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ABSTRACT
The increased use of cloud and other large scale datacenter IT ser-
vices and the associated power usage has put the spotlight on more
energy-efficient datacenter management. In this paper, a simple
model was developed to represent the heat rejection system and en-
ergy usage in a small DC setup. The model was then controlled by a
reinforcement learning agent that handles both the load balancing
of the IT workload, as well as cooling system setpoints. The main
contribution is the holistic approach to datacenter control where
both facility metrics, IT hardware metric and cloud service logs are
used as inputs. The application of reinforcement learning in the pro-
posed holistic setup is feasible and achieves results that outperform
standard algorithms. The paper presents both the simplified DC
model and the reinforcement learning agent in detail and discusses
how this work can be extended towards a richer datacenter model.

CCS CONCEPTS
•Computer systems organization→ Sensors and actuators; •
Hardware→ Enterprise level and data centers power issues; Temper-
ature control; • Computing methodologies→ Reinforcement
learning; Modeling and simulation.
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1 INTRODUCTION
The transition into cloud solutions and external IT-service has been
ongoing for several years, as Microsoft Azure, AWS, Google Cloud
and many other services have emerged during the last decade. New
cloud and other IT services continue to pop up, putting increased
demand on hosting platforms and datacenters. With the emergence
of edge computing, supported by 5G-networks and new mobile
services, an increase in the growth of locally (regionally) hosted
services is expected.

In parallel with the expected growth in the IT domain, a societal
push towards a green electrification of the society is ongoing, with
e.g. electric cars becoming increasingly common. Green electrical
production from solar and wind power plants is increasing and
introducing new challenges to the electric grid, as the production
is difficult to control, and in most cases cannot be stored. Urban-
ization creates even more intensified power concentration in cities,
which further challenges the power grid capacities. All in all, power
availability will be an increased challenge in many (most) places
in the world. Cloud services and the underlying IT infrastructure
needs to find ways to reduce, or at least limit, its energy and power
demand in a smart way, to avoid expensive interruption of services,
failures and prevention of future expected growth.

Inside a typical datacenter, there are hundreds to several thou-
sand servers that can compute jobs related to the various services
that the datacenter is hosting. In a modern virtualized environ-
ment like cloud service, IT workloads can in many cases be freely
moved in between servers within, or sometimes even across, data-
centers, allowing for power and energy optimization. The operating
conditions of the datacenter, where the temperature is the most pro-
nounced, and commonly discussed, also have a significant impact
on the operational efficiency of the datacenter [9]. Finding the ideal
temperature in the datacenter can potentially save a lot of power
in the cooling process, especially if the cooling system is supported
with free cooling capability. Having the ability to move IT-loads
between servers inside the datacenter, to e.g. avoid hot spots, and
dynamically operate the facility cooling system depending on the
current conditions, allows for interesting control and optimization
research.

This paper introduces the concept of applying reinforcement
learning (RL) on a datacenter model, where the RL methods have
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Figure 1: Conceptual heat rejection schematic of the physical model.

the ability to adjust both the cooling system and the distribution of
IT workloads.

Outline. The outline of the paper is as follows. It starts with a prob-
lem formulation in Section 2. Section 3 presents a brief overview of
related work on power optimization for datacenters as well as rein-
forcement learning applications for cloud services. Our simplified
datacenter model is described in section 4. The control algorithm for
managing the cooling equipment is presented in section 5 together
with the results. Finally, future work is presented in section 6.

2 PROBLEM FORMULATION
In this work, simultaneous control is applied on multiple layers in a
DC stack and a reinforcement learning (RL) agent is deployed that
acts on all of them in a holistic manner. The assumption is that a
controller acting over multiple layers will be able to find new and
more efficient strategies than previous work, where the focus was
often on controlling a single part of the system.

