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ABSTRACT
High-resolution signals from micro-phasor measurement units
(𝜇PMU) contain crucial information about the health and sta-
tus of electric equipment in power grids. In this work, we
provide an end-to-end framework for fault state discovery in
𝜇PMU data. Our proposed method uses a data-driven deep
learning method called Latent Ordinary Differential Equations
(LatentODE) for data imputation, followed by a Bayesian non-
parametric method called distance-dependent Chinese Restau-
rant Franchise (dd-CRF) for unsupervised discovery of latent
states of the energy grid. We applied our framework to analyze
one month of 𝜇PMU data and were able to correctly binned 60%
of the faults within our predicted faulty time segments.

We applied our framework to the task of identifying time
segments when faults occur. faulty state of the time series. Our
experiments show that our method produces comparably better
results than traditional interpolation methods and interpretable
regions for fault states in power electric systems.

CCS CONCEPTS
• Computing methodologies → Supervised learning by
regression;Cluster analysis;Neural networks; Latent variable
models; • Applied computing→Mathematics and statistics.

ACM Reference Format:
Alexander Ladd, Kwan Ho Ryan Chan, Sam Nguyen, Jose Cadena,
and Brenda Ng. 2021. End-to-End Framework for Imputation and State
Discovery in Longitudinal Energy Data. In The Twelfth ACM Inter-
national Conference on Future Energy Systems (e-Energy ’21), June 28-
July 2, 2021, Virtual Event, Italy. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3447555.3466588

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8333-2/21/06. . . $15.00
https://doi.org/10.1145/3447555.3466588

1 INTRODUCTION
A phasor measurement unit (PMU) is a device that measures
electrical signals on an electrical grid using Global Positioning
System (GPS) time for signal synchronization. PMU provides
high-resolution, precise measurements of voltages and current
phasors (both magnitude and phase angle) in real-time, thus
playing an essential role in the monitoring, protection and
feedback control of power networks [22].

The complexity of distribution networks, such as the large
number of nodes, shorter distances between nodes requiring
higher accuracy to disambiguate between nearby signals, faster
dynamics due to transient behaviors in distribution assets [26],
can benefit from information collected by micro-phasor mea-
surement units (𝜇PMU) [19]. A 𝜇PMU reports four fundamental
measurements (voltage magnitude, voltage phase angle, current
magnitude, and current phase angle per phase) on three phases,
with a maximum reporting rate of 120 Hz [15, 17]. Together,
this results in 3 × 4 = 12 channels of highly-resolved data.

The adoption of 𝜇PMU on distribution networks offers a
ripe environment for large-scale machine learning to improve
situation awareness of the distribution grid [11, 16]. [7] reviews
the state-of-the-art research on 𝜇PMU data, in the context of
monitoring, diagnostic and control applications.

Due to the sheer scale of 𝜇PMU data, labelling the data for
faults is simply not scalable, so unsupervised learning is gen-
erally pursued to identify anomalies. The identified anomalies
would then be cross-referenced with maintenance or outage
reports, and/or presented to a subject matter expert, for verifi-
cation as ground-truth faults for other downstream supervised
learning tasks. In this work, we extend [2], which applies a
nonparametric clustering method to partition a single chan-
nel of 𝜇PMU data into similarly behaving segments. This work
extends this method to handle multiple channels, in order to
capture correlations across channels to improve fault detection.

In most cases, when a particular channel has missing data,
that period of missing data is generally omitted from analysis.
Depending on statistical correlations inherent in the 𝜇PMU
data, it may be possible to impute the missing values using a
machine learning method that can handle irregularly-sampled
data. In this work, we propose the use of LatentODE [14] to
learn the continuous-time hidden dynamics that underlie the
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𝜇PMU data. The continuous-time hidden dynamics would be
defined by ordinary differential equations (ODEs), which are
used to predict the missing time points.

1.1 Contributions
Our contributions are summarized as follows:

(1) a nonparametric segmentation method on multi-channel
𝜇PMU data, inspired by [2] which builds on the Chinese
Restaurant Process [21]; and

(2) an imputation method developed for 𝜇PMU data, which
combines a general interpolationmethodwith deep learn-
ing to capture transient behaviors inherent in 𝜇PMU
data.

2 METHODS
Given longitudinal electrical measurements, such as 𝜇PMU data,
our goal is to discover latent operating states of the underlying
energy grid. Operating states could represent baseline operation
or fault states associated with equipment failure, environmental
causes, or voltage regulation device actions.

We model the longitudinal data as a multivariate time series
X = {x0, . . . , x𝑇 }, where x𝑡 ∈ R𝐶 is a 𝐶-dimensional vector
of observations captured at time 𝑡 ∈ {0, . . . ,𝑇 }. In the case of
𝜇PMU data, if all the channels are used, then 𝐶 = 12, since
there are four measurements (voltage magnitude, voltage phase
angle, current magnitude, and current phase angle) across each
of the three phases.

We assume that the multivariate time series X can be parti-
tioned into disjoint time segments, and each segment can be
mapped to a particular latent state. Each latent state defines a
statistical distribution over the observations within a particular
time segment.

