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ABSTRACT
In recent years, several countries have created policies to enforce
Zero Energy Building (ZEB) standards for new building construc-
tion. Achieving this for new buildings is feasible, but it may be
difficult to transform existing buildings to ZEBs. Digital twins pro-
vide a promising approach to monitor existing buildings and further
increase their energy efficiency. A digital twin (DT) is a virtual repre-
sentation of a physical entity. It has several applications in product
design, product cycle, and fault detection. This paper presents a
hybrid approach that combines physics-based and machine learn-
ing methods to create a DT for the built environment. A case study
for a digital twin of a single room is also discussed. The initial
comparison of cooling energy between the physical testbed and
the DT model shows promising results for future development. The
limitations, challenges, and future development of the approach
are also addressed in the paper.
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1 INTRODUCTION
Buildings account for more than 40% of energy consumption around
the world [2]. Several research efforts have been done to increase
building energy efficiency in the area of Heating, Ventilation and
Air-Conditioned (HVAC) systems control [28], lighting [12], and
fault detection [16]. Besides reducing energy demand of buildings,
in recent years, countries have been moving towards constructing
Zero Energy Buildings (ZEB) to further reduce energy consumption
through fossil fuels. ZEB is a type of building that produces green
energy that meets the energy demand requires for the building
[11]. New polices have been introduced in different countries to
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help realize ZEB. The recent European Union (EU) policy, Energy
Performance of Buildings Directives (EPBD), requires all new build-
ings from 2021 be nearly ZEB [14]. California plans to have all new
commercial construction be Zero Energy Buildings (ZEB) by 2030
[4].

However, for existing buildings, other measures need to be taken.
The term Digital Twin (DT) emerged in 2012, where it was defined
as a virtual space that fully describes the corresponding physical
system [9]. In other words, information available in the physical
space can be obtained from its virtual DT. Their data is in-sync with
each other. The twin systems originated from NASA, where they
kept a physical twin on the ground to help troubleshoot any issues
that happen in the space [19]. Digital twin was first implemented
in GE Research [15] in jet engine. They connect sensors informa-
tion between physical and virtual systems to help monitor system
faults and maintenance needs. DT technology opens up greater
opportunities to monitor energy consumption of existing buildings.
Furthermore, it can help existing buildings transition to ZEBs.

DT applications lie broadly in product design, production, and
prognostics, and health management [22]. DT facilitates manu-
facturers by enabling them to make more accurate predictions,
make rational decisions, and reduce man-kind errors by providing
well-rounded information. Currently, most DT research has been
focusing on smart manufacturing, where they use DT to improve
product planning and fault detection. Tao et. al. studied data fusion
techniques of a DT shop-floor between the physical and virtual
space [23]. Cai et. al. developed a DT of vertical milling machine
by integrating manufacturing and sensor data [3].

Limited research studies have been made for DTs of the built en-
vironment. There are research studies that build DTs of energy man-
agement in a smart city where they monitor smart meter electricity
data of buildings [7]. However, besides electricity consumption, no
other information is available for buildings in this study. In addition,
most existing research discusses the framework of building a DT,
but lacks empirical experiments on the topic.

There are two main approaches for building a DT in built en-
vironments: bottom-up and top-down. The Bottom-up approach
refers to first-principle modeling where the model captures the
dynamics of the physical systems. On the contrary, top-down ap-
proach neglects the internal behavior of the systems and creates a
black box model of the system via Machine Learning (ML).

There are limited studies for bottom-up approaches in the built
environment due to complicated systems and it’s usually hardly
scalable or generalizable. Aivaliotis et. al. developed physics-based
model of an industrial robot hand for predictive maintenance [1].
Prawiranto et. al. developed physics-based DT to monitor solar
drying processes [17]. There exists building modeling software
such as EnergyPlus [6], which is a physics-based approach software
that estimates the energy consumption of a building. It captures
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Table 1: Comparison between physics-based, machine learning, and hybrid approaches.