The results show that it is possible, and indeed useful, to deploy
an RL agent that considers multiple layers in the stack. In this case,
the layers included are the IT workload scheduling layer and the
cooling layer. A simulated stack with simplified cooling and IT
workload scheduler is used which optimizes energy usage while
adhering to constraints used as standards in industry. It is shown
to outperform standard algorithms in our simplified environment.
The results hint that in a more advanced real-world setting, even
though it will be more difficult for the RL agent to learn, it will
also be able to find even more optimized strategies compared to the
standard algorithms. This work is thus a stepping stone towards a
more realistic and complete setup.

The datacenter. The model in this paper is based on an indirectly
cooled datacenter, where Computer Room Air Handlers (CRAH)
are transferring the heat generated in the IT-space by servers, into a
water loop which in turn is connected to a chiller with free-cooling
capability. The free-cooling functionality can be applied when the
outdoor temperature is low enough to enable the dry-cooler to
reject the heat from the IT without using the compression-cycle.In
compressormode, a vapor-compressor cycle lowers the temperature
obtained from the dry-cooler to chill the water loop connected to
the CRAH so the generated heat can be rejected. Operating the

compressor in the chiller consumes a lot more power than operating
the chiller in free cooling mode and also increases the risk of a
failure, and should hence be avoided if possible. In Figure 1 the
main components from a physical point of view are depicted.

The workload. The simulated IT workload is modeled to represent
a simple 1-tier compute service, which could for example be an
on-demand image recognition or inference task service. The service
time as well as the load of jobs are assumed to be known in this
case. This is a simplification, but previous work has been done
to estimate similar values such as Ahmad et al. [1]. When the IT
jobs arrive they are scheduled to execute at one of the servers. Job
queues are not modeled, if a job is scheduled on a busy server then
it cannot execute and is thus dropped. While this model is overly
simplified, it is assumed to capture the essence of a more elaborate
system where placing loads on full servers should be avoided.

3 RELATEDWORK
Energy optimization over the different parts of a datacenter stack
is nothing new and plenty of work has already gone into reducing
the energy footprint of datacenters. Lucchese et al. [8] created non-
linear models for the thermal and flow properties of servers and
used model predictive control (MPC) to optimize over airflow cost
while maintaining server component constraints.

Finding control strategies using data-driven methods is nothing
new either, Lazic et al. [5] fitted a linear model to the DC dynamics
and used MPC to improve the operational efficiency. Li et al. [6]
used RL to minimize cooling energy by finding optimal facilities
set-points.

Expanding beyond the hardware level, Townend et al. [14] pre-
sented a scheduler that takes multiple levels of infrastructure into
account when distributing containers on a Kubernetes cluster while
Baek et al. [2] use RL to balance workloads over heterogeneous
servers while optimizing throughput and energy usage.

This work investigates the viability of using RL to find control
policies that sense and act over multiple levels of infrastructure.
This is not something the authors have encountered in any previous
work, and they believe that this will allow the trained policy to
become closer to optimal in a global scope. The important question
then is if RL is a feasible method of finding these policies.
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Table 1: States of the simplified model

Name Description

𝑝SRVi (𝑡) Load on server 𝑖 at time 𝑡 .
𝑄SRVi (𝑡) Volume flow in server 𝑖 at time 𝑡 .
𝑇
SRVi
in (𝑡) Air temperature into server 𝑖 at time 𝑡 .

𝑇
SRVi
out (𝑡) Air temperature out from server 𝑖 at time 𝑡 .
𝑄CRAH (𝑡) Volume flow in CRAH at time 𝑡 .
𝑇CRAH
in (𝑡) Air temperature into CRAH at time 𝑡 .

𝑇CRAH
out (𝑡) Air temperature out from CRAH at time 𝑡 .

𝑇AMB (𝑡) Ambient (outside) temperature

Thermal model for the datacenter. VanGilder et al. [15] proposed a
compact model for the thermal dynamics in the datacenter with
a chilled-water cooling system. It included discretized numerical
models for heat sources (servers) and cooling by assuming a simple
counterflow heat exchanger, which alternatively can be replaced
by a quasi-steady-state model for applications when accuracy can
be traded for model simplicity. This compact model is developed
further in [4] that adds components for room, plenum, walls, floor
and ceiling in order to better represent the complete thermal mass
of a datacenter. The simplified model presented in the next section
ignores the thermal mass and dynamics of equipment, facilities
and cooling system, and only considers the heat and mass transfer
associated with the cooling airflows.