In what follows, we will explain our two-stage imputation
procedure to estimate missing data, then describe our time
series segmentation process. Given lossy data (i.e., a multivariate
time series with missing time points), denoted by X̃, we impute
the missing values to arrive at the full data X (i.e., a regularly-
sampled, multivariate time series). Then, we perform a two-
level clustering on X. At the first level, a set of contiguous
measurements are grouped into 𝑀 segments. At the second
level, these𝑀 segments are clustered into 𝐾 operating states.
Nonparametric clustering is used to infer 𝑀 and 𝐾 from the
data. Algorithm 1 and Figure 2 shows a quick overview of our
method.

2.1 Imputation of Missing Data
Correlations between different channels of 𝜇PMU data may
be leveraged to impute missing time points on any particular
channel of the data. In this section, we describe a two-phase
process (cf. Figure 1) in which we first learn a global trend of
the signal, then learn transient behaviors that may be present,
conditional on this global trend. The two-stage imputation pro-
cess allows for multi-resolution imputation, which is crucial for
highly-resolved data that exhibits volatile dynamics.

Algorithm 1

Input: 𝐶-channel time series 𝑿̃ = {𝒙𝑡𝑖 }, where 𝒙𝑡𝑖 ∈ R𝐶 with
corresponding time points T = {𝑡𝑖 }𝑇𝑖=0

1: # Step 1: Global Interpolation
2: Interpolate data with cubic spline 𝑿 = CubicSpline(𝑿̃ )
3:
4: # Step 2: Local Interpolation with LatentODE
5: Compute latent states by passing inputs through an ODE-

RNN: 𝒛0, 𝒛1, 𝒛2, . . . , 𝒛𝑇 = ODE-RNN(𝒙0, 𝒙1, 𝒙2, ..., 𝒙𝑇 )
6: Infer posterior for 𝒛0 as a Gaussian distribution with pa-

rameter 𝜇𝒛0 , 𝜎𝒛0 : 𝑞𝜙 (𝑧0 |{𝒙𝑖 , 𝑡𝑖 }𝑇𝑖=0) = N(𝜇𝒛0 , 𝜎𝒛0 )
7: Use an ODESolver to infer hidden states based

on the initial hidden state 𝒛′0: 𝒛′1, 𝒛
′
2, . . . , 𝒛

′
𝑇

=

ODESolver(𝒛′0, 𝑓𝜃 , {𝑡1, 𝑡2, . . . , 𝑡𝑇 })
8: Transform latent states back to data space via ODE-RNN:

𝒙 ′0, 𝒙
′
1, 𝒙

′
2, . . . , 𝒙

′
𝑇
= ODE-RNN(𝒛′0, 𝒛

′
1, 𝒛

′
2, . . . , 𝒛

′
𝑇
)

9:
10: # Step 3: State-discovery with dd-CRF
11: Divide 𝒙 ′0, 𝒙

′
1, 𝒙

′
2, . . . , 𝒙

′
𝑇
into 1-hour blocks: 𝐵1, 𝐵2, . . . , 𝐵𝐻

12: Obtain segments in each hour via Gibbs Sampling (Section
2.2)

13: Concatenate segments and infer CRP (Section 2.2)
Output: Assignments of timepoints 𝒙 ′

𝑖
to operating states 𝑐𝑘

Figure 1: Imputation ofmissing longitudinal energy data.
Measurements recorded by 𝜇PMU devices may contain
large gaps (top). We first estimate the global trend of the
data using univariate splines (middle). Then, we refine
this estimate using LatentODE for the local trends (bot-
tom).

2.1.1 Global learning. Imputation of missing data is achieved
through a sequence of two phases: a global learning phase
and a local learning phase. The global phase involves spline
interpolation [6], fitting a one-dimensional piece-wise polyno-
mial over univariate observations from regular time intervals
[𝑡0, 𝑡1), [𝑡1, 𝑡2), . . . , [𝑡𝑓 − 1, 𝑡𝑓 ), with 𝑡0 = 0 and 𝑡𝑓 = 𝑇 . Since
splines are first- and second-order continuous, having well-
defined derivatives at change points, this guarantees that the
interpolation would not introduce any discontinuities to the
imputed data. Let T = {𝑡𝑖 }𝑇𝑖=0. For every single-channel mea-

surement X(𝑐) =
{
𝑥
(𝑐)
𝜏

}
𝜏 ∈T

, we optimize the univariate spline
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Figure 2: Schematic of our proposed end-to-end imputation and segmentation framework for 𝜇PMU data.

objective function individually, as in [8]:

Spline(𝑄, 𝜆) = 1
𝑇

∑
𝜏 ∈T

(
𝑞(𝜏) − 𝑥 (𝑐)𝜏

)2
+ 𝜆

∫
𝑑𝑡

(
𝑞′′(𝑡)

)2
, (1)

where 𝑞 ∈ 𝑄 is the set of polynomial functions and 𝜆 is a tuned
regularization hyper-parameter for polynomial curvature. Due
to the continuous nature of the splines, it is well suited to
capture the smooth global trend of the data.

2.1.2 Local learning. The interpolated data from the spline
interpolation is partitioned into finely resolved time segments
(30 seconds in our experiments) and these segments are put
through a LatentODE [14] to learn the high-frequency signals
present in the data.

LatentODE is a data-driven latent-variable time series model
that parameterizes observations into latent states, such that
dynamics are learned in a latent space instead of the data space.
To simplify notation, we drop the subscript from our (irreg-
ular) time points, with the understanding that 𝒙𝑖 := 𝒙𝑡𝑖 . In a
LatentODE, observations 𝒙𝑖 are mapped to latent states 𝒛𝑖 using
an encoder ODE-RNN. An ODE-RNN is a specialized RNN in
which the hidden states between observations can propagate
in time based on an ODE as needed.