Advantages Disadvantages

Physics-based
High fidelity Difficult to Construct

High interpretability Computational expensive
Extrapolation capacity High uncertain parameters

Machine Learning
Easier to construct Low interpretability

Less uncertain parameters Risk over-fitting
Limited extrapolation capacity

Hybrid
Can construct at the proper level of abstractions
Reduce the number of uncertain parameters Can be computational expensive

Moderate interpretability

all the physical properties of the system and calculate the energy
consumption based on heat balance equation. However, it is not
built for DT purpose where the parameters are in-sync with the
physical system. Its main purpose is for construction planning and
energy consumption prediction. In addition, some of the parameters
required in EnergyPlus are often not readily available in the physical
system, which results in a large amount of uncertain parameters.

On the other hand, several companies developDTmainly through
data integration and data fusion which use the top-down approach.
For example, Johnson Control [5], Enertiv [25], andWillow [24] has
developed DT that includes spatial information, static information
and real-time sensor data for the purpose of remote and fault moni-
toring. Siemens developed DT for power grid in Finland that helps
improve data utilization and optimize operation [20]. Microsoft has
created a platform, Azure Digital Twins, to support modeling any
environments with the ability to connect the model to Internet of
Things (IoT) devices [21].

While physics-based models have advantages in high fidelity, in-
terpretability, and extrapolation capacity, building a physics-based
model requires a deep understanding of a system’s structures and
operations and is therefore often difficult to construct. Additionally,
when constructing a physics-based model, obtaining every required
parameter from the physical system can be difficult. This increases
the number of uncertainty parameters and can be computation-
ally expensive to solve the systems of equations. In juxtaposition
with physics-based models, machine learning models are easier to
construct and can be created based on available sensor data. How-
ever, machine learning models are rarely physically interpretable,
may suffer from over-fitting, and have limited extrapolation capac-
ity. Therefore, we proposed a hybrid approach that utilizes both
physics-based modeling and modern predictive machine learning to
develop DT. Table 1 summarizes the advantages and disadvantages
of the three different approaches.

The integration of physics and machine learning methods is
not a new technique [27], but there are limited studies in DT of
the built environments using this hybrid approach. As a result, we
aim to develop a hybrid DT model that takes advantages of each
approach to capture the dynamic behavior of the HVAC system in
the building for the purpose of energy efficiency and occupants
satisfaction.

The paper is organized as follows. Section 2 describes the ap-
proach we use to create hybrid DT models. Section 3 shows an

implementation of the proposed approach for a single-room testbed.
Lastly, section 4 and 5 discuss the current challenges and future
directions of the research.

2 APPROACH
Our goal is to establish a live connection between the physical
and virtual space via sensor data in the built environment for the
purpose of energy efficiency and occupants’ comfort.

We segment the development of DTs of the dynamic behavior of
the HVAC system of a building into three distinct phases as shown
in Figure 1. In phase I, we identify the components required to
build the model of the physical systems. In phase II, we extract the
parameters needed from the physical systems and apply them to the
model. We will cycle between Phase I and Phase II until the model
can represent the physical system at a proper level of abstraction.
Lastly, in phase III, we build the connection between the model and
the physical systems for continuous monitoring and updates. The
details for each phase are described.

Figure 1: The three phases for developing DT of a built envi-
ronment with a hybrid approach.
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2.1 Phase I: Model Identification
In the first phase, we identify the components that are required to
create a complete system. We focus on parameters that are directly
available from the sensors in the physical system and pin down
other parameters that are essential but not accessible without fur-
ther effort. We want to break physical components into functional
sub-blocks at a proper level. The model is built with OpenModelica
[8], which is an open-source software that supports component
based modeling and simulates complex dynamic systems. In addi-
tion, modelica building library [26] developed by Lawrence Berke-
ley Lab was used to create the model. The library contains models
of components for building and control systems.

Each element in the Modelica model can be modeled as a black
box (no knowledge of the internal systems), a grey box (partial
knowledge of the system, i.e. thermal envelope resistance of the
wall) or white box (all relevant information for the system is avail-
able), based on the information we can obtain from the physical
system.

This flexible approach would allow us to develop useful models
quickly and refine them over time as additional information be-
comes available. Further, the modularity of this architecture will
allow us to readily create and share libraries of parameterized mod-
els so that new hybrid models can be quickly synthesized.