4 THE SIMPLIFIED DC MODEL
In order to start testing the agent, a very simple model is used
for a few reasons. Because the model is fast to simulate, fast RL
model training and hyperparameter search can be achieved by
running experiments in parallel. It is also easier to understand the
RL agent’s behavior in a simpler environment which can facilitate
the construction of better and more efficient policies.

The simple model is designed to capture a few important aspects
of a small datacenter, such as
• Heat generated by placing IT workload on servers.
• CRAH units that capture heat generated by the servers.
• Heat rejection using either free cooling or compressor-based
cooling.
• Hot air from servers, which can flow back into server inlets
(re-circulation) or into the CRAH units.
• Cold air from CRAH, which can flow back into the CRAH
inlets (bypass) or over into the servers.

The re-circulation and bypass flows are common causes of inef-
ficiencies in datacenter cooling, and decreasing their influence is
an important target for optimization. In a modern datacenter, this
recirculation and air mixture is often avoided using containment
solutions where cold and hot air are separated using lightweight
walls. However, this model assumes there is no containment.

With that in mind, 𝑁 servers are modeled without any spatial
distribution and cooled by a single CRAH unit, i.e. the air inlets
for the servers will have a homogeneous temperature as will all
the outlets. This is used as a first stepping stone to modeling more
advanced flow.

Table 2: Constants used in the simplified model

Name Description Value

𝐶𝑣 Volumetric heat capacity 1183 J/(Km3)
𝑅 CPU to air heat transfer 2.54 · 10−3 Km3/J
𝑇𝑖 Integral control constant -12820 K/(m3/s)
𝑝CRAHfan CRAH fan max power usage 1323 W
𝑄CRAH
min/max Range for CRAH flow 0.1-2.1 m3/s

𝑇CRAH
min/max Range for CRAH outlet 18-27 ◦C
𝑝SRVfan Server fan max power usage 50.4 W
𝑝SRVmax Max load on a server 500 W
𝑄
SRVi
min/max Range for SRVi flow 0.001-0.04 m3/s

The model is simulated with steps of one second, and new states
are updated based on previous states to allow for some dynamic
behavior. The states are described in Table 1 and some constants
for the environment are presented in Table 2.

The flow between CRAH and servers is modeled such that it
creates either recirculation, where a fraction 𝜂 of the hot airflows
back into the servers, or bypass, where a fraction 𝜇 of the cold air
flows back into the CRAH.

𝜂 (𝑡) = max
(
0, 1 − 𝑄CRAH (𝑡)∑

𝑖 𝑄
SRVi (𝑡)

)
𝜇 (𝑡) = max

(
0, 1 −

∑
𝑖 𝑄

SRVi (𝑡)
𝑄CRAH (𝑡)

)
The flow is assumed to be mixed well and is approximated with a
homogeneous temperature both at each server inlet

𝑇 SRV
in (𝑡 + 1) = (1 − 𝜂 (𝑡))𝑇CRAH

out (𝑡) + 𝜂 (𝑡)𝑇 SRV
out (𝑡)

and the CRAH inlet

𝑇CRAH
in (𝑡 + 1) = (1 − 𝜇 (𝑡))𝑇 SRV

out (𝑡) + 𝜇 (𝑡)𝑇CRAH
out (𝑡).

The temperature out from the servers𝑇 SRV
out (𝑡) is also approximated

to mix well as soon as it exits the servers,

𝑇 SRV
out (𝑡) =

∑
𝑖 𝑄

SRVi (𝑡)𝑇 SRVi
out (𝑡)∑

𝑖 𝑄
SRVi (𝑡)

,

where the individual outlet temperatures are updated as

𝑇
SRVi
out (𝑡 + 1) = 𝑇 in

SRVi
(𝑡) + 𝑝SRVi (𝑡)

𝐶𝑣𝑄
SRVi (𝑡)

.

