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Abstract

As a new generation of Public Bicycle-sharing Systems (PBS), the dockless PBS (DL-PBS) is an
important application of cyber-physical systems and intelligent transportation. How to use Al to provide
efficient bicycle dispatching solutions based on dynamic bicycle rental demand is an essential issue for
DL-PBS. In this paper, we propose a dynamic bicycle dispatching algorithm based on multi-objective
reinforcement learning (MORL-BD) to provide the optimal bicycle dispatching solution for DL-PBS. We
model the DL-PBS system from the perspective of CPS and use deep learning to predict the layout of
bicycle parking spots and the dynamic demand of bicycle dispatching. We define the multi-route bicycle
dispatching problem as a multi-objective optimization problem by considering the optimization
objectives of dispatching costs, dispatch truck’s initial load, workload balance among the trucks, and the
dynamic balance of bicycle supply and demand. On this basis, the collaborative multi-route bicycle
dispatching problem among multiple dispatch trucks is modeled as a multi-agent MORL model. All
dispatch paths between parking spots are defined as state spaces, and the reciprocal of dispatching costs
is defined as a reward. Each dispatch truck is equipped with an agent to learn the optimal dispatch path
in the dynamic DL-PBS network. We create an elite list to store the Pareto optimal solutions of bicycle
dispatch paths found in each action, and finally get the Pareto frontier. Experimental results on the
actual DL-PBS systems show that compared with existing methods, MORL-BD can find a higher quality
Pareto frontier with less execution time.

1 Introduction

Benefiting from the advantages of zero-emissions, flexibility, and convenience, the Public Bicycle-sharing
System (PBS) has become an essential part of urban transportation [11,/14,/23]. PBS has significant
advantages in short-distance travel, and can be easily combined with public transportation such as buses
and subways to solve the problem of “first mile/last mile” [30]. In addition to the traditional
Station/Dock-based PBS (SD-PBS), many enterprises provide a novel type of Dockless PBS (DL-PBS)
system [27,/29]. The DL-PBS system has the following characteristics: flexible parking spots (also known
as parking spots, service points, and bicycle stations), and dynamic changes in the number of bicycles at
each parking spot [12]. Compared with SD-PBS, the significant difference of DL-PBS is that each
parking spot (instead of a fixed bicycle station) not only has a flexible location, but also no fixed parking
piles/docks [21]. Users can download a mobile application to quickly identify nearby DL-PBS parking
spots via the bicycles’ GPS information, and then scan the Quick-Response (QR) code on the target




bicycle to unlock and use it [2]. After the trip, users can drop off the bicycle at any parking spots near
the destination. It is very convenient for the public and becomes increasingly popular in many countries.

During the operation of DL-PBS systems, several problems are reported, such as difficulty in picking
up or dropping off bicycles, unreasonable station distribution, equipment failures, and serious imbalance
between supply and demand [21,27]. Without the intervention of bicycle dispatching, bicycle parking
spots will randomly change during operation, and many destroyed bicycles cannot found in time [17}2§].
For suppliers, the layout of bicycle parking spots and bicycle dispatching plans are essential to operating
profit, bicycle utilization, and user satisfaction. The optimal layout of bicycle parking spots can
maximize the bicycle supply and demand balance by deploying minimum parking spots |25]. In addition,
the optimal bicycle dispatching solution requires the smallest dispatching costs, including the shortest
dispatch paths, the least number of dispatched bicycles, and the minimum dispatching time. Most
existing research on public bicycle dispatching focuses on the SD-PBS systems with fixed bicycle stations
and fixed parking spots [11,[19]. However, these methods do not make full use of large-scale historical
riding trajectory records to discover potential riding rules and dynamic rental requirements.

As a new generation of PBS, DL-PBS is an important application of the Internet of Things (IoT),
cyber-physical systems (CPS), and Artificial Intelligence (AI) in the field of intelligent
transportation [14}24]. In DL-PBS, massive smart bicycles equipped with GPS-based sensors are
connected to a complex DL-PBS network, and operate on different spatial and temporal scales through
real-time bicycle riding behaviors, exhibiting a variety of distinct behavioral patterns. In DL-PBS; there
is uncertainty in bicycle parking spots, dynamic rental behavior, and the number of bicycles required at
each parking spot |2,|11]. In the process of bicycle dispatching, multiple intelligent dispatch trucks can
interact with distributed and moving bicycle sensors in real time, perceive the dynamic supply and
demand of parking spots, and dynamically adjust dispatch routes, thereby improving the optimality of
dispatch schemes [7]. Therefore, how to use Machine Learning (ML) and AI approaches to provide
efficient bicycle dispatching solutions and meet the dynamic bicycle rental demand is an essential issue
for DL-PBS.

In this paper, we propose a Bicycle Dispatching algorithm based on Multi-Objective Reinforcement
Learning (MORL-BD) for the DL-PBS system. The multi-route bicycle dispatching problem is defined
as a multi-objective optimization problem. A multi-agent and MORL algorithm is used to search for
candidate Pareto optimal solutions to achieve the expected optimization goals. Each dispatch truck can
automatically detect the bicycles’ trajectory and real-time inventory of each parking spot through
wireless sensors, and dynamically adjust its dispatch route. An example of the workflow of the proposed
MORL-BD algorithm is shown in Fig.

The contributions of this paper are summarized as follows:

e We establish a graph sequence model of DL-PBS bicycle stations based on large-scale
spatiotemporal datasets, which can richly express the movement behavior of DL-PBS network in
different space-time spaces. Then, the Gated Graph Neural Network (GGNN) model is used to
predict the bicycle station layout and bicycle dispatching demand in the next time period.

e We define the multi-route bicycle dispatching problem as a multi-objective optimization problem,
and well consider four optimization goals, including dispatching costs, the initial load of dispatch
trucks, the workload balance between dispatch trucks, and the supply and demand balance of all
bicycle stations.

e We propose a bicycle dispatching (MORL-BD) algorithm based on multi-agent and multi-objective
reinforcement learning. In MORL-BD, each dispatch truck is equipped with an agent to perceive
and interact with the dynamic DL-PBS environment and learn the optimal dispatch path. We
create an elite list to store the Pareto optimal solution found in each action, and finally find the
Pareto frontier.

e We conduct extensive comparative experiments on actual DL-PBS systems to compare the
MORL-BD algorithm with the multi-objective genetic algorithm, evolutionary algorithm, and
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Figure 1. Workflow of the proposed DL-PBS dynamic bicycle dispatching (MORL-BD) algorithm
based on multi-objective reinforcement learning. Massive public bicycles with intelligent sensors and the
corresponding large-scale cycling trajectory records form a series of spatiotemporal DL-PBS networks,
and further get a graph sequence model. In the MORL-DB algorithm, multiple agents represent multiple
dispatch trucks, find the optimal dispatch routes in a cooperative manner, and jointly achieve the
optimization goal.

particle swarm optimization algorithm. Experimental results show that MORL-BD can find more
high-quality Pareto frontier and the optimal bicycle dispatching plan with less execution time.

The rest of the paper is structured as follows. Section 2 summarizes the related work. Section 3
describes the DL-PBS system model, the dynamic prediction of bicycle station layout, and the bicycle
dispatching problem of public bicycles. Section 4 introduces reinforcement learning and the proposed
MORL-BD algorithm. Section 5 provides comparison experiments to evaluate the performance of the
MORL-BD algorithm. Finally, Section 6 gives the conclusion.

2 Related Work

Accurate prediction of bicycle rental demand is an important prerequisite for public bicycle dispatching
and PBS system rebalancing [15//22]. In [16], Mimura et al. proposed a time-series generation model to
predict the number of bicycle transfers per hour and the bicycle rental demand. In [11], Li et al.
introduced an adaptive transition-constrained clustering algorithm to classify public bicycle stations.
They used a similarity-based Gaussian regression to predict the location of different proportions of
stations and the bicycle demand of each station. Considering the relationship between the location of
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bicycle stations and transport stations, Tang et al. carried out a method for adjusting the location and
scale of PBS pools in a bike-and-ride multi-modal transport system [22]. In [7], Ghosh et al. discussed
the congestion or starvation of bicycle stations caused by unpredictable bicycle rental activities. They
offered an optimization method to predict bicycle riding routes and expected rental demand. The
existing studies are mainly aimed at traditional SD-PBS systems, including bicycle station planning and
bicycle-rental demand prediction. However, there is limited research conducted on emerging DL-PBS
systems.

