) = E¢[L (¢, ym)] following Munson and
Caruana [22]. We use the following sampling procedure: in each
round, we split our dataset into 85-15% train-test splits. We then
randomly subsample the training data to 50% and train models
5 times, and we set the average of 5 models as y,, to calculate

empirical bias and variance once. Finally, the bias and variance
estimates are averaged over eight rounds, and ranked compared to
other GAM algorithms on each dataset. We take the average ranks
across the ten datasets (lower rank is better).

Fig. 5 plots average variance rank vs. average bias rank for differ-
ent GAM algorithms. Considering GAM algorithms closest to the
bottom left corner (i.e. (0, 0) point), which are also the most accurate
GAMs (see Table 4), XGB has the highest data fidelity (lowest bias
rank) but has rather high variance. FLAM has the next highest data
fidelity, but has even higher variance, hence it is dominated by XGB
that has both higher data fidelity and lower variance. After FLAM,
XGB-L2, Spline, and EBM have the next highest data fidelity, and
promisingly, with significantly lower variance than FLAM or XGB.

Implications We use statistical bias as a proxy to measure data
fidelity with real data. By decomposing error into bias and variance
components, we see that equally accurate GAM algorithms achieve
the same accuracy in different ways. Certain GAM algorithms (e.g.
XGB) have lower bias which indicates better fidelity, while other
GAMs (e.g. XGB-L2) have lower variance at the expense of higher
bias.

5.4 GAM data fidelity and generator bias

We have thus far studied the data fidelity properties of different
GAM algorithms on several real datasets. However, it may be that
the inductive bias of a certain GAM algorithm happened to agree
with the (unknown) data pattern in a particular real dataset. In this
section, we experiment with semi-synthetic datasets created using
known data generators. To preserve the character of real datasets
as much as possible, we keep the features X but change the label y
by training multiple ground truth GAM models (EBM, XGB, Spline,
FLAM and LR) on features X and then re-generating the label y
as each model’s predictions. Since these GAM models (except LR)
are among the most accurate models on most datasets (Table 4),
the generated labels capture the real-world distribution as close as
possible. As these GAM algorithms are very different from each
other, this should provide a diversity of ground truth data patterns.
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Figure 6: Shape plots for Systolic BP and AIDS features in semi-synthetic MIMIC-II, generated using different generators

(Spline and FLAM).

Fig. 6(a)-(d) shows different GAMs alongside ground truth pat-
terns from two very different generators, Spline and FLAM, on
MIMIC-II for one continuous feature (Systolic BP) and one boolean
feature (AIDS). Purple represents ground truth, i.e. Spline generator
for Fig. 6(a) and (c), and FLAM generator for 6(b) and (d). We see
an obvious generator bias: a GAM algorithm fits the ground truth
better when ground truth is generated using the same algorithm.
For example, on Systolic BP, the Spline GAM fits well the data
generated by its own generator (Fig. 6(a)), while doing poorly for
data generated by the FLAM generator (Fig. 6(b)), and vice versa for
FLAM. However, tree-based methods (EBM, XGB) on Systolic BP
with the Spline generator (Fig. 6a) still learn abrupt jumps at 225
even when the underlying ground truth is smooth; similarly there
is also a drop at 175. This illustrates that it is possible for model
inductive bias to dominate irrespective of the true data generator.

To mitigate the aforementioned generator bias, we perform a
worst-case analysis: what is the worst performance each GAM
algorithm would get across all of the different data generators?
Since we do not know the underlying generators on real datasets —
they could be jumpy, smooth, or even linear - this analysis is more
realistic and robust to all these cases.

Worst-case data fidelity metric To measure how well a GAM
can recover the ground truth generators, we calculate the mean
absolute difference of each shape plot between the ground truth
GAM and the GAM model. Specifically, using the GAM formulation
as in Equation 1 where f; is the shape function for feature j, and
taking g; to be the shape function for the ground truth GAM, we
calculate the absolute difference 2?:1 |fj(x;) — gj(x;)| across the
whole dataset. To compare between datasets, we linearly scale
the absolute difference between 0 and 100 for a particular semi-
synthetic dataset, with the worst GAM algorithm having value
0 and best GAM algorithm having value 100. We then take the
worst score over the five different data generators that yielded five
semi-synthetic datasets from each real dataset.

Table 6 provides the worst-case data fidelity for eight GAM algo-
rithms on six real datasets, where each dataset (row) encapsulates
five semi-synthetic datasets from different data generators. FLAM
and XGB performed the best, then EBM and Spline.

Table 6: Worst-case data fidelity (%) taking into account dif-
ferent data generators. Each row aggregates the results over
five different generators (EBM, XGB, FLAM, Spline and LR).
Higher numbers are better. Best number in each row is in
bold.