The CPU temperature in the server is updated according to

𝑇
cpu
SRVi
(𝑡 + 1) = 𝑇 in

SRVi
(𝑡) + 𝑅 𝑝SRVi (𝑡)

𝑄SRVi (𝑡)
which will in turn affect the flow that is updated using an integral
action controller,

𝑄SRVi (𝑡 + 1) = clip

(
𝑄SRVi (𝑡) +

60 −𝑇 cpu
SRVi
(𝑡)

𝑇𝑖
, 𝑄SRV

min , 𝑄
SRV
max

)
,
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where the controller tries to keep the temperature around a setpoint
of 60◦C by varying the flow through the server.

The outlet temperature for the CRAH is one of the control vari-
ables, as is the CRAH flow. It is assumed that the CRAH will always
be able to keep exactly this temperature and flow.

Distributing incoming load over the servers is also among the
control variables. Arriving jobs have a load and a duration and
each job is placed and processed on one of the servers. If the server
cannot handle the added load the job is dropped.

The power used in the end is composed of two parts: the fan
power from servers and CRAH, and the compressor power. The fan
power follows affinity laws derived from dimensional analysis [3]

𝑝FAN (𝑡) = 𝑝SRVfan

∑
𝑖

(
𝑄SRVi (𝑡)
𝑄SRV
max

)3
+ 𝑝CRAHfan

(
𝑄CRAH (𝑡)
𝑄CRAH
max

)3
.

The compressor is modeled to turn on depending on the tempera-
ture and, when on, uses power based on the power removed from
the air in the CRAH.

𝑝CMPR (𝑡) =
{
0 if 𝑇AMB (𝑡) < 𝑇CRAH

out (𝑡)
𝐶𝑣𝑄

CRAH (𝑡)
(
𝑇CRAH
in (𝑡) −𝑇CRAH

out (𝑡)
)
otherwise

This introduces a non-linearity such that power consumption in-
creases by a large factor for CRAH temperature setpoints below
the ambient temperature.

5 CONTROL USING RL
5.1 RL Intro
Reinforcement learning is an area of machine learning which fo-
cuses on learning how to optimally interact with an environment.
An agent is an entity that learns and it uses a policy to map states
onto actions when deciding what to do. To learn it also needs some
measure of reward that should signify how good it is to be in a
certain state. The agent learns by updating the policy in a way to
try to maximize the cumulative reward.

The environment defines transitions between states based on
actions, as well as the corresponding reward for ending up in a
state. If the environment is not fully observable, it has incomplete
observations of the state instead of the full state.

The basic RL loop usedwith the simplifiedDCmodel is illustrated
in Figure 2.

Actor-Critic [13] methods are a category of RL-algorithms
where the agent consists of an actor defining the policy 𝜋 (𝑎 | 𝑠, 𝜽 ),
and a critic approximating a value function 𝑣 (𝑠 | 𝒘).

The value function is an expectation over future cumulative
reward, and is the unique solution to the Bellman equation

𝑣 (𝑠) = E𝑠′ [𝑟 + 𝑣 (𝑠 ′)]
where 𝑠 ′ are possible successor states to 𝑠 . It is also common to
value a current reward higher than a future reward because of un-
certainty, so a discount 𝛾 is added to the estimated future value.
After parameterizing 𝑣 with𝒘 , the value can be estimated by mini-
mizing the mean squared bellman error through gradient updates
of𝒘 as

𝐽 (𝒘) =
(
𝑟 + 𝛾𝑣 (𝑠 ′ | 𝒘) − 𝑣 (𝑠 | 𝒘)

)2
𝒘 ← 𝒘 − 𝛼𝒘∇𝐽 (𝒘)

where 𝛼𝒘 is the learning rate.

DC RL agent

Reward

Observations:
Server loads

Server outlet temperatures
Job duration and load

Actions:
Job placement

CRAH temperature setpoint
CRAH flow setpoint

Figure 2: How the RL agent interacts with the DC.