𝒛0, 𝒛1, 𝒛2, . . . , 𝒛𝑇 = ODE-RNN(𝒙0, 𝒙1, 𝒙2, . . . , 𝒙𝑇 ) (2)

Here, ODE-RNN takes in observations starting from 𝒙𝑇 , 𝒙𝑇−1,
. . . , 𝒙0 then iteratively computes the latent states 𝒛𝑇 , 𝒛𝑇−1, . . . ,
𝒛0 through an RNN. If observations 𝒙 𝑗 and 𝒙 𝑗−1 are too far apart,
then it uses an ODESolver to approximate the intermediate la-
tent states at the intermediate timesteps. Once 𝒛0 is obtained, it
is passed through a variational autoencoder to learn the poste-
rior 𝑞𝜙 , parametrized as a Gaussian distribution with mean 𝜇𝒛0
and standard deviation 𝜎𝒛0 :

𝑞𝜙

(
𝒛0 |{𝒙𝑖 , 𝑡𝑖 }𝑇𝑖=0

)
= N(𝜇𝒛0 , 𝜎𝒛0 ) (3)

Samples are drawn from the posterior to get the initial latent
states 𝒛′0. The other latent states at future time points are derived
by solving anODE initial-value problemwith the forwardmodel
defined by the neural network 𝑓𝜃 :

𝒛′1, 𝒛
′
2, . . . , 𝒛

′
𝑇 = ODESolver

(
𝒛′0, 𝑓𝜃 , {𝑡1, 𝑡2, . . . , 𝑡𝑇 }

)
. (4)

Finally, latent states are mapped from the latent space back to
the data space via a RNN as a decoder network:

𝒙 ′1, 𝒙
′
2, . . . , 𝒙

′
𝑇 = ODE-RNN

(
𝒛′1, 𝒛

′
2, . . . , 𝒛

′
𝑇

)
(5)

To optimize our neural networks 𝑓𝜃 and 𝑞𝜙 , we maximize the
evidence lower bound (ELBO):

ELBO(𝜃, 𝜙) = E𝒛0∼𝑞𝜙 (𝒛0 | {𝒙𝑖 ,𝑡𝑖 }𝑇𝑖=0) [log 𝑝𝜃 (𝒙0, . . . 𝒙𝑇 )]

− 𝐾𝐿
[
𝑞𝜙

(
𝒛0 |{𝒙𝑖 , 𝑡𝑖 }𝑇𝑖=0

)
| |𝑝 (𝒛0)

]
(6)

We use Gated Recurrent Units (GRU) for our RNN. Laten-
tODE is superior to other time series algorithms in that it is able
to learn complex dynamics of irregularly sampled observations
with missing values. Compared to traditional auto-regressive
methods, LatentODE leverages data-driven learnable neural
networks to capture nonlinear dynamics. LatentODE extends
NeuralODE [3], and has been applied to multivariate time series
prediction in other domains, such as Black Sigatoka infection
[25] and virus outbreak prediction [12]. We discuss implemen-
tation details and compare against other imputation methods
in Section 3.

2.2 Segmentation and State Discovery
In this section, we explain the two-level nonparametric clus-
tering used to segment the full (imputed) data X. At the first
level, a set of contiguous measurements are grouped into𝑀 seg-
ments. At the second level, these𝑀 segments are clustered into
𝐾 operating states. Both levels leverage the Chinese Restaurant
Process for modeling the cluster distributions.

2.2.1 Chinese Restaurant Process. The Chinese Restaurant Pro-
cess (CRP) [21] is a nonparametric Bayesian model that defines
a distribution over clusterings of a dataset. The model was in-
spired by the following restaurant analogy: A set of customers
(data) indexed by 𝑖 = 0, . . . ,𝑇 walk into a restaurant that has
a set of infinite tables (clusters). When customer 𝑖 enters, that
person chooses to sit at a table with probability proportional to
the popularity of the table, defined by the number of customers
already sitting there. Formally, let 𝑡𝑖 be the table chosen by cus-
tomer 𝑖 . Then, the probability that customer 𝑖 chooses a certain
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table 𝑗 is given by:

𝑝 (𝑡𝑖 = 𝑗 |𝛾) ∝
{
𝑛 𝑗 , 𝑛 𝑗 > 0
𝛾, 𝑗 is a new, empty table

(7)

where 𝑛 𝑗 is the number of customers from 1 to 𝑖 − 1 who have
chosen table 𝑗 so far, and𝛾 is a dispersion parameter that controls
the expected number of non-empty tables.

The cluster assignments inferred by the CRP exhibit a rich-
get-richer structure, where a small number of tables contains
most of the customers. This is a desirable property in our appli-
cation, since we expect a majority of the observations to belong
to a baseline operating state and a small minority to belong
to the fault states. Unlike parametric clustering methods, such
as k-means, the number of clusters is not a parameter to the
model. The CRP infers the number of clusters directly from
the data, which is a desirable property as a suitable number of
states is difficult to determine a priori.