Imbalanced bicycle supply is one of the major problems facing by PBS systems [9,/13,/32]. In [32],
Zhao et al. studied the dispatching and management of DL-PBS systems and established a semi-open
dispatching model based on fuzzy time windows. In [9], Hu et al. built a mathematical model of the
location between bicycle stations and dispatch centers, and carried out the optimal dispatching route
with the minimized operating cost, passenger travel cost, and dispatching cost. Different from SD-PBS
systems, the bicycle dispatching of DL-PBS systems is more complex due to the uncertainty of the
location of bicycle stations and the requirements of bicycles. In [13], Liu et al. focused on the DL-PBS
bicycle dispatching and divided the DL-PBS networks by the K-means clustering algorithm. They built
a bicycle dispatching model based on a rolling horizon dispatching algorithm, which can effectively guide
bicycle redistribution between bicycle stations. Although there have been some studies on bicycle
dispatching and bicycle supply balance, most of them treat the problem as a static problem with
single-objective or multi-objective optimization problems. For the DL-PBS system, due to dynamic
bicycle rental demand and dynamic bicycle parking spots, it is difficult to perform bicycle dispatching
and maintain the balance of bicycle supply among different bicycle drop-off stations.

Reinforcement learning (RL) methods were introduced in the existing literature to achieve bicycle
rebalance without human intervention [3}/6,/12,/17]. In [12], Li et al. developed a spatiotemporal RL
model of bicycle layout, which can reposition bicycle stations and minimize customer losses. The
spatiotemporal RL model is applied to each station cluster to learn the corresponding reposition strategy.
In [3], Chen et al. used the Q-learning algorithm to formulate the personalized bicycle travel plan, and
used a dynamic and flexible position insertion method to automatically adjust the trips. Duan et al.
discussed the impact of bicycle underflow and overflow on the PBS service and urban traffic
congestion [6]. In [17], Pan et al. constructed a deep RL framework to motivate users to rebalance public
bicycles. They modeled the bicycle rebalancing problem as a Markov decision process, and used the deep
deterministic strategy gradient method to capture the spatial and temporal dependence of bicycle
stations. Although these methods provided a variety of incentive mechanisms, due to factors such as user
riding purpose and participation, these methods only played a limited role in practical applications
without the intervention of manual dispatching, which makes it difficult to rebalance the system.

In current research of multi-objective optimization (MOO) problems and multi-objective
reinforcement learning (MORL), the standard concept of optimality is replaced by Pareto
optimality [8[1820]. In [18], Parisi et al. formulated an RL strategy gradient method to learn Pareto
boundary in multi-objective Markov decision problems, where the continuous approximation of Pareto
boundary is generated for each gradient climb operation. In [20], Ruiz et al. discussed a MORL method
that uses non-convex Pareto boundaries to generates deterministic non-dominated strategies in
multi-objective Markov decision problems. To solve the effect of MORL on the optimal strategy under
different preference conditions, Yang et al. adopted a MORL algorithm with linear preference [26]. Even
though different RL and MORL approaches have been proposed for MOO problems and applications, the
existing MORL methods have parameter configuration problems and scalarization limitations. In
addition, in our work, we define the multi-route bicycle dispatching problem as a multi-objective
optimization problem by considering multiple conflicting optimization objectives. In this case, the
standard MORL methods may face limitations and inefficiently find the Pareto frontier of the proposed
problem.

Different from the existing work of DS-PDS networks, we focus on the dynamic prediction of bicycle
station layout and bicycle dispatching requirements in actual DL-PBS networks. We model the DL-PBS
network from the perspective of cyber-physical systems and construct a graph sequence model of bicycle
parking spots based on historical spatiotemporal cycling and dispatching trajectory records. In addition,




different from traditional single-truck-based dispatching, we defined the problem as a multi-route bicycle
dispatching problem. Moreover, we apply the MORL algorithm to the multi-route bicycle dispatching
problem and use multiple agents to collaborate and interact with the dynamic DL-PBS environments,
which can efficiently find the Pareto frontier between multiple conflicting objectives.

3 System Model and Problem Formulation

In this section, we will describe the DL-PBS system model and use a clustering algorithm and a deep
learning model to predict the dynamic layout of bicycle parking spots and dispatching requirements. In
addition, the bicycle dispatching problem is formulated as a multi-objective optimization problem by
considering four conflicting objectives.

3.1 DL-PBS System Model

Different from the traditional SD-PBS systems, multiple DL-PBS suppliers deploy their own DL-PBS
systems in each city. They are allowed to place a large number of public bicycles in all permitted parking
areas, such as road-sides, parks, entrances to communities, and shopping centers. A certain number of
bicycles parked in the same location will naturally form a bicycle parking spot, also known as
drop-off/pick-up position, a self-service point, and a bicycle station. Each parking spot has no strict
boundaries and a limitation to the number of bicycles. In this way, the bicycle station layout of DL-PBS
is more flexible than that of SD-PBS, and the number of bicycles provided at each parking spot is not
limited by parking piles or docks. Therefore, the location and scale of bicycle spots can be adjusted
dynamically according to the demand of cycling, so as to achieve high flexibility. In this work, a DL-PBS
system include five main components, including public bicycles, bicycle parking spots, dispatching
centers, a mobile application, and a bicycle dispatching and management system. An example of the
main components of the DL-PBS system is shown in Fig.
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Figure 2. Example of the main components of the DL-PBS system, where the left sub-figure is a mobile
application, the middle is a bicycle with a lock module based on Quick Response (QR) code, and the
right is a bicycle parking spot.

(1) Public bicycles. Each DL-PBS supplier provides a large number of public bicycles with unique
appearance. Each bicycle is equipped with a global positioning system (GPS) module to record its
position in real time. In addition, it is also equipped with a lock module based on Quick Response (QR)
code.

(2) Dockless bicycle parking spots. DL-PBS suppliers deploy public bicycles in permitted parking
areas of the city, such as roadsides, parks, entrances to communities, and shopping centers. A dense
group of bicycles forms a temporary dockless bicycle parking spot. Note that there are no strict
restrictions on the location and size of parking spots, as well as no fixed parking piles or docks at each
parking spot. When all bicycles at a parking spot are removed, the parking spot will disappear
automatically. On the contrary, when several bicycles are parked in the same location, a bicycle parking




spot will be formed naturally. In this way, DL-PBS suppliers can easily move bicycles and parking spot
at low cost.

(3) Bicycle dispatching centers. Multiple bicycle dispatching centers are deployed in different areas of
each city. Each dispatching center has multiple dispatch trucks, which are responsible for dispatching
bicycles in a limited area. Note that the location of each dispatching center is fixed.

(4) Mobile application (App). Users can download a mobile application from the DL-PBS website or
scan the QR~code on any public bicycle. The App provides functions including bicycle GPS positioning,
QR code scanning, unlocking, payment, and bicycle tracking. Namely, users can find the nearest bicycles
via the App, scan the QR code on a bicycle to unlock it, pay the rent after the travel. They also can log
in the App to track their historical riding records.

(5) Bicycle dispatching and management system. The bicycle dispatching and management system is
responsible for maintaining and managing the basic information of all bicycles, parking spots, and
dispatching centers of the entire DL-PBS system. It also contains functions such as bicycle positioning,
trajectory tracking, parking spot prediction, and dispatching plan recommendation.

3.2 Layout Prediction of Bicycle Parking Spots

In this work, historical bicycle GPS and trajectory records of the DL-PBS system are used to construct
the corresponding graph model of bicycle parking spots. According to the administrative region of the
city and the time periods, historical records are divided into a series of spatiotemporal data subsets.
Each subset represents the bicycle GPS information and corresponding cycling records of an
administrative area (e.g., city, administrative district, or county) in a certain time period (e.g., one day
or one week). In our previous work [2], we used the Domain Adaptive Density Clustering (DADC)
algorithm to cluster bicycle parking spots, and then constructed a weighted directed graph model based
on the clustering results.