The policy is updated using policy gradient,

∇𝐽 (𝜽 ) = 𝛿∇ log𝜋 (𝑎 | 𝑠, 𝜽 )

𝜽 ← 𝜽 + 𝛼𝜽∇𝐽 (𝜃 ),
this means 𝜽 is updated to maximize the policy weighted by some
estimation of advantage of this action over others. A common
baseline for the advantage estimation is 𝛿 = 𝑟 +𝛾𝑣 (𝑠 ′ | 𝒘) −𝑣 (𝑠 | 𝒘),
so if the action resulted in more value than expected (probably a
good action) then 𝛿 > 0 and the update will be weighted positively.

Proximal Policy Optimization (PPO) [11] is an actor-critic
method that aims to reduce the step-size of policy updates to make
the policy more stable.

The output of the policy network is converted to a distribution,
allowing actions to be sampled in a non-deterministic way. It also
allows for calculating the probability of a specific action under a
specific policy which allows for comparing the action distributions
between the previous and current policy. The policy loss

𝐽𝐶𝐿𝐼𝑃 (𝒘) = Ê𝑡
[
min

(
𝑟𝑡 (𝒘)𝐴𝑡 , clip(𝑟𝑡 (𝒘), 1 − 𝜖, 1 + 𝜖)𝐴𝑡

)]
,

is then using the fraction between these distributions

𝑟𝑡 (𝒘) =
𝜋 (𝑎𝑡 | 𝑠𝑡 )

𝜋𝑜𝑙𝑑 (𝑎𝑡 | 𝑠𝑡 )
.

to slow down the distributional shift when doing gradient updates.
𝐴𝑡 is an advantage estimate showing how much more reward is
gained compared to what is expected by the current value function.
It is calculated using using GAE(1) [10].

5.2 RL Model
Ray rllib [7] is used as the RL platform along with their imple-
mentation of PPO adapted to fit with environments observations
and actions used in this work. Figure 3 depicts the structure of the
policy and value network used by the agent and how it relates to
the observations and actions.

Observations from the environment are the current server loads
and temperatures out from the servers, as well as load (𝑝 𝑗𝑜𝑏 ) and
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Figure 3: Structure of fully connected neural network layers
used for the RL agent.

duration (𝐷 𝑗𝑜𝑏 ) of the incoming job( [
𝑇
SRVi
out (𝑡)

]
,
[
𝑝SRVi (𝑡)

]
, 𝑝job, 𝐷 𝑗𝑜𝑏

)
.

The observations are fed into both the policy and the value net-
works which are implemented as dense neural networks. Both
networks have two hidden layers each with 256 units and tanh as
the activation function.

Actions are sampled by the agent based on the most recent ob-
servation. Each action contains a server index where the incoming
load should be placed together with flow and temperature setpoints
for the CRAH unit (

𝑖, 𝑇CRAH
out , 𝑄CRAH

)
.

Rewards from the environment are designed to facilitate the
agent in learning how to reduce cooling power while minimizing
the number of dropped jobs (𝐽𝑑𝑟𝑜𝑝 ) and also adhering to an accepted
standard from industry of keeping the cold isle below 27◦C

𝐶1
(
𝑝FAN (𝑡) + 𝑝CMPR (𝑡)

)
Δ𝑡 +𝐶2 𝐽𝑑𝑟𝑜𝑝 +𝐶3

𝑁∑
𝑖

[
𝑇
SRVi
in > 27

]
There is an explicit weighting between reward terms which will

punish not adhering to the cold-isle temperature or dropping jobs
quite a bit harder than the cost of energy expenditure. This is done
to encourage the agent to learn how to adapt to those terms first
and then optimize energy usage based on those bounds.

There are several things that can be improved upon from this
model, but this is a first step to show that the idea is viable. For
one the algorithm selected (PPO) is not very sample efficient and
might not be optimal for environments that are not possible to
simulate very quickly. It was chosen since not all algorithms are
able to handle a mix of discrete and continuous actions out of the
box, and this was a convenient choice for the simple environment.
It is also likely that the dense neural network model is not optimal
for the current application, and much more efficient learning can
come out of models adapted for the problem. It was used as a first
attempt to interact with the described datacenter model, and see if
any learning will come out of it. Future work will include how to

Figure 4: Total power usage and PUE for the simulated DC.
The resulting shape is largely from the compressor being
very expensive to run, see Figure 5. Before the RL agent
learns to avoid this, the majority of the cost will come from
the workload (around 10kW) and the compressor.

better facilitate this learning and improve upon the methods used
here, to make this able to scale to bigger problems and learn in a
more efficient manner.