2.2.2 Distance-dependent Chinese Restaurant Process. Ideally,
we want to enforce temporal continuity in the first-level clus-
tering, so data from consecutive time points may be assigned to
contiguous segments. Returning to the restaurant analogy, any
customer may end up sitting with any other customer, whereas
we want to find an assignment in which only customers with
contiguous indices can sit together. In order to infer segments,
we consider a CRP variant called the distance-dependent CRP
(dd-CRP) [1]. The dd-CRP extends CRP by considering a dis-
tance function 𝑑 , where 𝑑 (𝑖, 𝑗) is the distance between a pair of
customers. Upon entering the restaurant, a customer 𝑖 either
chooses to sit by themselves or to sit with a friend, some other
customer 𝑗 . This choice has probability inversely proportional
to the distance between 𝑖 and 𝑗 . In our application, we choose
𝑑 to be the index distance:

𝑑 (𝑖, 𝑗) = |𝑖 − 𝑗 |, (8)

and we allow customers to sit together only if they have con-
tiguous indices. Formally, let 𝑓𝑖 denote the friend chosen by 𝑖;
the probability that 𝑖 chooses to sit with 𝑗 is given by

𝑝 (𝑓𝑖 = 𝑗 |𝑑, 𝛼) ∝


1, 𝑖 ≠ 𝑗 and 𝑑 (𝑖, 𝑗) = 1
0, 𝑖 ≠ 𝑗 and 𝑑 (𝑖, 𝑗) > 1
𝛼, 𝑖 = 𝑗

(9)

where “𝑖 = 𝑗” indicates that the customer chooses herself and
𝛼 is a dispersion parameter. At the end of the process, the
customer assignments induce a clustering of the data into 𝑀
tables.

With the dd-CRP, we can infer a segmentation of the time se-
ries, and then we can apply a standard CRP to cluster these seg-
ments into states, with the property that segments in the same
state will have the same statistical properties (i.e., they are gen-
erated from the same probability distribution with state-specific
parameters). The combination of the dd-CRP and CRP results
in a two-level clustering model called the distance-dependent
Chinese Restaurant Franchise (dd-CRF) [9]. Cadena et al. [2]

applied a univariate version of dd-CRF towards fingerprint dis-
covery in univariate energy data. Our work extends dd-CRF to
multivariate data.

In our proposed multivariate dd-CRF framework, we assume
that each observation in the time series is sampled from a mul-
tivariate normal distribution with mean vector 𝜇 ∈ R𝐶 and
covariance matrix Σ ∈ R𝐶×𝐶 . The full generative process of our
proposed model is outlined as follows:

(1) For each customer 𝑖 = 1, . . . ,𝑇 , select a friend 𝑓𝑖 with
probability 𝑝 (𝑓𝑖 |𝑑, 𝛼) defined in Equation 9. Let 𝑡𝑖 be the
table of 𝑖 corresponding to the customer assignment.

(2) For each table 𝑡 = 1 . . . , 𝑀 , select a state 𝑘𝑡 with proba-
bility 𝑝 (𝑘𝑡 |𝛼) defined in Equation 7. Denote the state of
customer 𝑖 by 𝑧𝑖 = 𝑘𝑡𝑖 .

(3) For each state 𝑘 = 1 . . . 𝐾 , sample the state parameters
𝜃𝑘 = (𝜇𝑘 , Σ𝑘 ).

(4) For each customer 𝑖 = 1, . . . ,𝑇 , generate an observation
𝑥𝑖 ∼ N(𝜇𝑧𝑖 , Σ𝑧𝑖 ).

2.2.3 Inference. Here, we describe how to perform inference
for the CRP and dd-CRP models. Inference is performed sepa-
rately for CRP and dd-CRP in order to scale to long time series.
Given a time series of 𝜇PMU data, we first divide the time series
into 1-hour blocks and infer a dd-CRP in each block to obtain a
segmentation. Then, we concatenate these segments and use it
as input to the CRP model, which yields the operating states.

Inference for both models is performed via Gibbs sampling.
We update the segment and cluster assignments of a single
point in the time series by fixing all the assignments for the
other points and sampling from the conditional distribution.
For dd-CRP, let 𝑓𝑖− denote the current friend assignments for
all customers except for 𝑖 . Then, the friend of 𝑖 is sampled from

𝑝 (𝑓𝑖 |𝑓𝑖−, 𝑑, 𝛼,X) ∝ 𝑝 (𝑓𝑖 |𝑑, 𝛼)𝑝 (X|𝑓𝑖 , 𝑓𝑖−), (10)

where we obtain the first term from the fact that the friendship
assignments depend only on the distance 𝑑 and the dispersion
𝛼(cf. Equation 9). The second term is the likelihood of the data
given all the friendship assignments. Suppose the friendship
assignment induces𝑀 tables. Let 𝑡𝑖 denote the table of customer
𝑖 . Then, given our choice of multivariate normal distribution,
the likelihood is given by:

𝑝

(
X|𝑓𝑖 , 𝑓𝑖−, {𝜃𝑚}𝑀𝑚=1

)
= 𝑝

(
X|{𝑡}𝑇𝑖=1, {𝜃𝑚}𝑀𝑚=1

)
=

𝑀∏
𝑚=1

𝑝 (X𝑚 |𝜃𝑚),
(11)

where X𝑚 = {x𝑗 |𝑡 𝑗 =𝑚} is the set of observations associated
with table𝑚. We infer the posterior distribution on the friend
assignments by iteratively sampling the assignment for each
customer over a pre-specified number of iterations.