We establish a weighted digraph model G = (V, E) for the DL-PBS network in each spatiotemporal
subset, where the set of vertices V represents the bicycle parking spots, and the set of edges E represents
the cycling trajectories between parking spots. Each vertex v; € V has three attribute values (u;, i, ;),
where p; indicates the number of bicycles parked at the spot, and ¢; and ; indicate the latitude and
longitude of v;. Each edge e;; € E has two attribute values (d;;, w;;), which indicate the actual distance
between spots v; and v; and the corresponding number of cycling records. Note that d;; = d;;, but
Wij 7 Wji-

We further study the dynamic behavior of bicycle rental and return and the update of parking spots.
With the rental and return of bicycles, the number of bicycles available at each parking spot dynamically
changes. In addition, new spots may appear and some current spots may disappear. We perform bicycle
parking spot clustering on each spatiotemporal subset to construct the corresponding graph model, and
then combine graph models from multiple time periods to construct a graph sequence model. An
example of the graph sequence model of DL-PBS is shown in Fig. [3|

Let GS = {G4,...,G;} be a DL-PBS graph sequence model of a certain spatial subset. According to
the latitude and longitude coordinates of each vertex, we establish a connection between the vertices of
different graph models. In other words, vertices with the same or similar latitude and longitude
coordinate values are regarded as the same vertices in the graph sequence model. Then, we can calculate
the update of each vertex across time periods. Considering the matching errors of vertices caused by the
imprecise GPS information, we introduce a fusion factor € for vertex connection. Namely, for a vertex v;
in graph G; and a vertex v; in graph Gyi1, if |¢; — @;| < € and |[¢; — ;| < €, vertices v; and v; are
treated as the same vertex. In practical applications, the value of € is manually set based on experience.
In this work, the effective threshold is set as e = 3 (m).

Assuming that p; ; and p; +41 are the number of bicycles at v; in Gy and G441, respectively. The
updating of each vertex v; between two adjacent graph models G; and Gyy1 can be divided into five
cases.

1. The number of bicycles remains the same at v;. If v; exists in both G and G4, and ;41 = iz,
it means that the same number of bicycles at v; is maintained between ¢t and ¢t + 1. Namely, the
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Figure 3. Example of the graph sequence model of DL-PBS. Each graph represents the graph model of
the DL-PBS network in a spatiotemporal subset. At each vertex (a parking spot), we can observe the

return (move in) and rental (move out) behavior of bicycles, which leads to vertex update.

number of bicycles arriving at v; is equal to the number of bicycles leaving v,.

2. The number of bicycles at v; decreases. If v; exists in both Gy and Gi11, and p; 141 < fig, it
means that the number of bicycles at v; decreases. Namely, the number of bicycles arriving at v; is
less than the number of bicycles leaving v;.

3. The number of bicycles at v; increases. If v; exists in both G} and Gyy1, and i 441 > i, it
means that the number of bicycles at v; decreases between t and t 4+ 1. Namely, the number of
bicycles arriving at v; is more than the number of bicycles leaving v;.

4. New parking spot emerges. If v; does not appear in G; but in G141, it means that v; is newly
generated in the period between t and ¢ + 1. p; ¢+4+1 is the number of bicycles at v; in ¢ + 1, which is
equal to the number of bicycles arriving in time point ¢ + 1 minus the number of bicycles departing.

5. Parking spot disappears. If v; only appears in G; but does not appear in G4 1, it means that v;
disappears between time points ¢ and ¢ + 1.

We trained the Gated Graph Neural Network (GGNN) model [10] on the constructed graph sequence
models and used the GGNN model to predict the bicycle station layout for the next time period. For
specific implementation details, please refer to our previous work [2]. The structure of the GGNN model
for bicycle station prediction is shown in Fig.

As shown in Fig. [4] based on the graph sequence {G1, ..., G} of historical bicycle parking spots, we
use the GGNN model to predict the graph model G171 = (Viq1, Ety1) for the next time period ¢ + 1. In
the set of predicted vertices Viy1, we obtain the position (1;, ¢;) of each vertex v; in time period ¢t + 1
and the number of bicycles u; required at v;. At the same time, we also obtain the set of predicted edges
E; 11 between vertices in Vi ;. For each edge e;; € E; 41, we calculate its actual distance d;; and predict
the number of cycling records w;; between vertices v; and v;.

3.3 Bicycle Dispatching Requirements

Based on the actual graph model G of the current time period and the predicted graph model Gyy1 of
the next time period, we can calculate the bicycle dispatching requirements in the next time period.
Then, the corresponding bicycle dispatching demand graph model Gﬂ_l is established. An example of
bicycle dispatching demand calculation is illustrated in Fig.

Given Gt = (V4, Et) and Giy1 = (Vig1, Erp1), we establish a dispatching demand graph model
GP., = (VR,,EE.)) of the time period ¢ + 1, which is an undirected complete graph. For each vertex
v; € (Vi N Viga), if prir = pie41, then note it as a stable spot. The set of all stable spots in V; and Vi1

gz
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Figure 4. The structure of the GGNN model for bicycle station prediction. The input of GGNN is
the constructed graph sequences {G1,...,G;} of historical bicycle parking spots, and the output is the
predicted graph model G471 for the next time period.
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Figure 5. Construction process of bicycle dispatching demand graph model. Based on the graph model
of the current time period and the predicted graph model of the next time period, the bicycle dispatching
demand graph model in the next time period is constructed by considering the update of vertices.

is defined as V;&i-i-l = {v;|lv; € ViNViy1 and p; = pi41}. We create a set of vertices V£1 based on V;




and Viq1:
V= (ViUVip) — ‘/ti+17 (1)

namely, all vertices in V; and V;41 are firstly included into V;?,, and then all stable vertices in Vt% 41 are
removed from V;%;. We continue to calculate the number of bicycles to be dispatched at each vertex v;:

121 = Hi1 — it (2)

In addition, we create the edges EtD-Q—l based on E; and E;1. Different from the directed edges in E; and
E;11, we define the undirected edges Eg_l for Gﬂ_l:

BB, =E,UFE. (3)

Then, for each edge e;; € Eg_l, we remove the opposite edge e;; from EEH ifej; € Etj?;-r The detailed
steps of constructing the DL-PBS bicycle dispatching demand graph model are described in Algorithm
Assuming that N is the number of vertices (bicycle stations) in the predicted graph model G;;1 and
M is the number of edges (trajectory routes) in Gi11, the time complexity of Algorithm 3.1 is

O(M + N).

Algorithm 3.1 Construction of bicycle dispatching demand graph model of DL-PBS

Input:
G;: the actual graph model at the current time period ¢;
Gyy1: the predicted graph model for the next time period ¢ + 1;
Output:
GtD_H: the bicycle dispatch graph model of ¢ + 1.
Combine vertices from V; and V4 1: Vtgl — ViU Vi,
for each vertex v; in V., do
if v; € V; and v; € Viy1 and pi+ = i ¢41 then
Remove v; from Vtﬁj_lg
else
Calculate the number of bicycles to be dispatched uftH i1 — it
end if
end for
Combine edges from E; and Fyyq: EtDJrl — E U E;4q;
for each edge e;; in B, do
if €;; € Etl-)‘,-l and €j; € Eg,—l then
Remove ej; from Ef ;;
end if
end for
: Create a bicycle dispatch graph model GZ., + (V;2, EE.);
return GPZ,.

e e e
@ Tk w2 o

3.4 Problem Formulation

Based on the bicycle dispatching requirements, we define the bicycle dispatching problem in this section.
Generally, there are multiple DL-PBS dispatching centers in each city, each dispatching center has
multiple dispatch trucks, and each dispatch truck is responsible for several bicycle parking spots. Given
a bicycle dispatching demand graph model Gﬂ_1 and a set of dispatch trucks K = {K1,..., Ky }. In
this way, the bicycle dispatching optimization problem is transformed into a traveling salesman problem
with several closed loops, namely, the multi-route bicycle dispatching problem. Each dispatch truck
executes a dispatching loop, which is defined as follows.