2.2 Phase II: Identify and Extract the
Parameters

In the second phase, we identify and extract the parameters that
are needed for the model from the physical systems. For the black
box components, we will perform function approximation using
ML, where we only have the inputs and outputs of a particular
component and do not know the structure of the internal system.
Experimental data can be used to train the model. For example,
a neural network with a single or two hidden layers can usually
approximate the input-output relationship well. However, when
fitting the data into a model, one needs to be careful of over-fitting
issues.

For grey box model, we’ll use physics-based machine learning to
estimate the value needed. For example, it’s hard to obtain accurate
physical properties (e.g. wall materials and resistance) of the walls
in a room. One solution is to create a grey box model using simple
thermal circuit equation to estimate the envelope wall resistance
of the room.

Next, sensitivity analysis was performed to identify uncertain
parameters. This helps reduce the number of uncertain parameters
that need to be calibrated. Morris method [13] was used to carry out
the sensitivity analysis and it is implemented by utilizing the open
source Python Library, SALib [10]. Then, we perform calibration
to match the model closely with the physical space.

2.3 Phase III: Operation State
Lastly, we need to establish a connection between the physical
entity and the DT model. The modeling parameters should be con-
tinuously updated with the gathered sensor data at an experimen-
tally determined frequency. Figure 2 shows the data flow between
the physical entity and the DT model. Ideally, when input values
such as room set point temperature and supply air temperature are

provided to both physical and DT systems, the resulting impacts
to the overall system should be mirrored. The DT model will also
receive additional inputs from the physical entity that are not the
settings of the system, such as intermediate sensor data, occupancy,
and equipment usage. The output values (e.g. cooling energy or
electricity consumption) will then be compared for further tuning
or monitoring the physical space. This ensures that the DT model is
continuously adapting to the change in the physical environment
and reduce the model deviation to a minimum. In addition, DT can
act as a platform for testing control algorithms and help in decision
making in the physical system.

Figure 2: The block diagram showing the data stream be-
tween the physical entity and the digital twin model.

3 CASE STUDY
3.1 Physical Testbed
The digital twin of a room in a building was created in a well-
instrumented testbed located in Singapore. The indoor environ-
ment is shown in Figure 3. The testbed has the capability for high
precision control and operations and the indoor environment is
well-regulated. The size of the testbed was 25 𝑚2 with a height
of 2.6𝑚. In contrast with a regular room in a building, the testbed
was insulated from the outdoor weather. However, there exists an
outdoor air emulator which emulates the outdoor environmental
conditions.

Figure 3: The indoor space of the testbed located in Singa-
pore that is used for creating a digital twin.

There are more than 100 different kind of sensors located in
various places in the testbed. Table 2 shows a list of available sensors
in the testbed. Note that this is not an exhaustive list, the sensors of
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different categories are placed in several locations throughout the
entire system. We divided the sensors placement into four different
categories: room water loop, Air Handling Unit (AHU) water loop,
and Outdoor Air Emulator (OAE). The sensor data is automatically
uploaded to the PI system 1, a software developed by OSIsoft that
connects sensor data to a cloud environment to allow remote access.

Table 2: Available sensor measurements for the testbed.

Category Parameters

Room Water Loop

Water Flow Rate
Bypass Valve Opening

Chilled Water Supply Temperature
Chilled Water Return Temperature

AHU Water Loop

Water Pressure
Water Flow Rate

Bypass Valve Opening
Chilled Water Supply Temperature
Chilled Water Return Temperature

Air System

Temperature
Relative Humidity
𝐶𝑂2 Concentration

Air Flow Rate
Air Damper Opening
Static Air Pressure

OAE

Temperature
Relative Humidity
Air Flow Rate

Static Air Pressure

In particular, we’re interested in developing a digital twin of a
HVAC system of the physical testbed. The structure of the air system
in the testbed is shown in Figure 4. First the outdoor air is mixed
with the return air from the room. Then the mixed air is passed
through the Air Handling Unit (AHU) which consists of a cooling
coil and fan. Next, the air will go through a heater and Variable
Air Volume (VAV) to accurately control the air temperature and
flow rate of the room. It may seem that the structure of the testbed
is energy inefficient as the air goes through a cooling coil and a
heater afterwards, but this is due to the testbed nature ensuring
accurate and refine control of the room environment. Although real
buildings do not have as refined control and sensory deployment
as the testbed has, the testbed acts as a basis for creating DTs of
the indoor built environment.