Similarly, we infer the CRP by sampling from the conditional
distribution of the table assignments:

𝑝 (𝑐𝑖 |𝑐𝑖−, 𝛾,X) ∝ 𝑝 (𝑐𝑖 |𝛾)𝑝 (X|𝑐𝑖 , 𝑐𝑖−). (12)

In our application, each hour of data is processed in parallel
via a "train" of dd-CRP models. The results of these dd-CRP
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Figure 3: An example of our synthetic dataset (top), with
imputation over two failures (bottom).

models are then concatenated as the input into CRP to obtain
the final operating states.

3 EXPERIMENTS AND RESULTS
In this section, we present our findings on a synthetic dataset
(to be released along with our code) and a proprietary 𝜇PMU
dataset.

3.1 Hardware
We trained our models on computing nodes with IBM Power8
CPU 20 cores per node and 4 NVIDIA Tesla P100 SXM2 GPUs
per node. Each node has 256 GB of CPU memory and 15 GB of
GPU memory. The LatentODE model is trained in a distributed
manner across 4 GPUs.

3.2 Data
3.2.1 𝜇PMU Dataset. Our 𝜇PMU dataset is from a US-based
utility company. For this study, we focused on one month of
labelled 𝜇PMU data and performed our experiments using 3
channels of the data. In our plots, we refer to each channel as
a “feature.” The hourly data are partitioned as follows: Normal
hours are used as training data for LatentODE, which is used
to impute missing time points within faulty hours to form a
full dataset of faulty hours. Then, the (full) faulty hours are
concatenated together as input to dd-CRF. Each univariate mea-
surement is z-scored normalized.

3.2.2 Synthetic Dataset. We generated a synthetic dataset in
which a fixed number of random failures would occur at non-
overlapping intervals. This dataset is constructed piecewise
depending onwhether the time points are within a fault window
or not, as follows:{

𝑓 (𝒙𝑡 ) = (1 − 𝑠 (𝑡)) 𝑓0 (𝒙𝑡 ) + 𝑠 (𝑡) (𝑓1 (𝒙𝑡 )) 𝑡 ∈ 𝑇faulty
𝑓 (𝒙𝑡 ) = 𝑓0 (𝒙𝑡 ) 𝑡 ∈ 𝑇normal

(13)

where 𝑠 (𝑡) = 𝜎 (𝑎𝑠𝑖𝑛(𝑐𝑡)) ∈ [0, 1]. 𝑠 (𝑡) is periodic, so the sig-
moid function allows smooth transitions between faulty states
and normal states with length-scale defined by constants 𝑎 and
𝑐 . 𝑓0 is the function generating values within normal intervals
and 𝑓1 (𝑥) is the function generating values within failure inter-
vals. There are many choices for these functions, but we chose
to use stable multivariate autoregressive processes [20], AR(5).
Formally, 𝑓0 (𝒙𝑡 ) = 𝒂0 + 𝒂1𝒙𝑡−1 + 𝒂2𝒙𝑡−2 + . . . + 𝒂5𝒙𝑡−5 + 𝝐𝑡
where 𝝐 ∼ N(0, 1) and 𝒂0, ..., 𝒂5 are constant vectors. Varying

Figure 4: Comparison of imputation performance be-
tween our method and baselines, given the initial time
series (top) as input to all methods.

the correlation within each vector 𝒂0, . . . , 𝒂5 results in channels
that co-vary correspondingly. 𝑓1 (𝒙𝑡 ) is defined using the same
formula as 𝑓0 (𝒙𝑡 ), but 𝑓0 coefficients are 𝑨0 ∼ 𝑈 [−.5, .5] and
𝑨1 coefficients are 𝑨1 ∼ 𝑈 [0, 1]. These constants define 𝑓1 as a
monotonically increasing AR process. The combination of 𝑓1
and 𝑓2, as defined in Equation 13, mimics a spiking electrical
current. To generate the lossy versions of this data, we ablated
fixed-length time segments based on these randomly-sampled
start times.

Table 1: Imputation results on 𝜇PMU data (Δt=60s).

Method RMSE MAE

Bayesian Ridge 0.0897 ± 0.0561 0.0647 ± 0.0476
KNN 0.1009 ± 0.0604 0.0690 ± 0.0509
Random Forest 0.1076 ± 0.0569 0.0712 ± 0.0472
Our Method 0.0816 ± 0.0561 0.0572 ± 0.0476

3.3 Imputation
Imputation of missing data is the first step of the experimental
procedure. First, the global trend is learned using cubic spline
(with regularization constant 𝜆 = 7) on the (non-missing) data.
(The choice of cubic spline with this specific 𝜆 was chosen after
hyper-parameter tuning.) The result of spline interpolation is
a set of imputed points, which are then used for local trend
learning via LatentODE.