Definition 1: Dispatching loop. The dispatching loop is a directed closed link and is completed
by a dispatch truck. The dispatch truck loads a certain number of bicycles from a dispatching center
according to the dispatching plan, completes the bicycle deployment tasks at each parking spot in the
dispatching plan, and then returns to the dispatching center.

In each dispatching loop, the number of parking spots, the route of dispatching, and the number of
initially loaded bicycles on the trucks are dynamically determined according to the corresponding
dispatching plan.

Definition 2: Multi-route bicycle dispatching solution. In a DL-PBS system of a spacial
subset (e.g., a city), given the bicycle dispatching demand graph model G, and a set of dispatch trucks
K ={Kj,...,Ky}, each dispatch truck completes a disjoint dispatching loop. All dispatching loops
form a multi-route bicycle dispatching solution.

The model parameters of the multi-route bicycle dispatching problem are defined as follows:

e GP 1 = (V,,EE,): the bicycle dispatching demand graph model of time period ¢ + 1;
o K ={Ky,...,Ky}: all dispatch trucks;

e (Q: the maximum carrying capacity of each dispatch truck;

e 74 the travel time cost of a dispatch truck within unit distance;

e 7,: the operation time cost of loading and unloading each bicycle;

e 1P: the number of bicycles to be dispatched at spot v;;

e ¢;; € [0, 1]: the edge between vertices v; and v;, if an edge exists between v; and v;, then e;; = 1,
otherwise, e;; = 0;

e d;;: the distance of edge e;j;

e L={Ly,...,Lp,...,Lar}: the set of dispatching loops of all dispatch trucks;
o L,, = {e;;}: the set of edges (dispatch paths) in the m-th dispatching loop;

® ¢,,: the number of bicycles currently loaded on the m-th dispatch truck;

e ¢Y: the number of bicycles initially loaded on the m-th dispatch truck;

e ¢Ma%: the maximum number of bicycles loaded on the m-th dispatch truck.

3.4.1 Optimization Objectives

In this work, the optimization objectives of the multi-route bicycle dispatching problem include four
aspects: minimizing the dispatching costs, minimizing the number of initially loaded bicycles on the
trucks, maximizing the workload balance between dispatch trucks, and maximizing of the supply and
demand balance of all parking spots.

(1) Minimum dispatching costs.

The bicycle dispatching cost includes the travel cost Ciravel 0of dispatching loops and the time cost
Clime of loading and unloading bicycles. The length of dispatch paths refers to the sum of the length of
dispatching loops completed by all dispatch trucks. Therefore, we define the travel cost of all dispatching

loops as:
C’travel: Z Z d’LJ (4)

Ly€L €ij €L

The time cost Ciijme of dispatching loops refers to the travel time of dispatching loops and the operation
time of loading and unloading bicycles at each parking spot:

Ctimc = Z Z (d’L] X Tq + :U'P X Tu)~ (5)

Lmel €ij €Lm

10/124)



Since the number of bicycles to be dispatched in G,{DH is fixed, the time cost of loading bicycles in the
entire graph is fixed. In addition, the time cost of travel is proportional to the distance of dispatching
loops. Therefore, it is easy to prove that the time cost of dispatching loops is linearly related to the
travel cost, and the minimum value of the travel cost must lead to the minimum time cost. In the
following, we only consider the travel cost as dispatching cost.

(2) Minimum initial load of the dispatch trucks.

In the bicycle dispatching process, some parking spots need to add bicycles (unload from the dispatch
truck), while others need to remove bicycles (load to the dispatch truck). In this way, the dispatch trucks
do not need to start at full-load in the initial state. For a certain dispatching loop, we can calculate the
number of bicycles to be dispatched at each bicycle spot and obtain the number of bicycles to be initially
loaded to the current dispatch truck. Assuming that 2 is the number of bicycles to be dispatched at
parking spot v;, ¢!, is the number of bicycles that is required to be loaded or the number of available
spaces on the m-th dispatch truck, as defined as:

G =11

a2, = pt + pd;

= >,

vi€eij,eij€Lm
The number ¢, of bicycles required to be initially loaded on the m-th dispatch truck is calculated as:

q?n:max(q#, A, . dh, ) (7)

where ¢¢, is the number of bicycles currently loaded on the m-th dispatch truck. Note that each
dispatching loop L,, is a directed closed link and the order of edges (dispatch paths) and vertices
(parking spots) in L,, is fixed. Based on ¢!, we can further calculate the maximum number of bicycles
loaded on the m-th dispatch truck:

B = v (ah ol ). )

Hence, we define the number of bicycles initially loaded on all dispatch trucks as:

=Y (9)

Lm€L

Given a dispatching loop with 13 vertices, an example of the calculation of the initial load and maximum
load of the current dispatch truck is illustrated in Fig. [0}

(3) Maximum workload balance of the dispatch trucks.

The workload of each dispatch truck is related to the length of the dispatch loop and the number of
bicycles dispatched. Therefore, the dispatching time cost of the dispatching loop is used as the
dispatching workload of each dispatch truck. We use the reciprocal of the standard deviation of
dispatching time cost to calculate the workload balance By, between dispatch trucks, as defined as:

1
1 __
BW = (M Z (Ctime,m - Ctime)2> ) (10)

Ly,€eL

where M is the number of dispatch trucks, Ciime,m is the dispatching time cost of the m-th dispatching
loop, and Clip,e is the average value of the dispatching time cost of all dispatching loops.

(4) Maximum balance of the supply and demand of all bicycle spots.

Since the bicycle rental and return situations of each spot changes over time, when a dispatch truck
arrives at a target spot, the number of bicycles that need to be dispatched at the spot is not always
equal to the number in the dispatch plan. Therefore, the number of bicycles to be dispatched needs to be
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Figure 6. Example of calculation of the number of bicycles initially loaded on the trucks and the
maximum number of bicycles loaded. There are 13 vertices (+5, +4, -6, +3, -10, +5, +8, +5, -3, +2, -4,
-5, +4) in a dispatching loop, where a positive number indicates that the vertex needs to add bicycles,
and a negative number indicates that the vertex needs to remove bicycles. We can calculate the number
of bicycles initially loaded is equal to 14 by using Eq. , the maximum number of bicycles loaded is
equal to 18 by using Eq. (8).

adjusted dynamically to meet the expected demand. For example, when adding bicycles to a spot, if the
number of bicycles available on the dispatch truck is less than the number of bicycles required at the
target spot, and the difference is less than the threshold value of €4, we will continue to perform
dispatching at the spot with the available number of bicycles on the truck. Assuming that spot v;
requires to add pP bicycles, but there are g, (0 < uP — ¢, < £4) bicycles loaded on the m-th dispatch
truck. In this case, after adding ¢, bicycles to v;, the difference between the supply and demand of v; is:

1/% ={qm — /%D (11)

Conversely, when removing bicycles from a spot, if the available free space on the dispatch truck is less
than the number of bicycles to be removed, we only remove the limited number of bicycles from the
target spot. Assuming that spot v; requires to remove uP bicycles, but there are

Q — gm (0 < pP — (Q — gm) < e4) free space available on the dispatch truck. In this case, after removing
gm bicycles from v;, the difference between the supply and demand of v; is:

Vi = 1 — Gm. (12)

Therefore, the balance between the supply and demand in the dispatching loops is the sum of the
absolute value of the balance between the supply and demand of all spots in all dispatch loops, which is

defined as:
Bs= > > (exp(—[wi]). (13)

Ly €L vi €Ly,

Definition 3: Multi-objective Bicycle Dispatching (MBD) problem. Based on the above
description, the conflicting multi-objective target considered in the multi-route bicycle dispatching
(MBD) problem is comprised of four aspects: minimum dispatching costs, minimum initial load of the
dispatch trucks, maximum workload balance of the dispatch trucks, and maximum balance of the supply
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and demand of all bicycle spots. The multi-objective bicycle dispatching problem is formalized as follows:

Minimize: F; = Z Z dij,

L,€eL €ij S

>

Ln,€eL

1
Maximize: FS = (1\14- Z (Ctime;m - Ctime)2> 3

L,eL

Minimize: F5

(14)

Maximize: Fy = Z Z (exp (—|v])),

Lm€Lv;€ELm

where function Fj is to minimize the dispatching costs, function F5 is to minimize the number of bicycles
initially loaded on all dispatch trucks, function F3 is to maximize the balance of the workload between
dispatch trucks, and function Fj is to maximize the balance of the supply and demand of all bicycle
spots.