3.2 Digital Twin Model
We modeled the air system in Figure 4 with the hybrid approach.
The Air Handling Unit (AHU), which contains a cooling coil and
a fan, is modeled as a white box model. The electric heater and
Variable Air Volume (VAV) are modeled together as a blackbox
model. The properties of the room is modeled as a grey box model.
The Proportional-Integral-Derivative (PID) feedback controller con-
trolled the chilled water supply flow rate through the cooling coil to
indirectly maintain the room set point temperature. The controller
1https://www.osisoft.com/pi-system

Figure 4: Air system of the testbed. The sensors placement is
shown as a red pin point where temperature, relative humid-
ity and 𝐶𝑂2 concentration are measured. The red box repre-
sents an electric heater. The Variable Air Volume (VAV) con-
trols the air flow rate to the room.

is modeled as a white box model. The design choices are made by
information available from the phsical testbed and to reduce the
number of uncertain parameters.

Figure 5 shows a block diagram of the connections and set-up of
the components. The detailed equations used for each component
are described in the following section.

Figure 5: A block diagram that shows the white, grey, and
black box model of each component in the air system of the
room.

3.2.1 AHU. The AHU consists of a cooling coil and a fan. The
cooling coil is modeled by applying convective heat transfer as
shown in equation (1).

𝑞 = ℎ𝑐𝐴(𝑇𝑠 −𝑇𝑎) (1)

where q is the heat transfer (𝑊 ), ℎ𝑐 is the convective heat transfer
coefficient (𝑊 /𝑚2𝐾), A is the heat transfer area of the surface (𝑚2),
𝑇𝑠 is the temperature of the surface (◦𝐶), and 𝑇𝑎 is the temperature
of the air (◦𝐶). The mass flow rate is calculated by:

¤𝑚 = 𝑠𝑖𝑔𝑛(Δ𝑝)𝑘
√
|Δ𝑝 |, (2)

where ¤𝑚 is the mass flow rate (𝑘𝑔/𝑠) of a medium, k is the flow coef-
ficient, and Δ𝑝 is the pressure drop. The use of mass flow rate is to
prevent the influence of density and temperature in the calculation.
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3.2.2 Electric Heater and VAV. The electric heater and VAV are
together modeled as a black box model. It is created through a two-
hidden-layer neural network [18] that captures the relationship
between the inputs and outputs of the components. ReLu function,
which is defined as 𝑟𝑒𝑙𝑢 (𝑥) = max(𝑥, 0), was used to introduce
non-linearity in the model. Given the input 𝑥 , the output 𝑓 (𝑥) is
given by

𝑓 (𝑥) = 𝑟𝑒𝑙𝑢 (𝑤1𝑥 + 𝑏1) ·𝑤2 + 𝑏2 (3)

Parameters 𝑤1, 𝑏1,𝑤2, 𝑏2 are learned during gradient descent.
The ML model is trained with a month worth of past data and
results in amean-square error of 0.097. Figure 6 shows the difference
between the prediction and the actual values in the test dataset.

Figure 6: ML black box modeling the relationship between
the input to the electric heater and output of the VAV.

3.2.3 Room. The room of the testbed is modeled as a volume of
air and the wall connecting the testbed to the outside environment
is modeled as an enveloped conductance value (grey box model).
The conductance is estimated through a thermal circuit equation
as shown in equation 4:

𝑇 −𝑇out = (ℎ +𝑇𝐿 + 𝑃𝐿) × 𝑅 (4)

where 𝑇 is the room temperature (◦𝐶), 𝑇out is the outdoor temper-
ature, ℎ is the heat removed of the room (𝑊 ), 𝑇𝐿 is the thermal
load placed in the room, 𝑃𝐿 is the parasitic load (𝑊 ), and 𝑅 is the
envelope wall resistance (◦𝐶/𝑊 ). The ℎ is further calculated by
applying heat balance equation:

ℎ = 𝑐𝑝𝜌𝑞Δ𝑡 (5)

where 𝑐𝑝 is the specific heat of the air, 𝜌 is the air density, 𝑞 is
the air flow rate, and Δ𝑡 is the difference between the return air
temperature and the supply air temperature.

3.2.4 PID controller. The controller controls the chilled water flow
rate that is supplied to the cooling coil. It continuously calculates
the error values between the set point temperature and measured
room temperature and applies corrections.