To train the latentODE, we used the normal hours as train-
ing data. All together, the training data consisted of 40K time
points, which were split into smaller sequences of 30 timesteps.
In our LatentODE model, 𝑓𝜃 is a feed-forward neural network,
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(a) Full data (b) Focused segment

Figure 5: Fault regions identified our framework. (a) Fault states across the entire 𝜇PMU data are highlighted in red. (b)
An up-close view is presented.

with three 40-dimensional hidden layers and hyperbolic tan-
gent as the activation function. For our ODE Solver, we used
the torchdiffeq package [4, 5], and chose a fifth-order dopri5
solver with relative tolerance 10−4 and absolute tolerance 10−3.
Our encoder network maps from data space to latent space
using 2 generative layers with a latent dimension of 10. Our
decoder network maps from latent space to data space using a
one-layer feed-forward neural network with a 500-dimension
hidden layer dimension. The batch size for training the entire
LatentODE model is 10 and the learning rate is 0.01. The hyper-
parameters were tuned by performing a sweep on batch size
and learning rate. Subsequently, we find that the performance
of LatentODE is optimal when batch size is below 50 and the
learning rate is below 0.03. To impute the missing points in the
test data (i.e., the faulty hours), each missing 30 second interval
(e.g., 𝑡 𝑗 . . . 𝑡 𝑗+30) was passed through the trained LatentODE to
obtain 𝑥 𝑗 , . . . , 𝑥 𝑗+30. Finally, the imputed time points are then
concatenated back to create a full dataset X to be passed to
dd-CRP for segmentation.

To compare different interpolation methods, we tested our
proposed method described in Section 3.3 against other base-
line methods in an interpolation task. In this experiment, 10
60-second segments of data were held-out from 10 randomly
selected time series and models are fit on the remaining data.
Then, we used these models to impute the missing segments.
We benchmarked our method against Bayesian Ridge, Random
Forest and KNN. Bayesian Ridge [10] is a multivariate impu-
tation strategy that infers missing values in each feature as a
function of the other features . Random Forest is an iterative
imputation strategy based on the MissForest algorithm [18].
KNN [13] is a 𝑘-Nearest-Neighbors based imputation strategy
where the target is predicted by local interpolation of associated
of the nearest neighbors. All baselines were implemented us-
ing the scipy.interpolate package [24]. The mean absolute
error (MAE) and root mean squared error (RMSE) are shown
in Table 1. Our method outperforms other benchmarks in this
imputation task.

3.4 Segmentation
3.4.1 On 𝜇PMU Dataset. After imputation, we applied the
dd-CRF model to the full 𝜇PMU data which is now regularly-
sampled with any missing time points. We first fit a dd-CRP
model to each hour of data that contained faults. Each dd-CRP
model produced table assignments (i.e., segments) for its asso-
ciated hours. We then used these table assignments as input to

a CRP, as described in Section 2.2. Given the table assignments
and the concatenated time series for the full dataset (𝑇 = 59600),
the CRP model infers regions for the entire time series. For our
experiments, we set the dispersion parameters to 𝛼 = 10−6
and 𝛾 = 10−4. This parameterization encourages the model to
infer a small set of segments. Additionally, when performing
clustering with CRP, we set the maximum number of regions
to 2 to be able to discern between baseline regions and faulty
regions. The choice of 𝛼 , 𝛾 and maximum number of regions
was carefully chosen after an extensive hyperparameter sweep.

Table 2: Confusion matrix for real 𝜇PMU data.

Prediction
Non-Fault Fault

Actual Non-Fault 42778 16632
Fault 76 114

Figure 5(a) shows the concatenated data, along with the
occurrences of faults and segmented regions predicted by the
CRP. Here, our model is capable of capturing anomalies in the
time series. We compare our segmentation results against the
ground-truth labels received from our collaborators on this
dataset. We take the red region to be the fault state and the
non-colored region to be the normal state. The confusion matrix
is shown as Table 2.

In the absence of ground-truth labels, one should consult
with a subject matter expert to incorporate domain knowledge
in the interpretation of these region assignments. By group-
ing anomalies together within similar time segments, experts
can quickly attribute semantic meaning to these segments. Fig-
ure 5(b) shows, within the time window spanning 𝑡 = 36000 to
𝑡 = 39600, our model detects the sharp dips in all three features
within the red region. This signifies that our model is capable
of capture the unusual dynamics of our data and disambiguate
those segments from normal behaviors.

3.4.2 On Synthetic Dataset. To better understand the effects of
parameter 𝛼 and 𝛾 , we perform a hyperparameter sweep and
evaluate the performance of our dd-CRF model on the synthetic
dataset. Here, we set 𝑿 to be three hours of synthetic data, each
with 3600 timepoints and 3 channels, totaling 3600× 3 = 10, 800
timepoints for testing. For both the dd-CRP and CRP, we used
the same dataset and run the model configured with a specific
set of hyperparameters, for 100 iterations.
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(a) Hyperparameter sweep on 𝛼 and 𝛾 . (b) Regions discovered using 𝛼 = 0.01 and different 𝛾 . (Top) 𝛾 = 10−4 (Bottom) 𝛾 = 10−9

Figure 6:Hyperparameter sweep on three hours of synthetic data. (a) Parameter𝛼 and𝛾 are tested on the sameparameter
range from 10−11 to 102 (shown in log scale). The red line indicates the number of tables as𝛼 varies. The blue line indicates
the Adjusted Mutual Information (AMI) as 𝛾 varies. (b) dd-CRP results on synthetic data based on different 𝛾 values.
The 𝛾 on top is preferred over the 𝛾 on the bottom.

Table 3: Confusion matrix for synthetic data.