FLAM XGB EBM Spline EBM-BF LR iLR mLR
Breast 229 303 0 133 21.2 425 0 O

Churn 20.3 105 135 0 1.3 0 160 0
Heart 86.9 68.2 68.7 69.7 24.8 52.464.6 0
MIMIC-II  62.9 73.9 61.2 72.7 52.6 0 66 0
MIMIC-IIT 65.2 70.1 45.3 51.2 37.0 270 0 O
Pneumonia 64.4 60.2 40.0 3.6 0 0 268 6.4

Average 53.8 52.2 38.1 35.1 22.8 203190 1.1

Implications FLAM and XGB exhibit the best worst-case data
fidelity. Spline and EBM are similar, and EBM-BF is the worst. Tak-
ing into account different data generators, our results are not sub-
stantively different from the results derived from the bias-variance
analysis on real data in Sec. 5.3.

5.5 GAM accuracy vs. data fidelity

A GAM model that has high accuracy but low data fidelity may
mislead users who tend to judge models solely based on accuracy.
We quantify which GAM algorithm is more likely to mislead users
this way, by comparing the difference between test AUC rank and
data fidelity rank. For each dataset, we compute these two ranks
as in Sec. 5.1 and Sec. 5.3, with lower rank being better. Then we
take the rank of fidelity minus the rank of test AUC. If the result
is negative, we clip it at 0. We call this the “positive difference"
between the two ranks. Finally, we average this over all thirty semi-
synthetic datasets. We expect a misleading model to have a lower
test AUC rank and higher data fidelity rank.

From Table 7, Spline has the largest difference in rank over mul-
tiple datasets with different data generators. This rank difference
is largest when the data generators are jumpy, which creates chal-
lenges for Spline which uses smooth basis functions.

Implications For Spline, using high test accuracy alone to
select a model may be misleading, especially when the underlying
data pattern may be jumpy. Other methods are more stable.




Table 7: Difference between test AUC rank and data fidelity
rank on thirty semi-synthetic datasets. The larger this dif-
ference, the less reliable it is to use high accuracy to infer
good data fidelity. Best number is bold.

‘EBM FLAM XGB LR EBM-BF Spline

Avg Pos Diff in Rank ‘ 0.47 0.50 0.62 0.63 0.87 1.22

Table 8: Summary of key findings, ranking the different
GAM algorithms across six properties studied in this paper.
Best number in each row is in bold or red.

EBM XGB FLAM Spline LR

Test-set 15 15 4 3 5
accuracy
Feature 1 4 5 25 25
density
Low bias 35 1 2 35 5
(bias/variance)
Worst-case 35 15 15 35 5
fidelity
. MHighaccuracy - o0 o o
implies good data fidelity
Anom.aly 15 1.5 3 45 45
detection
Sum of Ranks | 125 13 17 22 255

6 DISCUSSION

GAMs are widely used to discover patterns in data in a variety of
fields including business [30], healthcare [15], ecology [24], horti-
culture [31], air pollution [26], nutrition [28] and COVID-19 [16].
But most of these research only experimented with a specific GAM
algorithm (typically Spline) without any comparison to other GAM
algorithms. In this work, we have shown that the patterns learned
by GAMs are highly impacted by their own inductive biases. If the
papers that used GAMs to discover patterns had used different GAM
algorithms, would they have drawn different conclusions? How
many of the findings are due to true patterns in the data and not
due to the inductive bias of the particular GAM algorithm chosen?

While we aimed to provide a useful and fair experimental study,
there are limitations to the conclusions that can be drawn from
our work due to design choices we made. In terms of data sets, we
considered common Kaggle datasets across several domains that
are relatively large but still have a manageable amount of features.
We do not explore small datasets used in the Spline literature, where
a smoothing prior might help compensate for a lack of sample size.
In terms of models, we only focused on a few of the most represen-
tative GAM algrithms and make additional modifications to these
methods to study different characteristics of GAMs (e.g. feature
sparsity and data fidelity). We leave more theoretical comparisons
to future work.

7 CONCLUSION

The key findings are summarized in Table 8, where we have syn-
thesized our findings across six different properties studied in this
paper and ranked each GAM algorithm for each property (ties count
for half a rank). Although a number of GAM algorithms yield simi-
lar accuracy, tree-based methods like EBM and XGB are superior
when considering issues such as bias and data anomaly discovery,
sparsity, fidelity, and accuracy. Tree-based methods such as XGB
and EBM have higher feature density than FLAM or Spline. They
also have less bias on real data, and recover data patterns with
better fidelity on semi-synthetic data. We also find Spline could
have high accuracy yet at the same time low data fidelity, which
might mislead users who perform model selection based on test
accuracy alone. Qualitatively, Spline and FLAM are not good at
detecting local anomalies such as mean imputation or treatment
effects, both of which are easily detected by the tree-based methods.
Spline also extrapolates over-confidently in low-sample regions
(Fig. 1(b), and see other examples in Appendix B).