3.2.5 Summarizing. Table 3 shows the main parameters that are
defined in the Modelica model. The list is not an exhaustive list.
Other parameters such as cooling coil conductance and PID values
of the controllers are not listed. The table only shows the major
parameters that we are most concerned about.

Table 3: List of model parameters and their range.

Model Parameter Symbol min max

Envelope Wall Conductance (W/K) \1 100 300
Nominal Supply Air Temperature (◦𝐶) \2 13 16
Room Set Point Temperature (◦𝐶) \3 22 26

Nominal Outlet Air Temperature (◦𝐶) \4 25 30
Internal Heat Gain (𝑊 ) \5 100 1500

Nominal Cooling Load (𝑊 ) \6 1000 3000
Nominal Air Flow Rate (kg/s) \7 0.1 0.3
Water Supply Temperature (◦𝐶) \8 6 8
Water Return Temperature (◦𝐶) \9 10 12

Nominal Water Mass Flow Rate (kg/s) \10 2 4
Outdoor Temperature (◦𝐶) \11 22 26

Change in Water Pressure (Pa) \12 30 100
Change in Air Pressure (Pa) \13 500 1000

3.3 Experimental Design
We design a factorial experiment on three parameters: set point
temperature, air supply temperature and thermal load for initial
calibration. Factorial experiments are the most run efficient way
to collect data and examine the relationship between different pa-
rameters. The heat load is set by using heaters. Heat load is used
for simulating the occupancy in the room. 500 Watts to 1000 Watts
of heat load corresponds to 5-10 people in the room, which is rea-
sonable given the size of the testbed. Table 4 shows the parameters
settings for the factorial experiment where A represents thermal
load, B represents set point temperature, and C represents air supply
temperature. There are 12 different combinations of settings and
each is carried out twice with 2 hour duration. The duration is cho-
sen to guarantee that the testbed will reach steady state. Therefore,
there are a total of 24 experiments.

Table 4: Factorial Experiment Design with three indepen-
dent variables: Thermal Load (A), Set Point Temperature (B),
and Supply Air Temperature (C).

𝐶1 (13◦𝐶) 𝐶2 (15◦𝐶)

𝐴1 (500𝑊 ) 𝐵1 (24◦𝐶) Group 1 Group 2
𝐵2 (26◦𝐶) Group 3 Group 4

𝐴2 (750𝑊 ) 𝐵1 (24◦𝐶) Group 5 Group 6
𝐵2 (26◦𝐶) Group 7 Group 8

𝐴3 (1000𝑊 ) 𝐵1 (24◦𝐶) Group 9 Group 10
𝐵2 (26◦𝐶) Group 11 Group 12

The range of parameters are chosen based on typical temper-
ature for the room. Each experiment was run for two hours, six
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experiments were run in a day, and all the experiments were done
in a period of 4 days in August 2020. The timeline is shown in Figure
7.

Figure 7: Timeline for a day of experiments.

3.4 Analysis
For simplifications, we analyze only the steady state of the exper-
iments. Out of the 24 experiments we conducted, there are some
experiments that do not converge to the corresponding set point
temperature within two hours. The reason may be that the cooling
coil exceeds its cooling capacity for high thermal load experiment.
However, the purpose of the experiment is to perform initial calibra-
tion, so the 13 experiments that converge to set point temperature
are enough for analysis. In equation 4, all parameters but the PL
and R are known. We estimate the parasitic load and wall thermal
resistance by minimizing the square error for the thermal circuit
model. The objective is shown in equation 6, where 𝑛 = 13.

min
𝑛∑
𝑖=1

(
𝑇𝑖 −𝑇𝑜𝑢𝑡,𝑖

𝑅
− ℎ𝑖 −𝑇𝐿𝑖 − 𝑃𝐿)2 (6)

Sensitivity analysis was also performed. The parameters in table
3 are used for analysis. The range of the parameters is chosen by
using range of typical values that are used in the HVAC system
in a hot climate area. The Morris method was applied with 13
parameters (\1 to \13), 80 trajectories and 12 levels.