Prediction
Non-Fault Fault

Actual Non-Fault 4172 3511
Fault 394 2723

Impact of 𝛼 . As mentioned in Section 2.2, 𝛼 is a dispersion
parameter in the dd-CRF that controls the probability that a
new customer sits by herself rather than with a friend. As 𝛼
increases, we expect to see more segments in the model, which
is confirmed by our hyperparameter sweep results shown in
Figure 6(a). As expected, we see an upward trend on the number
of segments as 𝛼 increases. We chose our 𝛼 to provide a suitable
number of tables to optimize our dd-CRP results.
Impact of 𝛾 . The relationship between the parameter 𝛾 in the
CRP and the Adjusted Mutual Information (AMI) [23] is shown
in Figure 6(a). AMI measures the agreement between two clus-
terings of the same data, and we use it as a score function to
choose a suitable value for 𝛾 in our evaluation. We observe
that AMI is highest when 𝛾 = 10−4, as well as similar AMI
values when 𝛾 ∈ [10−4, 10−2], suggesting that there is a large
range of values where performance is not affected by a par-
ticular choice of 𝛾 . The resulting clusterings for the best and
the worst 𝛾 ’s (with respect to AMI) are shown in Figure 6(b).
When 𝛾 = 10−9, CRP combines most tables into the same state,
indicating that the model has under-segmented the data and
the selected parameter is too small to learn meaningful clusters.

4 SHORTCOMINGS AND FUTUREWORK
Our experiments on real and synthetic 𝜇PMU data show that
dd-CRF is susceptible to noisy signals. In particular, noise in
data and adversarial trends such as seasonality and electric
load based on time-of-day can cause irregularities in data. This
imposes a difficult challenge for ourmodel, given that structured
and unstructured noise can co-exist.

Since we are interested in the detection of incipient failures,
the high number of false positives, if they correspond to time
points that are pre-faults, is actually a desirable property of our
method. If our method can detect that the system is entering a
fault state before the occurrence of a real fault (as determined by
state-of-the-art methods), then we can use this information to
alert operators to take remedial actions in advance of noticeable
degradation in system performance.

For future work, preprocessing methods that can further
denoise the data and other formalisms that can incorporate
domain knowledge about fault structures in 𝜇PMU’s data would
be promising directions to pursue.

5 CONCLUSION
Our proposed method deploys a two-phase imputation method
to capture high-frequency fluctuations and low-frequency trends
in 𝜇PMU data. Instead of simply casting out missing data, a ro-
bust imputation method allows for continuity between missing
data, which allows for a wider class of machine learning or
statistical methods to be applied for downstream analysis.

In this work, we presented an end-to-end framework that
combines a data-driven deep learning technique of LatentODE
with the Bayesian non-parametric clustering method dd-CRF.
Our proposed method is capable of not only imputing realistic
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trends and nonlinear dynamics in the data, but also inferring
how these trends may be governed by underlying fault states. A
predictive system built on these two capabilities can be used to
provide advanced alerts to grid operators to improve situation
awareness.

6 ACKNOWLEDGEMENT
We are grateful to: Hannah Burroughs (LLNL) for subject mat-
ter guidance; Indra Chakraborty (LLNL) and Pedro Sotorrio
(LLNL) for assistance with data access; and Thomas Desautels
for insight in synthetic data design.

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Labo-
ratory under Contract DE-AC52-07NA27344 and directly sup-
ported by theGridModernization Laboratory Consortium (GMLC)
program.

REFERENCES
[1] David M Blei and Peter I Frazier. 2011. Distance dependent Chinese restau-

rant processes. Journal of Machine Learning Research 12, Aug (2011), 2461–
2488.

[2] Jose Cadena, Priyadip Ray, and Emma Stewart. 2019. Fingerprint discovery
for transformer health prognostics frommicro-phasormeasurements. ICML.

[3] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud.
2018. Neural ordinary differential equations. arXiv preprint arXiv:1806.07366
(2018).

[4] Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel. 2021. Learning
Neural Event Functions for Ordinary Differential Equations. International
Conference on Learning Representations (2021).

[5] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud.
2018. Neural Ordinary Differential Equations. Advances in Neural Informa-
tion Processing Systems (2018).

[6] P. Dierckx. 1996. Curve and surface fitting with splines. In Monographs on
numerical analysis.

[7] Emile Dusabimana and Sung-Guk Yoon. 2020. A survey on the micro-phasor
measurement unit in distribution networks. Electronics 9, 2 (2020), 305.

[8] Nikolaj Ezhov and Svetozar Petrovic. 2018. Spline approximation, Part
1: Basic methodology. Journal of Applied Geodesy 12, 2 (2018), 139–155.
https://doi.org/doi:10.1515/jag-2017-0029

[9] Dongwoo Kim and Alice Oh. 2011. Accounting for data dependencies within
a hierarchical Dirichlet process mixture model. In Proceedings of the 20th
ACM international conference on Information and knowledge management.
873–878.

[10] David J. C. MacKay. 1992. Bayesian Interpolation. Neu-
ral Computation 4, 3 (05 1992), 415–447. https://doi.org/10.
1162/neco.1992.4.3.415 arXiv:https://direct.mit.edu/neco/article-
pdf/4/3/415/812340/neco.1992.4.3.415.pdf

[11] H. Mohsenian-Rad, E. Stewart, and E. Cortez. 2018. Distribution Syn-
chrophasors: Pairing Big Data with Analytics to Create Actionable In-
formation. IEEE Power and Energy Magazine 16, 3 (2018), 26–34. https:
//doi.org/10.1109/MPE.2018.2790818

[12] Matías Núñez, Nadia Barreiro, Rafael Barrio, and Christopher Rackauckas.
2021. Forecasting virus outbreaks with social media data via neural ordinary
differential equations. medRxiv (2021).