5.3 Result
This work starts off modeling a single rack with 40 servers and a
single CRAH unit. Each job adds a load of 20W and has a duration
of 400s (2.2Wh) with an arrival rate of one job per second. The
ambient temperature is set to 𝑇AMB (𝑡) = 20◦C. The performance
of the RL agent is compared to a baseline method where the load
balancing is handled by placing incoming jobs on the lowest load
server and keeping the CRAH at 80% fan power and 22◦C.

The data is sampled every 200 iterations and a moving average
is created over the 100 most recent samples.

Figure 4 shows how the RL agent learns with time to control the
DC to reduce the total power (and thus also the cooling power) to
a lower level than the baseline algorithm. The final PUE values are
1.028 and 1.067 respectively for the RL and baseline policies. This
is a rather small difference, but since it is not possible to achieve a
PUE below 1 it is still a rather big relative improvement on a policy
that is already running very close to optimal. To have a PUE this
low might not be very realistic for most DCs, and is an artifact of
the simplified model where many inefficiencies are removed.

Further, Figure 5 shows the compressor is causing a majority of
the energy inefficiency at the beginning of the simulation. With
time the RL agent learns to adapt the CRAH temperature setpoint
so that the compressor will be left turned off most of the time.

For the workload used the average load on each server will be
around 250 W assuming no jobs are dropped. In this simple model,

The code for both the model simulation and RL agent training is available at
https://github.com/albheim/rldc-flowsim/releases/tag/article
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Figure 5: Compressor power is a large cost when on. Over
time, the averaged power goes to zero.

Figure 6: Fraction of jobs dropped over each averaging pe-
riod.

there are no hot spots and an even distribution can be shown to be
optimal from an energy perspective. Figure 6 shows what fractions
of jobs are dropped from being placed on a full server. After the
initial phase of dropping jobs, the agent learns to somewhat balance
the load and ends up with a 250 W mean and a standard deviation
of around 70 W over all servers.

In conclusion, the RL agent learns a competitive policy for the
simulated environment. It balances the load with minimal servers
being overloaded and manages the CRAH setpoints in a manner so
as to minimize the compressor usage (and thus energy used) while
still keeping the cold isle below the maximum.

6 SUMMARY AND FUTUREWORK
In this work, a simple model of the airflow and energy consumption
in a small DC setup was developed. This model was then controlled
by an RL agent that did both load balancing for incoming jobs and
setpoint handling for the CRAH unit. The results were compared
to some baseline algorithms which showed that the RL agent can
learn to do both jobs at the same time and reach a level where it
uses less power for cooling than the baseline.

This will hopefully just become more clear in a richer environ-
ment including features such as changing outside temperature and
varying loads, where a simple strategy might not always fare as
well, but an RL strategy will be more adaptive and gain a deeper
understanding of the environment.

Future work. As next steps, the authors plan to allow for more
varying features, such as changing outside temperature and varying
loads, as well as, use models developed by Sjölund et al. [12] for
training and validating the RL agent. The relative performance of

the RL agent and baseline can then be investigated under simulation
of a more realistic data center environment, to elicit whether the RL
agent adapts better to increased complexity. Scaling of the model
to multiple racks comes with challenges when the action and state
spaces become very large andthe richer and more realistic models
of the environment are also much slower to run. So to be able to
train the RL agent in a reasonable time, sample efficient ways of
learning are needed. Two approaches to this will be explored in
future work. The first one looks at different RL algorithms able to
make use of data that was not necessarily collected by the current
policy. The algorithm could then be more sample efficient. The
second one looks at the network structure of the policy. Imbuing
domain knowledge into the network can simplify the knowledge
representation and also make for a more efficient learning process.
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