The results of Morris method are evaluated by comparing the
mean (`) and standard deviation (𝜎) of each input parameters. Fig-
ure 8 shows a plot of `∗ against 𝜎 for each parameter. A higher `∗
value implies that the parameter is more sensitive to the output of
the model, whereas a higher 𝜎 value implies that there are possible
interactions with other parameters. Parameters that are not labeled
on the plot are the ones that’s closed to the bottom left of the graph
(corresponds to nearly zero mean and zero standard deviation val-
ues). They are insignificant variables. The plot shows that nominal
supply air temperature (\2), room set point temperature (\3), in-
ternal heat gain (\5), nominal cooling load of the coil (\6), water
supply temperature (\8), water return temperature (\9), nominal
water mass flow rate (\10) are the most influential parameters to
the model. We can obtain parameters \2, \3, \8, \9 from the testbed.
Therefore, we focus on tuning the rest of the parameters \5, \6, \10.

Then we compare the cooling energy of the physical testbed and
our virtual model. The result is shown in Figure 9. The plot shows
that the cooling energy of the virtual system matches fairly well
with the physical system.

Lastly, the communication between the sensor data and the
model was done by utilizing the Functional Mockup Interface (FMI)
2, a standard co-simulation platform. Modelica model is converted
to Functional Mockup Unit (FMU) and the continuous data stream
is then fed into the FMU with a Python script.
2https://fmi-standard.org/

Figure 8: Graphical plot for sensitive measure `∗ and 𝜎 . The
closer the parameters to the upper right, the more sensitive
the parameter.

Figure 9: Comparison of cooling energy between the physi-
cal testbed and the digital twin model.

4 DISCUSSION
The limitations of the experiment are addressed as follows. Conduct-
ing the experiment under testbed conditions is increasingly facile
compared to real life office spaces due to the substantial concen-
tration of sensors in the testbed, relative to the average embedded
office building. However, in real life, a more generalizable model
must be realized in order to properly model a given physical entity
with a much smaller sensor density. We use a testbed as a starting
point to create a digital twin because of the large amount of sensors
that are already deployed in the testbed. This aids in simplifying the
experiment but can be extended to creating a digital twin in a real
office building. For example, essential parameters can be identified
beforehand and we limit the number of sensors that is needed to be
deployed in a real office building to reduce costs and human effort.
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In addition, we want to identify Modelica as a potent stepping stone
usable for creating an actual digital twin.

Whether Modelica model can be easily scale or generalize is still
ongoing research. Building a hybrid model with Modelica may be
time consuming and also computationally expensive. However, it
has a potential to be easily scale and generalize into multi-zone
environments. The black box model was implemented through a
simple 2-layer neural network structure. There may exist other
architecture that can reach a higher prediction accuracy. However,
the purpose for this research is to show the possibilities in applying
ML in combination with physics-based model in Modelica. Our
experiment focus on analyzing the steady state of the experiment,
there may exist more deviations with transient state. Furthermore,
just comparing the cooling energy between a physical entity and
the DT model does not imperatively equate to the models accuracy
or precision. Rather, the cooling energy comparison shown is in-
dicative of Modelica-based hybrid approach as a supporting feature
in digital twin development. Other metrics need to be developed to
ensure that they are indistinguishable from one another.

5 CONCLUSION AND FUTUREWORK
In conclusion, Modelica shows potentials to act as a based in creat-
ing a hybrid DT model. It can be freely adjusted to match the level
of abstraction that the physical entity can provide. The experiment
shows the comparison of the cooling energy from the physical space
and the virtual space matches fairly closely. However, there are still
several challenges ahead. More experiments and testing need to be
done to tune and validate the model. In order to realize the digital
twin in a built environment, we need to develop a systematic metric
to compare the digital model and physical entity. On top of that,
the model needs to be generalized so that it is applicable to all the
buildings.

The current model would be a launch point from which a fully
generalized model will be realized. In future work, we plan to grad-
ually scale the model recursively until the sensor comparisons
encapsulate the entirety of the building architecture. In addition,
we will dive deeper into physics-based machine learning model
where we tried to embed physics equations into neural network
architecture and compare it with the pure physics-based model
and the hybrid model. A digital twin of a building helps engineers
analyze and control the constructed environment more efficiently.
It reduces significant amount of cost in energy usage and maintains
occupants comfort. Moreover, it opens up new potential research
avenues on the built environment.
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