[13] L. E. Peterson. 2009. K-nearest neighbor. Scholarpedia 4, 2 (2009), 1883.
https://doi.org/10.4249/scholarpedia.1883 revision #137311.

[14] Yulia Rubanova, Ricky TQ Chen, and David Duvenaud. 2019. Latent odes
for irregularly-sampled time series. arXiv preprint arXiv:1907.03907 (2019).

[15] Alireza Shahsavari et al. 2017. A data-driven analysis of capacitor bank
operation at a distribution feeder using micro-PMU data. In 2017 IEEE Power
& Energy Society Innovative Smart Grid Technologies Conference (ISGT). IEEE,
1–5.

[16] Alireza Shahsavari, Mohammad Farajollahi, Emma M Stewart, Ed Cortez,
and Hamed Mohsenian-Rad. 2019. Situational awareness in distribution grid
using micro-PMU data: A machine learning approach. IEEE Transactions on
Smart Grid 10, 6 (2019), 6167–6177.

[17] Alireza Shahsavari, Ashkan Sadeghi-Mobarakeh, Emma Stewart, and Hamed
Mohsenian-Rad. 2016. Distribution grid reliability analysis considering reg-
ulation down load resources via micro-PMU data. In 2016 IEEE International

Conference on Smart Grid Communications (SmartGridComm). IEEE, 472–
477.

[18] Daniel J. Stekhoven and Peter Bühlmann. 2011. MissForest—non-
parametric missing value imputation for mixed-type data. Bioinformatics
28, 1 (10 2011), 112–118. https://doi.org/10.1093/bioinformatics/
btr597 arXiv:https://academic.oup.com/bioinformatics/article-
pdf/28/1/112/583703/btr597.pdf

[19] Emma Stewart, Anna Liao, and Ciaran Roberts. 2016. Open 𝜇PMU: A real
world reference distribution micro-phasor measurement unit data set for
research and application development. (2016).

[20] James H. Stock and Mark W. Watson. 2001. Vector Autoregressions. Journal
of Economic Perspectives 15, 4 (December 2001), 101–115. https://doi.org/10.
1257/jep.15.4.101

[21] Yee Whye Teh, Michael I Jordan, Matthew J Beal, and David M Blei. 2006.
Hierarchical Dirichlet Processes. J. Amer. Statist. Assoc. 101, 476 (2006),
1566–1581.

[22] Muhammad Usama Usman and M Omar Faruque. 2019. Applications of
synchrophasor technologies in power systems. Journal of Modern Power
Systems and Clean Energy 7, 2 (2019), 211–226.

[23] Nguyen Xuan Vinh, Julien Epps, and James Bailey. 2010. Information theo-
retic measures for clusterings comparison: Variants, properties, normaliza-
tion and correction for chance. The Journal of Machine Learning Research 11
(2010), 2837–2854.

[24] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. JarrodMillman, NikolayMayorov, Andrew R. J. Nelson, Eric Jones,
Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, EricW. Moore, Jake
VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen,
E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro,
Fabian Pedregosa, Paul vanMulbregt, and SciPy 1.0 Contributors. 2020. SciPy
1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods 17 (2020), 261–272. https://doi.org/10.1038/s41592-019-0686-2

[25] Yuchen Wang, Matthieu Chan Chee, Ziyad Edher, Minh Duc Hoang, Sh-
ion Fujimori, Sornnujah Kathirgamanathan, and Jesse Bettencourt. 2020.
Forecasting Black Sigatoka Infection Risks with Latent Neural ODEs. arXiv
preprint arXiv:2012.00752 (2020).

[26] Mohsen Ghalei Monfared Zanjani, Kazem Mazlumi, and Innocent Kamwa.
2018. Application of 𝜇PMUs for adaptive protection of overcurrent relays
in microgrids. IET Generation, Transmission & Distribution 12, 18 (2018),
4061–4068.

482

https://doi.org/doi:10.1515/jag-2017-0029
https://doi.org/10.1162/neco.1992.4.3.415
https://doi.org/10.1162/neco.1992.4.3.415
https://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/4/3/415/812340/neco.1992.4.3.415.pdf
https://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/4/3/415/812340/neco.1992.4.3.415.pdf
https://doi.org/10.1109/MPE.2018.2790818
https://doi.org/10.1109/MPE.2018.2790818
https://doi.org/10.4249/scholarpedia.1883
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.1093/bioinformatics/btr597
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/28/1/112/583703/btr597.pdf
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/28/1/112/583703/btr597.pdf
https://doi.org/10.1257/jep.15.4.101
https://doi.org/10.1257/jep.15.4.101
https://doi.org/10.1038/s41592-019-0686-2

	Abstract
	1 Introduction
	1.1 Contributions

	2 Methods
	2.1 Imputation of Missing Data
	2.2 Segmentation and State Discovery

	3 Experiments and Results
	3.1 Hardware
	3.2 Data
	3.3 Imputation
	3.4 Segmentation

	4 Shortcomings and Future Work
	5 Conclusion
	6 Acknowledgement
	References