3.4.2 Constraints

The multi-route bicycle dispatching problem is subjected to the following constraints.
(1) In a dispatching solution, there is no overlap between all dispatching loops:

(2) In a dispatching solution, each vertex v; can only be visited once, namely:

N
> =1 (16)

=15

where N is the number of vertices in V;2;.
(3) The number of bicycles currently loaded on each dispatch truck K, does not exceed its maximum
carrying capacity ¢,, at any time:
gm < Q,VK,, € K. (17)

(4) The number uP of bicycles dispatched at any parking spot v;, including adding to or removing
from the parking spot, must not exceed the maximum carrying capacity of the dispatch truck:

py < Qv € VA (18)

3.4.3 Pareto Optimality

Since there is usually no unique and perfect solutions for multi-objective problems, we use Pareto
optimal solutions [1] to find the optimal solutions to the bicycle dispatching problem. The Pareto
optimal solution is applied in the objective function to obtain a set of non-inferior solution vectors, which
can form the Pareto frontier in the target space. We define the Pareto dominance and Pareto optimality
of the MBD optimization problem as follows.

Definition 4: Pareto dominance of the MBD problem. Given the multi-objective
optimization function F' = (F, Fy, F3, Fy) in Eq. of the MDB problem with four objectives, and
U= [, ug, us, uq) and V= [v1,v2,v3,v4] are two candidate values of this function. If and only if
solution U is partially less than solution ‘7, then U dominates V. That is, for each component u; and v;
in U and V, we can obtain that u; < wv;.

Definition 5: Pareto optimality of the MBD problem. In the MBD problem, given a solution
U= [u1, ua, us, uq], if and only if there is no an alternative solution V= [v1,v2, 3, v4] that satisfies 1%
dominates U , then, solution U is Pareto optimal.
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4 Bicycle Dispatching Based on Multi-objective
Reinforcement Learning

In this section, we will introduce the multi-agent multi-objective reinforcement learning (multi-agent
MORL) to find the Pareto optimal solution of the MBD problem. We will define the state space,
available actions, immediate rewards, and learning process in detail.

4.1 Multi-objective Reinforcement Learning

The target problem of a single agent RL model is usually described as a Markov Decision Process
(MDP), while a multi-agent MORL model is usually described as a Markov game, where the learning
task corresponds to a quaternion E = (M, S, A, P, R), where M is the number of players, namely,
agents and dispatch trucks; S = {s1,...,s|g} denotes the state space of the target problem, which is a
joint state of multiple agents; A = {A;1,..., Ay} denotes the set of actions available in each state; P
denotes the probability of state transition by using various actions in each state; and R represents the
rewards obtained by the actions executed in each state. For the current state s, we can execute a joint
action a = (a1, ...,ap) to transfer to the next potential state s’ with the transition probability p(s’|s, a)
and a reward (s, a).

The purpose of RL is to find the optimal strategy m to maximizes the expected reward R. The goal
can be represented by a QQ-value, which records the expected reward for each state-action pair:

Qls,0) = Q(s.) +a [r(s,a) + ymax (S, a') = Qls, )], (19)

where r is the reward for reaching s’ state, v is a discount factor, and « is the learning rate.

Different from the single-objective RL algorithms, in the multi-objective RL (MORL) algorithm, the
target problem is updated to a multi-objective problem to find multiple conflicting optimization goals.
In this way, the reward r in Eq. is updated to a reward vector 7.

4.2 MORL-based Bicycle Dispatching (MORL-BD)

In the MORL-BD algorithm, we provide a bicycle dispatching demand graph model GEH and a set of
dispatch trucks K = {K7,..., Kj}. In this section, we will describe the state space, available actions,
immediate rewards, and learning process of MORL-BD to find the Pareto optimal solution.

4.2.1 State Space of MORL-BD

In the MORL-BD algorithm, the state space represents all bicycle parking spots that can be visited by
all dispatch trucks and the number of bicycles needs to be dispatched in each dispatching loop. Let

S = {s1,...,55)} be the state space of the MORL-BD algorithm, and [S]| is the candidate states. Since
the number of parking spots is N and the number of dispatch trucks is M, the average number of spots
responsible for each dispatch truck is [N/M]. For each state s; € S, the next state s’ represents the set
of all the next possible spots and the number of bicycles to be dispatched at the next spot. In the
multi-agent MORL model with multiple dispatching loops, each state can be expressed as

si ={Si1,---,8i, M} Sim € s; is the set of all dispatching tasks assigned to the m-th dispatch truck
K,, € M at state s;. In our implementation, the current value of the decision variable is used to
determine the parking spot to be accessed and the number of bicycles to be dispatched in the current
state s;.

In each decision state, each dispatch truck performs only one dispatching task by using available
actions, that is, visiting a bicycle spot and dispatching a certain number of bicycles. The maximum
decision states of the MORL-BD problem depends on the total number of parking spots in the entire
dispatching demand graph and the workload of each dispatch truck. Note that S| < (N + 2), where s is
the initial state from the dispatching center to the first bicycle parking spot, and sy is the final state
from the last bicycle parking spot in a dispatching loop to the dispatching center.
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4.2.2 Action Set

The action set of the MORL-BD algorithm refers to the set of all actions that can be executed in each
state. Because the dispatching demand graph is not a fully connected graph, and the number of bicycles
to be dispatched at each parking spot is different, the set of actions available to each dispatch truck is
different in each state. In addition, due to the real-time rental and returning behavior of each parking
spot in the dispatching process, the actual number of bicycles to be dispatched at each spot may be
different from the dispatching plan. In this case, the actions available in the current state s; are
represented as A; = {(s},a1,p1,71),-- -, (SiAil,a‘Ai‘,p‘Ai‘,’l“Ai‘)}. Each candidate state s’ is expressed as
s" = (vy, u.? ). That is, v; is the bicycle parking spot maybe visited by the current dispatch truck, and
ujD is the number of bicycles to be dispatched at v;. Fig. shovvs an example of the relationship
between dynamic bicycle dispatching requirements and available actions over different time periods.

5]
e R

lu f/ tg TtmeAxls
Figure 7. Example of the relationship between dynamic bicycle dispatching requirements and available

actions over different time periods. Assuming that the current state is s = (v1,410), the candidate states
at to are {s} = (va, —15), sh = (vs, +12), sh = (v4, —18), s, = (vs,+19)}. The candidate states of s at 1
are updated to {s} = (ve, —11), 85 = (vs, +18), 85 = (v4, —24), s = (v3, +19)}.

4.2.3 Immediate Reward Vector

In the MORL-BD algorithm, we use an immediate reward vector instead of a single reward for each
action. By performing action a;, the immediate reward vector of each state s; is defined as:

F(si,a:) = [ (85, 00), 7% (51, 0:), 72 (85, a), 7 (54, 03)] ", (20)

where 7'(s;,a;) = [} 1,...,7{ 5] is the joint rewards of the optimization goal of dispatching costs of all

agents (dispatch trucks), 7% (s;, a;) = [r7, ..., 77 5] is the joint rewards of the optimization goal of the
number of bicycles initially loaded on all dispatch trucks, 73 (s;, a;) = [7"?,17 .. ,r?’ ) is the joint rewards
of the optimization goal of the workload balance between dispatch trucks, and 74(s;, a;) = [rﬁl, .. ,r;{ M
is the joint rewards of the optimization goal of the supply and demand balance of all bicycle spots. For
the current state s; = (v;, uP) at decision step i by executing action a; € A, the reward components r},m

to rﬁm of the m-th agent (dispatch truck) are calculated as follows:

1
Til,m:? YooY di

Jr Lyn€Lej;€Lm

1
2 _ 0
Tim = —o~ Z Q>

q
™ Lm€L (21)
/
3 _ BW
T’L',m - B// 9
w
I
4 _ BS
ri,m - B//7
S

where e;; = (v;,v;), and v; is the previous bicycle parking spot of v; visited by the same dispatch truck
in the previous state. By is the workload balance of the dispatching solution when v; is included in L,,,

15,24



while By}, is the corresponding value when v; is not included in L,,. This explanation applies to By and
B.