Future development of better GAM algorithms should focus on
the following: (1) GAMs that can better capture rapid non-linear
change, (2) GAMs with high feature density to improve fairness
and prevent bias masking, (3) GAMs having higher data fidelity on
both real and simulated data. We believe our work is an important
step towards making GAMs more trustworthy, and our evaluation
framework will promote the development of better GAMs in the
future.
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A REPRODUCIBILITY: TRAINING DETAILS,

HYPERPARAMETERS, AND DATASETS

Code can be found at https://github.com/zzzace2000/GAMs.

A.1 Further training details and

hyperparameters

In this section, we further describe training details and hyperpa-
rameters to supplement the discussion in Sec. 3.

EBM, EBM-BF: we use the open-source package from https:
//github.com/interpretml/interpret. We set the parameters inner
bagging as 100 and outer bagging as 100. We find that increasing
the number of bags does not further improve performance. We
use the default learning rate of 0.01, default early stopping pa-
tience set to 50, and the maximum 30000 episodes to make sure
it converges.

XGB, XGB-d3, XGB-L2: we use the open source package https:
//xgboost.readthedocs.io/en/latest/index.html. We also use the
default learning rate with the same early stopping patience set
as 50 and number of trees as maximum 30, 000. We use bagging
of 100 times and depth 1 for our XGB GAM model. For XGB-d3
(XGB with tree depth 3), we find that bagging of XGB-d3 hurts
the performance a bit, and thus do not apply any bagging for
XGB-d3. For XGB-L2, we set the parameter "colsample_bytree" as
a small value 1e-5 to make sure each tree only sees one feature.
FLAM: we use the package from R https://cran.r-project.org/web/
packages/flam/flam.pdf. We use a 15% validation set to select the
best A penalty parameter in the fused LASSO, and then refit the
whole data with the best penalty parameter. We set the parameter
number of lambda as 100 and the minimum ratio as le-4 to
increase the performance of the model.

Spline: we use the pygam package [32]. We set the number of
basis functions to be 50 and the maximum iteration as 500. We
find increasing number of basis functions more than 50 would
result in instability when fitting in large datasets.

LR: we use scikit-learn’s LogisticRegressionCV with Cs = 12
(grid search for 12 different £, penalty) and cross validation for 5
times to choose the best £3, and re-fit on the whole data.

iLR, mLR: we use the EBM package’s preprocessor to quantily
bin the features into 255 bins. Then we use LR on top of it to
train a linear model.

We also tried the following GAM algorithms but do not include

them in the main results, for reasons detailed below:

SKGBT: we try the gradient boosting tree in scikit-learn also
with tree depth set as 1. The result is similar to EBM so we do
not compare them in the paper.

Cubic spline and plate spline in R mgcv package: to our surprise,
mgcv is really unstable on two datasets, Breast Cancer and Churn.
After some investigation, we found a possible reason to be that
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https://github.com/zzzace2000/GAMs
https://github.com/interpretml/interpret
https://github.com/interpretml/interpret
https://xgboost.readthedocs.io/en/latest/index.html
https://xgboost.readthedocs.io/en/latest/index.html
https://cran.r-project.org/web/packages/flam/flam.pdf
https://cran.r-project.org/web/packages/flam/flam.pdf

mgcv does not handle numerical instability when the prediction
is too close to 0 or 1.

A.2 Encoding categorical features

For datasets with categorical variables, the choice of encoding can
affect both the shape plots and the accuracy. For gradient boosting
trees, one may think that using label encoding (LE) is better than
one-hot encoding, as one-hot encoding has been shown to have
inferior performance in ensemble trees [43]. We investigate the
effects of two types of encoding on EBM and XGB. In 6 of the
datasets with categorical features, EBM with label encoding (LE)
indeed shows superior performance to one-hot encoding. However,

for XGB, one-hot encoding performs slightly better on average.

Thus we use LE for EBM and one-hot encoding for XGB. For the
rest of the methods, we use LE for mLR and one-hot encoding
for FLAM, Spline, LR and iLR as these methods cannot handle
inadequate numerical ordering.

A.3 Dataset sources

The datasets used in this paper can be found at:

Adult: UCI [8]

Breast cancer: UCI [8]

Credit: https://www.kaggle.com/mlg-ulb/creditcardfraud
Churn: https://www.kaggle.com/blastchar/telco-customer-churn
COMPAS: https://www.kaggle.com/danofer/compass

Heart disease: UCI [8]

MIMIC-II and MIMIC-III dataset [17]

Pneumonia: we thank the authors of Caruana et al. [4] for running
our code on their dataset.

e Support2: http://biostat.mc.vanderbilt.edu/DataSets

B ADDITIONAL SHAPE PLOTS
The complete set of shape plots can be found at

https://drive.google.com/file/d/1PoMRgfuH Yax6xuCVUODbut3yFJ2ohuLX/

view?usp=sharing.
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