4.2.4 State Value Evaluation

In each bicycle dispatching loop L, the immediate reward vector 7(s;, a;) is calculated by applying the
components [r; 1,72, 7,3, 7:,4] in the objective functions in Eq. (13]). For each dispatch truck, since the
current state s; is located at spot v;, we update the state value of the current state by calculating:

— —

U(si,a;) < U(si,a;) + « {F(si7ai) +7 [nggz( U(s',a) - Uls;, ai)} } ) (22)

where a’ is the candidate actions in the state s;, and is consists of the collection of all connected parking
spots and the number of bicycles to be dispatched on the target spots. Then, we compare the reward
vector with the existing Pareto optimal vectors to decision the candidate actions with the highest
immediate rewards. Once a Pareto optimal solution U= [u1, ua, us, uy) is found, we save it into an elite
list and finally form the Pareto frontier. An example of state transition in a bicycle dispatching loop is
shown in Fig.

lln ll/ _ ;3 -
Time Axis
Legend: @Numberofhicycles ondispatch truck v Bicycle parking spot
Figure 8. Example of state transition in a bicycle dispatching loop based on the dispatching demand

graph model in Fig. [7]

In Fig. [8] the state transfer is started from the dispatching center to the first bicycle parking spot by
using the MORL-BD algorithm. At each state s;, we can generate the candidate actions A; = {a;} with
all candidate subsequent states. In addition, we continue to calculate the immediate reward vector
7(s’,a’) for each action selection (s, a’), and then execute state transition. According to the immediate
rewards and state transition, we can obtain the Pareto frontier based on the Pareto optimal solutions.
An example of dynamic update of the dispatching loop based on real-time bicycle rental behavior and
state transition is shown in Fig. [0

As shown in Fig. [0} suppose the capacity of the dispatch truck is 60 bicycles and the initial number
of bicycles is 43. The initial dispatching loop of the truck is {(vg, —9), (v1,+10), (v2, —15), (vs, +12),
(vs, +23), (v7,+21), (vq, —18), (vs,+19), (vs, —20)}. At time 1, the truck arrives at the parking spot vs,
and the number of bicycles to be dispatched is dynamically updated from 418 to +12. In this case, the
number of available bicycles on the truck will be (43-5-104+11-18) = 21, which is lower than the number
of bicycles required at spot vg (28). Therefore, the truck must changes the dispatching loop and go to
the spot vy to load more bicycles.

The detailed steps of the bicycle dispatching algorithm based on multi-object reinforcement learning
(MORL-BD) is described in Algorithm Since K is the maximal number of search iterations in
MORL-BD, m is the number of dispatching loops, and |A| is the number of the action set, so the time
complexity of Algorithm 4.1 is O(Km|A|).
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Figure 9. Dynamic update of the dispatching loop based on real-time bicycle rental behavior and state
transition in Fig.

Algorithm 4.1 Bicycle dispatching algorithm based on multi-object reinforcement learning (MORL-BD)

Input:

GtDH: the bicycle dispatch graph model of ¢ + 1;

M: the dispatch trucks;

K: the maximal number of search iterations for MORL-BD;
Output:

S(P): the Pareto optimal solution of GP,;.

1: Generate a set of dispatching loops L = {L1,..., L };

2: Initialize a state sg = [(v1,a1), ..., (Um,am)] at each dispatching center;
3: Initialize a Pareto optimal solution S(P) = {);

4: while £ < K do

5. for each L,, in L do

6: Generate the action set A; = {a;} for the current dispatch truck M,,;
7 for each action q; in A; do

8: Calculate immediate reward vector 7(s;, a;) by using Eq. ;

9: Update the state value (7(3“ a;) by using Eq. ;

10: end for

11: Find the optimal action (s',a’);

12: Perform state movement s < s';

13:  end for

14:  Form a dispatching solution U ;

15:  if U dominates all solutions V in S(P) then

16: Add U in S(P): S(P) + U;

17:  end if
18: end while
19: return S(P).

5 Experiments

5.1 Experimental Setting

We conduct extensive comparative experiments on an actual DL-PBS system to compare the proposed
MORL-BD algorithm with the multi-objective genetic algorithm (NSGA-II) [5], evolutionary algorithm
(MOEA/D) [31], and particle swarm optimization (MOPSO) algorithm [4]. Large-scale historical bicycle
GPS records and cycling trajectory records are gathered from an actual DL-PBS system in China. There
are 2,118,190 GPS records and 372,193,743 trajectory records in Beijing, China. Firstly, the dataset is
divided into 8 spatial subsets according to the districts, and each of them is further split into 94
spatiotemporal subsets by days. Then, we perform the bicycle parking spot clustering and graph model
construction on each spatiotemporal subset, and establish a graph sequence model of bicycle parking
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spots. In addition, based on the graph sequence of previous time periods, we forecast the bicycle station
layout of the subsequent time periods to create the dispatching demand graph model. Finally, we
perform the comparison algorithms based on the dispatching demand graphs to discuss the experiment
results and evaluate the performance of these algorithms.

5.2 Experiment Result Discussion

The actual data of the DL-PBS system in the Dongcheng and Xicheng districts of Beijing is used in this
experiment. The historical records from January 1st, 2019 to October 23, 2019 are gathered for bicycle
parking spot clustering and graph model construction. By using the GGNN algorithm, we predict the
layout of bicycle parking spots on October 24, 2019, including the location of each bicycle station and
the number of bicycles required at each spot. The predicted layout of bicycle parking spots and the
corresponding dispatching demand graph of an actual DL-PBS system in Beijing is shown in Fig.
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Figure 10. Predicted layout of bicycle parking spots and the corresponding dispatching demand graph

of an actual DL-PBS system in Beijing, China.

As shown in Fig. a), we obtain 56 micro bicycle parking spots (each spot can accommodate 5 to
10 bicycles) and 98 small parking spots (accommodating 10 to 20 bicycles), 61 medium parking spots
(accommodating 20 to 30 bicycles) and 20 large parking spots (accommodating more than 30 bicycles).
In addition, based on the actual spot layout on October 23, 2019 and the predicted spot layout on
October 24, 2019, we calculate the bicycle dispatching requirements on October 24. We further construct
the corresponding dispatching demand graph model, as shown in Fig. b).

Given 3 dispatching centers and 9 dispatch trucks, we respectively use the MORL-BD, MOPSO,
NSGA-II, and MOEA /D algorithms to find the multi-route bicycle dispatching plans. The dispatching
solutions of all algorithms are shown in Fig. [T1] and Table [T}

As shown in Fig. a), in the solution of MORL-BD, the total length of dispatch paths of all
dispatching loops is 106.36 km, the average number of initial load of each dispatch truck is 59.34
(bicycles), the work balance between the dispatch trucks is 0.87, and the average balance of supply and
demand at all spots is 0.83. In contrast, in the solution of MOPSO (shown in Fig. [IT[b)), the total
length of dispatch paths of all dispatching loops is 114.19 km, the average number of initial load of each
dispatch truck is 63.17 (bicycles), the work balance between the dispatch trucks is 0.79, and the average
balance of supply and demand at all spots is 0.72. In the solution of NSGA-II (shown in Fig. (c)), the
total length of dispatch paths of all dispatching loops is 120.87 km, the average number of initial load of
each dispatch truck is 60.21 (bicycles), the work balance between the dispatch trucks is 0.78, and the
average balance of supply and demand at all spots is 0.80. In the solution of MOEA/D (shown in Fig.
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(c) Dispatching solutions of NSGA-II (d) Dispatching solutions of MOEA /D
Figure 11. Dispatching solutions of MORL-BD, MOPSO, NSGA-II, and MOEA /D algorithms.

Table 1. Value of optimization objectives in dispatching solutions using all methods.

Methods Lengths of Average number of Work Average balance
dispatch paths initial load for each balance of supply and
(km) truck demand

MORL- 106.36 59.34 0.87 0.83

BD

MOPSO 114.19 63.17 0.79 0.72
NSGA 120.87 60.21 0.78 0.80
MOEA/D 117.53 67.90 0.70 0.69

d)), the total length of dispatch paths of all dispatching loops is 117.53 km, the average number of
initial load of each dispatch truck is 67.90 (bicycles), the work balance between the dispatch trucks is
0.70, and the average balance of supply and demand at all spots is 0.69. Experimental results show that
the dispatching solution found by MORL-BD is better than the comparison algorithms in four
optimization objectives. We will evaluate the dispatching costs, Pareto optimality, and algorithm
performance of each algorithm in the subsequent sections.
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5.3 Dispatching Cost Comparison

We conduct three groups of comparative experiments to evaluate the dispatching costs of the MORL-BD,
MOPSO, NSGA-II, and MOEA/D algorithms. In the first group of experiments, the number bicycle
parking spots is set in the range of [50, 100, 150, 200, 250, 300, 350], with a total of 10,000 dispatched
bicycles and 10 dispatch trucks. In the second group of experiments, we fix the number of bicycle
parking spots and dispatch trucks to 100 and 10, respectively, and adjusted the number of dispatched
bicycle from 2 x 102 to 14 x 103. In the third group of experiments, we fix the number of bicycle parking
spots and dispatched bicycles to 100 and 10,000, respectively, and adjusted the number of dispatch trucks
from 5 to 35. According to Eq. @, we consider the length of dispatch paths as the dispatching cost of
each algorithm. The comparison results of the dispatching costs of these algorithms are shown in Fig.
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Figure 12. Dispatching cost comparison of the algorithms on different dispatch cases.

As can be seen from Fig. a), as the number of bicycle parking spots increases, the length of
dispatch paths of each algorithm increases significantly. However, it is clearly observed that our
MORL-BD algorithm has lower dispatching cost than other algorithms. For example, when the number
of bicycle parking spots is equal to 350, the length of dispatch paths of MORL-BD is 195.04 km, the
dispatching length of MOPSO is 220.02 km, the dispatching length of NSGA-II is 266.18 km, and the
dispatching length of MOEA/D is 321.34 km. It can be seen from Fig. b) that when a fixed scale of
bicycle parking spots, the increase in the number of dispatched bicycles will increase the dispatching
costs of these algorithms. This is because the change in the number of dispatched bicycles at each spot
will affect the visiting order of the spots, thereby affecting the dispatching route and its length.
MORL-BD always incurs the lowest cost and is lest sensitive to the increase of number of dispatched
bicycles. It can be seen from Fig. ¢), with the increase in the number of dispatch trucks, the length of
the dispatch paths found by each algorithm gradually becomes shorter and finally tends to be stable.
This is because the increase in the number of dispatch trucks will produce multiple dispatching loops,
making each dispatching loop more compact, thereby effectively shortening the length of the dispatch
paths. Again, MORL-BD incurs the lowest cost.

5.4 Pareto Frontier and Optimal Vectors

We use the first group of experiments in the previous section to discuss the Pareto frontier found by each
algorithm, and to evaluate the effectiveness and feasibility of each algorithm. The experimental results
are shown in Fig. [I3]

Figs. [L3{(a), (b), and (c) plot the distribution of Pareto frontier found by the MORL-BD, MOPSO,
NSGA-II, and MOEA/D algorithms in the target space of four optimization objectives. Among them, 74
Pareto solutions found by MORL-BD, while 52 found by MOPSO, 37 found by NSGA-II, and 32 found
by MOEA/D. To clearly show the Pareto frontier of each algorithm, we only draw the top 8 Pareto
optimal solutions of each algorithm. The Pareto optimal objective vector of MORL-BD is distributed in
the range of [106.36, 52.08, 0.44, 0.47] x [135.82, 81.14, 0.88, 0.89], that of MOPSO is distributed in
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Figure 13. Pareto frontier and optimal vectors of the algorithms.

[114.19, 58.83, 0.35, 0.32] x [136.25, 80.09, 0.77, 0.72], that of NSGA-II is distributed in the range of
[109.28, 56.11, 0.37, 0.29] x [132.18, 84.16, 0.81, 0.88], and that of MOEA /D is distributed in the range
of [107.22, 58.54, 0.31, 0.39] x [131.86, 84.49, 0.85, 0.90]. Hence, the range of the Pareto optimal
objective vector found by MORL-BD is wider than the range found by the other algorithms. In addition,
the objective vectors found by MORL-BD dominate the majority of objective vectors found by the other
algorithms, which means that MORL-BD can find high-quality Pareto optimal solutions.

5.5 Algorithm Performance Evaluation

We conduct three groups of comparative experiments to evaluate the performance of MORL-BD,
MOPSO, NSGA-II, and MOEA /D algorithms. The first group is carry out under parking spots of
different scales, with the number of parking spots gradually increasing from 50 to 350. The second group
is conducted on dispatched bicycles of different scales, where the number of bicycles gradually increases
from 2,000 to 14,000. The third group is conducted under a different number of dispatch trucks,
increasing from 5 to 35. In each comparison experiment, all algorithms are executed on a
high-performance computer equipped with Intel Core 15-6400 8-core CPU, 32 GB DRAM, and 2 TB
main memory. The performance comparison results of these algorithms are shown in Fig.
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Figure 14. Performance evaluation of the comparative algorithms under different dispatching situations.

It can be obvious from Fig. [I4] that the execution time of the comparison algorithms increases with
the increase of the data scale. However, in each case, the execution time of our MORL-BD algorithm is
significantly shorter than that of the comparison algorithms. For example, when the number of bicycle
parking spots is equal to 200, the execution time of MORL-BD is 53.68 (s), while the execution times of
MOEA /D, NSGA-IT and MOPSO are 96.74 (s), 94.80(s) and 81.76(s), respectively, as shown in Fig.
a). In addition, the increase in the number of dispatch trucks significantly affects the number of
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iterations in each algorithm, thereby resulting in an increase in the execution time of each algorithm. For
example, when the number of dispatch trucks increases from 5 to 35, the execution time of MORL-BD
increases from 21.08 (s) to 216.64 (s), while the execution time of MOEA /D increases from 28.34 (s) to
357.25 (s), the execution time of NSGA-II increases from 34.98 (s) to 495.38 (s), and the execution time
of MOPSO increases from 37.91 (s) to 652.10 (s), as shown in Fig. [14[c). Similar observation can be
made when the number of dispatched bicycles is increased as shown in Fig. b). Therefore,
experimental results show that MORL-BD is superior to the comparison algorithms in performance, and
can efficiently achieve the optimization objectives of bicycle dispatching.

6 Conclusions

This paper presented the MORL-based bicycle dispatching (MORL-BD) algorithm, and provided the
optimal bicycle dispatching solutions for the DL-PBS system. The requirements of multi-route bicycle
dispatching of DL-PBS systems were described and a dispatching demand graph model was created. The
multi-route bicycle dispatching problem was defined as a multi-objective optimization problem with four
optimization objectives. In addition, the MORL-BD algorithm was used to search candidate Pareto
optimal solutions for bicycle dispatching routes. The Pareto optimal solution found in each action was
saved to find out the Pareto frontier. Experimental results on the actual DL-PBS datasets show that the
proposed MORL-BD algorithm outperforms the comparison algorithms in terms of effectiveness and
performance.

Acknowledgment

This work is partially funded by the National Key R&D Program of China (Grant No.
2020YFB2104000), the National Outstanding Youth Science Program of National Natural Science
Foundation of China (Grant No. 61625202), the Program of National Natural Science Foundation of
China (Grant No. 61751204), the International (Regional) Cooperation and Exchange Program of
National Natural Science Foundation of China (Grant No. 61860206011), the Natural Science
Foundation of Hunan Province (Grant No. 2020JJ5084), and the International Postdoctoral Exchange
Fellowship Program (Grant No. 20180024). This work is also supported in part by NSF under grants
I11-1763325, 111-1909323, and SaTC-1930941.

References

1. A. Ben-Tal. Characterization of pareto and lexicographic optimal solutions. In Multiple criteria
decision making theory and application, pages 1-11. Springer, Springer, 1980.

2. J. Chen, K. Li, K. Li, P. S. Yu, and Z. Zeng. Dynamic planning bicycle stations for dock-free
public bicycle-sharing networks based on gated graph neural networks. ACM Trans. Intell. Syst.
Technol., 99(1):1, 2021.

3. Y. Chen, W. Yan, C. Li, Y. Huang, and L. Yang. Personalized optimal bicycle trip planning based
on g-learning algorithm. In WCNC"18, pages 1-6. IEEE, IEEE, 2018.

4. C. Coello, G. Pulido, and S. Lechuga. Handling multiple objectives with particle swarm
optimization. IEEE Trans. Evol. Comput., 8(3):256-279, 2004.

5. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: Nsga-ii. IEEE Trans. Evol. Comput., 6(2):182-197, 2002.

6. Y. Duan and J. Wu. Optimizing rebalance scheme for dock-less bike sharing systems with
adaptive user incentive. In MDM’19, pages 176-181. IEEE, 2019.

22/24]



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. S. Ghosh, P. Varakantham, Y. Adulyasak, and P. Jaillet. Dynamic repositioning to reduce lost
demand in bike sharing systems. J. Artif. Intell. Res., 58:387-430, 2017.

J. Hu, C. J. Xue, Q. Zhuge, W.-C. Tseng, and E. H.-M. Sha. Data allocation optimization for
hybrid scratch pad memory with sram and nonvolatile memory. IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., 21(6):1094-1102, 2012.

S.-R. Hu and C.-T. Liu. An optimal location model for a bicycle sharing program with truck
dispatching consideration. In ITSC’14, pages 1775-1780. IEEE, 2014.

Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural networks. arXiv
e-prints, June 2017.

Y. Li and Y. Zheng. Citywide bike usage prediction in a bike-sharing system. IEEFE Trans.
Knowledge Data Eng., 32(6):1079-1091, 2019.

Y. Li, Y. Zheng, and Q. Yang. Dynamic bike reposition: A spatio-temporal reinforcement learning
approach. In SIGKDD’18, pages 1724-1733. ACM, 2018.

D. Liu, H. Dong, T. Li, J. Corcoran, and S. Ji. Vehicle scheduling approach and its practice to
optimise public bicycle redistribution in hangzhou. IET Intell. Transp. Syst., 12(8):976-985, 2018.

M. Ma, S. M. Preum, M. Y. Ahmed, W. Téarneberg, A. Hendawi, and J. A. Stankovic. Data sets,
modeling, and decision making in smart cities: A survey. ACM Transactions on Cyber-Physical
Systems, 4(2):1-28, 2019.

D. Mao, Z. Hao, Y. Wang, and S. Fu. A novel dynamic dispatching method for bicycle-sharing
system. ISPRS Int. Geo-Inf., 8(3):117, 2019.

T. Mimura, S. Ishiguro, S. Kawasaki, and Y. Fukazawa. Bike-share demand prediction using
attention based sequence to sequence and conditional variational autoencoder. In PredictGIS’19,
pages 41-44. ACM, 2019.

L. Pan, Q. Cai, Z. Fang, P. Tang, and L. Huang. A deep reinforcement learning framework for
rebalancing dockless bike sharing systems. In AAAI’19, volume 33, pages 1393-1400, 2019.

S. Parisi, M. Pirotta, and M. Restelli. Multi-objective reinforcement learning through continuous
pareto manifold approximation. J. Artif. Intell. Res., 57:187-227, 2016.

C. Ren, L. An, Z. Gu, Y. Wang, and Y. Gao. Rebalancing the car-sharing system with
reinforcement learning. World Wide Web, pages 1-21, 2020.

M. Ruiz-Montiel, L. Mandow, and J.-L. Pérez-de-la Cruz. A temporal difference method for
multi-objective reinforcement learning. Neurocomputing, 263:15-25, 2017.

Y. Sun. Sharing and riding: how the dockless bike sharing scheme in china shapes the city. Urban
Science, 2(3):68, 2018.

G. Tang, S. Keshav, L. Golab, and K. Wu. Bikeshare pool sizing for bike-and-ride multimodal
transit. IEEE Trans. Intell. Transp. Syst., 19(7):2279-2289, 2018.

J. Wu. Challenges and opportunities in algorithmic solutions for re-balancing in bike sharing
systems. Tsinghua Sci. Technol., 25(6):721-733, 2020.

L. Yan and H. Shen. Top: Optimizing vehicle driving speed with vehicle trajectories for travel
time minimization and road congestion avoidance. ACM Transactions on Cyber-Physical Systems,

4(2):1-25, 2019.

23/



25

26.

27.

28.

29.

30.

31.

32.

F. Yang, F. Ding, X. Qu, and B. Ran. Estimating urban shared-bike trips with location-based
social networking data. Sustainability, 11(11):3220, 2019.

R. Yang, X. Sun, and K. Narasimhan. A generalized algorithm for multi-objective reinforcement
learning and policy adaptation. In Advances in Neural Information Processing Systems, pages
14636-14647, 2019.

Z. Yang, J. Chen, J. Hu, Y. Shu, and P. Cheng. Mobility modeling and data-driven closed-loop
prediction in bike-sharing systems. IEEE Trans. Intell. Transport. Syst., 20(12):4488-4499, 2019.

P. Yi, F. Huang, and J. Peng. A rebalancing strategy for the imbalance problem in bike-sharing
systems. Energies, 12(13):2578, 2019.

A. Yoshida, Y. Yatsushiro, N. Hata, T. Higurashi, N. Tateiwa, T. Wakamatsu, A. Tanaka,
K. Nagamatsu, and K. Fujisawa. Practical end-to-end repositioning algorithm for managing
bike-sharing system. In BigData’19, pages 1251-1258. IEEE, 2019.

D. Zhang, J. Zhao, F. Zhang, R. Jiang, T. He, and N. Papanikolopoulos. Last-mile transit service
with urban infrastructure data. ACM Transactions on Cyber-Physical Systems, 1(2):1-26, 2016.

Q. Zhang and H. Li. Moea/d: A multiobjective evolutionary algorithm based on decomposition.
IEEE Trans. Evol. Comput., 11(6):712-731, 2007.

J. Zhao, Y. Li, H. Jia, H. Jian, and J. Cai. Study on allocation scheme of bicycle sharing without
piles. In CICTP’19, pages 1603-1614. 2019.

24/24]



	1 Introduction
	2 Related Work
	3 System Model and Problem Formulation
	3.1 DL-PBS System Model
	3.2 Layout Prediction of Bicycle Parking Spots
	3.3 Bicycle Dispatching Requirements
	3.4 Problem Formulation
	3.4.1 Optimization Objectives
	3.4.2 Constraints
	3.4.3 Pareto Optimality


	4 Bicycle Dispatching Based on Multi-objective Reinforcement Learning
	4.1 Multi-objective Reinforcement Learning
	4.2 MORL-based Bicycle Dispatching (MORL-BD)
	4.2.1 State Space of MORL-BD
	4.2.2 Action Set
	4.2.3 Immediate Reward Vector
	4.2.4 State Value Evaluation


	5 Experiments
	5.1 Experimental Setting
	5.2 Experiment Result Discussion
	5.3 Dispatching Cost Comparison
	5.4 Pareto Frontier and Optimal Vectors
	5.5 Algorithm Performance Evaluation

	6 Conclusions

